2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-19 16:32:16 +00:00

Compare commits

...

972 Commits

Author SHA1 Message Date
nobody
6a08750b23 This commit was manufactured by cvs2svn to create tag
'Version_1_30_2'.

[SVN r19685]
2003-08-18 18:40:31 +00:00
Dave Abrahams
ec0d1a6abc Updates for Boost 1.30.1
[SVN r19440]
2003-08-04 17:38:10 +00:00
Dave Abrahams
66f0c80336 Added Python 2.3 note.
[SVN r19438]
2003-08-04 17:01:29 +00:00
Dave Abrahams
9fa3d5c892 Backport bugfix from trunk
[SVN r19362]
2003-07-30 12:20:30 +00:00
nobody
97c0167660 This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r19146]
2003-07-16 10:53:07 +00:00
Dave Abrahams
f249fc9919 unused variable warning patch
[SVN r19130]
2003-07-15 19:35:14 +00:00
Dave Abrahams
8678283629 merged from trunk
[SVN r18264]
2003-04-16 14:32:58 +00:00
Dave Abrahams
88e7049a5b merged from trunk
[SVN r18054]
2003-03-22 17:29:34 +00:00
Dave Abrahams
955f716108 fix typo
[SVN r18025]
2003-03-20 02:53:47 +00:00
Ralf W. Grosse-Kunstleve
9178b9e6cc pyconfig.h included first only under Tru64/cxx
[SVN r18022]
2003-03-20 00:27:16 +00:00
Ralf W. Grosse-Kunstleve
6f0b083a51 restore Codewarrior builds
[SVN r17998]
2003-03-19 07:04:07 +00:00
Bruno da Silva de Oliveira
574e6b9e2c - Updated to reflect changes in declarations.py
[SVN r17997]
2003-03-19 05:55:28 +00:00
nobody
5bfc1e080d This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17996]
2003-03-19 05:54:27 +00:00
Bruno da Silva de Oliveira
d475fcaf7d - Fixed bug where the PointerDeclaration of functions and methods didn't have the & operator
[SVN r17994]
2003-03-19 05:03:49 +00:00
Bruno da Silva de Oliveira
85f324efb6 - Unit tests for the examples
[SVN r17992]
2003-03-19 03:08:53 +00:00
Bruno da Silva de Oliveira
08254b1fe7 - Fixed bug where an union that was a class member crashed pyste (unions are still not exported)
- Added support for int, double, float and long operators


[SVN r17991]
2003-03-19 02:57:31 +00:00
Bruno da Silva de Oliveira
d4b1b46e63 - Unit tests for the examples
[SVN r17990]
2003-03-19 02:55:30 +00:00
nobody
08f07b0cc6 This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17988]
2003-03-19 02:47:30 +00:00
Ralf W. Grosse-Kunstleve
2d0e0759c7 special code only for gcc <= 2.96
[SVN r17986]
2003-03-19 02:40:15 +00:00
Ralf W. Grosse-Kunstleve
130de54f23 fix for Visual C++ >= 7.1 as per David Abrahams
[SVN r17978]
2003-03-18 22:31:12 +00:00
Ralf W. Grosse-Kunstleve
3068b4ae13 gcc 2.96 compatibility
[SVN r17977]
2003-03-18 20:57:46 +00:00
Dave Abrahams
5867b87b60 Add funcptr FAQ
[SVN r17974]
2003-03-18 14:40:09 +00:00
Bruno da Silva de Oliveira
87953ae423 - Fixed bugs in Linux
[SVN r17969]
2003-03-18 05:16:01 +00:00
Bruno da Silva de Oliveira
eb252c0395 - Fixed bug where the permission bits were being copied to the tmp file
[SVN r17934]
2003-03-15 02:51:51 +00:00
nobody
2c0ec733ca This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17932]
2003-03-14 23:39:05 +00:00
Bruno da Silva de Oliveira
13df532aca - Fixed definition of private default implementations
[SVN r17930]
2003-03-14 23:36:44 +00:00
Bruno da Silva de Oliveira
c8747f6893 - Now generating wrappers for protected and private virtual methods
[SVN r17927]
2003-03-14 21:43:33 +00:00
nobody
69b9094dfc This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17902]
2003-03-14 02:49:25 +00:00
Bruno da Silva de Oliveira
5788cc83f3 no message
[SVN r17874]
2003-03-13 00:58:17 +00:00
Ralf W. Grosse-Kunstleve
0262c3bba9 adjustment for MIPSpro
[SVN r17864]
2003-03-12 22:59:46 +00:00
nobody
d6dd4e48e2 This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17843]
2003-03-12 13:51:19 +00:00
Dave Abrahams
b58503707f opaque pointer conversions from Gottfried.Ganssauge@haufe.de
Acknowledgements for all


[SVN r17839]
2003-03-12 13:38:18 +00:00
nobody
8c1a826ce8 This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17837]
2003-03-12 13:29:13 +00:00
Bruno da Silva de Oliveira
cc76f068ee - first RC version
[SVN r17827]
2003-03-12 03:40:44 +00:00
nobody
4efab432ab This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17826]
2003-03-12 01:39:29 +00:00
Bruno da Silva de Oliveira
7d5c453f59 no message
[SVN r17825]
2003-03-12 01:39:28 +00:00
Bruno da Silva de Oliveira
bc4feb42b5 - fixed "deepcopy" of infos bug
[SVN r17824]
2003-03-12 01:32:48 +00:00
Bruno da Silva de Oliveira
ca9920874f - fixed default arguments in virtual methods
[SVN r17823]
2003-03-12 01:32:00 +00:00
Bruno da Silva de Oliveira
415991f6fc - added a link to the Pyste documentation
[SVN r17806]
2003-03-11 03:34:28 +00:00
Bruno da Silva de Oliveira
20c52def19 - first version
[SVN r17805]
2003-03-11 03:29:22 +00:00
Bruno da Silva de Oliveira
7dcacbcfc4 - first version
[SVN r17804]
2003-03-11 03:20:24 +00:00
Ralf W. Grosse-Kunstleve
13b1f434ad pyconfig.h must be included before any system header (as per Python docs; essential for Python 2.3 under Tru64 Unix)
[SVN r17799]
2003-03-10 17:25:52 +00:00
Ralf W. Grosse-Kunstleve
34bf1560a9 non-template function make_function1 must be inline
[SVN r17791]
2003-03-09 17:26:06 +00:00
Ralf W. Grosse-Kunstleve
c29241d859 non-template function make_function1 must be inline
[SVN r17791]
2003-03-09 17:26:06 +00:00
Dave Abrahams
39195ac97a Fix for older EDGs
[SVN r17786]
2003-03-08 12:36:18 +00:00
Dave Abrahams
fbe3d080e8 Fix for older EDGs
[SVN r17786]
2003-03-08 12:36:18 +00:00
Dave Abrahams
6aa71e1f72 Remove flotsam
[SVN r17783]
2003-03-08 08:53:19 +00:00
Dave Abrahams
be96a3c4d6 Remove flotsam
[SVN r17783]
2003-03-08 08:53:19 +00:00
Dave Abrahams
257a6c45f8 Remove flotsam
[SVN r17782]
2003-03-08 08:51:45 +00:00
Dave Abrahams
70a967bac5 Remove flotsam
[SVN r17782]
2003-03-08 08:51:45 +00:00
Ralf W. Grosse-Kunstleve
a7ce37effa missing raw_function.hpp added; struct is_reference_to_class definition moved up
[SVN r17781]
2003-03-08 08:44:38 +00:00
Dave Abrahams
d34a11b584 Fix for Python 2.3 long->int conversion behavior change
[SVN r17779]
2003-03-08 05:28:54 +00:00
Dave Abrahams
87c92775c9 Fix for Python 2.3 long->int conversion behavior change
[SVN r17779]
2003-03-08 05:28:54 +00:00
nobody
a15f7d5bf3 This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17778]
2003-03-08 03:53:20 +00:00
Dave Abrahams
ca64c96133 Added dangling_reference FAQ
Various idiomatic MPL cleanups in indirect_traits.hpp
raw_function support
Patches for CWPro7.2
Patches to pass tests under Python 2.3 with the new bool type.
Tests for member operators returning const objects
Fixes for testing Boost.Python under Cygwin


[SVN r17777]
2003-03-08 03:53:19 +00:00
Dave Abrahams
a870ce20fc Added dangling_reference FAQ
Various idiomatic MPL cleanups in indirect_traits.hpp
raw_function support
Patches for CWPro7.2
Patches to pass tests under Python 2.3 with the new bool type.
Tests for member operators returning const objects
Fixes for testing Boost.Python under Cygwin


[SVN r17777]
2003-03-08 03:53:19 +00:00
Ralf W. Grosse-Kunstleve
e042228f45 MIPSpro compatibility
[SVN r17776]
2003-03-08 01:47:40 +00:00
Ralf W. Grosse-Kunstleve
ff734e3269 MIPSpro compatibility
[SVN r17772]
2003-03-08 00:25:47 +00:00
Dave Abrahams
7c4cfe0589 Workaround for vc7 bug
[SVN r17709]
2003-03-03 17:24:07 +00:00
Dave Abrahams
d028a60cc2 Workaround for vc7 bug (and regression test)
[SVN r17708]
2003-03-03 17:21:30 +00:00
Dave Abrahams
577f58149c tests for operators returning const objects
[SVN r17700]
2003-03-02 22:11:20 +00:00
Dave Abrahams
4b97e191b8 Fix formatting errors
[SVN r17697]
2003-03-02 15:25:35 +00:00
Ralf W. Grosse-Kunstleve
15a148ab10 minor polishing, corrections
[SVN r17696]
2003-03-02 02:50:49 +00:00
Dave Abrahams
5ac7741ca9 Updates for ACCU
[SVN r17695]
2003-03-02 00:55:07 +00:00
nobody
e24497a6cd This commit was manufactured by cvs2svn to create branch 'RC_1_30_0'.
[SVN r17693]
2003-03-01 19:43:06 +00:00
Dave Abrahams
4c7cff6e8e fix bad link
[SVN r17691]
2003-03-01 18:25:41 +00:00
Dave Abrahams
c6ca85b525 Added embedding tutorial from Dirk Gerrits. Thanks, Dirk!
[SVN r17690]
2003-03-01 18:19:38 +00:00
Dave Abrahams
99f45b474e Fix broken links
[SVN r17671]
2003-02-27 13:07:41 +00:00
Dave Abrahams
ee44c90e85 Fixes for Python and Cygwin testing
[SVN r17667]
2003-02-27 02:20:01 +00:00
Dave Abrahams
2c4fa48f46 Fixes for Intel5
[SVN r17658]
2003-02-26 13:48:16 +00:00
Aleksey Gurtovoy
90fcd9369d MPL names/directory structure refactoring
[SVN r17651]
2003-02-25 23:11:41 +00:00
Dave Abrahams
923feda9f7 update
[SVN r17627]
2003-02-25 03:54:38 +00:00
Dave Abrahams
6d7d2ea5fe initial checkin
[SVN r17626]
2003-02-25 03:31:36 +00:00
Dave Abrahams
4874a1801b Improved Boost.Python build reliability and documentation.
[SVN r17623]
2003-02-25 02:15:55 +00:00
Dave Abrahams
479d8fc0f6 shared_ptr deleter introspection support
miscellaneous cleanups and MPL idiom-izing


[SVN r17622]
2003-02-25 01:03:40 +00:00
Dave Abrahams
1c346b2531 fix metafunctions for MPL
[SVN r17621]
2003-02-25 00:57:33 +00:00
Dave Abrahams
5cdebaf896 gcc-2.95 workaround
[SVN r17620]
2003-02-25 00:56:55 +00:00
Joel de Guzman
600602f9dc Tutorial updates
[SVN r17598]
2003-02-23 03:53:36 +00:00
Joel de Guzman
2a530bb9d2 Tutorial updates. Added virtual functions with default implementations and reshufled the overloading topics to discuss manual overloading first.
[SVN r17597]
2003-02-23 02:23:15 +00:00
Dave Abrahams
acdad5caf3 better auto_ptr support
[SVN r17592]
2003-02-22 18:11:08 +00:00
Dave Abrahams
b42b243287 vc++7.1 bug workarounds
[SVN r17591]
2003-02-22 18:07:05 +00:00
Dave Abrahams
a76f5f3db7 mpl-ish cleanup
[SVN r17585]
2003-02-22 01:02:31 +00:00
Dave Abrahams
4e9f745d4a Fixups for cygwin
[SVN r17570]
2003-02-21 08:10:55 +00:00
Aleksey Gurtovoy
101961a7c6 remove old MSVC 6.5 workaround
[SVN r17564]
2003-02-20 21:31:46 +00:00
Aleksey Gurtovoy
29d1f860c1 ETI fixes
[SVN r17563]
2003-02-20 21:29:39 +00:00
Dave Abrahams
2663e73f1c Automatically add library-path values to RUN_PATH/RUN_LD_LIBRARY_PATH
[SVN r17562]
2003-02-20 20:28:05 +00:00
Aleksey Gurtovoy
1f9d0bb196 MSVC 7.0 ETI workaround
[SVN r17556]
2003-02-20 13:35:16 +00:00
Joel de Guzman
ff9f262fac tutorial update
[SVN r17512]
2003-02-18 18:44:16 +00:00
Dave Abrahams
472dc3bd41 made binary
[SVN r17320]
2003-02-11 17:30:23 +00:00
Dave Abrahams
6f91b93519 removed to make binary
[SVN r17319]
2003-02-11 17:29:27 +00:00
Joel de Guzman
47291f68b2 removed unnecessary file
[SVN r17318]
2003-02-11 12:18:47 +00:00
Ralf W. Grosse-Kunstleve
2b5ef3c572 Python 2.3 compatibility
[SVN r17271]
2003-02-07 18:56:16 +00:00
Ralf W. Grosse-Kunstleve
9c50496d93 second half of introduction rewritten; SWIG, SIP, CXX acknowledged as suggested by the PyConDC reviewers; technical points moved to Library Overview section
[SVN r17259]
2003-02-07 01:07:39 +00:00
Ralf W. Grosse-Kunstleve
80488e2f23 improved serialization and object interface sections; some sentences added to the end of the conclusion
[SVN r17258]
2003-02-06 22:42:36 +00:00
Dave Abrahams
ad8da7166b edits
[SVN r17257]
2003-02-06 20:56:26 +00:00
Dave Abrahams
55cb918c51 Add ownership question
[SVN r17250]
2003-02-06 13:50:53 +00:00
Dave Abrahams
ac55c5ccf7 Add FAQ reference
[SVN r17249]
2003-02-06 13:50:31 +00:00
Ralf W. Grosse-Kunstleve
5bcf90766f draft thinking hybrid section added
[SVN r17242]
2003-02-05 19:58:43 +00:00
Dave Abrahams
8f12fdea4a Remove workaround patches
[SVN r17128]
2003-01-31 18:37:11 +00:00
Dave Abrahams
6f687ee402 Added a FAQ
[SVN r17010]
2003-01-23 17:38:57 +00:00
Dave Abrahams
9dfe98abb0 bug fix + regression test
[SVN r17002]
2003-01-23 04:32:10 +00:00
Dave Abrahams
399cf70b92 Add staticmethod support from Nikolay Mladenov <nickm-at-sitius.com>
[SVN r16946]
2003-01-19 19:12:30 +00:00
Joel de Guzman
571790097a minor error fixed PodBayDoorException const& x
[SVN r16926]
2003-01-18 01:44:48 +00:00
Ralf W. Grosse-Kunstleve
21f3c7c8c2 Mac OS X status
[SVN r16904]
2003-01-15 06:19:23 +00:00
Vladimir Prus
9d26167ec1 Change use-requirements to usage-requirements in some library Jamfiles.
[SVN r16884]
2003-01-13 12:31:12 +00:00
Vladimir Prus
ba4906d05c Update V2 Jamfile for Boost.
[SVN r16882]
2003-01-13 10:05:01 +00:00
Dave Abrahams
e13a11eb7f Fix dict bug
[SVN r16866]
2003-01-11 00:18:59 +00:00
Ralf W. Grosse-Kunstleve
72b214b8db details from the introduction moved to design goals section
[SVN r16864]
2003-01-10 19:22:13 +00:00
Ralf W. Grosse-Kunstleve
84a8fb71b8 meager result after a real hard try
[SVN r16863]
2003-01-10 19:00:05 +00:00
Dave Abrahams
4f5272cab9 Folded in Ralf's first set of edits
[SVN r16856]
2003-01-10 15:17:46 +00:00
Dave Abrahams
5895047e23 Initial Checkin
[SVN r16855]
2003-01-10 15:11:05 +00:00
Dave Abrahams
50bcf8db34 Apply workarounds for msvc-stlport
[SVN r16854]
2003-01-10 15:04:05 +00:00
Dave Abrahams
7defd3bbed support for BOOST_PYTHON_STATIC_MODULE
clarification


[SVN r16788]
2003-01-07 18:03:17 +00:00
Dave Abrahams
b9ecc931b0 support for BOOST_PYTHON_STATIC_MODULE
[SVN r16787]
2003-01-07 17:44:06 +00:00
Dave Abrahams
b84a8fd737 support for BOOST_PYTHON_STATIC_MODULE
[SVN r16786]
2003-01-07 17:38:08 +00:00
Dave Abrahams
2b1a2ce09c Build static versions of the library too.
[SVN r16785]
2003-01-07 17:30:51 +00:00
Dave Abrahams
bcf36610e1 Check in VisualStudio support from Brett Calcott
[SVN r16717]
2002-12-29 17:27:52 +00:00
Dave Abrahams
1bb3254d4d Check in changes from Brett Calcott
[SVN r16716]
2002-12-29 16:53:48 +00:00
Beman Dawes
0f95d507c4 add or update See www.boost.org comments
[SVN r16708]
2002-12-27 16:51:53 +00:00
Dave Abrahams
aa58e21bda Bug fix, thanks to "Daniel Paull" <dlp@fractaltechnologies.com> for
reporting it.


[SVN r16698]
2002-12-24 04:49:33 +00:00
Dave Abrahams
eac0412d18 Fixed comment
[SVN r16676]
2002-12-21 22:12:31 +00:00
Dave Abrahams
0c8aa84f2f Enable automatic downcasting to registered classes for pointers, references, and smart pointers
[SVN r16673]
2002-12-20 18:19:18 +00:00
Dave Abrahams
3d874d1618 Major simplification of from_python conversion avoids registering
converters for every class.


[SVN r16669]
2002-12-20 00:04:40 +00:00
Dave Abrahams
b8edd99dbd Fix typo thanks to "William Trenker" <wtrenker@hotmail.com>
[SVN r16657]
2002-12-18 21:12:02 +00:00
Dave Abrahams
0df5ebf0fa Fix to allow accessing enums as data members
[SVN r16656]
2002-12-18 21:11:16 +00:00
Dave Abrahams
809535b934 clarifications
[SVN r16655]
2002-12-18 21:09:15 +00:00
Dave Abrahams
854e957b78 Workaround for MacOS GCC problem:
#define B0 0


[SVN r16654]
2002-12-18 19:09:34 +00:00
Dave Abrahams
df24f29232 nonconformance workaround from Gottfried.Ganssauge@HAUFE.DE
[SVN r16653]
2002-12-18 17:56:42 +00:00
Joel de Guzman
14c7d9ab14 typo error __rsub__ to __sub__
[SVN r16641]
2002-12-18 01:23:21 +00:00
Dave Abrahams
0e36ac6b72 Bug fix with construction of std::exception
[SVN r16625]
2002-12-16 21:14:30 +00:00
Dave Abrahams
0d2cdbbdfe GCC-2.95.2 workarounds
[SVN r16620]
2002-12-16 04:01:50 +00:00
Dave Abrahams
48f9bee21e Fix typo due to "William Trenker" <wtrenker@hotmail.com>
[SVN r16619]
2002-12-16 03:30:34 +00:00
Dave Abrahams
dd8fc049ff update news
[SVN r16607]
2002-12-14 00:17:22 +00:00
Dave Abrahams
abd22f1273 Handle unsigned long values that don't fit in a long.
[SVN r16606]
2002-12-14 00:10:52 +00:00
Dave Abrahams
4a5817d8ba enum export
[SVN r16604]
2002-12-13 20:04:34 +00:00
Dave Abrahams
eab084c9a2 enum export
[SVN r16603]
2002-12-13 19:58:24 +00:00
Dave Abrahams
80ea2383a7 Fix references to test library
[SVN r16585]
2002-12-10 23:05:38 +00:00
Dave Abrahams
ec76fbe027 Apply fixes from Dirk Gerrits <dirk@gerrits.homeip.net>
[SVN r16517]
2002-12-04 17:10:55 +00:00
Dave Abrahams
c772038e77 Apply fixes from Dirk Gerrits <dirk@gerrits.homeip.net>
[SVN r16506]
2002-12-04 13:36:03 +00:00
Dave Abrahams
59b1a8e71c Apply fixes from Dirk Gerrits <dirk@gerrits.homeip.net>
[SVN r16491]
2002-12-03 18:08:12 +00:00
Dave Abrahams
83c38876fe Simplify, simplify!!
[SVN r16483]
2002-12-02 22:57:47 +00:00
Dave Abrahams
9163c40a1a Further suppressed internal structure overflow problems which were cropping up with msvc6/7.
[SVN r16482]
2002-12-02 19:41:45 +00:00
Dave Abrahams
8b79380977 Less-taxing version of MPL lambda support for msvc6/7
[SVN r16480]
2002-12-02 16:18:35 +00:00
Dave Abrahams
34c9d895c8 Relaxed rules for using scope()
[SVN r16476]
2002-12-02 14:29:11 +00:00
Dave Abrahams
bf8bb83ec5 initial commit
[SVN r16473]
2002-12-02 12:40:18 +00:00
Dave Abrahams
328697952f automatic shared_ptr from_python conversions
[SVN r16467]
2002-12-02 01:37:39 +00:00
Dave Abrahams
3c19b89d9a Added reset()
[SVN r16466]
2002-12-01 16:14:44 +00:00
Dave Abrahams
ae9f394906 Added reset()
[SVN r16465]
2002-12-01 16:07:54 +00:00
Dave Abrahams
8467f36b80 Kill errant `typename'
[SVN r16464]
2002-12-01 04:40:05 +00:00
Dave Abrahams
43a9571b2c Fixed some technical problems with smart pointer support uncovered by
STLPort's debug mode. Unfortunately, had to expand Dereferenceable
requirements.


[SVN r16459]
2002-11-29 22:43:27 +00:00
Dave Abrahams
bbef71dc7d Progress on embedding example for unix.
[SVN r16458]
2002-11-29 20:23:54 +00:00
Dave Abrahams
c4df3c6562 Bug fix
[SVN r16442]
2002-11-27 14:23:07 +00:00
Dave Abrahams
0ad3bfd0ab Finally fixed polymorphism issues
[SVN r16435]
2002-11-27 07:04:32 +00:00
Dave Abrahams
fb7c450b76 Added is_reference_to_member_function_pointer
[SVN r16434]
2002-11-27 06:19:45 +00:00
Dave Abrahams
3fc70519cf Use boost is_polymorphic trait
[SVN r16433]
2002-11-27 06:19:13 +00:00
Dave Abrahams
98c2bf8ff2 Restored some missing v1 acknowledgements
[SVN r16432]
2002-11-27 02:18:52 +00:00
Dave Abrahams
f9c8bf15bb Restore CWPro7.2 to health. Also improve source organization slightly
[SVN r16416]
2002-11-26 02:47:17 +00:00
Dave Abrahams
a7e19ffb0b Refactored def() logic; moved assert_default_constructible into the
holder selectorbecause it was getting the wrong answer in some cases.


[SVN r16415]
2002-11-26 01:06:41 +00:00
Dave Abrahams
7609a1c7c6 Refactored; added static assertions against the specification of a default implementation
[SVN r16414]
2002-11-25 22:03:42 +00:00
Dave Abrahams
087e2d6e35 Add additional argument for default implementation of virtual functions
Fully commented


[SVN r16413]
2002-11-25 21:57:23 +00:00
Dave Abrahams
bb7710a5a2 Suppress GCC warning
[SVN r16412]
2002-11-25 21:19:35 +00:00
Dave Abrahams
0d582e0e79 Suppress GCC warning
[SVN r16411]
2002-11-25 20:54:37 +00:00
Dave Abrahams
3d0579cc08 Fix for VC7. For some reason lexical_cast doesn't seem to work out too
well. We'll need to be careful how we do type_info decoding once we
get the G++ fixes in.


[SVN r16410]
2002-11-25 20:52:49 +00:00
Dave Abrahams
352e390c7b Added tests for embedding demonstration
[SVN r16409]
2002-11-25 18:32:14 +00:00
Dave Abrahams
394037a127 updated
[SVN r16408]
2002-11-25 16:12:27 +00:00
Dave Abrahams
9d4e235cf6 add imul notes
[SVN r16397]
2002-11-25 03:41:34 +00:00
Dave Abrahams
cfbc1a6b48 Fully removed convertible() test from to_python converter protocol
Added tests for detecting unregistered classes when converting
indirectly to python.


[SVN r16396]
2002-11-25 01:57:57 +00:00
Dave Abrahams
31b8b58de9 CW workaround
[SVN r16393]
2002-11-24 21:45:09 +00:00
Dave Abrahams
a77a835694 New function invocation mechanism. This is the major groundwork for handling virtual functions with default implementations properly
[SVN r16390]
2002-11-24 03:26:28 +00:00
Dave Abrahams
dca5c5108b update
[SVN r16389]
2002-11-24 03:25:13 +00:00
Dave Abrahams
e14e4e156c New function invocation mechanism. This is the major groundwork for handling virtual functions with default implementations properly
[SVN r16388]
2002-11-24 02:43:24 +00:00
Dave Abrahams
05ce65d9d2 cleanup
[SVN r16387]
2002-11-23 22:31:13 +00:00
Dave Abrahams
b952e45036 Clip unneeded bind.hpp #include
[SVN r16386]
2002-11-23 22:30:48 +00:00
Dave Abrahams
4c630512fe Add missing add_const #include
[SVN r16385]
2002-11-23 22:18:23 +00:00
Dave Abrahams
0461d25de6 Add some qualification
[SVN r16384]
2002-11-23 22:16:55 +00:00
Dave Abrahams
2df120af72 Suppress a VC6 ICE
[SVN r16383]
2002-11-23 22:16:00 +00:00
Dave Abrahams
791b7e1a1b Tidy
[SVN r16381]
2002-11-23 20:03:49 +00:00
Dave Abrahams
f6f4e59473 Add notes about targeting Cygwin GCC
[SVN r16380]
2002-11-23 20:03:24 +00:00
Dave Abrahams
60924e82e2 On our way to polymorphism
[SVN r16374]
2002-11-23 02:59:45 +00:00
Dave Abrahams
75bd427b8e Bugfix
[SVN r16354]
2002-11-21 00:21:23 +00:00
Dave Abrahams
715118ce39 Bugfix
[SVN r16353]
2002-11-21 00:19:27 +00:00
Dave Abrahams
e3deb8275d update
[SVN r16351]
2002-11-20 23:07:32 +00:00
Dave Abrahams
c30e12f956 Make scope constructor explicit
[SVN r16350]
2002-11-20 22:58:57 +00:00
Ralf W. Grosse-Kunstleve
983b23db92 some missing html markup added
[SVN r16349]
2002-11-20 18:09:17 +00:00
Ralf W. Grosse-Kunstleve
ed2da9bedb list cctbx
[SVN r16348]
2002-11-20 18:01:44 +00:00
Dave Abrahams
409ff3c179 Added missing test
[SVN r16337]
2002-11-20 03:04:51 +00:00
Dave Abrahams
39eab72293 bugfixes
add_property now uses member_function_cast


[SVN r16335]
2002-11-20 01:14:16 +00:00
Dave Abrahams
71ea2bec86 more notes
[SVN r16330]
2002-11-19 17:39:40 +00:00
Dave Abrahams
c9af6ca94b Add missing copyright notices
[SVN r16329]
2002-11-19 17:39:17 +00:00
Dave Abrahams
72d5bac69f Add PSF copyright and change summary
[SVN r16327]
2002-11-19 16:56:55 +00:00
Dave Abrahams
6e0733afa2 Remove Tom's email address
[SVN r16315]
2002-11-19 01:33:07 +00:00
Dave Abrahams
e660cc50c6 Added Support link
[SVN r16299]
2002-11-17 05:59:12 +00:00
Dave Abrahams
e6b40f54cd initial commit
[SVN r16298]
2002-11-17 05:58:45 +00:00
Dave Abrahams
c2af21169d More notes
[SVN r16297]
2002-11-16 23:48:09 +00:00
Dave Abrahams
4f7af97f8c Bug fix thanks to Mark Russell <mrussell8081@pacbell.net>
[SVN r16296]
2002-11-16 23:23:45 +00:00
Dave Abrahams
57f54952c3 Bug fix thanks to Mark Russell <mrussell8081@pacbell.net>
[SVN r16295]
2002-11-16 23:22:30 +00:00
Dave Abrahams
b321b6d9db Tweaks, pseudocode
[SVN r16294]
2002-11-16 22:45:46 +00:00
Dave Abrahams
56c5227cf7 added note
[SVN r16293]
2002-11-16 22:28:28 +00:00
Dave Abrahams
ae2931ba1b initial commit
[SVN r16292]
2002-11-16 22:12:46 +00:00
Dave Abrahams
9e3589ec4d Added projects page link
[SVN r16290]
2002-11-16 20:50:21 +00:00
Dave Abrahams
61b7094dbd Added EMSolve entry
[SVN r16289]
2002-11-16 20:48:43 +00:00
Dave Abrahams
50ecc751d1 Added Fortress entry
[SVN r16288]
2002-11-16 20:39:56 +00:00
Dave Abrahams
bb536a0eaa One more step towards handling polymorphism: now we can sort out a 4th parameter
[SVN r16287]
2002-11-16 20:03:59 +00:00
Dave Abrahams
8b7527318d vc6/7 workaround
[SVN r16286]
2002-11-16 20:01:44 +00:00
Dave Abrahams
f2ac0145da is_reference_to_function_pointer implementation
[SVN r16278]
2002-11-16 06:55:04 +00:00
Dave Abrahams
06fe0f1bcc is_reference_to_function implementation
[SVN r16276]
2002-11-16 06:00:52 +00:00
Dave Abrahams
7ea2447246 Bug fix
[SVN r16273]
2002-11-16 03:38:24 +00:00
Dave Abrahams
0adf4477a3 vc7.1 workaround
[SVN r16267]
2002-11-16 00:45:26 +00:00
Dave Abrahams
b3311fd59d *** empty log message ***
[SVN r16266]
2002-11-15 22:19:40 +00:00
Dave Abrahams
ae109f13a2 *** empty log message ***
[SVN r16260]
2002-11-15 17:29:15 +00:00
Dave Abrahams
cb1901e111 initial commit
[SVN r16259]
2002-11-15 17:02:31 +00:00
Dave Abrahams
bbc052bedc Fix example
[SVN r16256]
2002-11-15 12:25:29 +00:00
Dave Abrahams
f2797ec262 Auto-detection of class memebers wrapped with make_getter()
[SVN r16241]
2002-11-14 17:41:13 +00:00
Dave Abrahams
a21727741f c1204 workaround documented
[SVN r16235]
2002-11-14 12:16:40 +00:00
Dave Abrahams
5f022269b1 Added News page, links back to top of docs
[SVN r16229]
2002-11-14 02:09:43 +00:00
Dave Abrahams
0e76fcf706 auto_ptr support
[SVN r16228]
2002-11-14 01:40:16 +00:00
Dave Abrahams
6b4dc2901d Fix broken link
[SVN r16227]
2002-11-13 22:56:41 +00:00
Dave Abrahams
bcf864fce3 Attempt to handle derived target types
[SVN r16224]
2002-11-13 17:22:48 +00:00
Dave Abrahams
0168d8fbc8 Be more explicit about the Cygwin stuff
[SVN r16215]
2002-11-12 19:36:19 +00:00
Dave Abrahams
88b1c1b926 Allow member pointers from base classes in def_readonly and
def_readwrite.


[SVN r16214]
2002-11-12 17:48:56 +00:00
Dave Abrahams
1f93827b63 Squash bogus warnings
[SVN r16196]
2002-11-11 13:49:09 +00:00
Dave Abrahams
8e3ba0bba3 Improve error messages
[SVN r16147]
2002-11-07 14:41:40 +00:00
Dave Abrahams
42a0441cb8 Doc fix from "Brett Calcott" <brett.calcott@paradise.net.nz>
[SVN r16145]
2002-11-07 13:12:05 +00:00
Joel de Guzman
7b091b86d2 tutorial tweaks
[SVN r16004]
2002-10-28 08:30:31 +00:00
Dave Abrahams
f346eaf693 grammar fix
[SVN r16001]
2002-10-28 07:33:01 +00:00
Dave Abrahams
038be89766 Build with Cygwin
[SVN r16000]
2002-10-28 04:22:14 +00:00
Dave Abrahams
a682dd9362 Fix a doc bug
[SVN r15981]
2002-10-25 04:47:39 +00:00
Joel de Guzman
387e8aadc6 changes to no_init and deriving classes
[SVN r15979]
2002-10-24 21:33:40 +00:00
Joel de Guzman
da273519fd added non_copyable to second version of class_<Base, BaseWrap...
[SVN r15978]
2002-10-24 21:12:37 +00:00
Joel de Guzman
8c2d6bb31b correction Var-->Num
[SVN r15977]
2002-10-24 20:50:04 +00:00
Vladimir Prus
3cb4a029e0 Improve Boost.Python building.
* libs/python/build/Jamfile.v2: Sense the location of python headers. Export
  include paths.

* libs/python/example/Jamfile.v2: New file.

* new/targets.jam: Use refined properties for constructed
    dependency properties

* new/gcc.jam: Handle 'find-library'. Set soname for dynamic libraries.

* new/builtin.jam: New feature 'find-library'.


[SVN r15966]
2002-10-23 12:12:00 +00:00
Dave Abrahams
037f952136 Added funding credit
[SVN r15948]
2002-10-16 22:47:44 +00:00
Dave Abrahams
7fc441801d Allow embedded nulls in std::string <-> Python string conversions,
patch from greg Landrum <greglandrum@mindspring.com>.

Tests by Dave A.


[SVN r15945]
2002-10-16 20:24:38 +00:00
Dave Abrahams
c389e057b4 Added return_by_value, enhanced data member support to handle constant members
[SVN r15935]
2002-10-15 15:46:34 +00:00
Dave Abrahams
2c7829f50e initial checkin
[SVN r15930]
2002-10-15 11:59:39 +00:00
Dave Abrahams
0593074196 Patches to support Synopsis
[SVN r15906]
2002-10-12 15:37:34 +00:00
Dave Abrahams
c7626150fc Move final RC_1_29_0 changes back to trunk
[SVN r15877]
2002-10-10 18:11:14 +00:00
Dave Abrahams
f6990fedc7 Move final RC_1_29_0 changes back to trunk
[SVN r15875]
2002-10-10 18:09:46 +00:00
Dave Abrahams
adb02376eb Move final RC_1_29_0 changes back to trunk
[SVN r15872]
2002-10-10 18:05:51 +00:00
Dave Abrahams
65b6eb0c27 Move final RC_1_29_0 changes back to trunk
[SVN r15871]
2002-10-10 18:01:58 +00:00
Dave Abrahams
654354e681 GCC 2.96 bug workaround
[SVN r15864]
2002-10-10 15:59:12 +00:00
Joel de Guzman
f1a709e074 final tweaks
[SVN r15846]
2002-10-10 08:59:19 +00:00
Joel de Guzman
87b011e7e8 Python V1 Archive (tested)
[SVN r15845]
2002-10-10 07:31:08 +00:00
Joel de Guzman
6bb7c2d7b3 minor tweaks
[SVN r15844]
2002-10-10 07:28:03 +00:00
Joel de Guzman
7d9770762c more minor tweaks
[SVN r15843]
2002-10-10 07:27:10 +00:00
Joel de Guzman
df8c8f025c tweak
[SVN r15842]
2002-10-10 07:21:33 +00:00
Joel de Guzman
51264c30cc Typo...
[SVN r15841]
2002-10-10 07:18:22 +00:00
Joel de Guzman
1d5fb97981 Tutorial updates
[SVN r15840]
2002-10-10 07:13:17 +00:00
Joel de Guzman
a06540e471 grammar correction
[SVN r15835]
2002-10-10 00:08:37 +00:00
Dave Abrahams
f79dc1c2e7 Bug fix (thanks to Leonardo Rochael Almeida <leo@hiper.com.br>).
[SVN r15828]
2002-10-09 16:14:19 +00:00
Joel de Guzman
8a94c597a0 More tweaks (tutorial)
[SVN r15826]
2002-10-09 14:31:39 +00:00
Dave Abrahams
8a9a3a00bd Fix a major problem of path specification
[SVN r15825]
2002-10-09 13:18:26 +00:00
Dave Abrahams
8c8b4ee332 Fix up a small build specification problem
[SVN r15822]
2002-10-09 11:57:17 +00:00
Joel de Guzman
a295ac6590 Tutorials...
[SVN r15818]
2002-10-09 07:44:34 +00:00
Joel de Guzman
e49e0d2705 tutorial added
[SVN r15817]
2002-10-09 05:03:22 +00:00
Dave Abrahams
4fd20185e9 Clean up Boost.Python v1 flotsam, update documentation
[SVN r15815]
2002-10-09 02:52:47 +00:00
Dave Abrahams
920125794a Workaround GCC 3.x problem
[SVN r15790]
2002-10-07 19:23:08 +00:00
Dave Abrahams
ca6c28ed93 merge Joel's copyrights
[SVN r15772]
2002-10-07 13:42:55 +00:00
Dave Abrahams
e9757c46e3 *** empty log message ***
[SVN r15741]
2002-10-05 19:46:26 +00:00
Dave Abrahams
7e840acd19 Repair AIX build
[SVN r15740]
2002-10-05 19:31:43 +00:00
Dave Abrahams
6f76db9c6c quick bug fix
[SVN r15738]
2002-10-05 17:42:34 +00:00
Dave Abrahams
86489dd5a7 Make AIX work again
[SVN r15737]
2002-10-05 17:29:32 +00:00
Dave Abrahams
33f139e516 Patches for CWPro8.3
[SVN r15735]
2002-10-05 16:45:37 +00:00
Dave Abrahams
30d9331079 Remove Boost.Python v1 from main trunk
[SVN r15723]
2002-10-05 04:37:49 +00:00
Dave Abrahams
8207dc756a Workaround for IRIX CC
[SVN r15722]
2002-10-05 00:23:10 +00:00
Dave Abrahams
1887594d8a Bug fix
[SVN r15721]
2002-10-04 23:27:35 +00:00
Dave Abrahams
ee17b41e62 Clean up module flotsam
[SVN r15720]
2002-10-04 21:58:21 +00:00
Dave Abrahams
5e8d775b87 Support for MinGW-2.0
[SVN r15719]
2002-10-04 21:34:32 +00:00
Dave Abrahams
f4d457998f doc update
[SVN r15709]
2002-10-04 14:24:25 +00:00
Dave Abrahams
bd0175c167 Backport to Python 2.2
[SVN r15706]
2002-10-04 13:05:57 +00:00
Dave Abrahams
81ffe96c76 Update Tru64 workarounds
[SVN r15705]
2002-10-04 05:14:45 +00:00
Dave Abrahams
e5fbe651d8 Tru64 CXX updates
[SVN r15704]
2002-10-04 03:46:43 +00:00
Dave Abrahams
a91112e5d9 doc update
[SVN r15702]
2002-10-04 00:45:29 +00:00
Dave Abrahams
2b5f421501 Remove needless specialization
[SVN r15701]
2002-10-03 23:59:08 +00:00
Dave Abrahams
ecd7905e8f doc update
[SVN r15697]
2002-10-03 23:21:48 +00:00
Dave Abrahams
8f989f318b doc update
[SVN r15684]
2002-10-03 20:59:43 +00:00
Dave Abrahams
7b9dad44d1 doc update
[SVN r15683]
2002-10-03 20:18:53 +00:00
Dave Abrahams
f5eab48017 doc update
[SVN r15682]
2002-10-03 18:54:19 +00:00
Dave Abrahams
66ff762fbb doc update
[SVN r15681]
2002-10-03 18:40:58 +00:00
Dave Abrahams
2bdd01d084 doc update
[SVN r15680]
2002-10-03 18:20:06 +00:00
Dave Abrahams
2bdc4cdffa doc update
[SVN r15679]
2002-10-03 16:49:55 +00:00
Dave Abrahams
90a6d484b7 doc update
[SVN r15675]
2002-10-03 14:53:32 +00:00
Dave Abrahams
021aa51707 doc update
[SVN r15674]
2002-10-03 14:07:13 +00:00
Dave Abrahams
48fffd7a7b doc update
[SVN r15667]
2002-10-03 13:09:24 +00:00
Ralf W. Grosse-Kunstleve
17033037eb explains that enable_pickling() is an implementation detail
[SVN r15666]
2002-10-03 12:41:22 +00:00
Ralf W. Grosse-Kunstleve
f43b913302 reference doc for .def_pickle()
[SVN r15665]
2002-10-03 12:41:12 +00:00
Aleksey Gurtovoy
f7b087ed8f get rid of leftover MPL includes
[SVN r15664]
2002-10-03 09:28:47 +00:00
Aleksey Gurtovoy
8cecbe31a7 fix for empty type_list problem
[SVN r15663]
2002-10-03 09:23:27 +00:00
Dave Abrahams
f2055b0d80 doc update
[SVN r15654]
2002-10-02 20:33:14 +00:00
Dave Abrahams
28e5bedf49 doc update
[SVN r15647]
2002-10-02 12:00:22 +00:00
Dave Abrahams
f8a9b922be *** empty log message ***
[SVN r15645]
2002-10-02 11:20:56 +00:00
Dave Abrahams
2a199af8f7 doc update
[SVN r15641]
2002-10-01 23:03:09 +00:00
Dave Abrahams
2373020225 doc update
[SVN r15639]
2002-10-01 22:48:24 +00:00
Dave Abrahams
e13d09242c doc update
[SVN r15621]
2002-10-01 17:22:26 +00:00
Dave Abrahams
09eba4c38f Separate init.hpp docs from class.hpp
[SVN r15616]
2002-10-01 15:12:46 +00:00
Dave Abrahams
2aa23a317d separate overloads.hpp
BOOST_PYTHON_MODULE_INIT -> BOOST_PYTHON_MODULE


[SVN r15615]
2002-10-01 15:08:08 +00:00
Dave Abrahams
5cd513859d separate overloads.hpp
BOOST_PYTHON_MODULE_INIT -> BOOST_PYTHON_MODULE


[SVN r15609]
2002-10-01 14:40:41 +00:00
Joel de Guzman
c6cba55667 Placed the non-void and void stub structs inside the main stub struct.
[SVN r15597]
2002-10-01 03:55:54 +00:00
Dave Abrahams
65ce6ddf1d doc update
[SVN r15596]
2002-10-01 03:45:33 +00:00
Dave Abrahams
fa7b1404c1 Bugfix
[SVN r15595]
2002-10-01 03:44:51 +00:00
Dave Abrahams
61b528c85d doc update
[SVN r15593]
2002-10-01 01:16:25 +00:00
Dave Abrahams
77b1b247c4 doc updates
[SVN r15577]
2002-09-30 22:05:20 +00:00
Dave Abrahams
a06430c5fa doc updates
[SVN r15573]
2002-09-30 17:40:47 +00:00
Dave Abrahams
0e38aa7f37 doc updates
[SVN r15571]
2002-09-30 16:52:57 +00:00
Dave Abrahams
707ce53c16 Bugfix
[SVN r15563]
2002-09-30 03:35:53 +00:00
Dave Abrahams
19982e5551 doc update
[SVN r15562]
2002-09-29 20:40:33 +00:00
Dave Abrahams
170bbea166 doc update
[SVN r15561]
2002-09-29 20:30:17 +00:00
Dave Abrahams
6b5ea675c3 doc update
[SVN r15559]
2002-09-29 20:18:04 +00:00
Dave Abrahams
d873aec9e6 doc update
[SVN r15557]
2002-09-29 19:15:53 +00:00
Dave Abrahams
0d1efb61e2 doc update
[SVN r15556]
2002-09-29 19:06:13 +00:00
Dave Abrahams
a27c2f7a80 doc update
[SVN r15555]
2002-09-29 18:47:48 +00:00
Dave Abrahams
36d85eb02e doc update
[SVN r15552]
2002-09-29 17:51:31 +00:00
Dave Abrahams
9ae0940e99 doc update
[SVN r15551]
2002-09-29 17:41:39 +00:00
Dave Abrahams
2f4e12916d doc update
[SVN r15550]
2002-09-29 16:26:04 +00:00
Dave Abrahams
c860d74cba doc update
[SVN r15549]
2002-09-29 16:17:52 +00:00
Dave Abrahams
8cd3e16e26 Documentation update
[SVN r15548]
2002-09-29 16:06:02 +00:00
Dave Abrahams
94063f7862 Keyword argument support tweak
[SVN r15544]
2002-09-29 03:25:04 +00:00
Dave Abrahams
a0ff708d29 Fixes for AIX
[SVN r15541]
2002-09-28 13:27:00 +00:00
Dave Abrahams
6bfbeb3dfa make minimal a more-useful test
[SVN r15540]
2002-09-28 13:26:12 +00:00
Dave Abrahams
3158d28264 Keyword argument support
[SVN r15534]
2002-09-28 07:48:27 +00:00
Dave Abrahams
997e84f117 Keyword argument support
[SVN r15533]
2002-09-28 07:35:15 +00:00
Dave Abrahams
bc91db64d7 PP optimization
[SVN r15528]
2002-09-26 13:21:19 +00:00
Dave Abrahams
82ef6ec659 more .IRIX workarounds
[SVN r15527]
2002-09-26 13:09:57 +00:00
Dave Abrahams
374b55be8a IRIX workarounds, eliminate dead header
[SVN r15526]
2002-09-26 12:13:47 +00:00
Dave Abrahams
72e1c1a7f6 bugfix
[SVN r15525]
2002-09-26 12:00:04 +00:00
Dave Abrahams
173021377e Restore msvc-stlport workaround
[SVN r15522]
2002-09-26 03:29:59 +00:00
Dave Abrahams
17879958ca NumPy (Numeric and numarray) support
[SVN r15521]
2002-09-26 00:16:16 +00:00
Dave Abrahams
31a8be0434 Patches for Intel C++ 7.0 beta
[SVN r15520]
2002-09-26 00:15:36 +00:00
Dave Abrahams
87d619e02a fixup comments
[SVN r15519]
2002-09-26 00:15:09 +00:00
Dave Abrahams
f4aa72373b Serious bugfix
[SVN r15518]
2002-09-26 00:11:30 +00:00
Ralf W. Grosse-Kunstleve
3cb9ecae78 workaround for MIPSpro compiler bug is now in boost/function/function_base.hpp
[SVN r15517]
2002-09-25 20:04:34 +00:00
Joel de Guzman
88caf4f5b6 added missing typename
[SVN r15471]
2002-09-21 08:01:24 +00:00
Joel de Guzman
a75ee50533 Removed def_init(...) from class_
[SVN r15468]
2002-09-21 02:50:29 +00:00
Dave Abrahams
8e941417a5 Workaround slow Windows Intel C++ debug symbol generation
[SVN r15452]
2002-09-19 16:11:34 +00:00
Dave Abrahams
e8d2bbd2c9 VC6 fixes
[SVN r15438]
2002-09-18 13:24:15 +00:00
Dave Abrahams
065a53b997 Apply more preprocessor optimizations
[SVN r15435]
2002-09-18 04:54:31 +00:00
Dave Abrahams
ca5a222aec quickie bugfix
[SVN r15433]
2002-09-18 04:07:20 +00:00
Dave Abrahams
4320c73336 Apply more preprocessor optimizations
[SVN r15432]
2002-09-18 04:05:32 +00:00
Dave Abrahams
7f98265272 Merge Joel's changes to trunk!
[SVN r15430]
2002-09-18 02:20:39 +00:00
Dave Abrahams
0b75a8e94e Adjust version number for old EDG workaround
[SVN r15421]
2002-09-17 20:43:46 +00:00
Dave Abrahams
eb3e237e47 Added a compile-only test for functions returning non-const references
[SVN r15420]
2002-09-17 20:36:17 +00:00
Dave Abrahams
b1796c0acb Work around recent changes to bind which cause bound data members to be returned by const&
[SVN r15417]
2002-09-17 19:32:50 +00:00
Dave Abrahams
bff10e5711 Suppress warnings for old EDGs
[SVN r15415]
2002-09-17 17:37:59 +00:00
Dave Abrahams
0f559f3f97 Older EDG workaround
[SVN r15397]
2002-09-17 03:55:29 +00:00
Dave Abrahams
34aead4d49 Older EDG workaround
[SVN r15396]
2002-09-17 03:47:10 +00:00
Dave Abrahams
7cc01e155c Kill extra ;
[SVN r15395]
2002-09-17 02:05:11 +00:00
Dave Abrahams
7fe5fb92b4 Patch for KCC bug
[SVN r15381]
2002-09-16 15:26:20 +00:00
Dave Abrahams
b084f8a616 Restore main trunk to health
[SVN r15378]
2002-09-16 12:46:26 +00:00
Dave Abrahams
802a2f3fdb Restore main trunk to health
[SVN r15362]
2002-09-16 04:15:53 +00:00
Dave Abrahams
06f6f2ff21 Restore main trunk to health
[SVN r15359]
2002-09-16 04:03:39 +00:00
Joel de Guzman
b37198106d Changed args<...> to init<...> and changed class_(no_init) to class_("name", no_init)
[SVN r15345]
2002-09-15 21:42:49 +00:00
Joel de Guzman
604928adc4 new API changes
[SVN r15344]
2002-09-15 21:13:12 +00:00
Dave Abrahams
4a6762540d bugfix
[SVN r15324]
2002-09-14 16:19:22 +00:00
Dave Abrahams
af5176be70 msvc6 (with STLPort) workaround
[SVN r15316]
2002-09-14 02:04:17 +00:00
Dave Abrahams
482006ed1a Roll workaround forward to CWPro8.2 release
[SVN r15314]
2002-09-13 23:55:46 +00:00
Dave Abrahams
5923e20b7e Roll back MinGW 2.0 "fix" that still doesn't work, and breaks MSVC6.
[SVN r15313]
2002-09-13 22:57:04 +00:00
Ralf W. Grosse-Kunstleve
14cca4610b workaround for older EDG compilers (IRIX CC)
[SVN r15292]
2002-09-13 05:46:46 +00:00
Dave Abrahams
2dbb0093c1 PP usage speedups (mostly for EDG)
[SVN r15286]
2002-09-13 01:48:50 +00:00
Dave Abrahams
d91b6e9a1b Compile (but still can't link) with MinGW-2.0 (GCC-3.2)
[SVN r15285]
2002-09-12 23:58:15 +00:00
Dave Abrahams
ada55bd9e2 mpl_v2 branch checkin
[SVN r15258]
2002-09-11 05:35:41 +00:00
Ralf W. Grosse-Kunstleve
5113de875e work around broken Python 2.2 include files
[SVN r15246]
2002-09-09 21:58:15 +00:00
Ralf W. Grosse-Kunstleve
e079006a4b work around broken Tru64/cxx offsetof macro
[SVN r15245]
2002-09-09 21:55:14 +00:00
uid30600
07561794e9 Fix missing declaration problem
[SVN r15243]
2002-09-09 20:31:51 +00:00
uid30600
75a0da31fb Reduce header interdependencies
[SVN r15242]
2002-09-09 20:05:17 +00:00
Dave Abrahams
33ee2a43c5 initial commit
[SVN r15238]
2002-09-09 17:17:59 +00:00
Dave Abrahams
dcb6a88c63 *** empty log message ***
[SVN r15233]
2002-09-09 11:37:30 +00:00
Dave Abrahams
eeda822196 Workaround broken BOOST_PP_ENUM on GCC
[SVN r15228]
2002-09-09 04:14:31 +00:00
Dave Abrahams
060f59daa8 Fix declaration bug
Workaround broken MSVC6 stdlib


[SVN r15227]
2002-09-09 03:35:05 +00:00
Dave Abrahams
4117614861 Workaround MSVC6 bug
[SVN r15226]
2002-09-09 03:34:01 +00:00
Dave Abrahams
e76440e940 Work around PP lib bug with GCC
[SVN r15225]
2002-09-09 03:03:39 +00:00
Joel de Guzman
f8490a8850 Fixed init<...> bug where there are no default arguments. Added a test case for this.
[SVN r15224]
2002-09-09 02:36:54 +00:00
Dave Abrahams
ee1cc99c65 Added support for enums
[SVN r15223]
2002-09-09 02:24:41 +00:00
Dave Abrahams
dcf7e7cf0c Added support for enums
[SVN r15222]
2002-09-09 02:00:53 +00:00
Dave Abrahams
4c8bcd918b cope with recent PP lib changes
[SVN r15221]
2002-09-09 01:59:45 +00:00
Paul Mensonides
a26bb0390d BOOST_PP_LINE inclusion
[SVN r15218]
2002-09-08 23:20:16 +00:00
Paul Mensonides
26a0df8253 pp-lib update
[SVN r15214]
2002-09-08 22:03:22 +00:00
Dave Abrahams
526d99f832 Embed C++ objects directly in Python objects
[SVN r15192]
2002-09-07 04:44:17 +00:00
Joel de Guzman
acbb5be6ab Added call policies to def(init<...>) and added tests to see that the call policies is working in default.cpp
[SVN r15191]
2002-09-07 01:35:42 +00:00
Joel de Guzman
522a29241b added call policies to the default stubs.
[SVN r15190]
2002-09-06 23:11:09 +00:00
Ralf W. Grosse-Kunstleve
b8d3c84d3c macro names changed to be more self-documenting
[SVN r15172]
2002-09-05 23:31:30 +00:00
Ralf W. Grosse-Kunstleve
9d520877d1 adjustment for IRIX CC; also tested with gcc 3.0.4, VC7, cxx 6.5
[SVN r15168]
2002-09-05 14:00:57 +00:00
Ralf W. Grosse-Kunstleve
5cda0581cd bug fix (IRIX CC diagnostics)
[SVN r15167]
2002-09-05 13:59:46 +00:00
Joel de Guzman
ce2e9de6fb fixed case where function has all default arguments, also added a test in defaults.cpp
[SVN r15165]
2002-09-04 23:51:24 +00:00
Joel de Guzman
4d53fb97b6 update to defaults gen that fixes member functions with zero arguments (added a test in defaults.cpp)
[SVN r15162]
2002-09-04 22:36:05 +00:00
Joel de Guzman
d274a8395b pardon, wrong commit. one more try. sorry.
[SVN r15161]
2002-09-04 22:10:37 +00:00
Joel de Guzman
ba86f516d8 Fixed case where member function has no arguments.
[SVN r15160]
2002-09-04 21:58:21 +00:00
Joel de Guzman
ac02c763c7 Fixed to workaround init<...> only for intel compilers
[SVN r15157]
2002-09-04 16:28:24 +00:00
Ralf W. Grosse-Kunstleve
7407a6b144 use def_init() for compilers that don't support init<... optional<...> >; with this all tru64_cxx test pass; (I know this is not testing the default argument support, but a failing test isn't very inspiring for others, and the addition shows people what the alternative is.)
[SVN r15154]
2002-09-04 07:33:35 +00:00
Dave Abrahams
0453e05bb2 Suppress private inheritance warning
[SVN r15148]
2002-09-03 18:30:18 +00:00
Dave Abrahams
946a93164a Remove colliding "MAX" macro
[SVN r15147]
2002-09-03 18:23:13 +00:00
Dave Abrahams
fe02cae4f7 Add missing #include
[SVN r15146]
2002-09-03 18:20:59 +00:00
Dave Abrahams
5762eb9b33 Add missing #include
[SVN r15145]
2002-09-03 16:57:17 +00:00
Dave Abrahams
73ffc4a13f Support for free-function def() invocation (no module object)
Fix bugs relying on initialization of objects in the Python DLL


[SVN r15142]
2002-09-03 13:20:08 +00:00
Dave Abrahams
865ef2ab7f Support for free-function def() invocation (no module object)
Fix bugs relying on initialization of objects in the Python DLL


[SVN r15139]
2002-09-03 05:51:15 +00:00
Dave Abrahams
7d35ed4eda Move converter registration from body of individual Holder classes to
select_holder implementation, which prevents Holder instantiation in
case the class being wrapped is abstract.


[SVN r15138]
2002-09-03 05:48:20 +00:00
Dave Abrahams
ec3cc6abe8 Implemented less-liberal conversion rules
[SVN r15136]
2002-09-02 23:23:27 +00:00
Joel de Guzman
6f7957fd40 Fixed G++ bug that complains of specialization provided after instantiation.
[SVN r15112]
2002-08-30 09:05:00 +00:00
Ralf W. Grosse-Kunstleve
ec4de3326e bug fix: return type of __getstate__ may be any type
[SVN r15106]
2002-08-28 05:42:38 +00:00
Joel de Guzman
f030618d19 Initial speedup for EDG for the stub functions. The init<...> stuff is more involved...
[SVN r15097]
2002-08-26 15:09:33 +00:00
Ralf W. Grosse-Kunstleve
5bcb9010f6 mention cPickle
[SVN r15085]
2002-08-25 03:04:20 +00:00
Dave Abrahams
780fff70c4 Removed unused bool_type
[SVN r15084]
2002-08-24 18:19:35 +00:00
Dave Abrahams
1d94d7e604 Added missing typename
[SVN r15082]
2002-08-24 16:52:19 +00:00
Dave Abrahams
a6cac2886b Work around a CWPro7.2 bug with ?:
[SVN r15076]
2002-08-24 02:48:53 +00:00
Dave Abrahams
2566b8732e Remove extra semicolon
[SVN r15074]
2002-08-23 23:54:35 +00:00
Joel de Guzman
d4c50383af Got init<..> working
[SVN r15073]
2002-08-23 23:30:29 +00:00
Ralf W. Grosse-Kunstleve
1ee7bd2a60 a few refinements
[SVN r15072]
2002-08-23 22:34:05 +00:00
Joel de Guzman
0bbfa9b483 removed signature<...> and updated defaults.cpp test
[SVN r15071]
2002-08-23 21:00:31 +00:00
Ralf W. Grosse-Kunstleve
2cad1b3d93 revised pickle tutorial
[SVN r15070]
2002-08-23 19:27:38 +00:00
Dave Abrahams
bcaa1043ea More smart pointer handling
[SVN r15069]
2002-08-23 18:07:27 +00:00
Dave Abrahams
0b33d1800d automatic conversion to object for add_property()
[SVN r15065]
2002-08-23 04:15:37 +00:00
Dave Abrahams
946942214f Some simplifications
[SVN r15064]
2002-08-22 20:23:27 +00:00
Dave Abrahams
cd6476e487 Allow different arguments to setstate
[SVN r15063]
2002-08-22 20:22:05 +00:00
Dave Abrahams
0b02fd4e99 Use make_tuple()
[SVN r15062]
2002-08-22 19:08:16 +00:00
Dave Abrahams
d779a94cfb obsoleted
[SVN r15060]
2002-08-22 18:22:35 +00:00
Ralf W. Grosse-Kunstleve
2f89a8eb58 additional tests for X::foo
[SVN r15056]
2002-08-22 15:23:25 +00:00
Dave Abrahams
26d3375900 Added make_tuple() tests
[SVN r15055]
2002-08-22 13:57:12 +00:00
Dave Abrahams
b06e8c3022 Qualified boost::make_tuple to avoid conflicts
[SVN r15054]
2002-08-22 13:51:10 +00:00
Dave Abrahams
8a20f8b2da Simplify code by taking advantage of high-level object() facilities
[SVN r15053]
2002-08-22 13:50:28 +00:00
Dave Abrahams
e1099e9370 Added make_tuple
[SVN r15052]
2002-08-22 13:20:58 +00:00
Dave Abrahams
68c8901c2a Metrowerks workaround
[SVN r15051]
2002-08-22 13:18:36 +00:00
Joel de Guzman
cfb1aebf66 + Added Ralf's test code
+ Fixed defaults_gen MACRO generation
+ Fixed signature for const member functions


[SVN r15047]
2002-08-22 05:23:45 +00:00
Dave Abrahams
e4f54bd53a Strip out overstrike junk
[SVN r15040]
2002-08-21 18:46:14 +00:00
Dave Abrahams
30ea4dd46e idiomatic cleanup
[SVN r15032]
2002-08-21 15:19:06 +00:00
Dave Abrahams
d5c33a203d simplify
[SVN r15030]
2002-08-21 15:15:13 +00:00
Joel de Guzman
087c09cc65 VC6 Workaronds (cleanup)
[SVN r15027]
2002-08-21 13:47:02 +00:00
Joel de Guzman
a9bb2a017e VC6 workarounds
[SVN r15026]
2002-08-21 13:46:16 +00:00
Dave Abrahams
8a049b8ee7 Added missing &
[SVN r15023]
2002-08-21 12:20:26 +00:00
Dave Abrahams
37efd93725 Bug fix
[SVN r15021]
2002-08-21 05:42:21 +00:00
Dave Abrahams
3e61803e89 simplification
[SVN r15020]
2002-08-21 01:48:03 +00:00
Dave Abrahams
3173d88f3f dump help without prompting
[SVN r15019]
2002-08-21 01:47:48 +00:00
Dave Abrahams
f96a898c51 VC6 fixups
[SVN r15018]
2002-08-21 01:46:03 +00:00
Joel de Guzman
d66b79f468 added defaults test from v2-dev branch
[SVN r15017]
2002-08-21 00:04:06 +00:00
Joel de Guzman
b7e300d155 latest signature
[SVN r15010]
2002-08-20 21:35:37 +00:00
Dave Abrahams
4bd680cec8 VC6 workaround
[SVN r15009]
2002-08-20 21:15:54 +00:00
Joel de Guzman
78ae892db6 Committed the defaults stuff
(integrated from v2-dev branch)


[SVN r15008]
2002-08-20 21:09:59 +00:00
Dave Abrahams
d748e371e5 CWPro7 workaround
[SVN r15006]
2002-08-20 20:56:42 +00:00
Joel de Guzman
6bdc89252e Update (added init.hpp)
[SVN r15005]
2002-08-20 20:36:25 +00:00
Dave Abrahams
c104f0167f VC7.1 alpha adjustments
[SVN r15003]
2002-08-20 19:22:14 +00:00
Dave Abrahams
6e3c6d1ba8 CWPro8.1 patch
[SVN r15000]
2002-08-20 16:58:48 +00:00
Dave Abrahams
b77262ba13 Added nested class test
[SVN r14980]
2002-08-20 00:41:17 +00:00
Beman Dawes
960ebb13db init commit
[SVN r14977]
2002-08-19 23:29:18 +00:00
Dave Abrahams
1a7b331a4b Take advantage of independent class_<> definitions everywhere.
[SVN r14976]
2002-08-19 22:21:03 +00:00
Dave Abrahams
3092e07281 Workaround VC6 bug
[SVN r14975]
2002-08-19 22:19:50 +00:00
Dave Abrahams
a5d53d1ac8 new class_<> objects are always added to the current scope
[SVN r14964]
2002-08-19 20:14:33 +00:00
Dave Abrahams
3c5df28101 Bug fix for NULL pointers with return_internal_reference<>.
[SVN r14952]
2002-08-19 15:19:08 +00:00
Dave Abrahams
49e071d363 Bug fix from Martin Casado (casado2@llnl.gov)
[SVN r14857]
2002-08-14 21:09:26 +00:00
Dave Abrahams
6e06ff048d Automatic class def_init(), abstract class __init__ errors
Fixed line endings
Suppressed warnings


[SVN r14828]
2002-08-14 06:26:33 +00:00
Dave Abrahams
c5ee39f54b Bug fix
[SVN r14803]
2002-08-13 05:07:50 +00:00
Dave Abrahams
f7b1e4ec09 Unit test adjustments
[SVN r14802]
2002-08-13 04:25:23 +00:00
Dave Abrahams
e6830b2c19 Add dependency on test_exec_monitor
[SVN r14801]
2002-08-13 03:06:00 +00:00
Dave Abrahams
fe3cf386c3 Python->C++ exception translation
[SVN r14800]
2002-08-13 00:45:09 +00:00
Dave Abrahams
0a6a213891 Added a test for add_property
[SVN r14799]
2002-08-13 00:43:51 +00:00
Dave Abrahams
2103e691db initial commit
[SVN r14738]
2002-08-08 15:45:58 +00:00
Dave Abrahams
cf15a99730 Repair type initialization problem
[SVN r14736]
2002-08-08 06:14:48 +00:00
Dave Abrahams
a3102b552c Add casts to work around missing extern "C" in Python headers.
[SVN r14735]
2002-08-08 05:52:30 +00:00
Dave Abrahams
bd0257cbe5 Full docstring support
[SVN r14734]
2002-08-07 23:03:02 +00:00
Dave Abrahams
56e7b2a592 * object(f), where f is a function pointer now works. Returning a
* function pointer from a function should work also.
* make_function/make_constructor now return object instead of a raw pointer.
* module::setattr() now accepts anything which can be passed to object's constructor.

* Rework upcast<> to catch more errors at compile-time instead of infinite-looping.
* Rationalize class<>::def() in preparation for docstring support
* Partial docstring support in module::def (untested)
* dependent<> trick moved to detail namespace and separate header

* Added __doc__ attribute to C++ function wrapper objects
* Sunk implementation of function_object into a library source file.


[SVN r14724]
2002-08-06 23:59:27 +00:00
Dave Abrahams
61d030748c Moving an #include works around a VC6 ICE
[SVN r14723]
2002-08-06 23:51:51 +00:00
Dave Abrahams
f59ed991fe VC6 bug workarounds
[SVN r14722]
2002-08-06 23:44:31 +00:00
Dave Abrahams
2bdf958663 Suppress warnings by eliminating unneeded specializations of is_pointer_to_function<>.
[SVN r14721]
2002-08-06 23:32:52 +00:00
Dave Abrahams
bd8b6a2a64 Workaround a CWPro7.2 bug
[SVN r14720]
2002-08-06 23:23:28 +00:00
Dave Abrahams
88528e338b Correct version for VC7.1 workaround
[SVN r14719]
2002-08-06 22:36:43 +00:00
Dave Abrahams
88b3bf1887 VC 7, 7.1a workaround
[SVN r14701]
2002-08-05 21:55:28 +00:00
Dave Abrahams
6907df1457 bug fixes
[SVN r14623]
2002-07-27 05:50:10 +00:00
Dave Abrahams
19036c14f5 handle<> -> object
[SVN r14603]
2002-07-25 18:07:25 +00:00
Dave Abrahams
ddb1236f2f Begin transition away from handle<>
[SVN r14602]
2002-07-25 16:29:30 +00:00
Dave Abrahams
30ef9c6418 back_reference<> uses object instead of handle<>
[SVN r14600]
2002-07-25 15:20:06 +00:00
Dave Abrahams
8763fd1c53 scope default constructor gets current scope; killed scope::get()
[SVN r14599]
2002-07-25 14:52:11 +00:00
Dave Abrahams
5976005c4a Make Boost.Python v1 work again
[SVN r14595]
2002-07-25 10:52:10 +00:00
Dave Abrahams
63eed8994a class_<> is now derived from object
[SVN r14594]
2002-07-25 04:41:21 +00:00
Dave Abrahams
f458dbdbcb Added scope
[SVN r14593]
2002-07-25 02:23:01 +00:00
Dave Abrahams
b7421fd5cd Fix Ralf's boo-boo.
[SVN r14592]
2002-07-24 16:58:46 +00:00
Dave Abrahams
a2feb04509 pytype_object_manager_traits -> pytype_object_mgr_traits (< 31 chars)
[SVN r14587]
2002-07-24 13:31:29 +00:00
Ralf W. Grosse-Kunstleve
e25fee71a2 additional compile-time check: must_be_derived_from_pickle_suite
[SVN r14568]
2002-07-22 23:43:00 +00:00
Ralf W. Grosse-Kunstleve
bfe2a6656c pickle_group renamed -> pickle_suite
[SVN r14565]
2002-07-22 19:35:44 +00:00
Ralf W. Grosse-Kunstleve
e15ca5c642 full integration of (revised) pickle support
[SVN r14557]
2002-07-22 06:54:39 +00:00
Dave Abrahams
3232c5be86 Fixed test of null handle returns to reflect new returning-None behavior
[SVN r14553]
2002-07-21 11:11:15 +00:00
Ralf W. Grosse-Kunstleve
1c5a50d4cb pickle support implementation details hidden in namespace detail
[SVN r14550]
2002-07-21 09:39:35 +00:00
Ralf W. Grosse-Kunstleve
4ef5f77161 additional files for pickle support; no modification of any existing files
[SVN r14549]
2002-07-21 07:49:00 +00:00
Dave Abrahams
d27e5a5e1d Rationalize object_manager
[SVN r14548]
2002-07-21 05:03:11 +00:00
Ralf W. Grosse-Kunstleve
7ecf76490c one #undef was missing
[SVN r14544]
2002-07-20 00:14:20 +00:00
Ralf W. Grosse-Kunstleve
12120413f9 #undef isspace etc.
[SVN r14539]
2002-07-19 20:10:11 +00:00
Dave Abrahams
c0eea6e667 fix link
[SVN r14530]
2002-07-19 18:06:05 +00:00
Dave Abrahams
5c54aecdda initial commit
[SVN r14529]
2002-07-19 18:05:18 +00:00
Dave Abrahams
5cfc0cce14 str, dict, and tuple!
[SVN r14519]
2002-07-18 15:52:18 +00:00
Dave Abrahams
d9a58ef830 str, dict, and tuple!
[SVN r14518]
2002-07-18 15:27:29 +00:00
Dave Abrahams
dfd85da9d7 str, dict, and tuple!
[SVN r14517]
2002-07-18 15:17:08 +00:00
Dave Abrahams
94edc13393 Doc fixup
[SVN r14516]
2002-07-18 12:58:37 +00:00
Dave Abrahams
a9baa519f3 Extract implemented
[SVN r14510]
2002-07-18 05:00:34 +00:00
Dave Abrahams
a6c859c9cc Roll back most of Dave Hawkes' changes for the time being.
[SVN r14503]
2002-07-17 19:58:05 +00:00
Dave Abrahams
f9a67b34b2 Roll back most of Dave Hawkes' changes for the time being.
[SVN r14501]
2002-07-17 18:36:14 +00:00
Dave Abrahams
6ac5735d14 MSVC fixes
[SVN r14500]
2002-07-17 18:31:02 +00:00
Dave Abrahams
9d5e8b9ad8 Bug fix
[SVN r14495]
2002-07-17 14:06:15 +00:00
Dave Abrahams
bd72ee9cd1 Add missing #include
[SVN r14494]
2002-07-17 14:05:53 +00:00
Dave Abrahams
c2e115b6a5 Add missing typename
[SVN r14493]
2002-07-17 14:05:31 +00:00
David Hawkes
61ba4cd1ce Sub-module / sub-class and API changes
[SVN r14488]
2002-07-17 06:51:08 +00:00
Dave Abrahams
244e0fa5e6 More converter centralization
[SVN r14487]
2002-07-17 01:54:58 +00:00
Dave Abrahams
134bc44c45 destroy_reference -> destroy_referent
[SVN r14486]
2002-07-17 01:53:33 +00:00
Dave Abrahams
1d2dc98f50 MSVC6 workaround
[SVN r14485]
2002-07-16 20:01:38 +00:00
Dave Abrahams
7a05b89a93 MSVC6 workaround
[SVN r14484]
2002-07-16 17:15:36 +00:00
Dave Abrahams
2bfeb20550 Added type checking when converting some Python types from python as return values.
[SVN r14478]
2002-07-16 11:45:10 +00:00
Dave Abrahams
fa779034b5 VC7.1 workarounds
[SVN r14477]
2002-07-16 11:31:36 +00:00
Ralf W. Grosse-Kunstleve
ea5cfdcdce missing inline keywords added (MIPSpro 7.3 diagnostics)
[SVN r14469]
2002-07-15 20:07:04 +00:00
Ralf W. Grosse-Kunstleve
ba1eab1bf0 is_string_literal<char* const> specialization enabled for MIPSpro; this fixes the list.test failures.
[SVN r14468]
2002-07-15 19:09:57 +00:00
Dave Abrahams
149c60bd2e Still further rationalized conversion registry
[SVN r14462]
2002-07-14 23:25:56 +00:00
Dave Abrahams
9795a27482 Even further rationalized conversion registry
[SVN r14458]
2002-07-14 20:36:54 +00:00
Dave Abrahams
baccdba75c Better error reporting
[SVN r14456]
2002-07-14 18:44:28 +00:00
Dave Abrahams
93b4c6291a Removed flotsam
[SVN r14455]
2002-07-14 18:42:43 +00:00
Dave Abrahams
815edf1ba5 Apply VC6 workaround and None default constructor patch from Dave Hawkes.
[SVN r14452]
2002-07-14 16:26:10 +00:00
Dave Abrahams
df7b4d81c7 Tests for Tru64 CXX regression
[SVN r14451]
2002-07-14 16:09:46 +00:00
Dave Abrahams
3e07ba1012 tru64cxx6.5 workarounds
[SVN r14450]
2002-07-14 16:07:39 +00:00
Dave Abrahams
32c6906750 Remove circular dependency on working converters
[SVN r14449]
2002-07-14 14:37:20 +00:00
Dave Abrahams
3ebe4c47ba Better error reporting
[SVN r14448]
2002-07-14 13:04:27 +00:00
Dave Abrahams
5b803f00e1 VC6 workarounds
[SVN r14447]
2002-07-14 12:38:41 +00:00
Dave Abrahams
9a0118d991 untabify
[SVN r14444]
2002-07-13 21:36:57 +00:00
Dave Abrahams
093aae1f46 Further rationalized conversion registry
[SVN r14441]
2002-07-13 18:44:51 +00:00
Dave Abrahams
e431318dc0 Added some more tests
[SVN r14437]
2002-07-13 15:16:50 +00:00
Dave Abrahams
c15812add2 long long fixes
[SVN r14434]
2002-07-13 12:11:53 +00:00
Dave Abrahams
3375cdbb49 Fixed for VC7.1
[SVN r14433]
2002-07-13 12:11:06 +00:00
Dave Abrahams
559b564714 tru64cxx6.5 fixes
[SVN r14421]
2002-07-12 14:32:20 +00:00
Dave Abrahams
3ac4cfb9a7 Fix mistaken cast
[SVN r14420]
2002-07-12 11:37:31 +00:00
Dave Abrahams
a4d651ce9a Kill tru64cxx warnings
[SVN r14419]
2002-07-12 11:36:15 +00:00
Dave Abrahams
d3bbc0eaa5 Work around older EDG bug
[SVN r14415]
2002-07-11 21:41:12 +00:00
Dave Abrahams
9ff90c98cd Merged registry tracing
[SVN r14414]
2002-07-11 21:32:39 +00:00
Dave Abrahams
b8aaf7d7b1 Rationalized conversion registry
Better error reporting


[SVN r14412]
2002-07-11 21:04:33 +00:00
Dave Abrahams
c0ecde90bc Test a few different lvalue conversions
[SVN r14411]
2002-07-11 21:03:30 +00:00
Dave Abrahams
83719a6f48 Attempted fix for long long handling
[SVN r14410]
2002-07-11 20:44:22 +00:00
Dave Abrahams
28011bbf55 Remove tuple/string dependencies for Achim
[SVN r14402]
2002-07-10 21:41:11 +00:00
Paul Mensonides
88170f6dc4 updated to new iteration interface
[SVN r14388]
2002-07-10 06:32:00 +00:00
Dave Abrahams
931aab22bb Use Paul M's preprocessor iteration
[SVN r14384]
2002-07-09 19:35:48 +00:00
Dave Abrahams
6cb4fbb1c4 Use Paul M's preprocessor iteration
[SVN r14383]
2002-07-09 19:21:52 +00:00
Dave Abrahams
54a551e488 Add missing prototype
[SVN r14381]
2002-07-09 18:58:45 +00:00
Dave Abrahams
5a0d84f185 Smarter range checking
[SVN r14380]
2002-07-09 18:57:53 +00:00
Dave Abrahams
222396759b MWERKS bug workaround
[SVN r14379]
2002-07-09 18:49:09 +00:00
Dave Abrahams
128c0ed5a1 Fixes for MSVC
[SVN r14378]
2002-07-09 18:43:00 +00:00
Dave Abrahams
ea74e34446 CWPro8 bug workarounds
[SVN r14377]
2002-07-09 18:38:02 +00:00
Dave Abrahams
c7225a059f workaround for CWPro7.2
[SVN r14372]
2002-07-09 15:20:18 +00:00
Dave Abrahams
c1f8ae662f Added missing typename
[SVN r14367]
2002-07-09 10:27:18 +00:00
Dave Abrahams
7d3227128c rvalue_data -> rvalue_from_python_data
[SVN r14357]
2002-07-08 21:35:18 +00:00
Dave Abrahams
182b6755f5 rvalue_data -> rvalue_from_python_data
[SVN r14355]
2002-07-08 19:17:00 +00:00
Dave Abrahams
0945f79ced Various kinds of cleanup and code massage; preparing for rvalue from_python protocol change
[SVN r14353]
2002-07-08 17:17:31 +00:00
Dave Abrahams
8b611322e5 Use new void_return mechanism
[SVN r14352]
2002-07-08 17:14:26 +00:00
Dave Abrahams
b255796b33 Bug fixes
[SVN r14308]
2002-07-05 15:25:40 +00:00
Dave Abrahams
2ae7c60780 Fix refcounting bugs in class object; add regression
Removed flotsam


[SVN r14287]
2002-07-02 23:34:21 +00:00
Dave Abrahams
279ad90a3c copy_ctor_self => assignment_self
[SVN r14286]
2002-07-02 23:31:40 +00:00
Dave Abrahams
bed7a7d29c Python long support
[SVN r14271]
2002-07-01 21:25:01 +00:00
Dave Abrahams
f02a3c5b47 Now inheriting object_cref from object
[SVN r14270]
2002-07-01 21:23:10 +00:00
Dave Abrahams
d7df5126ce list implementation
[SVN r14263]
2002-06-29 19:51:12 +00:00
Dave Abrahams
97ecfe7e03 a couple more tests
[SVN r14262]
2002-06-29 19:27:42 +00:00
Dave Abrahams
f30fde3a52 list implementation
[SVN r14261]
2002-06-29 19:24:11 +00:00
Dave Abrahams
d7273dee1c added missing 'explicit'
[SVN r14260]
2002-06-29 18:49:43 +00:00
Dave Abrahams
55dff4d512 slicing
[SVN r14219]
2002-06-20 21:47:26 +00:00
Ralf W. Grosse-Kunstleve
693b21188c previous patch breaks Visual C++ 6 & 7 compilations. Roll-back to a state that allows others to use CVS while we do more experiments.
[SVN r14208]
2002-06-20 10:33:34 +00:00
Ralf W. Grosse-Kunstleve
220734ccac workaround for IRIX CC (EDG238) bug; move to namespace boost::python::api
[SVN r14193]
2002-06-20 02:53:25 +00:00
Ralf W. Grosse-Kunstleve
bf84024d6b maybe slower but certainly conforming
[SVN r14190]
2002-06-20 00:19:59 +00:00
Ralf W. Grosse-Kunstleve
7bb39ae541 IRIX CC (EDG 238) fix/workaround.
[SVN r14189]
2002-06-19 23:00:43 +00:00
Dave Abrahams
d250057a7c GCC 3 workaround
[SVN r14188]
2002-06-19 22:58:58 +00:00
Dave Abrahams
d07454659a Work around some gcc-2.95.x bugs
Optimize code slightly by eliminating temporaries


[SVN r14185]
2002-06-19 19:18:21 +00:00
Dave Abrahams
913d2984ce Fixed object proxy chaining for everything bug GCC 2.9x
[SVN r14183]
2002-06-19 16:34:26 +00:00
Dave Abrahams
e2d75c0b76 Fixed is_borrowed_ptr
[SVN r14174]
2002-06-19 02:45:39 +00:00
Dave Abrahams
8aba486295 Fix tru64cxx problems, remove operator*/-> from object
[SVN r14173]
2002-06-19 02:12:14 +00:00
Dave Abrahams
66f2cd81a8 object operator support
[SVN r14168]
2002-06-18 13:49:09 +00:00
Dave Abrahams
87bda9e124 work around early EDG problem
[SVN r14164]
2002-06-17 22:26:17 +00:00
Dave Abrahams
954d019895 work around early EDG problem
[SVN r14163]
2002-06-17 20:23:13 +00:00
Dave Abrahams
41132af773 Bug fix
[SVN r14160]
2002-06-16 22:59:09 +00:00
Dave Abrahams
9a5b89da59 initial checkin
[SVN r14159]
2002-06-16 21:31:29 +00:00
Dave Abrahams
c12ffa21da beginning of object support
[SVN r14157]
2002-06-16 20:41:54 +00:00
Dave Abrahams
0b5937a396 type -> boost::type
[SVN r14154]
2002-06-16 20:18:51 +00:00
Dave Abrahams
773bb0651e borrow() -> borrowed()
type -> boost::type


[SVN r14153]
2002-06-16 20:13:38 +00:00
Dave Abrahams
8817b1e2af fixed missing template parameter
[SVN r14140]
2002-06-13 14:06:08 +00:00
Dave Abrahams
366ee6d24b reference<> => handle<>
[SVN r14136]
2002-06-12 21:59:17 +00:00
Dave Abrahams
0d58869d6e Fix refcounting bug
[SVN r14135]
2002-06-12 21:57:35 +00:00
Dave Abrahams
52ba3c7f80 expect_non_null optimization
[SVN r14134]
2002-06-12 20:52:53 +00:00
Dave Abrahams
14d2bae238 initial commit
[SVN r14131]
2002-06-11 19:51:44 +00:00
Dave Abrahams
e331512473 fix typo
[SVN r14130]
2002-06-11 15:48:32 +00:00
Dave Abrahams
1de6a21f3a Fix transform_iterator nonconformance
[SVN r14114]
2002-06-08 16:51:16 +00:00
Dave Abrahams
43d8c81104 use sys.maxint
[SVN r14112]
2002-06-08 15:35:10 +00:00
Ralf W. Grosse-Kunstleve
89930f34d7 undo accidental commit
[SVN r14103]
2002-06-07 17:14:13 +00:00
Ralf W. Grosse-Kunstleve
59ea6b120c MIPSpro 7.3.1.3 adjustments
[SVN r14102]
2002-06-07 16:37:24 +00:00
Ralf W. Grosse-Kunstleve
7c312d358b work-around for mipspro linker problem.
[SVN r14095]
2002-06-06 21:57:16 +00:00
Dave Abrahams
ac2746f680 * Generalized use of force_instantiate()
* Proper handling for numeric conversion overflows
* Moved internal converter names out of the way to prepare for user conversions
* Added comments
* Fixed a bug where None could be converted to the NULL target of a member function call, causing a crash.
* Wiped out and restarted todo.txt
* long long support
* Added more regression tests and checks for current limitations


[SVN r14094]
2002-06-06 20:24:39 +00:00
Ralf W. Grosse-Kunstleve
e2b4178f42 work-around for MIPSpro 7.3.1.3 problems that avoids #ifdef
[SVN r14085]
2002-06-05 23:47:18 +00:00
Ralf W. Grosse-Kunstleve
266954be99 adjustments for SGI MIPSpro 7.3.1.3m; tested with gcc, tru64_cxx65, vc7 tool sets.
[SVN r14084]
2002-06-05 22:13:34 +00:00
Dave Abrahams
2e3ae9decb fixup for __module__ attribute setting
[SVN r14082]
2002-06-04 20:26:18 +00:00
Dave Abrahams
6741698f71 Added comment as syncmail test
[SVN r14080]
2002-06-04 12:38:14 +00:00
Dave Abrahams
ccae1cc430 cleanup refcounting/naming
[SVN r14077]
2002-06-04 04:18:47 +00:00
Dave Abrahams
241a5bf4e5 operators documentation
[SVN r14076]
2002-06-04 03:30:34 +00:00
Dave Abrahams
e36aba8c66 bug fix
[SVN r14075]
2002-06-04 03:22:37 +00:00
Dave Abrahams
1a0baef147 fixed mod. date
[SVN r14074]
2002-06-04 02:41:30 +00:00
Ralf W. Grosse-Kunstleve
9a49d267eb EDG 245: trailing comma is nonstandard
[SVN r14073]
2002-06-03 19:12:40 +00:00
Ralf W. Grosse-Kunstleve
7a832f1fdb automatic addition of __module__ to class dict
[SVN r14072]
2002-06-03 18:35:59 +00:00
Dave Abrahams
16c391c78c enable operators.hpp for v2
eliminate dependence on full boost/function.hpp


[SVN r14071]
2002-06-02 19:09:03 +00:00
Dave Abrahams
92aae63af2 str(), pow(), complex() support
[SVN r14070]
2002-06-02 18:35:09 +00:00
Dave Abrahams
b042644c85 bind() doesn't work on extern "C" functions
[SVN r14069]
2002-06-02 12:01:35 +00:00
Dave Abrahams
97afc4bd0c operator support
[SVN r14068]
2002-06-02 05:44:06 +00:00
Dave Abrahams
a67b29a576 Flotsam removal; in theory this works around some Sun incompatibility also.
See http://mail.python.org/pipermail/c++-sig/2002-May/001193.html


[SVN r14066]
2002-06-02 05:39:41 +00:00
Dave Abrahams
97c87d0a99 fixed #include guard
[SVN r14065]
2002-06-02 05:35:30 +00:00
Dave Abrahams
fedf8d9935 Apply Martin's KCC bug workaround
[SVN r14062]
2002-05-29 21:24:25 +00:00
Dave Abrahams
23bfb84e38 Finally, it works on AIX!
[SVN r14061]
2002-05-29 20:32:49 +00:00
Dave Abrahams
c7d16fbf9e Pearu's test
[SVN r14057]
2002-05-29 13:02:14 +00:00
Dave Abrahams
033a3dd620 doc updates
[SVN r14056]
2002-05-29 12:59:39 +00:00
Dave Abrahams
f5a0b2fed8 Bug fix, thanks to Pearu Pearson for pointing it out!
[SVN r14055]
2002-05-28 23:47:38 +00:00
Dave Abrahams
b03dcfb7de doc updates
[SVN r14054]
2002-05-28 20:42:12 +00:00
Dave Abrahams
502094439c Kill superfluous forward declaration
[SVN r14048]
2002-05-28 20:26:41 +00:00
Dave Abrahams
c15f812366 bugfix
[SVN r14035]
2002-05-24 11:16:22 +00:00
Dave Abrahams
dd1b102282 result() fixes
[SVN r14031]
2002-05-23 22:42:09 +00:00
Dave Abrahams
67b3cdc7b7 lvalue_from_pytype + documentation
[SVN r14030]
2002-05-23 16:38:44 +00:00
Dave Abrahams
051994bdf4 initial commit
[SVN r14027]
2002-05-23 16:28:37 +00:00
Dave Abrahams
0f7c12b517 Added result() test
[SVN r14025]
2002-05-23 16:25:45 +00:00
Dave Abrahams
aa2b0090d3 bugfix
[SVN r14022]
2002-05-23 16:17:53 +00:00
Dave Abrahams
00b27c20da Added detail/result.hpp and tests
[SVN r14000]
2002-05-21 23:18:58 +00:00
Dave Abrahams
7ecd7e84d9 Cleaned up internals and generalized detail::target()
[SVN r13998]
2002-05-21 16:37:30 +00:00
Dave Abrahams
49c2dbd4a7 respect <sysinclude>
[SVN r13997]
2002-05-21 16:35:49 +00:00
Dave Abrahams
cf46535b66 instance_holder moved to boost::python
[SVN r13994]
2002-05-21 16:16:25 +00:00
Dave Abrahams
91e2e6f207 Bugfixes
[SVN r13981]
2002-05-19 20:29:56 +00:00
Dave Abrahams
b63434ce2e Added composition
[SVN r13980]
2002-05-19 20:29:40 +00:00
Dave Abrahams
dde6c42421 initial commit
[SVN r13979]
2002-05-19 20:23:00 +00:00
Dave Abrahams
beb6cca88d initial commit
[SVN r13976]
2002-05-19 14:06:16 +00:00
Dave Abrahams
ba2f18ce21 Lots of documentation updates, plus the associated code shuffling needed to expose the right things to users
[SVN r13975]
2002-05-19 04:57:44 +00:00
Dave Abrahams
c928eded74 bugfix
[SVN r13962]
2002-05-17 05:04:37 +00:00
Dave Abrahams
9baefc2e56 Documentation updates
[SVN r13961]
2002-05-17 05:02:44 +00:00
Dave Abrahams
313fe2c76c input iterator support
[SVN r13960]
2002-05-17 05:01:53 +00:00
Dave Abrahams
53c69e7ad5 Merged from RC_1_28_0
[SVN r13944]
2002-05-16 00:56:42 +00:00
Dave Abrahams
3ff935d4c4 initial commit
[SVN r13844]
2002-05-13 17:03:05 +00:00
Dave Abrahams
9fa89e8596 Added iterator support plus a minimal test to look for refcount problems.
[SVN r13843]
2002-05-13 16:41:50 +00:00
Dave Abrahams
6c20af07f7 Added setattr(), and the ability to query the class registry to see if a class has already been created
[SVN r13842]
2002-05-13 16:40:34 +00:00
Dave Abrahams
56abd7ba70 Added setattr()
[SVN r13841]
2002-05-13 16:39:25 +00:00
Dave Abrahams
dc1769b28a Handle reference<T> in make_function() calls.
[SVN r13840]
2002-05-13 16:35:07 +00:00
Dave Abrahams
97b863101b Add result_type definition
[SVN r13839]
2002-05-13 16:33:55 +00:00
Dave Abrahams
0a1b62a760 Added is_reference_to_class, is_pointer_to_class
[SVN r13838]
2002-05-13 16:32:59 +00:00
Dave Abrahams
f2fa852f1a initial commit
[SVN r13837]
2002-05-13 16:31:42 +00:00
Dave Abrahams
59f4ddf5af Work around MSVC6 bug
[SVN r13836]
2002-05-13 16:30:09 +00:00
Dave Abrahams
673d857bd8 Added setattr()
[SVN r13835]
2002-05-13 16:29:43 +00:00
Dave Abrahams
36be16b3e9 Quick bugfix
[SVN r13825]
2002-05-11 17:11:51 +00:00
Dave Abrahams
390bb1988d implemented back_reference<>
[SVN r13811]
2002-05-10 15:48:27 +00:00
Dave Abrahams
63deae3ab2 Moved pointee up from detail
[SVN r13810]
2002-05-10 15:47:59 +00:00
Dave Abrahams
710374ed1e Added Dereferenceable, ResultConverter
[SVN r13809]
2002-05-10 15:47:04 +00:00
Dave Abrahams
8f1dc2522a Added Dereferenceable
[SVN r13808]
2002-05-10 15:46:37 +00:00
Dave Abrahams
9c3dd76e25 obsolete
[SVN r13807]
2002-05-10 15:42:52 +00:00
Dave Abrahams
3328087de1 Added missing add_property chaining
[SVN r13806]
2002-05-10 15:41:44 +00:00
Dave Abrahams
ec3f5ff40b initial commit
[SVN r13799]
2002-05-10 09:44:24 +00:00
Dave Abrahams
3b000f080e tweak
[SVN r13798]
2002-05-10 09:38:07 +00:00
Dave Abrahams
09046c53ef ResultConverter/ResultConverterGenerator
[SVN r13793]
2002-05-10 04:00:33 +00:00
Dave Abrahams
13331d3eab updated
[SVN r13792]
2002-05-10 00:58:31 +00:00
Dave Abrahams
a2a1a557f5 initial commit
[SVN r13788]
2002-05-09 17:49:18 +00:00
Dave Abrahams
fff4cc8b0d tweaks
[SVN r13787]
2002-05-09 17:48:42 +00:00
Dave Abrahams
aa0fc6dfe7 trivial bugfix
[SVN r13784]
2002-05-09 17:37:06 +00:00
Dave Abrahams
c639ac0c5a finished
[SVN r13779]
2002-05-09 17:01:27 +00:00
Dave Abrahams
45aa77079d initial commit
[SVN r13778]
2002-05-09 16:53:33 +00:00
Dave Abrahams
8e57090a75 Fix broken links
[SVN r13777]
2002-05-09 16:04:17 +00:00
Dave Abrahams
e7cb8c8b4f Continuing updates
[SVN r13776]
2002-05-09 14:29:07 +00:00
Dave Abrahams
57002aca36 Removed flotsam
[SVN r13775]
2002-05-09 14:28:37 +00:00
Dave Abrahams
5956d3ec77 fix tabs and line-endings
[SVN r13774]
2002-05-09 14:24:57 +00:00
Dave Abrahams
2d522de701 untabify
[SVN r13773]
2002-05-09 14:07:22 +00:00
Dave Abrahams
aef987d832 work around OSF linker problem
[SVN r13768]
2002-05-09 02:00:22 +00:00
Dave Abrahams
c5d90745a0 pointer_holder_back_reference.hpp -> ptr_holder_back_reference.hpp (31 character limit)
[SVN r13767]
2002-05-09 01:59:32 +00:00
Dave Abrahams
1d160762b5 initial commit
[SVN r13762]
2002-05-08 22:13:30 +00:00
Dave Abrahams
b45b9e5ccf bug fix
[SVN r13759]
2002-05-08 21:51:09 +00:00
Dave Abrahams
4b9931c417 undo last change; not worth it.
[SVN r13758]
2002-05-08 20:10:40 +00:00
Dave Abrahams
34424d7a00 function* -> PyObject* simplifies documentation
[SVN r13757]
2002-05-08 20:04:37 +00:00
Dave Abrahams
7cd32fc4eb initial commit
[SVN r13755]
2002-05-08 19:07:22 +00:00
Dave Abrahams
c9097566e2 *** empty log message ***
[SVN r13740]
2002-05-08 04:23:03 +00:00
Dave Abrahams
e26556c631 initial checkin
[SVN r13739]
2002-05-08 04:22:34 +00:00
Dave Abrahams
bd32dce19a *** empty log message ***
[SVN r13738]
2002-05-08 03:59:53 +00:00
Dave Abrahams
152a3f2e5f initial commit
[SVN r13737]
2002-05-08 03:23:58 +00:00
Dave Abrahams
4fe6815062 roll back mistaken checkin
[SVN r13736]
2002-05-07 23:25:33 +00:00
Dave Abrahams
525979afaa testing for char conversions
[SVN r13735]
2002-05-07 23:23:32 +00:00
Dave Abrahams
93a10f33d5 initial checkin
[SVN r13655]
2002-05-03 22:16:42 +00:00
Dave Abrahams
c9b4fb418a Removed flotsam
[SVN r13653]
2002-05-03 21:20:12 +00:00
Dave Abrahams
2151bf8f9a obsolete
[SVN r13650]
2002-05-03 19:05:03 +00:00
Dave Abrahams
fa64ef6f00 Removed flotsam
[SVN r13629]
2002-05-03 03:35:18 +00:00
Dave Abrahams
a31c0e9082 Removed teaser index; updated compiler results for MSVC6/STLPort.
[SVN r13609]
2002-05-01 17:28:37 +00:00
Dave Abrahams
365ce29761 Removed outdated msvc projects
[SVN r13603]
2002-05-01 12:30:20 +00:00
Dave Abrahams
93ca98d3a8 Some tweaks for gcc-stlport
[SVN r13600]
2002-05-01 02:50:19 +00:00
Dave Abrahams
6e86a498ad vc7.01 alpha workaround
[SVN r13599]
2002-05-01 02:49:45 +00:00
Dave Abrahams
94cfe30b77 Workarounds for VC7.01
[SVN r13565]
2002-04-26 14:15:33 +00:00
Dave Abrahams
cca3acc035 Test for 9 arguments
[SVN r13521]
2002-04-18 04:11:49 +00:00
Dave Abrahams
f0e3fd9e72 *** empty log message ***
[SVN r13520]
2002-04-18 04:00:30 +00:00
Dave Abrahams
8388163aaf corrected BOOST_PYTHON_MAX_ARITY response
made things compile in time on EDG
increased BOOST_PYTHON_DEBUGGABLE_ARITY to 15


[SVN r13519]
2002-04-18 03:45:27 +00:00
Dave Abrahams
a203214ef9 More cleanups for mpl_v2
[SVN r13516]
2002-04-17 04:34:34 +00:00
Dave Abrahams
4250893d2f doc updates,
arbitrary arity constructors


[SVN r13511]
2002-04-17 00:22:38 +00:00
Dave Abrahams
0c1e2a7347 copy_mutable_reference -> copy_non_const_reference
arbitrary arg support for constructors


[SVN r13508]
2002-04-17 00:20:04 +00:00
Ralf W. Grosse-Kunstleve
d5c35a1d83 Supported Platform section overhaul.
[SVN r13507]
2002-04-16 22:02:00 +00:00
Dave Abrahams
722036f10e trivial changes for MPL v2
[SVN r13506]
2002-04-16 21:10:55 +00:00
Dave Abrahams
8eab74ea81 Make 2.95.2 workaround MINGW-specific
[SVN r13489]
2002-04-15 04:09:52 +00:00
Dave Abrahams
473d38c846 Warning suppression for Cygwin 2.95.2
[SVN r13488]
2002-04-15 04:08:49 +00:00
Ralf W. Grosse-Kunstleve
a9fb1b25a8 comment at beginning of file updated.
[SVN r13483]
2002-04-14 15:24:19 +00:00
Dave Abrahams
360dbd9e5e Fixes for linking with Intel 6
[SVN r13479]
2002-04-13 17:04:11 +00:00
Dave Abrahams
8c4f9d913d Suppress warning for smart compilers
[SVN r13478]
2002-04-13 16:43:17 +00:00
Dave Abrahams
e4b1377b0e vc7 compatibility for BOost.Python v1
Better error messages for Jam when actions are too long


[SVN r13477]
2002-04-13 15:33:00 +00:00
Dave Abrahams
fc5e0fb012 propagate standard library directory from intel toolsets
[SVN r13472]
2002-04-13 04:29:11 +00:00
Dave Abrahams
9a140643c8 fixes for GCC .so/exception problems
[SVN r13471]
2002-04-13 04:23:41 +00:00
Dave Abrahams
5fbba7bc01 initial checkin
[SVN r13470]
2002-04-13 04:21:01 +00:00
Dave Abrahams
4cf7ab3425 fixes for GCC .so/exception problems
[SVN r13469]
2002-04-13 04:06:26 +00:00
Dave Abrahams
b7f93bd4ea obsolete
[SVN r13467]
2002-04-12 18:35:35 +00:00
Dave Abrahams
962a08700e Use PP lib
[SVN r13463]
2002-04-12 18:29:14 +00:00
Dave Abrahams
d23daf225d Choose BOOST_PYTHON_DYNAMIC_LIB by default
[SVN r13462]
2002-04-12 18:21:42 +00:00
Dave Abrahams
e5f2b0c0a9 initial checkin
[SVN r13461]
2002-04-12 17:20:49 +00:00
Dave Abrahams
6aa80b07e7 killed extra semicolon
[SVN r13455]
2002-04-12 05:08:02 +00:00
Dave Abrahams
be0ae2389c fixed spelling of filename
[SVN r13454]
2002-04-12 05:06:12 +00:00
Dave Abrahams
7d8b6d149e Fixed installation/configuration checks
[SVN r13451]
2002-04-11 21:01:10 +00:00
Dave Abrahams
a47fbc18f7 Use PP lib for holders
[SVN r13447]
2002-04-11 18:58:10 +00:00
Dave Abrahams
47ad802ab6 Pass policies to returning<> by-pointer for GCC 2.95.2 :(
[SVN r13443]
2002-04-11 12:44:37 +00:00
Dave Abrahams
8a3e786294 Use preprocessor for detail/returning.hpp
[SVN r13442]
2002-04-11 04:18:52 +00:00
Dave Abrahams
4018b284e3 returning takes policies by-pointer for GCC 2.95.3 :(
[SVN r13441]
2002-04-11 04:17:29 +00:00
Ralf W. Grosse-Kunstleve
b704d42fe4 Restore workaround for Compaq cxx and SGI CC (it is a generic EDG problem).
[SVN r13438]
2002-04-10 20:56:35 +00:00
Dave Abrahams
5dab2802b3 changed the formula for function description with the PP lib
[SVN r13437]
2002-04-10 19:33:52 +00:00
Dave Abrahams
377fbed517 Start using preprocessor library
[SVN r13436]
2002-04-10 19:33:06 +00:00
Dave Abrahams
eab0a73f53 Use preprocessor lib for caller.hpp
[SVN r13435]
2002-04-10 17:30:34 +00:00
Dave Abrahams
558170582a Start using preprocessor library
[SVN r13427]
2002-04-10 09:41:52 +00:00
Dave Abrahams
10ffaec730 Start using preprocessor
[SVN r13426]
2002-04-10 09:39:27 +00:00
Dave Abrahams
f17876969d Removed Ralf's workaround for my bug
[SVN r13422]
2002-04-10 06:07:51 +00:00
Dave Abrahams
81777a29d5 Fixed Jamfile for running all tests
Updated MWERKS warning suppression
Rationalized template export


[SVN r13421]
2002-04-10 05:43:55 +00:00
Dave Abrahams
3944786c13 Fixes
[SVN r13412]
2002-04-09 15:54:59 +00:00
Dave Abrahams
af939fad66 MSVC workaround
[SVN r13411]
2002-04-09 14:51:02 +00:00
Dave Abrahams
79f8f3eb14 Another way to break the lib from Peter Bienstman
[SVN r13410]
2002-04-09 14:48:23 +00:00
Dave Abrahams
9137b38fb9 module name bug fix
[SVN r13374]
2002-04-05 05:11:10 +00:00
Dave Abrahams
4bb5ee4b17 Fixes for GC interoperability
[SVN r13373]
2002-04-05 04:11:04 +00:00
Dave Abrahams
022c8502c0 Add a Numeric interaction test
[SVN r13371]
2002-04-04 22:52:48 +00:00
Dave Abrahams
b601ba55d0 Yet another bug reported by Peter Bienstman is now fixed.
[SVN r13370]
2002-04-04 21:18:00 +00:00
Dave Abrahams
8de3571aa8 initial checkin
[SVN r13368]
2002-04-04 17:27:24 +00:00
Dave Abrahams
5a6bc4404a Peter Bienstman's regression tests and associated fixes.
[SVN r13366]
2002-04-04 15:53:12 +00:00
Dave Abrahams
17eb4a2660 Bug fix thanks to "Peter Bienstman" <pbienst@MIT.EDU> for finding it.
[SVN r13361]
2002-04-03 17:33:34 +00:00
Dave Abrahams
81124780d0 Support for constructor policies
[SVN r13350]
2002-04-02 22:19:22 +00:00
Dave Abrahams
aed7e14d4b Add test for regular functions added as member functions
[SVN r13348]
2002-04-02 21:11:57 +00:00
Dave Abrahams
6835c344eb Simplified fix
[SVN r13347]
2002-04-02 21:08:55 +00:00
Dave Abrahams
0b965d1ee4 fixed link
[SVN r13345]
2002-04-02 07:52:07 +00:00
Dave Abrahams
ed184acb40 initial checkin
[SVN r13344]
2002-04-02 05:48:46 +00:00
Dave Abrahams
7d7eac5030 Don't build any Python stuff if no Python installation found
[SVN r13342]
2002-04-01 21:47:16 +00:00
Dave Abrahams
68dbb13084 initial checkin
[SVN r13316]
2002-03-30 13:47:36 +00:00
Dave Abrahams
27d335ebe1 Fixes to last checkin
[SVN r13312]
2002-03-30 02:21:00 +00:00
Dave Abrahams
900e035412 data member support
[SVN r13311]
2002-03-30 01:43:26 +00:00
Dave Abrahams
bc552d326c initial checkin
[SVN r13310]
2002-03-30 01:29:31 +00:00
Dave Abrahams
7ffc983edd support for data members
[SVN r13309]
2002-03-30 01:23:28 +00:00
Dave Abrahams
4a81d366bb Stop exporting the TypeObject
[SVN r13308]
2002-03-30 01:22:18 +00:00
Dave Abrahams
383a51dde8 removed flotsam
[SVN r13307]
2002-03-30 01:21:10 +00:00
Dave Abrahams
2a6060e425 Cleanup
[SVN r13283]
2002-03-26 17:41:06 +00:00
Dave Abrahams
576269dae9 more implicit conversion work
[SVN r13282]
2002-03-26 17:16:33 +00:00
Dave Abrahams
ac34e0e108 implicit conversions
[SVN r13277]
2002-03-26 06:38:41 +00:00
Dave Abrahams
11bd4c3223 Test for has_back_reference<> specialization
[SVN r13272]
2002-03-25 23:55:08 +00:00
Dave Abrahams
8d88a92fe4 instantiation hacks for tru64cxx6.5
[SVN r13265]
2002-03-24 21:31:21 +00:00
Dave Abrahams
6004a35e23 bug fix
[SVN r13263]
2002-03-24 17:22:32 +00:00
Dave Abrahams
a3a633242f Added missing declspec
[SVN r13262]
2002-03-24 17:13:00 +00:00
Dave Abrahams
4ad579d4ad extend minGW workaround to all compilers
[SVN r13261]
2002-03-24 17:09:01 +00:00
Dave Abrahams
2666c7312f bug fix
[SVN r13260]
2002-03-24 16:48:10 +00:00
Dave Abrahams
516f30a307 fixes for older KCCs
[SVN r13258]
2002-03-24 15:51:50 +00:00
Dave Abrahams
9d3d50c654 initial checkin
[SVN r13256]
2002-03-24 15:19:56 +00:00
Dave Abrahams
453fbbed1b initial checkin
[SVN r13255]
2002-03-24 15:05:58 +00:00
Dave Abrahams
0ce8ab7bce Full virtual function and abstract base support; new class interface.
[SVN r13253]
2002-03-24 14:52:30 +00:00
Dave Abrahams
d72128107e no comment
[SVN r13231]
2002-03-20 07:16:06 +00:00
Dave Abrahams
3b8dc924c3 Removed defunct workarounds
[SVN r13230]
2002-03-20 07:06:09 +00:00
Dave Abrahams
08ac287726 warning suppression for vc7
[SVN r13229]
2002-03-20 07:04:28 +00:00
Dave Abrahams
a8d6f40794 *** empty log message ***
[SVN r13210]
2002-03-15 14:16:31 +00:00
Dave Abrahams
a2071feeb1 Roll back vc7 workarounds; Aleksey has folded them into the MPL code
[SVN r13207]
2002-03-15 12:47:04 +00:00
Dave Abrahams
aa705b07f3 VC7 workaround
[SVN r13201]
2002-03-15 00:25:43 +00:00
Dave Abrahams
fbbc1981ca Bug fix (thanks, VC7!)
[SVN r13200]
2002-03-15 00:25:26 +00:00
Dave Abrahams
6528bd0e4f Fixes for VC7
[SVN r13194]
2002-03-14 18:43:36 +00:00
Dave Abrahams
81a07899ae initial checkin
[SVN r13184]
2002-03-12 21:15:28 +00:00
Dave Abrahams
c18d8fa967 added first virtual function tests
[SVN r13183]
2002-03-12 21:14:03 +00:00
Dave Abrahams
3caa91cc36 More fixes
[SVN r13182]
2002-03-12 21:07:26 +00:00
Dave Abrahams
0bdf3542e4 factored out find_instance
[SVN r13181]
2002-03-12 20:43:42 +00:00
Dave Abrahams
23769371bc Elimination of boost/python/detail/eval.hpp; using mpl::apply instead
[SVN r13176]
2002-03-11 18:57:45 +00:00
Dave Abrahams
bccd854676 Initial work for virtual function support
[SVN r13175]
2002-03-11 18:43:02 +00:00
Dave Abrahams
2fa0910547 initial checkin
[SVN r13165]
2002-03-10 06:41:40 +00:00
Dave Abrahams
c170b1b83e char conversions
Handle dangling references


[SVN r13164]
2002-03-10 06:41:04 +00:00
Dave Abrahams
be6016a972 Prevent dangling reference returns
[SVN r13163]
2002-03-10 06:38:50 +00:00
Dave Abrahams
a56f66e721 Factor to_python guts
[SVN r13162]
2002-03-10 06:37:58 +00:00
Dave Abrahams
e589d7f1e1 adjustments for use with callbacks
[SVN r13161]
2002-03-10 06:35:59 +00:00
Dave Abrahams
948cde1a31 factored out void_ptr manipulations
[SVN r13159]
2002-03-10 06:33:13 +00:00
Dave Abrahams
3447aaa8c6 Pointer/reference from_python callback conversions
[SVN r13158]
2002-03-10 06:32:07 +00:00
Dave Abrahams
688c64ce21 char conversions
Handle dangling references


[SVN r13157]
2002-03-10 06:29:05 +00:00
Dave Abrahams
7eb42dc36b factored out void_ptr manipulations
[SVN r13156]
2002-03-10 06:26:11 +00:00
Dave Abrahams
ae1c1b3a47 Improved None <==> NULL correspondence
[SVN r13155]
2002-03-10 06:25:09 +00:00
Dave Abrahams
74078552df Improved error messages
Added support for pointer/reference returns


[SVN r13154]
2002-03-09 23:59:04 +00:00
Dave Abrahams
5da8206915 initial checkin
[SVN r13153]
2002-03-09 21:13:26 +00:00
Dave Abrahams
f271726cd8 Added reference, deep and shallow pointer to_python conversions
[SVN r13152]
2002-03-09 21:13:09 +00:00
Dave Abrahams
22f6612354 Killed ambiguity-causing overload
[SVN r13150]
2002-03-09 21:08:04 +00:00
Dave Abrahams
74fe5bc4dd Killed bogus #include
msvc6 workaround


[SVN r13149]
2002-03-09 21:05:18 +00:00
Dave Abrahams
69d7011baf Killed bogus #include
[SVN r13148]
2002-03-09 21:02:18 +00:00
Dave Abrahams
0301d4462b Added reference, deep and shallow pointer to_python conversions
[SVN r13147]
2002-03-09 21:01:36 +00:00
Dave Abrahams
7c009e2443 Added static assertion to be sure it's not used on values
[SVN r13146]
2002-03-09 20:51:43 +00:00
Dave Abrahams
a16d9f91ee Initial checkin
[SVN r13140]
2002-03-08 16:14:26 +00:00
Dave Abrahams
7e76c85535 initial checkin
[SVN r13139]
2002-03-08 16:13:32 +00:00
Dave Abrahams
3054694726 conformance fix
[SVN r13138]
2002-03-08 16:05:17 +00:00
Dave Abrahams
a25021d215 Initial checkin
[SVN r13137]
2002-03-08 15:32:32 +00:00
Dave Abrahams
532833ff70 initial checkin
[SVN r13136]
2002-03-08 15:29:39 +00:00
Dave Abrahams
e79a66851c Beginning of callback implementation
[SVN r13135]
2002-03-08 14:56:39 +00:00
Dave Abrahams
97825fb2c7 Kill some Intel5 warnings
[SVN r13108]
2002-03-06 01:33:46 +00:00
Dave Abrahams
bd9df7e619 Apply patch due to Craig Rodriguez
[SVN r13049]
2002-03-03 20:46:06 +00:00
Dave Abrahams
087f09e9a6 flotsam removal
[SVN r13007]
2002-03-02 02:52:36 +00:00
Dave Abrahams
1257b32464 added missing 'inline'
[SVN r13006]
2002-03-02 02:29:06 +00:00
Dave Abrahams
a437af44f8 obsolete
[SVN r13005]
2002-03-02 01:52:38 +00:00
Dave Abrahams
9644610e04 obsolete
[SVN r13004]
2002-03-02 01:33:55 +00:00
Dave Abrahams
71cbe1cf50 quick fixes for KCC
[SVN r13000]
2002-03-01 21:24:49 +00:00
Dave Abrahams
edad2a1ee5 *** empty log message ***
[SVN r12999]
2002-03-01 20:33:04 +00:00
Dave Abrahams
0e597f5768 Suppress some warnings on older EDGs
[SVN r12984]
2002-02-28 15:38:21 +00:00
Dave Abrahams
b28dc55237 suppress warnings with CWPro7
[SVN r12977]
2002-02-28 06:08:27 +00:00
Dave Abrahams
a2dec7a05d Make cxx 6.5 bugs happy
[SVN r12973]
2002-02-28 00:48:48 +00:00
Dave Abrahams
db9fb22cf4 Tests for NULL == None
[SVN r12971]
2002-02-28 00:24:52 +00:00
Dave Abrahams
412a00249f Move module_base to detail, avoiding recompilation dependencies
[SVN r12970]
2002-02-28 00:24:06 +00:00
Dave Abrahams
ccb7a8f94f Make cxx 6.5 bugs happy
[SVN r12967]
2002-02-28 00:18:07 +00:00
Dave Abrahams
ee26e13bea Added missing PyObject*const& converter
[SVN r12966]
2002-02-28 00:05:00 +00:00
Dave Abrahams
493ff9c685 Intel 5 compatibility
[SVN r12963]
2002-02-27 23:18:08 +00:00
Dave Abrahams
bbc49e1ba3 go with debug build by default
[SVN r12962]
2002-02-27 21:13:34 +00:00
Dave Abrahams
0ef39e4440 improvements for EDG
[SVN r12961]
2002-02-27 21:13:02 +00:00
Dave Abrahams
8a956bcdf6 missing typename fix
[SVN r12960]
2002-02-27 21:12:52 +00:00
Dave Abrahams
a16ff29638 Fixed generation
[SVN r12957]
2002-02-27 17:29:01 +00:00
Dave Abrahams
f6381e7e5e Added complex support, and support for user-defined conversions of classic instances
[SVN r12938]
2002-02-25 21:20:05 +00:00
Dave Abrahams
e014765797 More use of ice_xxx for old EDG compilers
[SVN r12929]
2002-02-24 20:18:46 +00:00
Dave Abrahams
3899684686 inital checkin
[SVN r12925]
2002-02-24 05:28:48 +00:00
Dave Abrahams
e11b457b79 Major rearchitecture of from_python mechanism
[SVN r12924]
2002-02-24 05:24:48 +00:00
Dave Abrahams
a04cbd111c bug fix
[SVN r12922]
2002-02-24 04:47:48 +00:00
Dave Abrahams
6c7d3e1eab inital checkin
[SVN r12915]
2002-02-23 21:26:55 +00:00
Dave Abrahams
d965b41bdd Fix GC problems
[SVN r12869]
2002-02-21 01:24:28 +00:00
Dave Abrahams
d660c12a74 editorial fix
[SVN r12867]
2002-02-20 05:19:39 +00:00
Dave Abrahams
43bcbf771e added more-rigorous tests
[SVN r12866]
2002-02-20 05:18:12 +00:00
Dave Abrahams
7f420361b1 updated template parameter names
[SVN r12865]
2002-02-20 05:15:40 +00:00
Dave Abrahams
361455678a updated concept names
[SVN r12864]
2002-02-20 05:15:14 +00:00
Dave Abrahams
47c1c6288c Added error checking
[SVN r12862]
2002-02-20 05:14:41 +00:00
Dave Abrahams
07abc9fac4 initial checkin
[SVN r12861]
2002-02-20 05:13:24 +00:00
Dave Abrahams
266923d9e8 Removed useless default arg -- it was confusing MSVC
[SVN r12860]
2002-02-20 05:12:47 +00:00
Dave Abrahams
622ff9d764 *** empty log message ***
[SVN r12855]
2002-02-18 23:00:06 +00:00
Dave Abrahams
b75d11da3a Bug fix thanks to Min Xu
[SVN r12849]
2002-02-17 22:29:43 +00:00
Dave Abrahams
8af49161fb no message
[SVN r12845]
2002-02-17 04:37:35 +00:00
Dave Abrahams
ca872af3c8 HolderGenerator renamed to MakeHolder
[SVN r12841]
2002-02-16 18:11:24 +00:00
Dave Abrahams
aeccf45d4e *** empty log message ***
[SVN r12840]
2002-02-16 18:10:30 +00:00
Dave Abrahams
dcae0eadd5 *** empty log message ***
[SVN r12839]
2002-02-16 16:42:26 +00:00
Dave Abrahams
80effaa541 *** empty log message ***
[SVN r12836]
2002-02-16 16:01:37 +00:00
Dave Abrahams
edd93c80a1 inital checkin
[SVN r12835]
2002-02-16 15:42:09 +00:00
Dave Abrahams
39646acf5b updates to be compatible with Rene's new system
[SVN r12831]
2002-02-16 00:25:16 +00:00
Dave Abrahams
f697d2daa1 *** empty log message ***
[SVN r12825]
2002-02-15 18:53:55 +00:00
Dave Abrahams
607631604f *** empty log message ***
[SVN r12824]
2002-02-15 18:32:57 +00:00
Dave Abrahams
09d012a10b *** empty log message ***
[SVN r12823]
2002-02-15 18:31:22 +00:00
Dave Abrahams
b303d49634 remove defunct code
[SVN r12820]
2002-02-15 16:59:39 +00:00
Dave Abrahams
371723a5d4 little fixes
[SVN r12819]
2002-02-15 16:37:00 +00:00
Dave Abrahams
4481c3bada initial checkin
[SVN r12818]
2002-02-15 16:20:22 +00:00
Dave Abrahams
70bb30b95a Tidy
[SVN r12810]
2002-02-14 20:09:51 +00:00
Dave Abrahams
ebc641440e initial checkin
[SVN r12808]
2002-02-14 19:44:11 +00:00
Dave Abrahams
586b4db968 initial checkin
[SVN r12807]
2002-02-14 18:12:50 +00:00
Dave Abrahams
12c7981450 *** empty log message ***
[SVN r12805]
2002-02-14 15:57:40 +00:00
Rene Rivera
08c909fd41 Updated the basic Jamfiles for the new Boost.Build changes.
[SVN r12798]
2002-02-14 04:08:20 +00:00
Dave Abrahams
44e43d3b47 Initial checkin of V2 docs
[SVN r12797]
2002-02-14 03:39:41 +00:00
Dave Abrahams
9e8273c7f7 backward-compatibility hack for handle_exception()
[SVN r12777]
2002-02-10 00:49:13 +00:00
Dave Abrahams
93735c7bf1 Updated docs and provided backwards compatibility for handle_exception()
[SVN r12764]
2002-02-08 22:04:01 +00:00
Darin Adler
e37a97e2d5 Always say "private noncopyable" to avoid warnings.
[SVN r12762]
2002-02-08 20:08:15 +00:00
Dave Abrahams
8ff5450ece moved contents of builtin_to_python_converters.hpp to builtin_converters.hpp
[SVN r12705]
2002-02-04 20:14:53 +00:00
Dave Abrahams
5d30ddac22 cxx 6.5 fixes
[SVN r12689]
2002-02-04 14:49:43 +00:00
Dave Abrahams
80f697ef2a more bug fixes for really conformant compilers
[SVN r12682]
2002-02-04 01:58:08 +00:00
Dave Abrahams
47c7748707 bug fix
[SVN r12681]
2002-02-04 01:42:47 +00:00
Dave Abrahams
9f33aa2afc bug fix
[SVN r12680]
2002-02-03 23:58:10 +00:00
Dave Abrahams
1dc6600b59 kill extra ;
[SVN r12679]
2002-02-03 23:51:16 +00:00
Dave Abrahams
1ec58c1161 bug fix
[SVN r12678]
2002-02-03 23:21:48 +00:00
Ralf W. Grosse-Kunstleve
d023d577b2 extra semicolon removed (cxx 6.3 diag.)
[SVN r12677]
2002-02-03 22:33:11 +00:00
Dave Abrahams
21d65ca0bf arbitrary argument/result adoption
[SVN r12664]
2002-02-03 06:34:15 +00:00
Dave Abrahams
bcf4401858 KCC ice workaround
[SVN r12663]
2002-02-03 05:09:31 +00:00
Dave Abrahams
262396d48b Object life support
[SVN r12662]
2002-02-03 05:03:05 +00:00
Dave Abrahams
0a9d5f680f initial checkin
[SVN r12661]
2002-02-03 05:02:46 +00:00
Dave Abrahams
64239f1c04 Allow indirect reference/pointer returns
[SVN r12659]
2002-02-03 03:05:39 +00:00
Dave Abrahams
7590d546f1 initial checkin
[SVN r12657]
2002-02-03 03:05:01 +00:00
Dave Abrahams
021070f066 Prepare to generalize
[SVN r12656]
2002-02-03 01:07:29 +00:00
Dave Abrahams
55a4318839 Handle references too
[SVN r12655]
2002-02-03 01:07:10 +00:00
Dave Abrahams
90647f30f8 Initial pointer adoption tests
Have instances actually dispose of their held C++ objects!


[SVN r12653]
2002-02-02 20:54:06 +00:00
Dave Abrahams
8cc9080d36 Initial pointer adoption tests
Have instances actually dispose of their held C++ objects!


[SVN r12652]
2002-02-02 20:48:37 +00:00
Darin Adler
6e5fc91885 New smart pointer documentation. Related clean-up of the smart pointer
library. Changing includes to include the new individual smart pointer
headers. Replacing old smart pointer library with an include of the new
smart pointer headers. Simplify ifdefs that involve the member templates
macros now that BOOST_MSVC6_MEMBER_TEMPLATES is also guaranteed to bet
set for platforms that have full member templates.


[SVN r12647]
2002-02-02 18:36:12 +00:00
Ralf W. Grosse-Kunstleve
71de2b5ec5 /Zm upgrade
[SVN r12637]
2002-02-02 15:19:59 +00:00
Ralf W. Grosse-Kunstleve
7703f91ee2 fix typo
[SVN r12636]
2002-02-02 15:17:37 +00:00
Dave Abrahams
ecc8abcc50 ice_ fixes for KCC
[SVN r12634]
2002-02-02 14:34:02 +00:00
Dave Abrahams
14917c9791 initial checkin
[SVN r12633]
2002-02-02 14:31:07 +00:00
Dave Abrahams
25c56164b0 Last rewrite of the type conversion mechanism, I hope
[SVN r12631]
2002-02-02 14:04:48 +00:00
Dave Abrahams
12988b879e *** empty log message ***
[SVN r12627]
2002-02-02 08:31:11 +00:00
Dave Abrahams
684e391a9a remove local rule usage for the time being.
[SVN r12626]
2002-02-02 00:49:24 +00:00
Dave Abrahams
7a16cd4c37 remove local rule usage for the time being.
[SVN r12625]
2002-02-02 00:46:38 +00:00
Dave Abrahams
b3117c2b02 Use call policies
[SVN r12618]
2002-02-01 04:36:46 +00:00
Dave Abrahams
6a75fa83b5 New conversion methods, builtin converters
----------------------------------------------------------------------

Committing in .

Modified Files:
	boost/python/reference_from_python.hpp
	boost/python/value_from_python.hpp
	boost/python/converter/body.hpp
	boost/python/converter/handle.hpp
	libs/python/src/converter/builtin_converters.cpp
	libs/python/test/m1.cpp libs/python/test/m2.cpp
Added Files:
	boost/python/converter/builtin_converters.hpp
	boost/python/converter/builtin_to_python_converters.hpp
	boost/python/converter/from_python.hpp
	boost/python/converter/from_python_data.hpp
	boost/python/converter/from_python_function.hpp
	boost/python/converter/to_python.hpp
	boost/python/converter/to_python_function.hpp
	boost/python/object/auto_ptr_generator.hpp
	boost/python/object/pointer_holder.hpp
	libs/python/src/converter/from_python.cpp
	libs/python/src/converter/to_python.cpp
	libs/python/test/test_builtin_converters.cpp
	libs/python/test/test_builtin_converters.py
Removed Files:
	boost/python/convert.hpp boost/python/converter/unwrap.hpp
	boost/python/converter/unwrapper.hpp
	boost/python/converter/wrap.hpp
	boost/python/converter/wrapper.hpp
	boost/python/object/class_unwrapper.hpp
----------------------------------------------------------------------


[SVN r12596]
2002-01-31 05:53:54 +00:00
Dave Abrahams
88a8721b89 initial checkin
[SVN r12592]
2002-01-30 22:18:50 +00:00
Dave Abrahams
1f12857551 initial checkin
[SVN r12591]
2002-01-30 22:12:07 +00:00
Dave Abrahams
71032f6c4c New conversion mechanism, builtin converters
[SVN r12590]
2002-01-30 20:18:39 +00:00
Dave Abrahams
088b1cab83 workarounds for KCC's reservation of 'overload' as a keyword
[SVN r12451]
2002-01-23 06:08:46 +00:00
Dave Abrahams
f40a534bfb cleanup
[SVN r12449]
2002-01-22 21:55:08 +00:00
Dave Abrahams
f278530239 Nicer syntactic sugar
[SVN r12448]
2002-01-22 19:56:36 +00:00
Dave Abrahams
0389aab0a3 Nicer syntactic sugar
[SVN r12447]
2002-01-22 19:51:04 +00:00
Dave Abrahams
51a66a3202 Fixes for gcc-2.95.3
[SVN r12442]
2002-01-22 13:52:05 +00:00
Dave Abrahams
248985e51a ICL compatibility
[SVN r12435]
2002-01-22 13:12:41 +00:00
Dave Abrahams
996d83eae0 fix for EDG
[SVN r12415]
2002-01-22 02:32:48 +00:00
Ralf W. Grosse-Kunstleve
98a1329dd7 default argument moved to declaration.
[SVN r12414]
2002-01-22 01:43:40 +00:00
Ralf W. Grosse-Kunstleve
ed2ebc7d3d added: missing // after #endif
[SVN r12405]
2002-01-21 21:18:47 +00:00
Dave Abrahams
41634f9998 Use ref everywhere for reliability
[SVN r12394]
2002-01-21 06:56:27 +00:00
Dave Abrahams
93501af046 always use ref (counting) for safety
[SVN r12393]
2002-01-21 06:23:33 +00:00
Dave Abrahams
078585db28 fixed transfer-of-ownership counting to avoid problems
[SVN r12392]
2002-01-21 06:20:15 +00:00
Dave Abrahams
03e9e4c1d9 Added class wrapping
[SVN r12387]
2002-01-21 00:47:05 +00:00
Dave Abrahams
4a1d077238 Added implicit conversion tests
[SVN r12386]
2002-01-20 23:54:26 +00:00
Dave Abrahams
f7a5e6deb8 Moved add_overload functionality to function::add_to_namespace
[SVN r12385]
2002-01-20 23:52:52 +00:00
Dave Abrahams
dabb22bb6a added class wrapping
[SVN r12384]
2002-01-20 23:52:36 +00:00
Dave Abrahams
3d03ca3d10 made it possible to initialize from type_info
[SVN r12383]
2002-01-20 23:50:52 +00:00
Dave Abrahams
386992c3b8 suppress gcc warning
[SVN r12382]
2002-01-20 23:43:36 +00:00
Dave Abrahams
a48f252cfa Moved add_overload functionality to function::add_to_namespace
[SVN r12381]
2002-01-20 23:41:56 +00:00
Dave Abrahams
c3a311ab85 Explicit qualifications help MSVC6
[SVN r12380]
2002-01-20 23:07:05 +00:00
Dave Abrahams
7926e1bc3c Fixes for reference parameters to constructors
[SVN r12364]
2002-01-20 03:08:08 +00:00
Dave Abrahams
b796db648a added default constructor for use with BGL
[SVN r12318]
2002-01-14 21:28:49 +00:00
Dave Abrahams
0964ecac8c cxx fixes
[SVN r12272]
2002-01-10 20:10:32 +00:00
Dave Abrahams
dd1ac7952b Modified Files:
boost/graph/breadth_first_search.hpp

		MSVC workaround

	boost/python/reference.hpp boost/python/converter/type_id.hpp
	boost/python/converter/unwrap.hpp
	boost/python/converter/wrap.hpp
	boost/python/converter/wrapper.hpp
	boost/python/detail/config.hpp libs/python/Jamfile
	libs/python/src/converter/registry.cpp
	libs/python/src/converter/type_id.cpp
	libs/python/src/converter/unwrap.cpp libs/python/test/m1.cpp
Added Files:
	boost/python/converter/wrapper_base.hpp


		CXX 6.x fixes


[SVN r12271]
2002-01-10 19:28:16 +00:00
Dave Abrahams
7d1cbcb0c1 Possible workaround for cxx 6.2
[SVN r12270]
2002-01-10 19:07:18 +00:00
Dave Abrahams
98c9e67625 Fixed mistaken "C" linkage
[SVN r12268]
2002-01-10 13:59:14 +00:00
Dave Abrahams
aeef66ce35 Handle cv-qualified member functions
[SVN r12265]
2002-01-10 02:32:47 +00:00
Dave Abrahams
8cff66e8c6 initial checkin
[SVN r12264]
2002-01-09 23:23:44 +00:00
Ralf W. Grosse-Kunstleve
10a04acf41 Missing this-> inserted (due to EDG 245 diagnostics)
[SVN r12261]
2002-01-09 21:20:51 +00:00
Dave Abrahams
9923a4c4ff More "realism"
[SVN r12239]
2002-01-07 06:47:22 +00:00
Dave Abrahams
0dafa9e229 check number of arguments
[SVN r12238]
2002-01-07 06:46:32 +00:00
Dave Abrahams
e83e8a8f1c object::->objects::
[SVN r12237]
2002-01-07 06:45:53 +00:00
Dave Abrahams
72aa768235 Added overload capability
[SVN r12236]
2002-01-06 14:41:51 +00:00
Dave Abrahams
65c74e3976 avoiding naming conflict, object:: -> objects::
[SVN r12235]
2002-01-06 14:40:53 +00:00
Dave Abrahams
cdac34efea Added wrapper for PyObject*
[SVN r12234]
2002-01-06 14:40:33 +00:00
Dave Abrahams
03fef3106d Bug fix: convertability checks were missed in one case
[SVN r12233]
2002-01-06 14:39:52 +00:00
Dave Abrahams
d598d0a4db added inlines
[SVN r12232]
2002-01-06 14:39:34 +00:00
Dave Abrahams
ab22e1b3a9 Added most of the module_builder interface
[SVN r12231]
2002-01-06 14:36:28 +00:00
Dave Abrahams
26d520af3c avoiding naming conflict, object:: -> objects::
[SVN r12230]
2002-01-06 14:35:27 +00:00
Dave Abrahams
fb333f3641 Bug fix: convertability checks were missed in one case
[SVN r12229]
2002-01-06 14:34:14 +00:00
Dave Abrahams
1cc65a47eb Added wrapper for PyObject*
[SVN r12228]
2002-01-06 14:33:33 +00:00
Dave Abrahams
8d56c52991 simplification: I didn't really understand what I was dealing with, so I pared things down.
[SVN r12227]
2002-01-06 14:32:51 +00:00
Dave Abrahams
4b88b9eed1 Added most of the module_builder interface
[SVN r12226]
2002-01-06 14:31:27 +00:00
Dave Abrahams
462b91fb08 Added min/max argument count checking
[SVN r12225]
2002-01-06 14:30:46 +00:00
Dave Abrahams
b65f4ff963 added inlines
[SVN r12224]
2002-01-06 14:29:54 +00:00
Ralf W. Grosse-Kunstleve
8d27b48225 update for cxx 6.5 and irix_CC
[SVN r12222]
2002-01-05 02:18:00 +00:00
Dave Abrahams
e2623c5e82 fixes for gcc-3.0.3
[SVN r12221]
2002-01-04 23:32:23 +00:00
Ralf W. Grosse-Kunstleve
acdae42fc5 work-around for cxx
[SVN r12215]
2002-01-04 20:49:20 +00:00
Ralf W. Grosse-Kunstleve
451aac806e remove extra semicolons
[SVN r12214]
2002-01-04 20:15:49 +00:00
Dave Abrahams
586e6178b4 commented
[SVN r12209]
2002-01-04 02:06:21 +00:00
Dave Abrahams
1201761ff3 initial checkin
[SVN r12198]
2002-01-02 17:53:34 +00:00
Dave Abrahams
bdf68f092e Accounting for by-value conversions
Convertibility checks now collect the auxiliary conversion data


[SVN r12193]
2002-01-01 18:55:23 +00:00
Dave Abrahams
a179f87d54 BOOST_PYTHON_EXPORT -> BOOST_PYTHON_DECL
[SVN r12192]
2002-01-01 18:53:12 +00:00
Dave Abrahams
b2944a12de Convertibility checks now collect the auxiliary conversion data
BOOST_PYTHON_EXPORT -> BOOST_PYTHON_DECL


[SVN r12191]
2002-01-01 18:52:04 +00:00
Dave Abrahams
bfcb36927c Accounting for by-value conversions
[SVN r12190]
2002-01-01 18:49:20 +00:00
Dave Abrahams
ccd21d5254 Accounting for by-value conversions
Convertibility checks now collect the auxiliary conversion data


[SVN r12189]
2002-01-01 18:47:32 +00:00
Dave Abrahams
a7b8448107 obsolete now that Boost.Python is in a shared lib.
[SVN r12188]
2002-01-01 18:45:49 +00:00
Dave Abrahams
e934be2d99 BOOST_PYTHON_EXPORT -> BOOST_PYTHON_DECL
[SVN r12187]
2002-01-01 18:21:31 +00:00
Dave Abrahams
015b875a9e Convertibility checks now collect the auxiliary conversion data
[SVN r12186]
2002-01-01 18:21:06 +00:00
Dave Abrahams
1247ff2543 *** empty log message ***
[SVN r12177]
2001-12-31 17:02:43 +00:00
Dave Abrahams
dc831fb3f6 Stuck the extension_class code in the DLL whenever possible
[SVN r12168]
2001-12-29 00:00:19 +00:00
Dave Abrahams
94c0e947f5 Stuck the extension_class code in the DLL whenever possible
Removed copyability restriction in class_base to enable the above


[SVN r12167]
2001-12-28 23:59:02 +00:00
Dave Abrahams
ed9bc835a2 Stuck the extension_class code in the DLL whenever possible
Removed some flotsam


[SVN r12166]
2001-12-28 23:56:10 +00:00
Dave Abrahams
2eb2e52a79 workaround some compiler limitations
[SVN r12165]
2001-12-28 23:52:01 +00:00
Ralf W. Grosse-Kunstleve
14f6f88526 irix_CC workaround; updated makefiles
[SVN r12163]
2001-12-28 13:26:36 +00:00
Dave Abrahams
1f78c74085 fixes
[SVN r12146]
2001-12-24 19:27:39 +00:00
Dave Abrahams
c494649dde fix a bug with instance::power reported by Scott Snyder.
[SVN r12119]
2001-12-18 21:00:07 +00:00
Dave Abrahams
460f3aebe9 inital checkin
[SVN r12086]
2001-12-17 17:24:41 +00:00
Dave Abrahams
d4b215a66b Integrating Andreas Zieringer's shared lib changes
Modified Files:
	build/Jamfile build/win32_mwcc_setup.bat src/classes.cpp
	src/conversions.cpp src/cross_module.cpp
	src/extension_class.cpp src/functions.cpp
	src/init_function.cpp src/module_builder.cpp src/objects.cpp
	src/types.cpp


[SVN r12084]
2001-12-17 17:00:53 +00:00
Dave Abrahams
1a13387012 Integrating Andreas Zieringer's shared library implementation.
Modified Files:
	classes.hpp conversions.hpp cross_module.hpp errors.hpp
	module_builder.hpp objects.hpp operators.hpp detail/config.hpp
	detail/extension_class.hpp detail/functions.hpp
	detail/init_function.hpp detail/signatures.hpp
	detail/singleton.hpp detail/types.hpp detail/void_adaptor.hpp


[SVN r12083]
2001-12-17 16:59:54 +00:00
Dave Abrahams
291c36df05 Integrated Scott Snyder's nested class patch
[SVN r12080]
2001-12-17 05:49:24 +00:00
Dave Abrahams
bed2c8a371 no message
[SVN r12076]
2001-12-16 18:20:26 +00:00
Dave Abrahams
e65ca4ccac Python 1.5 compatibility fixes
[SVN r12072]
2001-12-16 17:58:23 +00:00
Ralf W. Grosse-Kunstleve
f9e6933840 Use "call", otherwise the "set" command is not executed.
[SVN r12066]
2001-12-16 06:00:03 +00:00
Dave Abrahams
5134fb2ec1 scott snyder's fixes to maintain 1.5.2 compatibility
[SVN r12065]
2001-12-15 22:59:48 +00:00
Ralf W. Grosse-Kunstleve
3a86a69964 Restore Python <2.2 compatibility (config.h, pyconfig.h).
[SVN r12064]
2001-12-15 04:59:11 +00:00
Ralf W. Grosse-Kunstleve
c6fd3c47a4 Makefile and example setup batch file for Win32 Metrowerks Codewarrior 7.
[SVN r12063]
2001-12-15 04:57:18 +00:00
Dave Abrahams
a365fa6109 many fixes
[SVN r12054]
2001-12-13 19:43:35 +00:00
Dave Abrahams
160451b210 Integrating scott snyder's inplace operator improvements
Fixed Python 2.2 incompatibility


[SVN r12044]
2001-12-13 18:23:10 +00:00
Dave Abrahams
2f6e3cc09d Integrating scott snyder's inplace operator improvements
[SVN r12043]
2001-12-13 18:22:03 +00:00
Dave Abrahams
d05cc7ccec integrating scott snyder's changes
[SVN r12042]
2001-12-13 18:18:52 +00:00
Dave Abrahams
ccfd4acbda factored out python.jam
[SVN r12041]
2001-12-13 18:17:38 +00:00
Dave Abrahams
6a6084ed0e Metrowerks needs BOOST_NO_STD_LOCALE in config to be able to compile regex
regex test Jamfile updates so that some tests will actually run
warning suppression for condition.cpp

unit-test rule now accepts input files
updated metrowerks and borland to properly set up path for running tests

----------------------------------------------------------------------
Modified Files:
	boost/config/compiler/metrowerks.hpp
	libs/python/src/gen_function.py libs/regex/test/Jamfile
 Tag: thread-initial
	libs/thread/src/condition.cpp
 No tag
	tools/build/boost-base.jam tools/build/borland-tools.jam
	tools/build/metrowerks-tools.jam
----------------------------------------------------------------------


[SVN r11853]
2001-12-02 17:43:45 +00:00
Dave Abrahams
0dbb780a2f * Updated to new handle_exception() idiom for boost::python
* Made Cygwin archiving reliable, even when the user supplies a path with backslashes

----------------------------------------------------------------------

Modified Files:
	tools/build/gcc-tools.jam tools/build/new/boost-build.jam
	boost/python/detail/config.hpp libs/python/build/Jamfile
	libs/python/example/do_it_yourself_convts.cpp
	libs/python/example/dvect.cpp libs/python/example/example1.cpp
	libs/python/example/getting_started1.cpp
	libs/python/example/getting_started2.cpp
	libs/python/example/ivect.cpp libs/python/example/nested.cpp
	libs/python/example/noncopyable_export.cpp
	libs/python/example/noncopyable_import.cpp
	libs/python/example/pickle1.cpp
	libs/python/example/pickle2.cpp
	libs/python/example/pickle3.cpp
	libs/python/example/richcmp1.cpp
	libs/python/example/richcmp2.cpp
	libs/python/example/richcmp3.cpp libs/python/example/rwgk1.cpp
	libs/python/example/simple_vector.cpp
	libs/python/test/comprehensive.cpp
Added Files:
	libs/python/example/rwgk2.cpp libs/python/example/rwgk3.cpp
----------------------------------------------------------------------


[SVN r11705]
2001-11-15 05:29:22 +00:00
Dave Abrahams
e6efa6e13e Fix minor gcc bug
[SVN r11704]
2001-11-15 00:51:33 +00:00
Dave Abrahams
76768120d4 use the new "no-rethrow" way of handling exceptions.
[SVN r11692]
2001-11-14 20:36:14 +00:00
Dave Abrahams
7d6ff83760 use the new "no-rethrow" way of handling exceptions.
[SVN r11691]
2001-11-14 20:07:38 +00:00
Dave Abrahams
5bec0d2d98 fixes for intel
[SVN r11690]
2001-11-14 20:06:18 +00:00
Dave Abrahams
aad05325a6 Pro7 compatibility
use the new "no-rethrow" way of handling exceptions.


[SVN r11682]
2001-11-14 19:50:35 +00:00
Dave Abrahams
6e7f1bc257 Pro7 compatibility
[SVN r11681]
2001-11-14 17:41:17 +00:00
Dave Abrahams
634d0848c8 got rid of the "rethrow error reporting" mechanism
[SVN r11680]
2001-11-14 17:37:07 +00:00
Dave Abrahams
b7e1059227 initial checkin
[SVN r11679]
2001-11-14 17:35:18 +00:00
Dave Abrahams
e7904fa67a add _d targets for debugging
[SVN r11678]
2001-11-14 17:32:08 +00:00
Dave Abrahams
e38bc7cbce Pro7 compatibility
[SVN r11677]
2001-11-14 17:26:11 +00:00
Dave Abrahams
b211f8a096 Modified Files:
index.htm - fixed reference to CVS repository
	libs/python/build/Jamfile - first stab at metrowerks Pro7 support
	status/Jamfile - added RUN_ALL_TESTS variables to force tests to run
	tools/build/boost-build.jam - fix BOOST_BUILD_INSTALLATION setting
	tools/build/metrowerks-tools.jam - command file support
	tools/build/msvc-tools.jam - permanent command file support
	tools/build/intel-win32-tools.jam - made it an extension of msvc-tools.jam
	tools/build/gcc-tools.jam  - made FINDLIBS change submitted by Toon Knapen
	tools/build/jam_src/variable.c - changed command-line/env. variable
					interpretation so that
					surrounding them with quotes causes
					no breaking at spaces.

These files were converted from tabs to spaces:

	boost/python/conversions.hpp
	boost/python/reference.hpp boost/python/detail/base_object.hpp
	boost/python/detail/functions.hpp
	boost/python/detail/wrap_python.hpp libs/python/test/comprehensive.cpp
	tools/build/boost-base.jam
	tools/build/como-tools.jam


[SVN r11652]
2001-11-10 22:16:01 +00:00
655 changed files with 60166 additions and 25657 deletions

BIN
build/Attic/python_v1.zip Normal file

Binary file not shown.

View File

@@ -3,283 +3,82 @@
# in all copies. This software is provided "as is" without express or implied
# warranty, and with no claim as to its suitability for any purpose.
#
# Boost.Python build and test Jamfile
#
# To run all tests quietly: jam test
# To run all tests with verbose output: jam -sPYTHON_TEST_ARGS=-v test
#
# Declares the following targets:
# 1. libboost_python, a static link library to be linked with all
# Boost.Python modules
#
# 2. pairs of test targets of the form <name>.test and <name>.run
# <name>.test runs the test when it is out-of-date, and the "test"
# pseudotarget depends on it. <name>.run runs
# a test unconditionally, and can be used to force a test to run.. Each
# test target builds one or more Boost.Python modules and runs a Python
# script to test them. The test names are:
#
# from ../test
#
# comprehensive - a comprehensive test of Boost.Python features
#
# from ../example:
# abstract -
# getting_started1 -
# getting_started2 -
# simple_vector -
# do_it_yourself_convts -
# pickle1 -
# pickle2 -
# pickle3 -
#
# dvect1 -
# dvect2 -
# ivect1 -
# ivect2 -
# noncopyable -
#
# subproject-specific environment/command-line variables:
#
# PYTHON - How to invoke the Python interpreter. Defaults to "python"
#
# PYTHON_ROOT - Windows only: where Python is installed. Defaults to "c:/tools/python"
#
# PYTHON_VERSION - Version of Python. Defaults to "2.1" on Windows, "1.5" on Unix
#
# PYTHON_TEST_ARGS - specifies arguments to be passed to test scripts on
# the command line. "-v" can be useful if you want to
# see the output of successful tests.
#
# PYTHON_VECT_ITERATIONS - specifies the number of test iterations to use for
# the dvect and ivect tests above.
# Boost.Python library Jamfile
# declare the location of this subproject relative to the root
subproject libs/python/build ;
# grab variables from command-line or environment.
local PYTHON_VERSION = $(PYTHON_VERSION) ;
local PYTHON_ROOT = $(PYTHON_ROOT) ;
local PYTHON_INCLUDES = $(PYTHON_INCLUDES) ;
local PYTHON_LIBS = $(PYTHON_LIBS) ;
local PYTHON_LIB_PATH = $(PYTHON_LIB_PATH) ;
local PYTHON_PROPERTIES = $(PYTHON_PROPERTIES) ;
# bring in the rules for python
SEARCH on <module@>python.jam = $(BOOST_BUILD_PATH) ;
include <module@>python.jam ;
# Do some OS-specific setup
if $(NT)
if [ check-python-config ]
{
PYTHON_VERSION ?= 2.1 ;
PYTHON_ROOT ?= c:/tools/python ;
PYTHON_INCLUDES ?= <include>$(PYTHON_ROOT)/include <gcc><*><include>/usr/include/python$(PYTHON_VERSION) ;
PYTHON_LIBS ?= c:/cygnus/lib/python$(PYTHON_VERSION)/config/libpython$(PYTHON_VERSION).dll.a ;
PYTHON_LIB_PATH = $(PYTHON_ROOT)/libs ;
# common properties required for compiling any Python module.
PYTHON_PROPERTIES ?=
<gcc><*><define>SIZEOF_LONG=4
<gcc><*><define>USE_DL_IMPORT
<runtime-link>dynamic
;
}
else if $(UNIX)
{
PYTHON_VERSION ?= 1.5 ;
PYTHON_INCLUDES ?= <include>/usr/include/python$(PYTHON_VERSION) ;
PYTHON_LIBS ?= /usr/lib/python$(PYTHON_VERSION)/config/libpython$(PYTHON_VERSION).a ;
}
# how do we invoke python?
local PYTHON = $(PYTHON) ;
PYTHON ?= python ;
PYTHON = [ FAppendSuffix $(PYTHON:G=<executable-grist>) : $(SUFEXE) ] ;
SEARCH on $(PYTHON) = $(PATH) ;
#######################
#
# Declare the boost python static link library
#
# standard include requirements for anything using Boost.Python
local BOOST_PYTHON_INCLUDES = <include>$(BOOST_ROOT) $(PYTHON_INCLUDES) ;
# Base names of the source files for libboost_python
local CPP_SOURCES =
classes conversions extension_class functions
init_function module_builder objects types cross_module ;
lib libboost_python : ../src/$(CPP_SOURCES).cpp
# requirements
: $(BOOST_PYTHON_INCLUDES)
<shared-linkable>true
$(PYTHON_PROPERTIES) ;
#######################
local bpl-linkflags ;
# boost-python name : sources : requirements : default-BUILD
#
# Declare a boost python module. Return a list of the DLL files generated.
rule boost-python
{
# declare a DLL; add the boost python library to sources
dll $(<) : <lib>libboost_python $(>)
# Requirements
: $(3) # caller-specified requirements
# standard requirements
$(BOOST_PYTHON_INCLUDES)
<msvc><*><library-path>$(PYTHON_LIB_PATH)
<gcc><*><library-file>$(PYTHON_LIBS)
$(PYTHON_PROPERTIES)
: $(4) ; # pass on the default-BUILD, if any
}
if $(UNIX) && ( $(OS) = AIX )
{
bpl-linkflags = <linkflags>"-e initlibboost_python" ;
}
# boost-python-test name : sources : requirements : default-BUILD
#
# Just like boost-python, but the result becomes part of the test pseudotarget
# instead of being built by 'all'
rule boost-python-test
{
type-DEPENDS test : $(<) ;
# Enabling intrinsics (/0i) or maximize speed (/02) seem to cause
# internal compiler errors with this toolset.
local msvc-stlport-workarounds
= <optimization>off "<cxxflags>-Ogty -O1 -Gs" ;
local gSUPPRESS_FAKE_TARGETS = true ;
boost-python $(1) : $(2) : $(3) : $(4) ;
}
local sources =
numeric.cpp
list.cpp
long.cpp
dict.cpp
tuple.cpp
str.cpp
#######################
aix_init_module.cpp
converter/from_python.cpp
converter/registry.cpp
converter/type_id.cpp
object/enum.cpp
object/class.cpp
object/function.cpp
object/inheritance.cpp
object/life_support.cpp
object/pickle_support.cpp
errors.cpp
module.cpp
converter/builtin_converters.cpp
converter/arg_to_python_base.cpp
object/iterator.cpp
object_protocol.cpp
object_operators.cpp
;
dll boost_python
: ../src/$(sources)
: $(BOOST_PYTHON_V2_PROPERTIES)
<define>BOOST_PYTHON_SOURCE
$(bpl-linkflags)
<msvc-stlport><release>$(msvc-stlport-workarounds)
;
# boost-python-runtest target : python-script sources : requirements : local-build : args
#
# declare two python module tests: $(<).test which builds when out-of-date, and
# $(<).run which builds unconditionally.
rule boost-python-runtest
{
# tell Jam that the python script is relative to this directory
SEARCH on $(>[1]) = $(SEARCH_SOURCE) ;
# required command-line args can be specified in argument 5
# The user can add additional arguments in PYTHON_TEST_ARGS.
local gPYTHON_TEST_ARGS = $(5) $(PYTHON_TEST_ARGS) ;
# declare the two subsidiary tests.
declare-local-target $(<:S=.test) : $(>) : $(PYTHON_PROPERTIES) : $(4) : PYTHON_TEST ;
declare-local-target $(<:S=.run) : $(>) : $(PYTHON_PROPERTIES) : $(4) : PYTHON_RUNTEST ;
}
# special rules for two new target types: PYTHON_TEST and PYTHON_RUNTEST.
# These are identical except that PYTHON_TEST runs the test when out-of-date, and
# PYTHON_RUNTEST runs the test unconditionally. These are used by boost-python-runtest.
SUFPYTHON_TEST = .test ;
gGENERATOR_FUNCTION(PYTHON_TEST) = python-test-target ;
rule python-test-target # test-target : sources :
{
python-runtest-aux $(<) : $(>) ;
Clean clean : $(<) ; # remove the test-target as part of any clean operation
type-DEPENDS test : $(<) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
}
actions python-test-target bind PYTHON
{
$(SHELL_SET)PYTHONPATH=$(PYTHONPATH)
$(SHELL_EXPORT)PYTHONPATH
$(PYTHON) "$(>)" $(ARGS) > "$(<)"
}
SUFPYTHON_RUNTEST = .run ;
gGENERATOR_FUNCTION(PYTHON_RUNTEST) = python-runtest-target ;
rule python-runtest-target # test-target : sources :
{
python-runtest-aux $(<) : $(>) ;
NOTFILE $(<) ;
ALWAYS $(<) ;
}
actions python-runtest-target bind PYTHON
{
$(SHELL_SET)PYTHONPATH=$(PYTHONPATH)
$(SHELL_EXPORT)PYTHONPATH
$(PYTHON) "$(>)" $(ARGS)
}
rule python-runtest-aux # target : sources
{
DEPENDS $(<) : $(>) ;
ARGS on $(<) += $(gPYTHON_TEST_ARGS) ;
# Some tests need an extra command-line arg if built with
# msvc. Checking the target grist is a cheap way to
# find out.
switch $(<)
{
case <*\\\\msvc\\\\*>* : ARGS on $(<) += --broken-auto-ptr ;
}
# compute the PYTHONPATH environment variable that will allow the test to
# find all of the modules on which it depends.
PYTHONPATH on $(<) = [ join
$(gLOCATE($(>[1]))) # location of python test file
$(gRUN_PATH($(<))) # location of module dependencies
[ join-path $(TOP) libs python test ] # location of doctest
$(PYTHONPATH) # base PYTHONPATH from environment
: $(SPLITPATH) ] ; # platform path separator
PYTHON on $(<) = $(PYTHON) ;
DEPENDS $(<) : $(PYTHON) ;
}
############# comprehensive module and test ###########
boost-python-test boost_python_test : ../test/comprehensive.cpp ;
boost-python-runtest comprehensive
: [ join-path $(DOTDOT) test comprehensive.py ]
<lib>boost_python_test ;
############# simple tests from ../example ############
rule boost-python-example-runtest
{
boost-python-test $(<) : ../example/$(<).cpp ;
boost-python-runtest $(<) : [ join-path $(DOTDOT) example test_$(<).py ] <lib>$(<) ;
}
boost-python-example-runtest abstract ;
boost-python-example-runtest getting_started1 ;
boost-python-example-runtest getting_started2 ;
boost-python-example-runtest simple_vector ;
boost-python-example-runtest do_it_yourself_convts ;
boost-python-example-runtest pickle1 ;
boost-python-example-runtest pickle2 ;
boost-python-example-runtest pickle3 ;
boost-python-test ivect : ../example/ivect.cpp ;
boost-python-test dvect : ../example/dvect.cpp ;
boost-python-test noncopyable_export : ../example/noncopyable_export.cpp ;
boost-python-test noncopyable_import : ../example/noncopyable_import.cpp ;
############## cross-module tests from ../example ##########
# A simple rule to build a test which depends on multiple modules in the PYTHONPATH
rule boost-python-multi-example-runtest # test-name : python-file libs
{
boost-python-runtest $(<)
: ../example/tst_$(<).py <lib>$(>)
: : : $(PYTHON_VECT_ITERATIONS) ;
}
PYTHON_VECT_ITERATIONS ?= 10 ;
boost-python-multi-example-runtest dvect1 : ivect dvect ;
boost-python-multi-example-runtest dvect2 : ivect dvect ;
boost-python-multi-example-runtest ivect1 : ivect dvect ;
boost-python-multi-example-runtest ivect2 : ivect dvect ;
boost-python-multi-example-runtest
noncopyable : noncopyable_import noncopyable_export ;
lib boost_python
: # sources
../src/$(sources)
: # requirements
$(BOOST_PYTHON_V2_PROPERTIES)
<define>BOOST_PYTHON_SOURCE
<define>BOOST_STATIC_LIB
$(bpl-linkflags)
<msvc-stlport><release>$(msvc-stlport-workarounds)
;
stage bin-stage : <dll>boost_python <lib>boost_python
: <tag><debug>"_debug"
<tag><debug-python>"_pydebug"
:
debug release
;
}

85
build/Jamfile.v2 Normal file
View File

@@ -0,0 +1,85 @@
import os ;
# Use a very crude way to sense there python is locatted
local PYTHON_PATH ;
if [ GLOB /usr/local/include/python2.2 : * ]
{
PYTHON_PATH = /usr/local ;
}
else if [ GLOB /usr/include/python2.2 : * ]
{
PYTHON_PATH = /usr ;
}
if [ os.name ] in CYGWIN NT
{
lib_condition = <link>shared: ;
defines = USE_DL_IMPORT ;
# Declare a target for the python interpreter library
lib python : : <name>python2.2.dll ;
PYTHON_LIB = python ;
}
else
{
lib python : : <name>python2.2 ;
PYTHON_LIB = python ;
}
if $(PYTHON_PATH) {
project boost/python
: source-location ../src
: requirements <include>$(PYTHON_PATH)/include/python2.2
$(lib_condition)<library-path>$(PYTHON_PATH)/lib/python2.2/config
<link>shared:<library>$(PYTHON_LIB)
<define>$(defines)
: usage-requirements # requirement that will be propageted to *users* of this library
<include>$(PYTHON_PATH)/include/python2.2
# We have a bug which causes us to conclude that conditionalized
# properties in this section are not free.
# $(lib_condition)<library-path>$(PYTHON_PATH)/lib/python2.2/config
# <shared>true:<find-library>$(PYTHON_LIB)
<library-path>$(PYTHON_PATH)/lib/python2.2/config
<library>$(PYTHON_LIB)
;
lib boost_python
:
numeric.cpp
list.cpp
long.cpp
dict.cpp
tuple.cpp
str.cpp
aix_init_module.cpp
converter/from_python.cpp
converter/registry.cpp
converter/type_id.cpp
object/enum.cpp
object/class.cpp
object/function.cpp
object/inheritance.cpp
object/life_support.cpp
object/pickle_support.cpp
errors.cpp
module.cpp
converter/builtin_converters.cpp
converter/arg_to_python_base.cpp
object/iterator.cpp
object_protocol.cpp
object_operators.cpp
: <link>static:<define>BOOST_PYTHON_STATIC_LIB
<define>BOOST_PYTHON_SOURCE
: <link>shared
;
}

View File

@@ -0,0 +1,882 @@
# Microsoft Developer Studio Project File - Name="boost_python" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=BOOST_PYTHON - WIN32 RELEASE
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "boost_python.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "boost_python.mak" CFG="BOOST_PYTHON - WIN32 RELEASE"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "boost_python - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "boost_python - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "boost_python - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "../bin-stage"
# PROP Intermediate_Dir "release-obj"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
F90=df.exe
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "BPL_EXPORTS" /YX /FD /Zm800 /Zm800 /Zm800 /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "../../../../" /D "NDEBUG" /D "WIN32" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "BOOST_PYTHON_DYNAMIC_LIB" /D "BOOST_PYTHON_SOURCE" /FD /Zm800 /Zm800 /Zm800 /Zm800 /c
# SUBTRACT CPP /YX
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x1409 /d "NDEBUG"
# ADD RSC /l 0x1409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib /nologo /dll /machine:I386
!ELSEIF "$(CFG)" == "boost_python - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "../bin-stage"
# PROP Intermediate_Dir "debug-obj"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
F90=df.exe
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "BPL_EXPORTS" /YX /FD /Zm800 /Zm800 /Zm800 /GZ /c
# ADD CPP /nologo /MDd /W3 /GR /GX /Zi /Od /I "../../../../" /D "_DEBUG" /D "WIN32" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "BOOST_PYTHON_DYNAMIC_LIB" /D "BOOST_PYTHON_SOURCE" /FD /Zm800 /Zm800 /Zm800 /Zm800 /Zm800 /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x1409 /d "_DEBUG"
# ADD RSC /l 0x1409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"../bin-stage/boost_python_debug.dll" /pdbtype:sept
!ENDIF
# Begin Target
# Name "boost_python - Win32 Release"
# Name "boost_python - Win32 Debug"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\src\aix_init_module.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\converter\arg_to_python_base.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\converter\builtin_converters.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\class.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\dict.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\enum.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\errors.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\converter\from_python.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\function.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\inheritance.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\iterator.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\life_support.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\list.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\long.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\module.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\numeric.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object_operators.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object_protocol.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\object\pickle_support.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\converter\registry.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\str.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\tuple.cpp
# End Source File
# Begin Source File
SOURCE=..\..\src\converter\type_id.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Group "detail"
# PROP Default_Filter ""
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\aix_init_module.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\api_placeholder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\arg_tuple_size.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\borrowed_ptr.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\call_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\caller.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\char_array.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\config.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\construct.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\convertible.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\cv_category.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\decorated_type_id.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\def_helper.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\defaults_def.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\defaults_gen.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\dependent.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\destroy.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\exception_handler.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\force_instantiate.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\if_else.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\indirect_traits.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\make_keyword_range_fn.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\make_tuple.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\map_entry.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\member_function_cast.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\module_base.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\module_init.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\msvc_typeinfo.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\none.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\not_specified.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\operator_id.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\overloads_fwd.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\pointee.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\preprocessor.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\python22_fixed.h
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\raw_pyobject.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\referent_storage.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\result.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\returning.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\scope.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\string_literal.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\target.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\translate_exception.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\type_list.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\type_list_impl.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\type_list_impl_no_pts.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\type_list_utils.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\unwind_type.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\void_ptr.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\void_return.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\detail\wrap_python.hpp
# End Source File
# End Group
# Begin Group "converter"
# PROP Default_Filter ""
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\arg_from_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\arg_to_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\arg_to_python_base.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\builtin_converters.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\constructor_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\convertible_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\from_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\implicit.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\obj_mgr_arg_from_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\object_manager.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\pointer_type_id.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\pyobject_traits.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\pyobject_type.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\pytype_arg_from_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\pytype_object_mgr_traits.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\registered.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\registered_pointee.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\registrations.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\registry.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\return_from_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\rvalue_from_python_data.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\converter\to_python_function_type.hpp
# End Source File
# End Group
# Begin Group "object"
# PROP Default_Filter ""
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\add_to_namespace.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\class.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\class_converters.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\class_detail.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\class_wrapper.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\construct.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\enum_base.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\find_instance.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\forward.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\function_handle.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\function_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\inheritance.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\instance.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\iterator.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\iterator_core.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\life_support.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\make_holder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\make_instance.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\pickle_support.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\pointer_holder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\py_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\select_holder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\value_holder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object\value_holder_fwd.hpp
# End Source File
# End Group
# Begin Source File
SOURCE=..\..\..\..\boost\python\arg_from_python.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\args.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\args_fwd.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\back_reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\base_type_traits.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\bases.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\borrowed.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\call.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\call_method.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\cast.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\class.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\class_fwd.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\copy_const_reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\copy_non_const_reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\data_members.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\def.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\default_call_policies.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\dict.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\enum.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\errors.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\exception_translator.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\extract.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\handle.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\handle_fwd.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\has_back_reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\implicit.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\init.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\instance_holder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\iterator.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\list.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\long.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\lvalue_from_pytype.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\make_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\manage_new_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\module.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\module_init.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\numeric.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_attributes.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_call.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_core.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_fwd.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_items.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_operators.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_protocol.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_protocol_core.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\object_slices.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\operators.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\operators2.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\other.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\overloads.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\pointee.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\proxy.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\ptr.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\refcount.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\reference_existing_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\return_internal_reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\return_value_policy.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\scope.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\self.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\signature.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\slice_nil.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\str.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\tag.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\to_python_converter.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\to_python_indirect.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\to_python_value.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\tuple.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\type_id.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\..\boost\python\with_custodian_and_ward.hpp
# End Source File
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -0,0 +1,29 @@
Microsoft Developer Studio Workspace File, Format Version 6.00
# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!
###############################################################################
Project: "boost_python"=".\boost_python.dsp" - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
}}}
###############################################################################
Global:
Package=<5>
{{{
}}}
Package=<3>
{{{
}}}
###############################################################################

View File

@@ -1,241 +0,0 @@
# Microsoft Developer Studio Project File - Name="bpl_static" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Static Library" 0x0104
CFG=bpl_static - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "bpl_static.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "bpl_static.mak" CFG="bpl_static - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "bpl_static - Win32 Release" (based on "Win32 (x86) Static Library")
!MESSAGE "bpl_static - Win32 Debug" (based on "Win32 (x86) Static Library")
!MESSAGE "bpl_static - Win32 DebugPython" (based on "Win32 (x86) Static Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
RSC=rc.exe
!IF "$(CFG)" == "bpl_static - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c
# ADD CPP /nologo /MD /W4 /WX /GR /GX /O2 /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /c
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ELSEIF "$(CFG)" == "bpl_static - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W4 /WX /Gm- /GR /GX /Zi /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /GZ /c
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ELSEIF "$(CFG)" == "bpl_static - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "bpl_static___Win32_DebugPython"
# PROP BASE Intermediate_Dir "bpl_static___Win32_DebugPython"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W4 /WX /Gm /GR /GX /Zi /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W4 /WX /Gm- /GR /GX /Zi /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /D "BOOST_DEBUG_PYTHON" /FR /YX /FD /GZ /EHs /c
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ENDIF
# Begin Target
# Name "bpl_static - Win32 Release"
# Name "bpl_static - Win32 Debug"
# Name "bpl_static - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\src\classes.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\conversions.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\extension_class.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\functions.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\init_function.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\module_builder.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\objects.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\types.cpp
# ADD CPP /W3
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File
SOURCE=..\..\..\boost\python\detail\base_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\callback.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\caller.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\cast.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\class_builder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\classes.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\config.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\conversions.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\errors.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\extension_class.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\functions.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\init_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\module_builder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\none.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\objects.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\operators.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\signatures.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\singleton.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\types.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\wrap_python.hpp
# End Source File
# End Group
# End Target
# End Project

View File

@@ -1,108 +0,0 @@
Microsoft Developer Studio Workspace File, Format Version 6.00
# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!
###############################################################################
Project: "bpl_static"=.\bpl_static.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
}}}
###############################################################################
Project: "example1"=.\example1\example1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "getting_started1"=.\getting_started1\getting_started1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "getting_started2"=.\getting_started2\getting_started2.dsp - Package Owner=<4>
Package=<5>
{{{
begin source code control
getting_started2
.\getting_started2
end source code control
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "rwgk1"=.\rwgk1\rwgk1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "test"=.\test\test.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Global:
Package=<5>
{{{
}}}
Package=<3>
{{{
}}}
###############################################################################

Binary file not shown.

View File

@@ -1,58 +0,0 @@
# Revision History:
# 17 Apr 01 include cross-module support, compile getting_started1 (R.W. Grosse-Kunstleve) UNTESTED!
# 06 Mar 01 Fixed typo in use of "PYTHON_LIB" (Dave Abrahams)
# 04 Mar 01 Changed library name to libboost_python.a (David Abrahams)
LIBSRC = \
classes.cpp \
conversions.cpp \
cross_module.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
OBJ = $(LIBOBJ)
ifeq "$(OS)" "Windows_NT"
PYTHON_LIB=c:/tools/python/libs/python15.lib
INC = -Ic:/cygnus/usr/include/g++-3 -Ic:/cygnus/usr/include -Ic:/boost -Ic:/tools/python/include
MODULE_EXTENSION=dll
else
INC = -I/usr/local/include/python1.5
MODULE_EXTENSION=so
endif
%.o: ../src/%.cpp
como --pic $(INC) -o $*.o -c $<
%.d: ../src/%.cpp
@echo creating $@
@set -e; como -M $(INC) -c $< \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@
getting_started1: getting_started1.o libboost_python.a
como-dyn-link -o ../example/getting_started1.$(MODULE_EXTENSION) $(PYTHON_LIB) getting_started1.o -L. -lboost_python
ln -s ../test/doctest.py ../example
python ../example/test_getting_started1.py
getting_started1.o: ../example/getting_started1.cpp
como --pic $(INC) -o $*.o -c $<
clean:
rm -rf *.o *.$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out
libboost_python.a: $(LIBOBJ)
rm -f libboost_python.a
ar cq libboost_python.a $(LIBOBJ)
DEP = $(OBJ:.o=.d)
ifneq "$(MAKECMDGOALS)" "clean"
include $(DEP)
endif

View File

@@ -1,136 +0,0 @@
# Microsoft Developer Studio Project File - Name="example1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=example1 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "example1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "example1.mak" CFG="example1 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "example1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "example1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "example1 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "example1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"Release/hello.dll" /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "example1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"Debug/hello.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "example1 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "example1___Win32_DebugPython"
# PROP BASE Intermediate_Dir "example1___Win32_DebugPython"
# PROP BASE Ignore_Export_Lib 0
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W3 /Gm /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /EHs /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"Debug/hello.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"DebugPython/hello_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\PCbuild"
!ENDIF
# Begin Target
# Name "example1 - Win32 Release"
# Name "example1 - Win32 Debug"
# Name "example1 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\example1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,145 +0,0 @@
# Revision history:
# 12 Apr 01 use os.path, shutil
# Initial version: R.W. Grosse-Kunstleve
bpl_src = "/libs/python/src"
bpl_tst = "/libs/python/test"
bpl_exa = "/libs/python/example"
files = (
bpl_src + "/classes.cpp",
bpl_src + "/conversions.cpp",
bpl_src + "/extension_class.cpp",
bpl_src + "/functions.cpp",
bpl_src + "/init_function.cpp",
bpl_src + "/module_builder.cpp",
bpl_src + "/objects.cpp",
bpl_src + "/types.cpp",
bpl_src + "/cross_module.cpp",
bpl_tst + "/comprehensive.cpp",
bpl_tst + "/comprehensive.hpp",
bpl_tst + "/comprehensive.py",
bpl_tst + "/doctest.py",
bpl_exa + "/abstract.cpp",
bpl_exa + "/getting_started1.cpp",
bpl_exa + "/getting_started2.cpp",
bpl_exa + "/simple_vector.cpp",
bpl_exa + "/do_it_yourself_convts.cpp",
bpl_exa + "/nested.cpp",
bpl_exa + "/pickle1.cpp",
bpl_exa + "/pickle2.cpp",
bpl_exa + "/pickle3.cpp",
bpl_exa + "/test_abstract.py",
bpl_exa + "/test_getting_started1.py",
bpl_exa + "/test_getting_started2.py",
bpl_exa + "/test_simple_vector.py",
bpl_exa + "/test_do_it_yourself_convts.py",
bpl_exa + "/test_nested.py",
bpl_exa + "/test_pickle1.py",
bpl_exa + "/test_pickle2.py",
bpl_exa + "/test_pickle3.py",
bpl_exa + "/noncopyable.h",
bpl_exa + "/noncopyable_export.cpp",
bpl_exa + "/noncopyable_import.cpp",
bpl_exa + "/dvect.h",
bpl_exa + "/dvect.cpp",
bpl_exa + "/dvect_conversions.cpp",
bpl_exa + "/dvect_defs.cpp",
bpl_exa + "/ivect.h",
bpl_exa + "/ivect.cpp",
bpl_exa + "/ivect_conversions.cpp",
bpl_exa + "/ivect_defs.cpp",
bpl_exa + "/tst_noncopyable.py",
bpl_exa + "/tst_dvect1.py",
bpl_exa + "/tst_dvect2.py",
bpl_exa + "/tst_ivect1.py",
bpl_exa + "/tst_ivect2.py",
bpl_exa + "/test_cross_module.py",
bpl_exa + "/vector_wrapper.h",
bpl_exa + "/richcmp1.cpp",
bpl_exa + "/richcmp2.cpp",
bpl_exa + "/richcmp3.cpp",
bpl_exa + "/test_richcmp1.py",
bpl_exa + "/test_richcmp2.py",
bpl_exa + "/test_richcmp3.py",
)
defs = (
"boost_python_test",
"abstract",
"getting_started1",
"getting_started2",
"simple_vector",
"do_it_yourself_convts",
"nested",
"pickle1",
"pickle2",
"pickle3",
"noncopyable_export",
"noncopyable_import",
"ivect",
"dvect",
"richcmp1",
"richcmp2",
"richcmp3",
)
if (__name__ == "__main__"):
import sys, os, shutil
path = sys.argv[1]
mode = sys.argv[2]
if (not mode in ("softlinks", "unlink", "cp", "rm", "copy", "del")):
raise RuntimeError, \
"usage: python filemgr.py path <softlinks|unlink|cp|rm|copy|del>"
if (mode in ("cp", "copy")):
for fn in files:
f = os.path.basename(fn)
print "Copying: " + f
shutil.copy(path + fn, ".")
elif (mode == "softlinks"):
for fn in files:
f = os.path.basename(fn)
if (os.path.exists(f)):
print "File exists: " + f
else:
print "Linking: " + f
os.symlink(path + fn, f)
elif (mode in ("rm", "del")):
for fn in files:
f = os.path.basename(fn)
if (os.path.exists(f)):
print "Removing: " + f
try: os.unlink(f)
except: pass
elif (mode == "unlink"):
for fn in files:
f = os.path.basename(fn)
if (os.path.exists(f)):
if (os.path.islink(f)):
print "Unlinking: " + f
try: os.unlink(f)
except: pass
else:
print "Not a softlink: " + f
if (mode in ("softlinks", "cp", "copy")):
for d in defs:
fn = d + ".def"
print "Creating: " + fn
f = open(fn, "w")
f.write("EXPORTS\n")
f.write("\tinit" + d + "\n")
f.close()
if (mode in ("unlink", "rm", "del")):
for d in defs:
fn = d + ".def"
if (os.path.exists(fn)):
print "Removing: " + fn
try: os.unlink(fn)
except: pass

View File

@@ -1,87 +0,0 @@
# Revision History
# 17 Apr 01 include cross-module support, compile getting_started1 (R.W. Grosse-Kunstleve)
# 17 Apr 01 build shared library (patch provided by Dan Nuffer)
# 04 Mar 01 Changed library name to libboost_python.a, various cleanups,
# attempted Cygwin compatibility. Still needs testing on Linux
# (David Abrahams)
LIBSRC = \
classes.cpp \
conversions.cpp \
cross_module.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
OBJ = $(LIBOBJ)
LIBNAME = libboost_python
# libpython2.0.dll
ifeq "$(OS)" "Windows_NT"
ROOT=c:/cygnus
INC = -Ic:/cygnus/usr/include/g++-3 -Ic:/cygnus/usr/include -Ic:/boost -I$(PYTHON_INC)
MODULE_EXTENSION=dll
PYTHON_LIB=c:/cygnus/usr/local/lib/python2.0/config/libpython2.0.dll.a
SHARED_LIB = $(LIBNAME).dll
else
PYTHON_INC=$(ROOT)/usr/local/Python-2.0/include/python2.0
BOOST_INC=../../..
INC = -I$(BOOST_INC) -I$(PYTHON_INC)
MODULE_EXTENSION=so
VERSION=1
SHARED_LIB = $(LIBNAME).so.$(VERSION)
endif
%.o: ../src/%.cpp
g++ -fPIC -Wall -W $(INC) $(CXXFLAGS) -o $*.o -c $<
%.d: ../src/%.cpp
@echo creating $@
@set -e; g++ -M $(INC) -c $< \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@
PYTHON = python
all: test $(SHARED_LIB) getting_started1
test: comprehensive.o $(LIBNAME).a $(SHARED_LIB)
g++ $(CXXFLAGS) -shared -o ../test/boost_python_test.$(MODULE_EXTENSION) comprehensive.o -L. -lboost_python $(PYTHON_LIB)
$(PYTHON) ../test/comprehensive.py
comprehensive.o: ../test/comprehensive.cpp
g++ $(CXXFLAGS) --template-depth-32 -fPIC -Wall -W $(INC) -o $*.o -c $<
getting_started1: getting_started1.o $(LIBNAME).a
g++ $(CXXFLAGS) -shared -o ../example/getting_started1.$(MODULE_EXTENSION) getting_started1.o -L. -lboost_python $(PYTHON_LIB)
ln -s ../test/doctest.py ../example
$(PYTHON) ../example/test_getting_started1.py
getting_started1.o: ../example/getting_started1.cpp
g++ $(CXXFLAGS) --template-depth-32 -fPIC -Wall -W $(INC) -o $*.o -c $<
clean:
rm -rf *.o *.$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out
$(LIBNAME).a: $(LIBOBJ)
rm -f $@
ar cqs $@ $(LIBOBJ)
$(SHARED_LIB): $(LIBOBJ)
g++ $(CXXFLAGS) -shared -o $@ -Wl,--soname=$(LIBNAME).$(MODULE_EXTENSION)
DEP = $(OBJ:.o=.d)
ifneq "$(MAKECMDGOALS)" "clean"
include $(DEP)
endif

View File

@@ -1,136 +0,0 @@
# Microsoft Developer Studio Project File - Name="getting_started1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=getting_started1 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "getting_started1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "getting_started1.mak" CFG="getting_started1 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "getting_started1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started1 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=xicl6.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "getting_started1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /GR /GX /ZI /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started1 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "DebugPython"
# PROP BASE Intermediate_Dir "DebugPython"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /pdb:"DebugPython/boost_python_test_d.pdb" /debug /machine:I386 /out:"DebugPython/getting_started1_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\PCbuild"
# SUBTRACT LINK32 /pdb:none
!ENDIF
# Begin Target
# Name "getting_started1 - Win32 Release"
# Name "getting_started1 - Win32 Debug"
# Name "getting_started1 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\getting_started1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,135 +0,0 @@
# Microsoft Developer Studio Project File - Name="getting_started2" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=getting_started2 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "getting_started2.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "getting_started2.mak" CFG="getting_started2 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "getting_started2 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started2 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started2 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName "getting_started2"
# PROP Scc_LocalPath "."
CPP=xicl6.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "getting_started2 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started2 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /FR /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started2 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "getting_started2___Win32_DebugPython"
# PROP BASE Intermediate_Dir "getting_started2___Win32_DebugPython"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "getting_started2___Win32_DebugPython"
# PROP Intermediate_Dir "getting_started2___Win32_DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /D "BOOST_DEBUG_PYTHON" /FR /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /out:"DebugPython/getting_started2_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\pcbuild"
!ENDIF
# Begin Target
# Name "getting_started2 - Win32 Release"
# Name "getting_started2 - Win32 Debug"
# Name "getting_started2 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\getting_started2.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,184 +0,0 @@
# Usage:
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Adjust the pathnames below.
#
# make softlinks Create softlinks to source code and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make unlink Remove softlinks
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
ROOT=$(HOME)
BOOST=$(ROOT)/boost
PYEXE=PYTHONPATH=. /usr/local/Python-1.5.2/bin/python
PYINC=-I/usr/local/Python-1.5.2/include/python1.5
#PYEXE=PYTHONPATH=. /usr/local/Python-2.1/bin/python
#PYINC=-I/usr/local/Python-2.1/include/python2.1
STLPORTINC=-I$(BOOST)/boost/compatibility/cpp_c_headers
STDOPTS=
WARNOPTS=-woff 1001,1234,1682
OPTOPTS=-g
CPP=CC -LANG:std -n32 -mips4
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
MAKEDEP=-M
LD=CC -LANG:std -n32 -mips4
LDOPTS=-shared
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
DEPOBJ=$(OBJ) \
comprehensive.o \
abstract.o \
getting_started1.o getting_started2.o \
simple_vector.o \
do_it_yourself_convts.o \
nested.o \
pickle1.o pickle2.o pickle3.o \
noncopyable_export.o noncopyable_import.o \
ivect.o dvect.o \
richcmp1.o richcmp2.o richcmp3.o
.SUFFIXES: .o .cpp
all: libboost_python.a \
boost_python_test.so \
abstract.so \
getting_started1.so getting_started2.so \
simple_vector.so \
do_it_yourself_convts.so \
nested.so \
pickle1.so pickle2.so pickle3.so \
noncopyable_export.so noncopyable_import.so \
ivect.so dvect.so \
richcmp1.so richcmp2.so richcmp3.so
libboost_python.a: $(OBJ)
rm -f libboost_python.a
$(CPP) -ar -o libboost_python.a $(OBJ)
boost_python_test.so: $(OBJ) comprehensive.o
$(LD) $(LDOPTS) $(OBJ) comprehensive.o -o boost_python_test.so -lm
abstract.so: $(OBJ) abstract.o
$(LD) $(LDOPTS) $(OBJ) abstract.o -o abstract.so
getting_started1.so: $(OBJ) getting_started1.o
$(LD) $(LDOPTS) $(OBJ) getting_started1.o -o getting_started1.so
getting_started2.so: $(OBJ) getting_started2.o
$(LD) $(LDOPTS) $(OBJ) getting_started2.o -o getting_started2.so
simple_vector.so: $(OBJ) simple_vector.o
$(LD) $(LDOPTS) $(OBJ) simple_vector.o -o simple_vector.so
do_it_yourself_convts.so: $(OBJ) do_it_yourself_convts.o
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_convts.o -o do_it_yourself_convts.so
nested.so: $(OBJ) nested.o
$(LD) $(LDOPTS) $(OBJ) nested.o -o nested.so
pickle1.so: $(OBJ) pickle1.o
$(LD) $(LDOPTS) $(OBJ) pickle1.o -o pickle1.so
pickle2.so: $(OBJ) pickle2.o
$(LD) $(LDOPTS) $(OBJ) pickle2.o -o pickle2.so
pickle3.so: $(OBJ) pickle3.o
$(LD) $(LDOPTS) $(OBJ) pickle3.o -o pickle3.so
noncopyable_export.so: $(OBJ) noncopyable_export.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_export.o -o noncopyable_export.so
noncopyable_import.so: $(OBJ) noncopyable_import.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_import.o -o noncopyable_import.so
ivect.so: $(OBJ) ivect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) ivect.o -o ivect.so
dvect.so: $(OBJ) dvect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) dvect.o -o dvect.so
richcmp1.so: $(OBJ) richcmp1.o
$(LD) $(LDOPTS) $(OBJ) richcmp1.o -o richcmp1.so
richcmp2.so: $(OBJ) richcmp2.o
$(LD) $(LDOPTS) $(OBJ) richcmp2.o -o richcmp2.so
richcmp3.so: $(OBJ) richcmp3.o
$(LD) $(LDOPTS) $(OBJ) richcmp3.o -o richcmp3.so
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
test:
$(PYEXE) comprehensive.py
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_convts.py
$(PYEXE) test_nested.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
$(PYEXE) test_richcmp1.py
$(PYEXE) test_richcmp2.py
$(PYEXE) test_richcmp3.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
rm -f comprehensive.o boost_python_test.so
rm -f abstract.o abstract.so
rm -f getting_started1.o getting_started1.so
rm -f getting_started2.o getting_started2.so
rm -f simple_vector.o simple_vector.so
rm -f do_it_yourself_convts.o do_it_yourself_convts.so
rm -f nested.o nested.so
rm -f pickle1.o pickle1.so
rm -f pickle2.o pickle2.so
rm -f pickle3.o pickle3.so
rm -f noncopyable_export.o noncopyable_export.so
rm -f noncopyable_import.o noncopyable_import.so
rm -f ivect.o ivect.so
rm -f dvect.o dvect.so
rm -f richcmp1.o richcmp1.so
rm -f richcmp2.o richcmp2.so
rm -f richcmp3.o richcmp3.so
rm -f so_locations *.pyc
rm -rf ii_files
softlinks:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) softlinks
unlink:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) unlink
cp:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) cp
rm:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) rm
depend:
@ cat Makefile.nodepend; \
for obj in $(DEPOBJ); \
do \
bn=`echo "$$obj" | cut -d. -f1`; \
$(CPP) $(CPPOPTS) $(MAKEDEP) "$$bn".cpp; \
done

View File

@@ -1,184 +0,0 @@
# Usage:
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Adjust the pathnames below.
#
# make softlinks Create softlinks to source code and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make unlink Remove softlinks
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
ROOT=$(HOME)
BOOST=$(ROOT)/boost
PYEXE=PYTHONPATH=. /usr/bin/python
PYINC=-I/usr/include/python1.5
#PYEXE=PYTHONPATH=. /usr/local/Python-1.5.2/bin/python
#PYINC=-I/usr/local/Python-1.5.2/include/python1.5
#PYEXE=PYTHONPATH=. /usr/local/Python-2.1/bin/python
#PYINC=-I/usr/local/Python-2.1/include/python2.1
STDOPTS=-fPIC -ftemplate-depth-21
WARNOPTS=
OPTOPTS=-g
CPP=g++
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
MAKEDEP=-M
LD=$(CPP)
LDOPTS=-shared
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
DEPOBJ=$(OBJ) \
comprehensive.o \
abstract.o \
getting_started1.o getting_started2.o \
simple_vector.o \
do_it_yourself_convts.o \
nested.o \
pickle1.o pickle2.o pickle3.o \
noncopyable_export.o noncopyable_import.o \
ivect.o dvect.o \
richcmp1.o richcmp2.o richcmp3.o
.SUFFIXES: .o .cpp
all: libboost_python.a \
boost_python_test.so \
abstract.so \
getting_started1.so getting_started2.so \
simple_vector.so \
do_it_yourself_convts.so \
nested.so \
pickle1.so pickle2.so pickle3.so \
noncopyable_export.so noncopyable_import.so \
ivect.so dvect.so \
richcmp1.so richcmp2.so richcmp3.so
libboost_python.a: $(OBJ)
rm -f libboost_python.a
ar r libboost_python.a $(OBJ)
boost_python_test.so: $(OBJ) comprehensive.o
$(LD) $(LDOPTS) $(OBJ) comprehensive.o -o boost_python_test.so -lm
abstract.so: $(OBJ) abstract.o
$(LD) $(LDOPTS) $(OBJ) abstract.o -o abstract.so
getting_started1.so: $(OBJ) getting_started1.o
$(LD) $(LDOPTS) $(OBJ) getting_started1.o -o getting_started1.so
getting_started2.so: $(OBJ) getting_started2.o
$(LD) $(LDOPTS) $(OBJ) getting_started2.o -o getting_started2.so
simple_vector.so: $(OBJ) simple_vector.o
$(LD) $(LDOPTS) $(OBJ) simple_vector.o -o simple_vector.so
do_it_yourself_convts.so: $(OBJ) do_it_yourself_convts.o
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_convts.o -o do_it_yourself_convts.so
nested.so: $(OBJ) nested.o
$(LD) $(LDOPTS) $(OBJ) nested.o -o nested.so
pickle1.so: $(OBJ) pickle1.o
$(LD) $(LDOPTS) $(OBJ) pickle1.o -o pickle1.so
pickle2.so: $(OBJ) pickle2.o
$(LD) $(LDOPTS) $(OBJ) pickle2.o -o pickle2.so
pickle3.so: $(OBJ) pickle3.o
$(LD) $(LDOPTS) $(OBJ) pickle3.o -o pickle3.so
noncopyable_export.so: $(OBJ) noncopyable_export.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_export.o -o noncopyable_export.so
noncopyable_import.so: $(OBJ) noncopyable_import.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_import.o -o noncopyable_import.so
ivect.so: $(OBJ) ivect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) ivect.o -o ivect.so
dvect.so: $(OBJ) dvect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) dvect.o -o dvect.so
richcmp1.so: $(OBJ) richcmp1.o
$(LD) $(LDOPTS) $(OBJ) richcmp1.o -o richcmp1.so
richcmp2.so: $(OBJ) richcmp2.o
$(LD) $(LDOPTS) $(OBJ) richcmp2.o -o richcmp2.so
richcmp3.so: $(OBJ) richcmp3.o
$(LD) $(LDOPTS) $(OBJ) richcmp3.o -o richcmp3.so
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
test:
$(PYEXE) comprehensive.py
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_convts.py
$(PYEXE) test_nested.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
$(PYEXE) test_richcmp1.py
$(PYEXE) test_richcmp2.py
$(PYEXE) test_richcmp3.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
rm -f comprehensive.o boost_python_test.so
rm -f abstract.o abstract.so
rm -f getting_started1.o getting_started1.so
rm -f getting_started2.o getting_started2.so
rm -f simple_vector.o simple_vector.so
rm -f do_it_yourself_convts.o do_it_yourself_convts.so
rm -f nested.o nested.so
rm -f pickle1.o pickle1.so
rm -f pickle2.o pickle2.so
rm -f pickle3.o pickle3.so
rm -f noncopyable_export.o noncopyable_export.so
rm -f noncopyable_import.o noncopyable_import.so
rm -f ivect.o ivect.so
rm -f dvect.o dvect.so
rm -f richcmp1.o richcmp1.so
rm -f richcmp2.o richcmp2.so
rm -f richcmp3.o richcmp3.so
rm -f so_locations *.pyc
softlinks:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) softlinks
unlink:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) unlink
cp:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) cp
rm:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) rm
depend:
@ cat Makefile.nodepend; \
for obj in $(DEPOBJ); \
do \
bn=`echo "$$obj" | cut -d. -f1`; \
$(CPP) $(CPPOPTS) $(MAKEDEP) "$$bn".cpp; \
done

View File

@@ -1,222 +0,0 @@
# Usage:
#
# make copy Copy the sources and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make del Remove the sources and tests
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
# To install mingw32, follow instructions at:
# http://starship.python.net/crew/kernr/mingw32/Notes.html
# In particular, install:
# ftp://ftp.xraylith.wisc.edu/pub/khan/gnu-win32/mingw32/gcc-2.95.2/gcc-2.95.2-msvcrt.exe
# ftp://ftp.xraylith.wisc.edu/pub/khan/gnu-win32/mingw32/gcc-2.95.2/fixes/quote-fix-msvcrt.exe
# http://starship.python.net/crew/kernr/mingw32/Python-1.5.2-mingw32.zip
# Unpack the first two archives in the default locations and update your PATH.
# Unpack the third archive in \usr.
# Note: comprehensive.cpp generates compiler errors and later crashes.
# L:\boost\boost\python\detail\extension_class.hpp:643: warning:
# alignment of `vtable for class
# boost::python::detail::held_instance<bpl_test::Derived1>'
# is greater than maximum object file alignment. Using 16.
# Could this be fixed with compiler options?
# -fhuge-objects looks interesting, but requires recompiling the C++ library.
# (what exactly does that mean?)
# -fvtable-thunks eliminates the compiler warning, but
# "import boost_python_test" still causes a crash.
ROOT=R:
BOOST_WIN="$(ROOT)\boost"
BOOST_UNIX=$(HOME)/boost
PYEXE="C:\Program files\Python\python.exe"
PYINC=-I"C:\usr\include\python1.5"
PYLIB="C:\usr\lib\libpython15.a"
#PYEXE="C:\Python21\python.exe"
#PYINC=-I"C:\usr\include\python2.1"
#PYLIB="C:\usr\lib\libpython21.a"
STDOPTS=-ftemplate-depth-21
WARNOPTS=
OPTOPTS=-g
CPP=g++
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST_WIN) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
LD=g++
LDOPTS=-shared
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
.SUFFIXES: .o .cpp
all: libboost_python.a \
abstract.pyd \
getting_started1.pyd getting_started2.pyd \
simple_vector.pyd \
do_it_yourself_convts.pyd \
nested.pyd \
pickle1.pyd pickle2.pyd pickle3.pyd \
noncopyable_export.pyd noncopyable_import.pyd \
ivect.pyd dvect.pyd \
richcmp1.pyd richcmp2.pyd richcmp3.pyd
libboost_python.a: $(OBJ)
-del libboost_python.a
ar r libboost_python.a $(OBJ)
DLLWRAPOPTS=-s --driver-name g++ -s \
--entry _DllMainCRTStartup@12 --target=i386-mingw32
boost_python_test.pyd: $(OBJ) comprehensive.o
dllwrap $(DLLWRAPOPTS) \
--dllname boost_python_test.pyd \
--def boost_python_test.def \
$(OBJ) comprehensive.o $(PYLIB)
abstract.pyd: $(OBJ) abstract.o
dllwrap $(DLLWRAPOPTS) \
--dllname abstract.pyd \
--def abstract.def \
$(OBJ) abstract.o $(PYLIB)
getting_started1.pyd: $(OBJ) getting_started1.o
dllwrap $(DLLWRAPOPTS) \
--dllname getting_started1.pyd \
--def getting_started1.def \
$(OBJ) getting_started1.o $(PYLIB)
getting_started2.pyd: $(OBJ) getting_started2.o
dllwrap $(DLLWRAPOPTS) \
--dllname getting_started2.pyd \
--def getting_started2.def \
$(OBJ) getting_started2.o $(PYLIB)
simple_vector.pyd: $(OBJ) simple_vector.o
dllwrap $(DLLWRAPOPTS) \
--dllname simple_vector.pyd \
--def simple_vector.def \
$(OBJ) simple_vector.o $(PYLIB)
do_it_yourself_convts.pyd: $(OBJ) do_it_yourself_convts.o
dllwrap $(DLLWRAPOPTS) \
--dllname do_it_yourself_convts.pyd \
--def do_it_yourself_convts.def \
$(OBJ) do_it_yourself_convts.o $(PYLIB)
nested.pyd: $(OBJ) nested.o
dllwrap $(DLLWRAPOPTS) \
--dllname nested.pyd \
--def nested.def \
$(OBJ) nested.o $(PYLIB)
pickle1.pyd: $(OBJ) pickle1.o
dllwrap $(DLLWRAPOPTS) \
--dllname pickle1.pyd \
--def pickle1.def \
$(OBJ) pickle1.o $(PYLIB)
pickle2.pyd: $(OBJ) pickle2.o
dllwrap $(DLLWRAPOPTS) \
--dllname pickle2.pyd \
--def pickle2.def \
$(OBJ) pickle2.o $(PYLIB)
pickle3.pyd: $(OBJ) pickle3.o
dllwrap $(DLLWRAPOPTS) \
--dllname pickle3.pyd \
--def pickle3.def \
$(OBJ) pickle3.o $(PYLIB)
noncopyable_export.pyd: $(OBJ) noncopyable_export.o
dllwrap $(DLLWRAPOPTS) \
--dllname noncopyable_export.pyd \
--def noncopyable_export.def \
$(OBJ) noncopyable_export.o $(PYLIB)
noncopyable_import.pyd: $(OBJ) noncopyable_import.o
dllwrap $(DLLWRAPOPTS) \
--dllname noncopyable_import.pyd \
--def noncopyable_import.def \
$(OBJ) noncopyable_import.o $(PYLIB)
ivect.pyd: $(OBJ) ivect.o
dllwrap $(DLLWRAPOPTS) \
--dllname ivect.pyd \
--def ivect.def \
$(OBJ) ivect.o $(PYLIB)
dvect.pyd: $(OBJ) dvect.o
dllwrap $(DLLWRAPOPTS) \
--dllname dvect.pyd \
--def dvect.def \
$(OBJ) dvect.o $(PYLIB)
richcmp1.pyd: $(OBJ) richcmp1.o
dllwrap $(DLLWRAPOPTS) \
--dllname richcmp1.pyd \
--def richcmp1.def \
$(OBJ) richcmp1.o $(PYLIB)
richcmp2.pyd: $(OBJ) richcmp2.o
dllwrap $(DLLWRAPOPTS) \
--dllname richcmp2.pyd \
--def richcmp2.def \
$(OBJ) richcmp2.o $(PYLIB)
richcmp3.pyd: $(OBJ) richcmp3.o
dllwrap $(DLLWRAPOPTS) \
--dllname richcmp3.pyd \
--def richcmp3.def \
$(OBJ) richcmp3.o $(PYLIB)
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
test:
# $(PYEXE) comprehensive.py
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_convts.py
$(PYEXE) test_nested.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
$(PYEXE) test_richcmp1.py
$(PYEXE) test_richcmp2.py
$(PYEXE) test_richcmp3.py
clean:
-del *.o
-del *.a
-del *.pyd
-del *.pyc
softlinks:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) softlinks
unlink:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) unlink
cp:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) cp
rm:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) rm
copy:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) copy
del:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) del

BIN
build/python_v1.zip Normal file

Binary file not shown.

View File

@@ -1,135 +0,0 @@
# Microsoft Developer Studio Project File - Name="rwgk1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=rwgk1 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "rwgk1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "rwgk1.mak" CFG="rwgk1 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "rwgk1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "rwgk1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "rwgk1 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "rwgk1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "rwgk1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "rwgk1 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "rwgk1___Win32_DebugPython"
# PROP BASE Intermediate_Dir "rwgk1___Win32_DebugPython"
# PROP BASE Ignore_Export_Lib 0
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W3 /Gm /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"DebugPython/rwgk1_d.dll" /pdbtype:sept /libpath:"C:\tools\python\src\PCbuild"
!ENDIF
# Begin Target
# Name "rwgk1 - Win32 Release"
# Name "rwgk1 - Win32 Debug"
# Name "rwgk1 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\rwgk1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,145 +0,0 @@
# Microsoft Developer Studio Project File - Name="test" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=test - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "test.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "test.mak" CFG="test - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "test - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "test - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "test - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "test - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /Zm200 /c
# SUBTRACT CPP /Fr
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"Release/boost_python_test.dll" /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "test - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /Zm200 /c
# SUBTRACT CPP /Fr
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"Debug/boost_python_test.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
# SUBTRACT LINK32 /pdb:none
!ELSEIF "$(CFG)" == "test - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "test___Win32_DebugPython"
# PROP BASE Intermediate_Dir "test___Win32_DebugPython"
# PROP BASE Ignore_Export_Lib 0
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W3 /Gm /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /Zm200 /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /Zm200 /EHs /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
# SUBTRACT BASE LINK32 /pdb:none
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"DebugPython/boost_python_test_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\PCbuild"
# SUBTRACT LINK32 /pdb:none
!ENDIF
# Begin Target
# Name "test - Win32 Release"
# Name "test - Win32 Debug"
# Name "test - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\test\comprehensive.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File
SOURCE=..\..\test\comprehensive.hpp
# End Source File
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,199 +0,0 @@
# Usage:
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Adjust the pathnames below.
#
# make softlinks Create softlinks to source code and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make unlink Remove softlinks
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
ROOT=$(HOME)
BOOST=$(ROOT)/boost
PYEXE=PYTHONPATH=. /usr/local/Python-1.5.2/bin/python
PYINC=-I/usr/local/Python-1.5.2/include/python1.5
#PYEXE=PYTHONPATH=. /usr/local/Python-2.1/bin/python
#PYINC=-I/usr/local/Python-2.1/include/python2.1
#STLPORTINC=-I/usr/local/STLport-4.1b3/stlport
#STLPORTINC=-I/usr/local/STLport-4.1b4/stlport
#STLPORTOPTS= \
# -D__USE_STD_IOSTREAM \
# -D__STL_NO_SGI_IOSTREAMS \
# -D__STL_USE_NATIVE_STRING \
# -D__STL_NO_NEW_C_HEADERS \
# -D_RWSTD_COMPILE_INSTANTIATE=1
STLPORTINC=-I$(BOOST)/boost/compatibility/cpp_c_headers
STDOPTS=-std strict_ansi
# use -msg_display_number to obtain integer tags for -msg_disable
WARNOPTS=-msg_disable 186,450,1115
OPTOPTS=-g
CPP=cxx
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
MAKEDEP=-Em
LD=cxx
LDOPTS=-shared -expect_unresolved 'Py*' -expect_unresolved '_Py*'
#HIDDEN=-hidden
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
DEPOBJ=$(OBJ) \
comprehensive.o \
abstract.o \
getting_started1.o getting_started2.o \
simple_vector.o \
do_it_yourself_convts.o \
nested.o \
pickle1.o pickle2.o pickle3.o \
noncopyable_export.o noncopyable_import.o \
ivect.o dvect.o \
richcmp1.o richcmp2.o richcmp3.o
.SUFFIXES: .o .cpp
all: libboost_python.a \
boost_python_test.so \
abstract.so \
getting_started1.so getting_started2.so \
simple_vector.so \
do_it_yourself_convts.so \
nested.so \
pickle1.so pickle2.so pickle3.so \
noncopyable_export.so noncopyable_import.so \
ivect.so dvect.so \
richcmp1.so richcmp2.so richcmp3.so
libboost_python.a: $(OBJ)
rm -f libboost_python.a
cd cxx_repository; \
ls -1 > ../libboost_python.a.input; \
ar r ../libboost_python.a -input ../libboost_python.a.input
rm -f libboost_python.a.input
ar r libboost_python.a $(OBJ)
boost_python_test.so: $(OBJ) comprehensive.o
$(LD) $(LDOPTS) $(OBJ) comprehensive.o -o boost_python_test.so -lm
abstract.so: $(OBJ) abstract.o
$(LD) $(LDOPTS) $(OBJ) abstract.o -o abstract.so
getting_started1.so: $(OBJ) getting_started1.o
$(LD) $(LDOPTS) $(OBJ) getting_started1.o -o getting_started1.so
getting_started2.so: $(OBJ) getting_started2.o
$(LD) $(LDOPTS) $(OBJ) getting_started2.o -o getting_started2.so
simple_vector.so: $(OBJ) simple_vector.o
$(LD) $(LDOPTS) $(OBJ) simple_vector.o -o simple_vector.so
do_it_yourself_convts.so: $(OBJ) do_it_yourself_convts.o
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_convts.o -o do_it_yourself_convts.so
nested.so: $(OBJ) nested.o
$(LD) $(LDOPTS) $(OBJ) nested.o -o nested.so
pickle1.so: $(OBJ) pickle1.o
$(LD) $(LDOPTS) $(OBJ) pickle1.o -o pickle1.so
pickle2.so: $(OBJ) pickle2.o
$(LD) $(LDOPTS) $(OBJ) pickle2.o -o pickle2.so
pickle3.so: $(OBJ) pickle3.o
$(LD) $(LDOPTS) $(OBJ) pickle3.o -o pickle3.so
noncopyable_export.so: $(OBJ) noncopyable_export.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_export.o -o noncopyable_export.so
noncopyable_import.so: $(OBJ) noncopyable_import.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_import.o -o noncopyable_import.so
ivect.so: $(OBJ) ivect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) ivect.o -o ivect.so
dvect.so: $(OBJ) dvect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) dvect.o -o dvect.so
richcmp1.so: $(OBJ) richcmp1.o
$(LD) $(LDOPTS) $(OBJ) richcmp1.o -o richcmp1.so
richcmp2.so: $(OBJ) richcmp2.o
$(LD) $(LDOPTS) $(OBJ) richcmp2.o -o richcmp2.so
richcmp3.so: $(OBJ) richcmp3.o
$(LD) $(LDOPTS) $(OBJ) richcmp3.o -o richcmp3.so
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
test:
$(PYEXE) comprehensive.py
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_convts.py
$(PYEXE) test_nested.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
$(PYEXE) test_richcmp1.py
$(PYEXE) test_richcmp2.py
$(PYEXE) test_richcmp3.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
rm -f comprehensive.o boost_python_test.so
rm -f abstract.o abstract.so
rm -f getting_started1.o getting_started1.so
rm -f getting_started2.o getting_started2.so
rm -f simple_vector.o simple_vector.so
rm -f do_it_yourself_convts.o do_it_yourself_convts.so
rm -f nested.o nested.so
rm -f pickle1.o pickle1.so
rm -f pickle2.o pickle2.so
rm -f pickle3.o pickle3.so
rm -f noncopyable_export.o noncopyable_export.so
rm -f noncopyable_import.o noncopyable_import.so
rm -f ivect.o ivect.so
rm -f dvect.o dvect.so
rm -f richcmp1.o richcmp1.so
rm -f richcmp2.o richcmp2.so
rm -f richcmp3.o richcmp3.so
rm -f so_locations *.pyc
rm -rf cxx_repository
softlinks:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) softlinks
unlink:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) unlink
cp:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) cp
rm:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) rm
depend:
@ cat Makefile.nodepend; \
for obj in $(DEPOBJ); \
do \
bn=`echo "$$obj" | cut -d. -f1`; \
$(CPP) $(CPPOPTS) $(MAKEDEP) "$$bn".cpp; \
done

View File

@@ -1,150 +0,0 @@
# Usage:
#
# make copy Copy the sources and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make del Remove the sources and tests
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
ROOT=R:
BOOST_WIN="$(ROOT)\boost"
BOOST_UNIX=$(HOME)/boost
PYEXE="C:\Program files\Python\python.exe"
PYINC=/I"C:\Program files\Python\include"
PYLIB="C:\Program files\Python\libs\python15.lib"
#PYEXE="C:\Python21\python.exe"
#PYINC=/I"C:\Python21\include"
#PYLIB="C:\Python21\libs\python21.lib"
STDOPTS=/nologo /MD /GR /GX /Zm200
WARNOPTS=
OPTOPTS=
CPP=cl.exe
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) /I$(BOOST_WIN) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
LD=link.exe
LDOPTS=/nologo /dll /incremental:no
OBJ=classes.obj conversions.obj extension_class.obj functions.obj \
init_function.obj module_builder.obj \
objects.obj types.obj cross_module.obj
.SUFFIXES: .obj .cpp
all: boost_python.lib \
boost_python_test.pyd \
abstract.pyd \
getting_started1.pyd getting_started2.pyd \
simple_vector.pyd \
do_it_yourself_convts.pyd \
nested.pyd \
pickle1.pyd pickle2.pyd pickle3.pyd \
noncopyable_export.pyd noncopyable_import.pyd \
ivect.pyd dvect.pyd \
richcmp1.pyd richcmp2.pyd richcmp3.pyd
boost_python.lib: $(OBJ)
$(LD) -lib /nologo /out:boost_python.lib $(OBJ)
boost_python_test.pyd: $(OBJ) comprehensive.obj
$(LD) $(LDOPTS) $(OBJ) comprehensive.obj $(PYLIB) /export:initboost_python_test /out:"boost_python_test.pyd"
abstract.pyd: $(OBJ) abstract.obj
$(LD) $(LDOPTS) $(OBJ) abstract.obj $(PYLIB) /export:initabstract /out:"abstract.pyd"
getting_started1.pyd: $(OBJ) getting_started1.obj
$(LD) $(LDOPTS) $(OBJ) getting_started1.obj $(PYLIB) /export:initgetting_started1 /out:"getting_started1.pyd"
getting_started2.pyd: $(OBJ) getting_started2.obj
$(LD) $(LDOPTS) $(OBJ) getting_started2.obj $(PYLIB) /export:initgetting_started2 /out:"getting_started2.pyd"
simple_vector.pyd: $(OBJ) simple_vector.obj
$(LD) $(LDOPTS) $(OBJ) simple_vector.obj $(PYLIB) /export:initsimple_vector /out:"simple_vector.pyd"
do_it_yourself_convts.pyd: $(OBJ) do_it_yourself_convts.obj
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_convts.obj $(PYLIB) /export:initdo_it_yourself_convts /out:"do_it_yourself_convts.pyd"
nested.pyd: $(OBJ) nested.obj
$(LD) $(LDOPTS) $(OBJ) nested.obj $(PYLIB) /export:initnested /out:"nested.pyd"
pickle1.pyd: $(OBJ) pickle1.obj
$(LD) $(LDOPTS) $(OBJ) pickle1.obj $(PYLIB) /export:initpickle1 /out:"pickle1.pyd"
pickle2.pyd: $(OBJ) pickle2.obj
$(LD) $(LDOPTS) $(OBJ) pickle2.obj $(PYLIB) /export:initpickle2 /out:"pickle2.pyd"
pickle3.pyd: $(OBJ) pickle3.obj
$(LD) $(LDOPTS) $(OBJ) pickle3.obj $(PYLIB) /export:initpickle3 /out:"pickle3.pyd"
noncopyable_export.pyd: $(OBJ) noncopyable_export.obj
$(LD) $(LDOPTS) $(OBJ) noncopyable_export.obj $(PYLIB) /export:initnoncopyable_export /out:"noncopyable_export.pyd"
noncopyable_import.pyd: $(OBJ) noncopyable_import.obj
$(LD) $(LDOPTS) $(OBJ) noncopyable_import.obj $(PYLIB) /export:initnoncopyable_import /out:"noncopyable_import.pyd"
ivect.pyd: $(OBJ) ivect.obj
$(LD) $(LDOPTS) $(OBJ) ivect.obj $(PYLIB) /export:initivect /out:"ivect.pyd"
dvect.pyd: $(OBJ) dvect.obj
$(LD) $(LDOPTS) $(OBJ) dvect.obj $(PYLIB) /export:initdvect /out:"dvect.pyd"
richcmp1.pyd: $(OBJ) richcmp1.obj
$(LD) $(LDOPTS) $(OBJ) richcmp1.obj $(PYLIB) /export:initrichcmp1 /out:"richcmp1.pyd"
richcmp2.pyd: $(OBJ) richcmp2.obj
$(LD) $(LDOPTS) $(OBJ) richcmp2.obj $(PYLIB) /export:initrichcmp2 /out:"richcmp2.pyd"
richcmp3.pyd: $(OBJ) richcmp3.obj
$(LD) $(LDOPTS) $(OBJ) richcmp3.obj $(PYLIB) /export:initrichcmp3 /out:"richcmp3.pyd"
.cpp.obj:
$(CPP) $(CPPOPTS) /c $*.cpp
test:
$(PYEXE) comprehensive.py --broken-auto-ptr
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_convts.py
$(PYEXE) test_nested.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py --broken-auto-ptr
$(PYEXE) test_richcmp1.py
$(PYEXE) test_richcmp2.py
$(PYEXE) test_richcmp3.py
clean:
-del *.obj
-del *.lib
-del *.exp
-del *.idb
-del *.pyd
-del *.pyc
softlinks:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) softlinks
unlink:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) unlink
cp:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) cp
rm:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) rm
copy:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) copy
del:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) del

1127
doc/PyConDC_2003/bpl.html Executable file

File diff suppressed because it is too large Load Diff

BIN
doc/PyConDC_2003/bpl.pdf Executable file

Binary file not shown.

947
doc/PyConDC_2003/bpl.txt Normal file
View File

@@ -0,0 +1,947 @@
+++++++++++++++++++++++++++++++++++++++++++
Building Hybrid Systems with Boost.Python
+++++++++++++++++++++++++++++++++++++++++++
:Author: David Abrahams
:Contact: dave@boost-consulting.com
:organization: `Boost Consulting`_
:date: $Date$
:Author: Ralf W. Grosse-Kunstleve
:copyright: Copyright David Abrahams and Ralf W. Grosse-Kunstleve 2003. All rights reserved
.. contents:: Table of Contents
.. _`Boost Consulting`: http://www.boost-consulting.com
==========
Abstract
==========
Boost.Python is an open source C++ library which provides a concise
IDL-like interface for binding C++ classes and functions to
Python. Leveraging the full power of C++ compile-time introspection
and of recently developed metaprogramming techniques, this is achieved
entirely in pure C++, without introducing a new syntax.
Boost.Python's rich set of features and high-level interface make it
possible to engineer packages from the ground up as hybrid systems,
giving programmers easy and coherent access to both the efficient
compile-time polymorphism of C++ and the extremely convenient run-time
polymorphism of Python.
==============
Introduction
==============
Python and C++ are in many ways as different as two languages could
be: while C++ is usually compiled to machine-code, Python is
interpreted. Python's dynamic type system is often cited as the
foundation of its flexibility, while in C++ static typing is the
cornerstone of its efficiency. C++ has an intricate and difficult
compile-time meta-language, while in Python, practically everything
happens at runtime.
Yet for many programmers, these very differences mean that Python and
C++ complement one another perfectly. Performance bottlenecks in
Python programs can be rewritten in C++ for maximal speed, and
authors of powerful C++ libraries choose Python as a middleware
language for its flexible system integration capabilities.
Furthermore, the surface differences mask some strong similarities:
* 'C'-family control structures (if, while, for...)
* Support for object-orientation, functional programming, and generic
programming (these are both *multi-paradigm* programming languages.)
* Comprehensive operator overloading facilities, recognizing the
importance of syntactic variability for readability and
expressivity.
* High-level concepts such as collections and iterators.
* High-level encapsulation facilities (C++: namespaces, Python: modules)
to support the design of re-usable libraries.
* Exception-handling for effective management of error conditions.
* C++ idioms in common use, such as handle/body classes and
reference-counted smart pointers mirror Python reference semantics.
Given Python's rich 'C' interoperability API, it should in principle
be possible to expose C++ type and function interfaces to Python with
an analogous interface to their C++ counterparts. However, the
facilities provided by Python alone for integration with C++ are
relatively meager. Compared to C++ and Python, 'C' has only very
rudimentary abstraction facilities, and support for exception-handling
is completely missing. 'C' extension module writers are required to
manually manage Python reference counts, which is both annoyingly
tedious and extremely error-prone. Traditional extension modules also
tend to contain a great deal of boilerplate code repetition which
makes them difficult to maintain, especially when wrapping an evolving
API.
These limitations have lead to the development of a variety of wrapping
systems. SWIG_ is probably the most popular package for the
integration of C/C++ and Python. A more recent development is SIP_,
which was specifically designed for interfacing Python with the Qt_
graphical user interface library. Both SWIG and SIP introduce their
own specialized languages for customizing inter-language bindings.
This has certain advantages, but having to deal with three different
languages (Python, C/C++ and the interface language) also introduces
practical and mental difficulties. The CXX_ package demonstrates an
interesting alternative. It shows that at least some parts of
Python's 'C' API can be wrapped and presented through a much more
user-friendly C++ interface. However, unlike SWIG and SIP, CXX does
not include support for wrapping C++ classes as new Python types.
The features and goals of Boost.Python_ overlap significantly with
many of these other systems. That said, Boost.Python attempts to
maximize convenience and flexibility without introducing a separate
wrapping language. Instead, it presents the user with a high-level
C++ interface for wrapping C++ classes and functions, managing much of
the complexity behind-the-scenes with static metaprogramming.
Boost.Python also goes beyond the scope of earlier systems by
providing:
* Support for C++ virtual functions that can be overridden in Python.
* Comprehensive lifetime management facilities for low-level C++
pointers and references.
* Support for organizing extensions as Python packages,
with a central registry for inter-language type conversions.
* A safe and convenient mechanism for tying into Python's powerful
serialization engine (pickle).
* Coherence with the rules for handling C++ lvalues and rvalues that
can only come from a deep understanding of both the Python and C++
type systems.
The key insight that sparked the development of Boost.Python is that
much of the boilerplate code in traditional extension modules could be
eliminated using C++ compile-time introspection. Each argument of a
wrapped C++ function must be extracted from a Python object using a
procedure that depends on the argument type. Similarly the function's
return type determines how the return value will be converted from C++
to Python. Of course argument and return types are part of each
function's type, and this is exactly the source from which
Boost.Python deduces most of the information required.
This approach leads to *user guided wrapping*: as much information is
extracted directly from the source code to be wrapped as is possible
within the framework of pure C++, and some additional information is
supplied explicitly by the user. Mostly the guidance is mechanical
and little real intervention is required. Because the interface
specification is written in the same full-featured language as the
code being exposed, the user has unprecedented power available when
she does need to take control.
.. _Python: http://www.python.org/
.. _SWIG: http://www.swig.org/
.. _SIP: http://www.riverbankcomputing.co.uk/sip/index.php
.. _Qt: http://www.trolltech.com/
.. _CXX: http://cxx.sourceforge.net/
.. _Boost.Python: http://www.boost.org/libs/python/doc
===========================
Boost.Python Design Goals
===========================
The primary goal of Boost.Python is to allow users to expose C++
classes and functions to Python using nothing more than a C++
compiler. In broad strokes, the user experience should be one of
directly manipulating C++ objects from Python.
However, it's also important not to translate all interfaces *too*
literally: the idioms of each language must be respected. For
example, though C++ and Python both have an iterator concept, they are
expressed very differently. Boost.Python has to be able to bridge the
interface gap.
It must be possible to insulate Python users from crashes resulting
from trivial misuses of C++ interfaces, such as accessing
already-deleted objects. By the same token the library should
insulate C++ users from low-level Python 'C' API, replacing
error-prone 'C' interfaces like manual reference-count management and
raw ``PyObject`` pointers with more-robust alternatives.
Support for component-based development is crucial, so that C++ types
exposed in one extension module can be passed to functions exposed in
another without loss of crucial information like C++ inheritance
relationships.
Finally, all wrapping must be *non-intrusive*, without modifying or
even seeing the original C++ source code. Existing C++ libraries have
to be wrappable by third parties who only have access to header files
and binaries.
==========================
Hello Boost.Python World
==========================
And now for a preview of Boost.Python, and how it improves on the raw
facilities offered by Python. Here's a function we might want to
expose::
char const* greet(unsigned x)
{
static char const* const msgs[] = { "hello", "Boost.Python", "world!" };
if (x > 2)
throw std::range_error("greet: index out of range");
return msgs[x];
}
To wrap this function in standard C++ using the Python 'C' API, we'd
need something like this::
extern "C" // all Python interactions use 'C' linkage and calling convention
{
// Wrapper to handle argument/result conversion and checking
PyObject* greet_wrap(PyObject* args, PyObject * keywords)
{
int x;
if (PyArg_ParseTuple(args, "i", &x)) // extract/check arguments
{
char const* result = greet(x); // invoke wrapped function
return PyString_FromString(result); // convert result to Python
}
return 0; // error occurred
}
// Table of wrapped functions to be exposed by the module
static PyMethodDef methods[] = {
{ "greet", greet_wrap, METH_VARARGS, "return one of 3 parts of a greeting" }
, { NULL, NULL, 0, NULL } // sentinel
};
// module initialization function
DL_EXPORT init_hello()
{
(void) Py_InitModule("hello", methods); // add the methods to the module
}
}
Now here's the wrapping code we'd use to expose it with Boost.Python::
#include <boost/python.hpp>
using namespace boost::python;
BOOST_PYTHON_MODULE(hello)
{
def("greet", greet, "return one of 3 parts of a greeting");
}
and here it is in action::
>>> import hello
>>> for x in range(3):
... print hello.greet(x)
...
hello
Boost.Python
world!
Aside from the fact that the 'C' API version is much more verbose,
it's worth noting a few things that it doesn't handle correctly:
* The original function accepts an unsigned integer, and the Python
'C' API only gives us a way of extracting signed integers. The
Boost.Python version will raise a Python exception if we try to pass
a negative number to ``hello.greet``, but the other one will proceed
to do whatever the C++ implementation does when converting an
negative integer to unsigned (usually wrapping to some very large
number), and pass the incorrect translation on to the wrapped
function.
* That brings us to the second problem: if the C++ ``greet()``
function is called with a number greater than 2, it will throw an
exception. Typically, if a C++ exception propagates across the
boundary with code generated by a 'C' compiler, it will cause a
crash. As you can see in the first version, there's no C++
scaffolding there to prevent this from happening. Functions wrapped
by Boost.Python automatically include an exception-handling layer
which protects Python users by translating unhandled C++ exceptions
into a corresponding Python exception.
* A slightly more-subtle limitation is that the argument conversion
used in the Python 'C' API case can only get that integer ``x`` in
*one way*. PyArg_ParseTuple can't convert Python ``long`` objects
(arbitrary-precision integers) which happen to fit in an ``unsigned
int`` but not in a ``signed long``, nor will it ever handle a
wrapped C++ class with a user-defined implicit ``operator unsigned
int()`` conversion. Boost.Python's dynamic type conversion
registry allows users to add arbitrary conversion methods.
==================
Library Overview
==================
This section outlines some of the library's major features. Except as
neccessary to avoid confusion, details of library implementation are
omitted.
------------------
Exposing Classes
------------------
C++ classes and structs are exposed with a similarly-terse interface.
Given::
struct World
{
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
The following code will expose it in our extension module::
#include <boost/python.hpp>
BOOST_PYTHON_MODULE(hello)
{
class_<World>("World")
.def("greet", &World::greet)
.def("set", &World::set)
;
}
Although this code has a certain pythonic familiarity, people
sometimes find the syntax bit confusing because it doesn't look like
most of the C++ code they're used to. All the same, this is just
standard C++. Because of their flexible syntax and operator
overloading, C++ and Python are great for defining domain-specific
(sub)languages
(DSLs), and that's what we've done in Boost.Python. To break it down::
class_<World>("World")
constructs an unnamed object of type ``class_<World>`` and passes
``"World"`` to its constructor. This creates a new-style Python class
called ``World`` in the extension module, and associates it with the
C++ type ``World`` in the Boost.Python type conversion registry. We
might have also written::
class_<World> w("World");
but that would've been more verbose, since we'd have to name ``w``
again to invoke its ``def()`` member function::
w.def("greet", &World::greet)
There's nothing special about the location of the dot for member
access in the original example: C++ allows any amount of whitespace on
either side of a token, and placing the dot at the beginning of each
line allows us to chain as many successive calls to member functions
as we like with a uniform syntax. The other key fact that allows
chaining is that ``class_<>`` member functions all return a reference
to ``*this``.
So the example is equivalent to::
class_<World> w("World");
w.def("greet", &World::greet);
w.def("set", &World::set);
It's occasionally useful to be able to break down the components of a
Boost.Python class wrapper in this way, but the rest of this article
will stick to the terse syntax.
For completeness, here's the wrapped class in use: ::
>>> import hello
>>> planet = hello.World()
>>> planet.set('howdy')
>>> planet.greet()
'howdy'
Constructors
============
Since our ``World`` class is just a plain ``struct``, it has an
implicit no-argument (nullary) constructor. Boost.Python exposes the
nullary constructor by default, which is why we were able to write: ::
>>> planet = hello.World()
However, well-designed classes in any language may require constructor
arguments in order to establish their invariants. Unlike Python,
where ``__init__`` is just a specially-named method, In C++
constructors cannot be handled like ordinary member functions. In
particular, we can't take their address: ``&World::World`` is an
error. The library provides a different interface for specifying
constructors. Given::
struct World
{
World(std::string msg); // added constructor
...
we can modify our wrapping code as follows::
class_<World>("World", init<std::string>())
...
of course, a C++ class may have additional constructors, and we can
expose those as well by passing more instances of ``init<...>`` to
``def()``::
class_<World>("World", init<std::string>())
.def(init<double, double>())
...
Boost.Python allows wrapped functions, member functions, and
constructors to be overloaded to mirror C++ overloading.
Data Members and Properties
===========================
Any publicly-accessible data members in a C++ class can be easily
exposed as either ``readonly`` or ``readwrite`` attributes::
class_<World>("World", init<std::string>())
.def_readonly("msg", &World::msg)
...
and can be used directly in Python: ::
>>> planet = hello.World('howdy')
>>> planet.msg
'howdy'
This does *not* result in adding attributes to the ``World`` instance
``__dict__``, which can result in substantial memory savings when
wrapping large data structures. In fact, no instance ``__dict__``
will be created at all unless attributes are explicitly added from
Python. Boost.Python owes this capability to the new Python 2.2 type
system, in particular the descriptor interface and ``property`` type.
In C++, publicly-accessible data members are considered a sign of poor
design because they break encapsulation, and style guides usually
dictate the use of "getter" and "setter" functions instead. In
Python, however, ``__getattr__``, ``__setattr__``, and since 2.2,
``property`` mean that attribute access is just one more
well-encapsulated syntactic tool at the programmer's disposal.
Boost.Python bridges this idiomatic gap by making Python ``property``
creation directly available to users. If ``msg`` were private, we
could still expose it as attribute in Python as follows::
class_<World>("World", init<std::string>())
.add_property("msg", &World::greet, &World::set)
...
The example above mirrors the familiar usage of properties in Python
2.2+: ::
>>> class World(object):
... __init__(self, msg):
... self.__msg = msg
... def greet(self):
... return self.__msg
... def set(self, msg):
... self.__msg = msg
... msg = property(greet, set)
Operator Overloading
====================
The ability to write arithmetic operators for user-defined types has
been a major factor in the success of both languages for numerical
computation, and the success of packages like NumPy_ attests to the
power of exposing operators in extension modules. Boost.Python
provides a concise mechanism for wrapping operator overloads. The
example below shows a fragment from a wrapper for the Boost rational
number library::
class_<rational<int> >("rational_int")
.def(init<int, int>()) // constructor, e.g. rational_int(3,4)
.def("numerator", &rational<int>::numerator)
.def("denominator", &rational<int>::denominator)
.def(-self) // __neg__ (unary minus)
.def(self + self) // __add__ (homogeneous)
.def(self * self) // __mul__
.def(self + int()) // __add__ (heterogenous)
.def(int() + self) // __radd__
...
The magic is performed using a simplified application of "expression
templates" [VELD1995]_, a technique originally developed for
optimization of high-performance matrix algebra expressions. The
essence is that instead of performing the computation immediately,
operators are overloaded to construct a type *representing* the
computation. In matrix algebra, dramatic optimizations are often
available when the structure of an entire expression can be taken into
account, rather than evaluating each operation "greedily".
Boost.Python uses the same technique to build an appropriate Python
method object based on expressions involving ``self``.
.. _NumPy: http://www.pfdubois.com/numpy/
Inheritance
===========
C++ inheritance relationships can be represented to Boost.Python by adding
an optional ``bases<...>`` argument to the ``class_<...>`` template
parameter list as follows::
class_<Derived, bases<Base1,Base2> >("Derived")
...
This has two effects:
1. When the ``class_<...>`` is created, Python type objects
corresponding to ``Base1`` and ``Base2`` are looked up in
Boost.Python's registry, and are used as bases for the new Python
``Derived`` type object, so methods exposed for the Python ``Base1``
and ``Base2`` types are automatically members of the ``Derived``
type. Because the registry is global, this works correctly even if
``Derived`` is exposed in a different module from either of its
bases.
2. C++ conversions from ``Derived`` to its bases are added to the
Boost.Python registry. Thus wrapped C++ methods expecting (a
pointer or reference to) an object of either base type can be
called with an object wrapping a ``Derived`` instance. Wrapped
member functions of class ``T`` are treated as though they have an
implicit first argument of ``T&``, so these conversions are
neccessary to allow the base class methods to be called for derived
objects.
Of course it's possible to derive new Python classes from wrapped C++
class instances. Because Boost.Python uses the new-style class
system, that works very much as for the Python built-in types. There
is one significant detail in which it differs: the built-in types
generally establish their invariants in their ``__new__`` function, so
that derived classes do not need to call ``__init__`` on the base
class before invoking its methods : ::
>>> class L(list):
... def __init__(self):
... pass
...
>>> L().reverse()
>>>
Because C++ object construction is a one-step operation, C++ instance
data cannot be constructed until the arguments are available, in the
``__init__`` function: ::
>>> class D(SomeBoostPythonClass):
... def __init__(self):
... pass
...
>>> D().some_boost_python_method()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: bad argument type for built-in operation
This happened because Boost.Python couldn't find instance data of type
``SomeBoostPythonClass`` within the ``D`` instance; ``D``'s ``__init__``
function masked construction of the base class. It could be corrected
by either removing ``D``'s ``__init__`` function or having it call
``SomeBoostPythonClass.__init__(...)`` explicitly.
Virtual Functions
=================
Deriving new types in Python from extension classes is not very
interesting unless they can be used polymorphically from C++. In
other words, Python method implementations should appear to override
the implementation of C++ virtual functions when called *through base
class pointers/references from C++*. Since the only way to alter the
behavior of a virtual function is to override it in a derived class,
the user must build a special derived class to dispatch a polymorphic
class' virtual functions::
//
// interface to wrap:
//
class Base
{
public:
virtual int f(std::string x) { return 42; }
virtual ~Base();
};
int calls_f(Base const& b, std::string x) { return b.f(x); }
//
// Wrapping Code
//
// Dispatcher class
struct BaseWrap : Base
{
// Store a pointer to the Python object
BaseWrap(PyObject* self_) : self(self_) {}
PyObject* self;
// Default implementation, for when f is not overridden
int f_default(std::string x) { return this->Base::f(x); }
// Dispatch implementation
int f(std::string x) { return call_method<int>(self, "f", x); }
};
...
def("calls_f", calls_f);
class_<Base, BaseWrap>("Base")
.def("f", &Base::f, &BaseWrap::f_default)
;
Now here's some Python code which demonstrates: ::
>>> class Derived(Base):
... def f(self, s):
... return len(s)
...
>>> calls_f(Base(), 'foo')
42
>>> calls_f(Derived(), 'forty-two')
9
Things to notice about the dispatcher class:
* The key element which allows overriding in Python is the
``call_method`` invocation, which uses the same global type
conversion registry as the C++ function wrapping does to convert its
arguments from C++ to Python and its return type from Python to C++.
* Any constructor signatures you wish to wrap must be replicated with
an initial ``PyObject*`` argument
* The dispatcher must store this argument so that it can be used to
invoke ``call_method``
* The ``f_default`` member function is needed when the function being
exposed is not pure virtual; there's no other way ``Base::f`` can be
called on an object of type ``BaseWrap``, since it overrides ``f``.
Deeper Reflection on the Horizon?
=================================
Admittedly, this formula is tedious to repeat, especially on a project
with many polymorphic classes. That it is neccessary reflects some
limitations in C++'s compile-time introspection capabilities: there's
no way to enumerate the members of a class and find out which are
virtual functions. At least one very promising project has been
started to write a front-end which can generate these dispatchers (and
other wrapping code) automatically from C++ headers.
Pyste_ is being developed by Bruno da Silva de Oliveira. It builds on
GCC_XML_, which generates an XML version of GCC's internal program
representation. Since GCC is a highly-conformant C++ compiler, this
ensures correct handling of the most-sophisticated template code and
full access to the underlying type system. In keeping with the
Boost.Python philosophy, a Pyste interface description is neither
intrusive on the code being wrapped, nor expressed in some unfamiliar
language: instead it is a 100% pure Python script. If Pyste is
successful it will mark a move away from wrapping everything directly
in C++ for many of our users. It will also allow us the choice to
shift some of the metaprogram code from C++ to Python. We expect that
soon, not only our users but the Boost.Python developers themselves
will be "thinking hybrid" about their own code.
.. _`GCC_XML`: http://www.gccxml.org/HTML/Index.html
.. _`Pyste`: http://www.boost.org/libs/python/pyste
---------------
Serialization
---------------
*Serialization* is the process of converting objects in memory to a
form that can be stored on disk or sent over a network connection. The
serialized object (most often a plain string) can be retrieved and
converted back to the original object. A good serialization system will
automatically convert entire object hierarchies. Python's standard
``pickle`` module is just such a system. It leverages the language's strong
runtime introspection facilities for serializing practically arbitrary
user-defined objects. With a few simple and unintrusive provisions this
powerful machinery can be extended to also work for wrapped C++ objects.
Here is an example::
#include <string>
struct World
{
World(std::string a_msg) : msg(a_msg) {}
std::string greet() const { return msg; }
std::string msg;
};
#include <boost/python.hpp>
using namespace boost::python;
struct World_picklers : pickle_suite
{
static tuple
getinitargs(World const& w) { return make_tuple(w.greet()); }
};
BOOST_PYTHON_MODULE(hello)
{
class_<World>("World", init<std::string>())
.def("greet", &World::greet)
.def_pickle(World_picklers())
;
}
Now let's create a ``World`` object and put it to rest on disk::
>>> import hello
>>> import pickle
>>> a_world = hello.World("howdy")
>>> pickle.dump(a_world, open("my_world", "w"))
In a potentially *different script* on a potentially *different
computer* with a potentially *different operating system*::
>>> import pickle
>>> resurrected_world = pickle.load(open("my_world", "r"))
>>> resurrected_world.greet()
'howdy'
Of course the ``cPickle`` module can also be used for faster
processing.
Boost.Python's ``pickle_suite`` fully supports the ``pickle`` protocol
defined in the standard Python documentation. Like a __getinitargs__
function in Python, the pickle_suite's getinitargs() is responsible for
creating the argument tuple that will be use to reconstruct the pickled
object. The other elements of the Python pickling protocol,
__getstate__ and __setstate__ can be optionally provided via C++
getstate and setstate functions. C++'s static type system allows the
library to ensure at compile-time that nonsensical combinations of
functions (e.g. getstate without setstate) are not used.
Enabling serialization of more complex C++ objects requires a little
more work than is shown in the example above. Fortunately the
``object`` interface (see next section) greatly helps in keeping the
code manageable.
------------------
Object interface
------------------
Experienced 'C' language extension module authors will be familiar
with the ubiquitous ``PyObject*``, manual reference-counting, and the
need to remember which API calls return "new" (owned) references or
"borrowed" (raw) references. These constraints are not just
cumbersome but also a major source of errors, especially in the
presence of exceptions.
Boost.Python provides a class ``object`` which automates reference
counting and provides conversion to Python from C++ objects of
arbitrary type. This significantly reduces the learning effort for
prospective extension module writers.
Creating an ``object`` from any other type is extremely simple::
object s("hello, world"); // s manages a Python string
``object`` has templated interactions with all other types, with
automatic to-python conversions. It happens so naturally that it's
easily overlooked::
object ten_Os = 10 * s[4]; // -> "oooooooooo"
In the example above, ``4`` and ``10`` are converted to Python objects
before the indexing and multiplication operations are invoked.
The ``extract<T>`` class template can be used to convert Python objects
to C++ types::
double x = extract<double>(o);
If a conversion in either direction cannot be performed, an
appropriate exception is thrown at runtime.
The ``object`` type is accompanied by a set of derived types
that mirror the Python built-in types such as ``list``, ``dict``,
``tuple``, etc. as much as possible. This enables convenient
manipulation of these high-level types from C++::
dict d;
d["some"] = "thing";
d["lucky_number"] = 13;
list l = d.keys();
This almost looks and works like regular Python code, but it is pure
C++. Of course we can wrap C++ functions which accept or return
``object`` instances.
=================
Thinking hybrid
=================
Because of the practical and mental difficulties of combining
programming languages, it is common to settle a single language at the
outset of any development effort. For many applications, performance
considerations dictate the use of a compiled language for the core
algorithms. Unfortunately, due to the complexity of the static type
system, the price we pay for runtime performance is often a
significant increase in development time. Experience shows that
writing maintainable C++ code usually takes longer and requires *far*
more hard-earned working experience than developing comparable Python
code. Even when developers are comfortable working exclusively in
compiled languages, they often augment their systems by some type of
ad hoc scripting layer for the benefit of their users without ever
availing themselves of the same advantages.
Boost.Python enables us to *think hybrid*. Python can be used for
rapidly prototyping a new application; its ease of use and the large
pool of standard libraries give us a head start on the way to a
working system. If necessary, the working code can be used to
discover rate-limiting hotspots. To maximize performance these can
be reimplemented in C++, together with the Boost.Python bindings
needed to tie them back into the existing higher-level procedure.
Of course, this *top-down* approach is less attractive if it is clear
from the start that many algorithms will eventually have to be
implemented in C++. Fortunately Boost.Python also enables us to
pursue a *bottom-up* approach. We have used this approach very
successfully in the development of a toolbox for scientific
applications. The toolbox started out mainly as a library of C++
classes with Boost.Python bindings, and for a while the growth was
mainly concentrated on the C++ parts. However, as the toolbox is
becoming more complete, more and more newly added functionality can be
implemented in Python.
.. image:: python_cpp_mix.jpg
This figure shows the estimated ratio of newly added C++ and Python
code over time as new algorithms are implemented. We expect this
ratio to level out near 70% Python. Being able to solve new problems
mostly in Python rather than a more difficult statically typed
language is the return on our investment in Boost.Python. The ability
to access all of our code from Python allows a broader group of
developers to use it in the rapid development of new applications.
=====================
Development history
=====================
The first version of Boost.Python was developed in 2000 by Dave
Abrahams at Dragon Systems, where he was privileged to have Tim Peters
as a guide to "The Zen of Python". One of Dave's jobs was to develop
a Python-based natural language processing system. Since it was
eventually going to be targeting embedded hardware, it was always
assumed that the compute-intensive core would be rewritten in C++ to
optimize speed and memory footprint [#proto]_. The project also wanted to
test all of its C++ code using Python test scripts [#test]_. The only
tool we knew of for binding C++ and Python was SWIG_, and at the time
its handling of C++ was weak. It would be false to claim any deep
insight into the possible advantages of Boost.Python's approach at
this point. Dave's interest and expertise in fancy C++ template
tricks had just reached the point where he could do some real damage,
and Boost.Python emerged as it did because it filled a need and
because it seemed like a cool thing to try.
This early version was aimed at many of the same basic goals we've
described in this paper, differing most-noticeably by having a
slightly more cumbersome syntax and by lack of special support for
operator overloading, pickling, and component-based development.
These last three features were quickly added by Ullrich Koethe and
Ralf Grosse-Kunstleve [#feature]_, and other enthusiastic contributors arrived
on the scene to contribute enhancements like support for nested
modules and static member functions.
By early 2001 development had stabilized and few new features were
being added, however a disturbing new fact came to light: Ralf had
begun testing Boost.Python on pre-release versions of a compiler using
the EDG_ front-end, and the mechanism at the core of Boost.Python
responsible for handling conversions between Python and C++ types was
failing to compile. As it turned out, we had been exploiting a very
common bug in the implementation of all the C++ compilers we had
tested. We knew that as C++ compilers rapidly became more
standards-compliant, the library would begin failing on more
platforms. Unfortunately, because the mechanism was so central to the
functioning of the library, fixing the problem looked very difficult.
Fortunately, later that year Lawrence Berkeley and later Lawrence
Livermore National labs contracted with `Boost Consulting`_ for support
and development of Boost.Python, and there was a new opportunity to
address fundamental issues and ensure a future for the library. A
redesign effort began with the low level type conversion architecture,
building in standards-compliance and support for component-based
development (in contrast to version 1 where conversions had to be
explicitly imported and exported across module boundaries). A new
analysis of the relationship between the Python and C++ objects was
done, resulting in more intuitive handling for C++ lvalues and
rvalues.
The emergence of a powerful new type system in Python 2.2 made the
choice of whether to maintain compatibility with Python 1.5.2 easy:
the opportunity to throw away a great deal of elaborate code for
emulating classic Python classes alone was too good to pass up. In
addition, Python iterators and descriptors provided crucial and
elegant tools for representing similar C++ constructs. The
development of the generalized ``object`` interface allowed us to
further shield C++ programmers from the dangers and syntactic burdens
of the Python 'C' API. A great number of other features including C++
exception translation, improved support for overloaded functions, and
most significantly, CallPolicies for handling pointers and
references, were added during this period.
In October 2002, version 2 of Boost.Python was released. Development
since then has concentrated on improved support for C++ runtime
polymorphism and smart pointers. Peter Dimov's ingenious
``boost::shared_ptr`` design in particular has allowed us to give the
hybrid developer a consistent interface for moving objects back and
forth across the language barrier without loss of information. At
first, we were concerned that the sophistication and complexity of the
Boost.Python v2 implementation might discourage contributors, but the
emergence of Pyste_ and several other significant feature
contributions have laid those fears to rest. Daily questions on the
Python C++-sig and a backlog of desired improvements show that the
library is getting used. To us, the future looks bright.
.. _`EDG`: http://www.edg.com
=============
Conclusions
=============
Boost.Python achieves seamless interoperability between two rich and
complimentary language environments. Because it leverages template
metaprogramming to introspect about types and functions, the user
never has to learn a third syntax: the interface definitions are
written in concise and maintainable C++. Also, the wrapping system
doesn't have to parse C++ headers or represent the type system: the
compiler does that work for us.
Computationally intensive tasks play to the strengths of C++ and are
often impossible to implement efficiently in pure Python, while jobs
like serialization that are trivial in Python can be very difficult in
pure C++. Given the luxury of building a hybrid software system from
the ground up, we can approach design with new confidence and power.
===========
Citations
===========
.. [VELD1995] T. Veldhuizen, "Expression Templates," C++ Report,
Vol. 7 No. 5 June 1995, pp. 26-31.
http://osl.iu.edu/~tveldhui/papers/Expression-Templates/exprtmpl.html
===========
Footnotes
===========
.. [#proto] In retrospect, it seems that "thinking hybrid" from the
ground up might have been better for the NLP system: the
natural component boundaries defined by the pure python
prototype turned out to be inappropriate for getting the
desired performance and memory footprint out of the C++ core,
which eventually caused some redesign overhead on the Python
side when the core was moved to C++.
.. [#test] We also have some reservations about driving all C++
testing through a Python interface, unless that's the only way
it will be ultimately used. Any transition across language
boundaries with such different object models can inevitably
mask bugs.
.. [#feature] These features were expressed very differently in v1 of
Boost.Python

View File

@@ -0,0 +1,908 @@
.. This is a comment. Note how any initial comments are moved by
transforms to after the document title, subtitle, and docinfo.
.. Need intro and conclusion
.. Exposing classes
.. Constructors
.. Overloading
.. Properties and data members
.. Inheritance
.. Operators and Special Functions
.. Virtual Functions
.. Call Policies
++++++++++++++++++++++++++++++++++++++++++++++
Introducing Boost.Python (Extended Abstract)
++++++++++++++++++++++++++++++++++++++++++++++
.. bibliographic fields (which also require a transform):
:Author: David Abrahams
:Address: 45 Walnut Street
Somerville, MA 02143
:Contact: dave@boost-consulting.com
:organization: `Boost Consulting`_
:date: $Date$
:status: This is a "work in progress"
:version: 1
:copyright: Copyright David Abrahams 2002. All rights reserved
:Dedication:
For my girlfriend, wife, and partner Luann
:abstract:
This paper describes the Boost.Python library, a system for
C++/Python interoperability.
.. meta::
:keywords: Boost,python,Boost.Python,C++
:description lang=en: C++/Python interoperability with Boost.Python
.. contents:: Table of Contents
.. section-numbering::
.. _`Boost Consulting`: http://www.boost-consulting.com
==============
Introduction
==============
Python and C++ are in many ways as different as two languages could
be: while C++ is usually compiled to machine-code, Python is
interpreted. Python's dynamic type system is often cited as the
foundation of its flexibility, while in C++ static typing is the
cornerstone of its efficiency. C++ has an intricate and difficult
meta-language to support compile-time polymorphism, while Python is
a uniform language with convenient runtime polymorphism.
Yet for many programmers, these very differences mean that Python and
C++ complement one another perfectly. Performance bottlenecks in
Python programs can be rewritten in C++ for maximal speed, and
authors of powerful C++ libraries choose Python as a middleware
language for its flexible system integration capabilities.
Furthermore, the surface differences mask some strong similarities:
* 'C'-family control structures (if, while, for...)
* Support for object-orientation, functional programming, and generic
programming (these are both *multi-paradigm* programming languages.)
* Comprehensive operator overloading facilities, recognizing the
importance of syntactic variability for readability and
expressivity.
* High-level concepts such as collections and iterators.
* High-level encapsulation facilities (C++: namespaces, Python: modules)
to support the design of re-usable libraries.
* Exception-handling for effective management of error conditions.
* C++ idioms in common use, such as handle/body classes and
reference-counted smart pointers mirror Python reference semantics.
Python provides a rich 'C' API for writers of 'C' extension modules.
Unfortunately, using this API directly for exposing C++ type and
function interfaces to Python is much more tedious than it should be.
This is mainly due to the limitations of the 'C' language. Compared to
C++ and Python, 'C' has only very rudimentary abstraction facilities.
Support for exception-handling is completely missing. One important
undesirable consequence is that 'C' extension module writers are
required to manually manage Python reference counts. Another unpleasant
consequence is a very high degree of repetition of similar code in 'C'
extension modules. Of course highly redundant code does not only cause
frustration for the module writer, but is also very difficult to
maintain.
The limitations of the 'C' API have lead to the development of a
variety of wrapping systems. SWIG_ is probably the most popular package
for the integration of C/C++ and Python. A more recent development is
the SIP_ package, which is specifically designed for interfacing Python
with the Qt_ graphical user interface library. Both SWIG and SIP
introduce a new specialized language for defining the inter-language
bindings. Of course being able to use a specialized language has
advantages, but having to deal with three different languages (Python,
C/C++ and the interface language) also introduces practical and mental
difficulties. The CXX_ package demonstrates an interesting alternative.
It shows that at least some parts of Python's 'C' API can be wrapped
and presented through a much more user-friendly C++ interface. However,
unlike SWIG and SIP, CXX does not include support for wrapping C++
classes as new Python types. CXX is also no longer actively developed.
In some respects Boost.Python combines ideas from SWIG and SIP with
ideas from CXX. Like SWIG and SIP, Boost.Python is a system for
wrapping C++ classes as new Python "built-in" types, and C/C++
functions as Python functions. Like CXX, Boost.Python presents Python's
'C' API through a C++ interface. Boost.Python goes beyond the scope of
other systems with the unique support for C++ virtual functions that
are overrideable in Python, support for organizing extensions as Python
packages with a central registry for inter-language type conversions,
and a convenient mechanism for tying into Python's serialization engine
(pickle). Importantly, all this is achieved without introducing a new
syntax. Boost.Python leverages the power of C++ meta-programming
techniques to introspect about the C++ type system, and presents a
simple, IDL-like C++ interface for exposing C/C++ code in extension
modules. Boost.Python is a pure C++ library, the inter-language
bindings are defined in pure C++, and other than a C++ compiler only
Python itself is required to get started with Boost.Python. Last but
not least, Boost.Python is an unrestricted open source library. There
are no strings attached even for commercial applications.
.. _SWIG: http://www.swig.org/
.. _SIP: http://www.riverbankcomputing.co.uk/sip/index.php
.. _Qt: http://www.trolltech.com/
.. _CXX: http://cxx.sourceforge.net/
===========================
Boost.Python Design Goals
===========================
The primary goal of Boost.Python is to allow users to expose C++
classes and functions to Python using nothing more than a C++
compiler. In broad strokes, the user experience should be one of
directly manipulating C++ objects from Python.
However, it's also important not to translate all interfaces *too*
literally: the idioms of each language must be respected. For
example, though C++ and Python both have an iterator concept, they are
expressed very differently. Boost.Python has to be able to bridge the
interface gap.
It must be possible to insulate Python users from crashes resulting
from trivial misuses of C++ interfaces, such as accessing
already-deleted objects. By the same token the library should
insulate C++ users from low-level Python 'C' API, replacing
error-prone 'C' interfaces like manual reference-count management and
raw ``PyObject`` pointers with more-robust alternatives.
Support for component-based development is crucial, so that C++ types
exposed in one extension module can be passed to functions exposed in
another without loss of crucial information like C++ inheritance
relationships.
Finally, all wrapping must be *non-intrusive*, without modifying or
even seeing the original C++ source code. Existing C++ libraries have
to be wrappable by third parties who only have access to header files
and binaries.
==========================
Hello Boost.Python World
==========================
And now for a preview of Boost.Python, and how it improves on the raw
facilities offered by Python. Here's a function we might want to
expose::
char const* greet(unsigned x)
{
static char const* const msgs[] = { "hello", "Boost.Python", "world!" };
if (x > 2)
throw std::range_error("greet: index out of range");
return msgs[x];
}
To wrap this function in standard C++ using the Python 'C' API, we'd
need something like this::
extern "C" // all Python interactions use 'C' linkage and calling convention
{
// Wrapper to handle argument/result conversion and checking
PyObject* greet_wrap(PyObject* args, PyObject * keywords)
{
int x;
if (PyArg_ParseTuple(args, "i", &x)) // extract/check arguments
{
char const* result = greet(x); // invoke wrapped function
return PyString_FromString(result); // convert result to Python
}
return 0; // error occurred
}
// Table of wrapped functions to be exposed by the module
static PyMethodDef methods[] = {
{ "greet", greet_wrap, METH_VARARGS, "return one of 3 parts of a greeting" }
, { NULL, NULL, 0, NULL } // sentinel
};
// module initialization function
DL_EXPORT init_hello()
{
(void) Py_InitModule("hello", methods); // add the methods to the module
}
}
Now here's the wrapping code we'd use to expose it with Boost.Python::
#include <boost/python.hpp>
using namespace boost::python;
BOOST_PYTHON_MODULE(hello)
{
def("greet", greet, "return one of 3 parts of a greeting");
}
and here it is in action::
>>> import hello
>>> for x in range(3):
... print hello.greet(x)
...
hello
Boost.Python
world!
Aside from the fact that the 'C' API version is much more verbose than
the BPL one, it's worth noting that it doesn't handle a few things
correctly:
* The original function accepts an unsigned integer, and the Python
'C' API only gives us a way of extracting signed integers. The
Boost.Python version will raise a Python exception if we try to pass
a negative number to ``hello.greet``, but the other one will proceed
to do whatever the C++ implementation does when converting an
negative integer to unsigned (usually wrapping to some very large
number), and pass the incorrect translation on to the wrapped
function.
* That brings us to the second problem: if the C++ ``greet()``
function is called with a number greater than 2, it will throw an
exception. Typically, if a C++ exception propagates across the
boundary with code generated by a 'C' compiler, it will cause a
crash. As you can see in the first version, there's no C++
scaffolding there to prevent this from happening. Functions wrapped
by Boost.Python automatically include an exception-handling layer
which protects Python users by translating unhandled C++ exceptions
into a corresponding Python exception.
* A slightly more-subtle limitation is that the argument conversion
used in the Python 'C' API case can only get that integer ``x`` in
*one way*. PyArg_ParseTuple can't convert Python ``long`` objects
(arbitrary-precision integers) which happen to fit in an ``unsigned
int`` but not in a ``signed long``, nor will it ever handle a
wrapped C++ class with a user-defined implicit ``operator unsigned
int()`` conversion. The BPL's dynamic type conversion registry
allows users to add arbitrary conversion methods.
==================
Library Overview
==================
This section outlines some of the library's major features. Except as
neccessary to avoid confusion, details of library implementation are
omitted.
-------------------------------------------
The fundamental type-conversion mechanism
-------------------------------------------
XXX This needs to be rewritten.
Every argument of every wrapped function requires some kind of
extraction code to convert it from Python to C++. Likewise, the
function return value has to be converted from C++ to Python.
Appropriate Python exceptions must be raised if the conversion fails.
Argument and return types are part of the function's type, and much of
this tedium can be relieved if the wrapping system can extract that
information through introspection.
Passing a wrapped C++ derived class instance to a C++ function
accepting a pointer or reference to a base class requires knowledge of
the inheritance relationship and how to translate the address of a base
class into that of a derived class.
------------------
Exposing Classes
------------------
C++ classes and structs are exposed with a similarly-terse interface.
Given::
struct World
{
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
The following code will expose it in our extension module::
#include <boost/python.hpp>
BOOST_PYTHON_MODULE(hello)
{
class_<World>("World")
.def("greet", &World::greet)
.def("set", &World::set)
;
}
Although this code has a certain pythonic familiarity, people
sometimes find the syntax bit confusing because it doesn't look like
most of the C++ code they're used to. All the same, this is just
standard C++. Because of their flexible syntax and operator
overloading, C++ and Python are great for defining domain-specific
(sub)languages
(DSLs), and that's what we've done in BPL. To break it down::
class_<World>("World")
constructs an unnamed object of type ``class_<World>`` and passes
``"World"`` to its constructor. This creates a new-style Python class
called ``World`` in the extension module, and associates it with the
C++ type ``World`` in the BPL type conversion registry. We might have
also written::
class_<World> w("World");
but that would've been more verbose, since we'd have to name ``w``
again to invoke its ``def()`` member function::
w.def("greet", &World::greet)
There's nothing special about the location of the dot for member
access in the original example: C++ allows any amount of whitespace on
either side of a token, and placing the dot at the beginning of each
line allows us to chain as many successive calls to member functions
as we like with a uniform syntax. The other key fact that allows
chaining is that ``class_<>`` member functions all return a reference
to ``*this``.
So the example is equivalent to::
class_<World> w("World");
w.def("greet", &World::greet);
w.def("set", &World::set);
It's occasionally useful to be able to break down the components of a
Boost.Python class wrapper in this way, but the rest of this paper
will tend to stick to the terse syntax.
For completeness, here's the wrapped class in use:
>>> import hello
>>> planet = hello.World()
>>> planet.set('howdy')
>>> planet.greet()
'howdy'
Constructors
============
Since our ``World`` class is just a plain ``struct``, it has an
implicit no-argument (nullary) constructor. Boost.Python exposes the
nullary constructor by default, which is why we were able to write:
>>> planet = hello.World()
However, well-designed classes in any language may require constructor
arguments in order to establish their invariants. Unlike Python,
where ``__init__`` is just a specially-named method, In C++
constructors cannot be handled like ordinary member functions. In
particular, we can't take their address: ``&World::World`` is an
error. The library provides a different interface for specifying
constructors. Given::
struct World
{
World(std::string msg); // added constructor
...
we can modify our wrapping code as follows::
class_<World>("World", init<std::string>())
...
of course, a C++ class may have additional constructors, and we can
expose those as well by passing more instances of ``init<...>`` to
``def()``::
class_<World>("World", init<std::string>())
.def(init<double, double>())
...
Boost.Python allows wrapped functions, member functions, and
constructors to be overloaded to mirror C++ overloading.
Data Members and Properties
===========================
Any publicly-accessible data members in a C++ class can be easily
exposed as either ``readonly`` or ``readwrite`` attributes::
class_<World>("World", init<std::string>())
.def_readonly("msg", &World::msg)
...
and can be used directly in Python:
>>> planet = hello.World('howdy')
>>> planet.msg
'howdy'
This does *not* result in adding attributes to the ``World`` instance
``__dict__``, which can result in substantial memory savings when
wrapping large data structures. In fact, no instance ``__dict__``
will be created at all unless attributes are explicitly added from
Python. BPL owes this capability to the new Python 2.2 type system,
in particular the descriptor interface and ``property`` type.
In C++, publicly-accessible data members are considered a sign of poor
design because they break encapsulation, and style guides usually
dictate the use of "getter" and "setter" functions instead. In
Python, however, ``__getattr__``, ``__setattr__``, and since 2.2,
``property`` mean that attribute access is just one more
well-encapsulated syntactic tool at the programmer's disposal. BPL
bridges this idiomatic gap by making Python ``property`` creation
directly available to users. So if ``msg`` were private, we could
still expose it as attribute in Python as follows::
class_<World>("World", init<std::string>())
.add_property("msg", &World::greet, &World::set)
...
The example above mirrors the familiar usage of properties in Python
2.2+:
>>> class World(object):
... __init__(self, msg):
... self.__msg = msg
... def greet(self):
... return self.__msg
... def set(self, msg):
... self.__msg = msg
... msg = property(greet, set)
Operators and Special Functions
===============================
The ability to write arithmetic operators for user-defined types that
C++ and Python both allow the definition of has been a major factor in
the popularity of both languages for scientific computing. The
success of packages like NumPy attests to the power of exposing
operators in extension modules. In this example we'll wrap a class
representing a position in a large file::
class FilePos { /*...*/ };
// Linear offset
FilePos operator+(FilePos, int);
FilePos operator+(int, FilePos);
FilePos operator-(FilePos, int);
// Distance between two FilePos objects
int operator-(FilePos, FilePos);
// Offset with assignment
FilePos& operator+=(FilePos&, int);
FilePos& operator-=(FilePos&, int);
// Comparison
bool operator<(FilePos, FilePos);
The wrapping code looks like this::
class_<FilePos>("FilePos")
.def(self + int()) // __add__
.def(int() + self) // __radd__
.def(self - int()) // __sub__
.def(self - self) // __sub__
.def(self += int()) // __iadd__
.def(self -= int()) // __isub__
.def(self < self); // __lt__
;
The magic is performed using a simplified application of "expression
templates" [VELD1995]_, a technique originally developed by for
optimization of high-performance matrix algebra expressions. The
essence is that instead of performing the computation immediately,
operators are overloaded to construct a type *representing* the
computation. In matrix algebra, dramatic optimizations are often
available when the structure of an entire expression can be taken into
account, rather than processing each operation "greedily".
Boost.Python uses the same technique to build an appropriate Python
callable object based on an expression involving ``self``, which is
then added to the class.
Inheritance
===========
C++ inheritance relationships can be represented to Boost.Python by adding
an optional ``bases<...>`` argument to the ``class_<...>`` template
parameter list as follows::
class_<Derived, bases<Base1,Base2> >("Derived")
...
This has two effects:
1. When the ``class_<...>`` is created, Python type objects
corresponding to ``Base1`` and ``Base2`` are looked up in the BPL
registry, and are used as bases for the new Python ``Derived`` type
object [#mi]_, so methods exposed for the Python ``Base1`` and
``Base2`` types are automatically members of the ``Derived`` type.
Because the registry is global, this works correctly even if
``Derived`` is exposed in a different module from either of its
bases.
2. C++ conversions from ``Derived`` to its bases are added to the
Boost.Python registry. Thus wrapped C++ methods expecting (a
pointer or reference to) an object of either base type can be
called with an object wrapping a ``Derived`` instance. Wrapped
member functions of class ``T`` are treated as though they have an
implicit first argument of ``T&``, so these conversions are
neccessary to allow the base class methods to be called for derived
objects.
Of course it's possible to derive new Python classes from wrapped C++
class instances. Because Boost.Python uses the new-style class
system, that works very much as for the Python built-in types. There
is one significant detail in which it differs: the built-in types
generally establish their invariants in their ``__new__`` function, so
that derived classes do not need to call ``__init__`` on the base
class before invoking its methods :
>>> class L(list):
... def __init__(self):
... pass
...
>>> L().reverse()
>>>
Because C++ object construction is a one-step operation, C++ instance
data cannot be constructed until the arguments are available, in the
``__init__`` function:
>>> class D(SomeBPLClass):
... def __init__(self):
... pass
...
>>> D().some_bpl_method()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: bad argument type for built-in operation
This happened because Boost.Python couldn't find instance data of type
``SomeBPLClass`` within the ``D`` instance; ``D``'s ``__init__``
function masked construction of the base class. It could be corrected
by either removing ``D``'s ``__init__`` function or having it call
``SomeBPLClass.__init__(...)`` explicitly.
Virtual Functions
=================
Deriving new types in Python from extension classes is not very
interesting unless they can be used polymorphically from C++. In
other words, Python method implementations should appear to override
the implementation of C++ virtual functions when called *through base
class pointers/references from C++*. Since the only way to alter the
behavior of a virtual function is to override it in a derived class,
the user must build a special derived class to dispatch a polymorphic
class' virtual functions::
//
// interface to wrap:
//
class Base
{
public:
virtual int f(std::string x) { return 42; }
virtual ~Base();
};
int calls_f(Base const& b, std::string x) { return b.f(x); }
//
// Wrapping Code
//
// Dispatcher class
struct BaseWrap : Base
{
// Store a pointer to the Python object
BaseWrap(PyObject* self_) : self(self_) {}
PyObject* self;
// Default implementation, for when f is not overridden
int f_default(std::string x) { return this->Base::f(x); }
// Dispatch implementation
int f(std::string x) { return call_method<int>(self, "f", x); }
};
...
def("calls_f", calls_f);
class_<Base, BaseWrap>("Base")
.def("f", &Base::f, &BaseWrap::f_default)
;
Now here's some Python code which demonstrates:
>>> class Derived(Base):
... def f(self, s):
... return len(s)
...
>>> calls_f(Base(), 'foo')
42
>>> calls_f(Derived(), 'forty-two')
9
Things to notice about the dispatcher class:
* The key element which allows overriding in Python is the
``call_method`` invocation, which uses the same global type
conversion registry as the C++ function wrapping does to convert its
arguments from C++ to Python and its return type from Python to C++.
* Any constructor signatures you wish to wrap must be replicated with
an initial ``PyObject*`` argument
* The dispatcher must store this argument so that it can be used to
invoke ``call_method``
* The ``f_default`` member function is needed when the function being
exposed is not pure virtual; there's no other way ``Base::f`` can be
called on an object of type ``BaseWrap``, since it overrides ``f``.
Admittedly, this formula is tedious to repeat, especially on a project
with many polymorphic classes; that it is neccessary reflects
limitations in C++'s compile-time reflection capabilities. Several
efforts are underway to write front-ends for Boost.Python which can
generate these dispatchers (and other wrapping code) automatically.
If these are successful it will mark a move away from wrapping
everything directly in pure C++ for many of our users.
---------------
Serialization
---------------
*Serialization* is the process of converting objects in memory to a
form that can be stored on disk or sent over a network connection. The
serialized object (most often a plain string) can be retrieved and
converted back to the original object. A good serialization system will
automatically convert entire object hierarchies. Python's standard
``pickle`` module is such a system. It leverages the language's strong
runtime introspection facilities for serializing practically arbitrary
user-defined objects. With a few simple and unintrusive provisions this
powerful machinery can be extended to also work for wrapped C++ objects.
Here is an example::
#include <string>
struct World
{
World(std::string a_msg) : msg(a_msg) {}
std::string greet() const { return msg; }
std::string msg;
};
#include <boost/python.hpp>
using namespace boost::python;
struct World_picklers : pickle_suite
{
static tuple
getinitargs(World const& w) { return make_tuple(w.greet()); }
};
BOOST_PYTHON_MODULE(hello)
{
class_<World>("World", init<std::string>())
.def("greet", &World::greet)
.def_pickle(World_picklers())
;
}
Now let's create a ``World`` object and put it to rest on disk::
>>> import hello
>>> import pickle
>>> a_world = hello.World("howdy")
>>> pickle.dump(a_world, open("my_world", "w"))
In a potentially *different script* on a potentially *different
computer* with a potentially *different operating system*::
>>> import pickle
>>> resurrected_world = pickle.load(open("my_world", "r"))
>>> resurrected_world.greet()
'howdy'
Of course the ``cPickle`` module can also be used for faster
processing.
Boost.Python's ``pickle_suite`` fully supports the ``pickle`` protocol
defined in the standard Python documentation. There is a one-to-one
correspondence between the standard pickling methods (``__getinitargs__``,
``__getstate__``, ``__setstate__``) and the functions defined by the
user in the class derived from ``pickle_suite`` (``getinitargs``,
``getstate``, ``setstate``). The ``class_::def_pickle()`` member function
is used to establish the Python bindings for all user-defined functions
simultaneously. Correct signatures for these functions are enforced at
compile time. Non-sensical combinations of the three pickle functions
are also rejected at compile time. These measures are designed to
help the user in avoiding obvious errors.
Enabling serialization of more complex C++ objects requires a little
more work than is shown in the example above. Fortunately the
``object`` interface (see next section) greatly helps in keeping the
code manageable.
------------------
Object interface
------------------
Experienced extension module authors will be familiar with the 'C' view
of Python objects, the ubiquitous ``PyObject*``. Most if not all Python
'C' API functions involve ``PyObject*`` as arguments or return type. A
major complication is the raw reference counting interface presented to
the 'C' programmer. E.g. some API functions return *new references* and
others return *borrowed references*. It is up to the extension module
writer to properly increment and decrement reference counts. This
quickly becomes cumbersome and error prone, especially if there are
multiple execution paths.
Boost.Python provides a type ``object`` which is essentially a high
level wrapper around ``PyObject*``. ``object`` automates reference
counting as much as possible. It also provides the facilities for
converting arbitrary C++ types to Python objects and vice versa.
This significantly reduces the learning effort for prospective
extension module writers.
Creating an ``object`` from any other type is extremely simple::
object o(3);
``object`` has templated interactions with all other types, with
automatic to-python conversions. It happens so naturally that it's
easily overlooked.
The ``extract<T>`` class template can be used to convert Python objects
to C++ types::
double x = extract<double>(o);
All registered user-defined conversions are automatically accessible
through the ``object`` interface. With reference to the ``World`` class
defined in previous examples::
object as_python_object(World("howdy"));
World back_as_c_plus_plus_object = extract<World>(as_python_object);
If a C++ type cannot be converted to a Python object an appropriate
exception is thrown at runtime. Similarly, an appropriate exception is
thrown if a C++ type cannot be extracted from a Python object.
``extract<T>`` provides facilities for avoiding exceptions if this is
desired.
The ``object::attr()`` member function is available for accessing
and manipulating attributes of Python objects. For example::
object planet(World());
planet.attr("set")("howdy");
``planet.attr("set")`` returns a callable ``object``. ``"howdy"`` is
converted to a Python string object which is then passed as an argument
to the ``set`` method.
The ``object`` type is accompanied by a set of derived types
that mirror the Python built-in types such as ``list``, ``dict``,
``tuple``, etc. as much as possible. This enables convenient
manipulation of these high-level types from C++::
dict d;
d["some"] = "thing";
d["lucky_number"] = 13;
list l = d.keys();
This almost looks and works like regular Python code, but it is pure C++.
=================
Thinking hybrid
=================
For many applications runtime performance considerations are very
important. This is particularly true for most scientific applications.
Often the performance considerations dictate the use of a compiled
language for the core algorithms. Traditionally the decision to use a
particular programming language is an exclusive one. Because of the
practical and mental difficulties of combining different languages many
systems are written in just one language. This is quite unfortunate
because the price payed for runtime performance is typically a
significant overhead due to static typing. For example, our experience
shows that developing maintainable C++ code is typically much more
time-consuming and requires much more hard-earned working experience
than developing useful Python code. A related observation is that many
compiled packages are augmented by some type of rudimentary scripting
layer. These ad hoc solutions clearly show that many times a compiled
language alone does not get the job done. On the other hand it is also
clear that a pure Python implementation is too slow for numerically
intensive production code.
Boost.Python enables us to *think hybrid* when developing new
applications. Python can be used for rapidly prototyping a
new application. Python's ease of use and the large pool of standard
libraries give us a head start on the way to a first working system. If
necessary, the working procedure can be used to discover the
rate-limiting algorithms. To maximize performance these can be
reimplemented in C++, together with the Boost.Python bindings needed to
tie them back into the existing higher-level procedure.
Of course, this *top-down* approach is less attractive if it is clear
from the start that many algorithms will eventually have to be
implemented in a compiled language. Fortunately Boost.Python also
enables us to pursue a *bottom-up* approach. We have used this approach
very successfully in the development of a toolbox for scientific
applications (scitbx) that we will describe elsewhere. The toolbox
started out mainly as a library of C++ classes with Boost.Python
bindings, and for a while the growth was mainly concentrated on the C++
parts. However, as the toolbox is becoming more complete, more and more
newly added functionality can be implemented in Python. We expect this
trend to continue, as illustrated qualitatively in this figure:
.. image:: python_cpp_mix.png
This figure shows the ratio of newly added C++ and Python code over
time as new algorithms are implemented. We expect this ratio to level
out near 70% Python. The increasing ability to solve new problems
mostly with the easy-to-use Python language rather than a necessarily
more arcane statically typed language is the return on the investment
of learning how to use Boost.Python. The ability to solve some problems
entirely using only Python will enable a larger group of people to
participate in the rapid development of new applications.
=============
Conclusions
=============
The examples in this paper illustrate that Boost.Python enables
seamless interoperability between C++ and Python. Importantly, this is
achieved without introducing a third syntax: the Python/C++ interface
definitions are written in pure C++. This avoids any problems with
parsing the C++ code to be interfaced to Python, yet the interface
definitions are concise and maintainable. Freed from most of the
development-time penalties of crossing a language boundary, software
designers can take full advantage of two rich and complimentary
language environments. In practice it turns out that some things are
very difficult to do with pure Python/C (e.g. an efficient array
library with an intuitive interface in the compiled language) and
others are very difficult to do with pure C++ (e.g. serialization).
If one has the luxury of being able to design a software system as a
hybrid system from the ground up there are many new ways of avoiding
road blocks in one language or the other.
.. I'm not ready to give up on all of this quite yet
.. Perhaps one day we'll have a language with the simplicity and
expressive power of Python and the compile-time muscle of C++. Being
able to take advantage of all of these facilities without paying the
mental and development-time penalties of crossing a language barrier
would bring enormous benefits. Until then, interoperability tools
like Boost.Python can help lower the barrier and make the benefits of
both languages more accessible to both communities.
===========
Footnotes
===========
.. [#mi] For hard-core new-style class/extension module writers it is
worth noting that the normal requirement that all extension classes
with data form a layout-compatible single-inheritance chain is
lifted for Boost.Python extension classes. Clearly, either
``Base1`` or ``Base2`` has to occupy a different offset in the
``Derived`` class instance. This is possible because the wrapped
part of BPL extension class instances is never assumed to have a
fixed offset within the wrapper.
===========
Citations
===========
.. [VELD1995] T. Veldhuizen, "Expression Templates," C++ Report,
Vol. 7 No. 5 June 1995, pp. 26-31.
http://osl.iu.edu/~tveldhui/papers/Expression-Templates/exprtmpl.html

View File

@@ -0,0 +1,188 @@
/*
:Author: David Goodger
:Contact: goodger@users.sourceforge.net
:date: $Date$
:version: $Revision$
:copyright: This stylesheet has been placed in the public domain.
Default cascading style sheet for the HTML output of Docutils.
*/
.first {
margin-top: 0 }
.last {
margin-bottom: 0 }
a.toc-backref {
text-decoration: none ;
color: black }
dd {
margin-bottom: 0.5em }
div.abstract {
margin: 2em 5em }
div.abstract p.topic-title {
font-weight: bold ;
text-align: center }
div.attention, div.caution, div.danger, div.error, div.hint,
div.important, div.note, div.tip, div.warning {
margin: 2em ;
border: medium outset ;
padding: 1em }
div.attention p.admonition-title, div.caution p.admonition-title,
div.danger p.admonition-title, div.error p.admonition-title,
div.warning p.admonition-title {
color: red ;
font-weight: bold ;
font-family: sans-serif }
div.hint p.admonition-title, div.important p.admonition-title,
div.note p.admonition-title, div.tip p.admonition-title {
font-weight: bold ;
font-family: sans-serif }
div.dedication {
margin: 2em 5em ;
text-align: center ;
font-style: italic }
div.dedication p.topic-title {
font-weight: bold ;
font-style: normal }
div.figure {
margin-left: 2em }
div.footer, div.header {
font-size: smaller }
div.system-messages {
margin: 5em }
div.system-messages h1 {
color: red }
div.system-message {
border: medium outset ;
padding: 1em }
div.system-message p.system-message-title {
color: red ;
font-weight: bold }
div.topic {
margin: 2em }
h1.title {
text-align: center }
h2.subtitle {
text-align: center }
hr {
width: 75% }
ol.simple, ul.simple {
margin-bottom: 1em }
ol.arabic {
list-style: decimal }
ol.loweralpha {
list-style: lower-alpha }
ol.upperalpha {
list-style: upper-alpha }
ol.lowerroman {
list-style: lower-roman }
ol.upperroman {
list-style: upper-roman }
p.caption {
font-style: italic }
p.credits {
font-style: italic ;
font-size: smaller }
p.label {
white-space: nowrap }
p.topic-title {
font-weight: bold }
pre.address {
margin-bottom: 0 ;
margin-top: 0 ;
font-family: serif ;
font-size: 100% }
pre.line-block {
font-family: serif ;
font-size: 100% }
pre.literal-block, pre.doctest-block {
margin-left: 2em ;
margin-right: 2em ;
background-color: #eeeeee }
span.classifier {
font-family: sans-serif ;
font-style: oblique }
span.classifier-delimiter {
font-family: sans-serif ;
font-weight: bold }
span.interpreted {
font-family: sans-serif }
span.option-argument {
font-style: italic }
span.pre {
white-space: pre }
span.problematic {
color: red }
table {
margin-top: 0.5em ;
margin-bottom: 0.5em }
table.citation {
border-left: solid thin gray ;
padding-left: 0.5ex }
table.docinfo {
margin: 2em 4em }
table.footnote {
border-left: solid thin black ;
padding-left: 0.5ex }
td, th {
padding-left: 0.5em ;
padding-right: 0.5em ;
vertical-align: top }
th.docinfo-name, th.field-name {
font-weight: bold ;
text-align: left ;
white-space: nowrap }
h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt {
font-size: 100% }
tt {
background-color: #eeeeee }
ul.auto-toc {
list-style-type: none }

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

59
doc/boost.css Normal file
View File

@@ -0,0 +1,59 @@
H1
{
FONT-SIZE: 200%
COLOR: #00007f
}
H2
{
FONT-SIZE: 150%;
}
H3
{
FONT-SIZE: 125%;
}
H4
{
FONT-SIZE: 108%;
}
BODY
{
FONT-SIZE: 100%;
BACKGROUND-COLOR: #ffffff
}
PRE
{
MARGIN-LEFT: 2pc;
FONT-SIZE: 80%;
BACKGROUND-COLOR: #dfffff
}
CODE
{
FONT-SIZE: 95%;
white-space: pre
}
.index
{
TEXT-ALIGN: left
}
.page-index
{
TEXT-ALIGN: left
}
.definition
{
TEXT-ALIGN: left
}
.footnote
{
FONT-SIZE: 66%;
VERTICAL-ALIGN: super;
TEXT-DECORATION: none
}
.function-semantics
{
CLEAR: left
}
.metafunction-semantics
{
CLEAR: left
}

View File

@@ -1,180 +1,402 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<meta name="generator" content="HTML Tidy, see www.w3.org">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="boost.css">
<title>Building an Extension Module</title>
<title>Boost.Python - Building and Testing</title>
</head>
<div>
<h1><img width="277" height="86" align="center" src=
"../../../c++boost.gif" alt="c++boost.gif (8819 bytes)">Building an
Extension Module</h1>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../c++boost.gif" border="0"></a></h3>
</td>
<p>The build process for Boost is currently undergoing some evolution,
and, it is to be hoped, improvement. The following facts may help:
<td valign="top">
<h1 align="center"><a href="index.html">Boost.Python</a></h1>
<hr>
Makefiles for various platforms and a Visual Studio project
reside in the Boost subdirectory <tt>libs/python/build</tt>.
Build targets include:
<h2 align="center">Building and Testing</h2>
</td>
</tr>
</table>
<hr>
<ul>
<li>The <tt>boost_python</tt> library for static linking with your
extension module. On the various Unices, this library will be
called <tt>libboost_python.a</tt>. When using Visual C++, the
library will be called <tt>boost_python.lib</tt>.
<h2>Contents</h2>
<p>
<li>A comprehensive test of Boost.Python features. This test builds
a Boost.Python extension module, then runs Python to import the
module, and runs a series of tests on it using <tt><a href=
"../test/doctest.py">doctest</a></tt>. Source code for the module
and tests is available in the Boost subdirectory
<tt>libs/python/test</tt>.
<dl class="Reference">
<dt><a href="#requirements">Requirements</a></dt>
<p>
<li>Various examples from the Boost subdirectory
<tt>libs/python/example</tt>.
All these examples include a doctest modeled
on the comprehensive test above.
<dt><a href="#building">Building Boost.Python</a></dt>
</ul>
<dd>
<dl class="index">
<dt><a href="#configuration">Configuration</a></dt>
<hr>
There is a group of makefiles with support for simultaneous
compilation on multiple platforms and a consistent set of
features that build the <tt>boost_python</tt> library for static
linking, the comprehensive test, and all examples in
<tt>libs/python/example</tt>:
<dt><a href="#results">Results</a></dt>
<ul>
<li><a href="../build/vc60.mak">vc60.mak</a>:
Visual C++ 6.0 Service Pack 4
<dt><a href="#cygwin">Notes for Cygwin GCC Users</a></dt>
<li><a href="../build/mingw32.mak">mingw32.mak</a>:
mingw32 (Win32-targeted) gcc 2.95.2
<dt><a href="#testing">Testing</a></dt>
</dl>
</dd>
<li><a href="../build/linux_gcc.mak">linux_gcc.mak</a>:
gcc 2.95.2 on Linux/Unix
<dt><a href="#building_ext">Building your Extension Module</a></dt>
<li><a href="../build/tru64_cxx.mak">tru64_cxx.mak</a>:
Compaq Alpha using the Compaq cxx compiler
<dd>
<dl>
<dt><a href="#easy">The Easy Way</a></dt>
<li><a href="../build/irix_CC.mak">irix_CC.mak</a>:
Silicon Graphics IRIX 6.5 CC compiler
<dt><a href="#outside">Building your module outside the Boost
project tree</a></dt>
</dl>
</dd>
</ul>
<a href="http://cctbx.sourceforge.net/page_installation_adv.html#installation_boost_python"
>Usage of these makefiles is described here.</a>
<dt><a href="#variants">Build Variants</a></dt>
<hr>
There is another group of makefiles for GNU make.
These makefiles are less redundant than the makefiles
in the group above,
but the list of compilation targets is not as complete
and there is no support for simultaneous compilation
on multiple platforms.
<dt><a href="#VisualStudio">Building Using the Microsoft Visual Studio
IDE</a></dt>
</dl>
<hr>
<ul>
<li><a href="../build/como.mak">como.mak</a>:
Comeau C++ on Linux
<h2><a name="requirements">Requirements</a></h2>
<b>Boost.Python</b> version 2 requires <a href=
"http://www.python.org/2.2">Python 2.2</a> <i>or <a href=
"http://www.python.org">newer</a></i>. An unsupported archive of
Boost.Python version 1, which works with versions of Python since 1.5.2,
is available <a href="../build/python_v1.zip">here</a>.
<li><a href="../build/gcc.mak">gcc.mak</a>:
GCC on Linux/Unix.
<h2><a name="building">Building Boost.Python</a></h2>
</ul>
<p>Normally, Boost.Python extension modules must be linked with the
<code>boost_python</code> shared library. In special circumstances you
may want to link to a static version of the <code>boost_python</code>
library, but if multiple Boost.Pythone extension modules are used
together, it will prevent sharing of types across extension modules, and
consume extra code space. To build <code>boost_python</code>, use <a
href="../../../tools/build/index.html">Boost.Build</a> in the usual way
from the <code>libs/python/build</code> subdirectory of your boost
installation (if you have already built boost from the top level this may
have no effect, since the work is already done).</p>
<hr>
A project workspace for Microsoft Visual Studio is provided at <tt><a
href="../build/build.dsw">libs/python/build/build.dsw</a></tt>. The
include paths for this project may need to be changed for your
installation. They currently assume that python has been installed at
<tt>c:\tools\python</tt>. Three configurations of all targets are
supported:
<h3><a name="configuration">Configuration</a></h3>
You may need to configure the following variables to point Boost.Build at
your Python installation:
<ul>
<li>Release (optimization, <tt>-DNDEBUG</tt>)
<table border="1" summary="build configuration variables">
<tr>
<th>Variable Name</th>
<li>Debug (no optimization <tt>-D_DEBUG</tt>)
<th>Semantics</th>
<li>DebugPython (no optimization, <tt>-D_DEBUG
-DBOOST_DEBUG_PYTHON</tt>)
</ul>
<th>Default</th>
<p>When extension modules are built with Visual C++ using
<tt>-D_DEBUG</tt>, Python defaults to <i>force</i> linking with a
special debugging version of the Python DLL. Since this debug DLL
isn't supplied with the default Python installation for Windows,
Boost.Python uses <tt><a href=
"../../../boost/python/detail/wrap_python.hpp">boost/python/detail/wrap_python.hpp</a></tt>
to temporarily undefine <tt>_DEBUG</tt> when <tt>Python.h</tt> is
<tt>#include</tt>d.
<th>Notes</th>
</tr>
<p>If you want the extra runtime checks available with the debugging
version of the library, <tt>#define BOOST_DEBUG_PYTHON</tt> to
re-enable library forcing, and link with the DebugPython version of
<tt>boost_python.lib</tt>. You'll need to get the debugging version
of the Python executable (<tt>python_d.exe</tt>) and DLL
(<tt>python20_d.dll</tt> or <tt>python15_d.dll</tt>). The Python
sources include project files for building these. If you <a href=
"http://www.python.org">download</a> them, change the name of the
top-level directory to <tt>src</tt>, and install it under
<tt>c:\tools\python</tt>, the workspace supplied by Boost.Python will
be able to use it without modification. Just open
<tt>c:\tools\python\src\pcbuild\pcbuild.dsw</tt> and invoke "build
all" to generate all the debugging targets.
<tr>
<td><code>PYTHON_ROOT</code></td>
<p>If you do not <tt>#define BOOST_DEBUG_PYTHON</tt>, be sure that
any source files <tt>#include &lt;<a href=
"../../../boost/python/detail/wrap_python.hpp">boost/python/detail/wrap_python.hpp</a>&gt;</tt>
instead of the usual <tt>Python.h</tt>, or you will have link
incompatibilities.<br>
<td>The root directory of your Python installation</td>
<hr>
If your platform isn't directly supported, you can build a static
library from the following source files (in the Boost subdirectory
<tt>libs/python/src</tt>), or compile them directly and link the
resulting objects into your extension module:
<td>Windows:&nbsp;<code>c:/tools/python</code>
Unix:&nbsp;<code>/usr/local</code></td>
<ul>
<li><a href=
"../../../libs/python/src/classes.cpp">classes.cpp</a>
<td>On Unix, this is the <code>--with-prefix=</code> directory used
to configure Python</td>
</tr>
<li><a href=
"../../../libs/python/src/conversions.cpp">conversions.cpp</a>
<tr>
<td><code>PYTHON_VERSION</code></td>
<li><a href=
"../../../libs/python/src/cross_module.cpp">cross_module.cpp</a>
<td>The The 2-part python Major.Minor version number</td>
<li><a href=
"../../../libs/python/src/extension_class.cpp">extension_class.cpp</a>
<td><code>2.2</code></td>
<li><a href=
"../../../libs/python/src/functions.cpp">functions.cpp</a>
<td>Be sure not to include a third number, e.g. <b>not</b>
"<code>2.2.1</code>", even if that's the version you have.</td>
</tr>
<li><a href=
"../../../libs/python/src/init_function.cpp">init_function.cpp</a>
<tr>
<td><code>PYTHON_INCLUDES</code></td>
<li><a href=
"../../../libs/python/src/module_builder.cpp">module_builder.cpp</a>
<td>path to Python <code>#include</code> directories</td>
<li><a href=
"../../../libs/python/src/objects.cpp">objects.cpp</a>
<td>Autoconfigured from <code>PYTHON_ROOT</code></td>
</tr>
<li><a href=
"../../../libs/python/src/types.cpp">types.cpp</a>
</ul>
<tr>
<td><code>PYTHON_LIB_PATH</code></td>
<hr>
Next: <a href="enums.html">Wrapping Enums</a> Previous: <a href=
"under-the-hood.html">A Peek Under the Hood</a> Up: <a href=
"index.html">Top</a>
<td>path to Python library object.</td>
<hr>
<p>&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<td>Autoconfigured from <code>PYTHON_ROOT</code></td>
</tr>
<tr>
<td><code>CYGWIN_PYTHON_[DEBUG_]VERSION</code></td>
<td>The version of python being used under Cygwin. </td>
<td>$(PYTHON_VERSION)
</td>
<td>Use only when building with <a href=
"http://www.cygwin.com">Cygwin</a> GCC. This and the following
settings are useful when building with multiple toolsets on
Windows, since Cygwin GCC requires a different build of
Python.</td> </tr>
<tr>
<td><code>CYGWIN_PYTHON_[DEBUG_]ROOT</code></td>
<td>unix-style path containing the <code>include/</code>
directory containing
<code>python$(CYGWIN_PYTHON_[DEBUG_]VERSION)/python.h</code>. </td>
<td>$(PYTHON_ROOT)
</td>
<td>Use only when building with <a href=
"http://www.cygwin.com">Cygwin</a> GCC.</td> </tr>
<tr>
<td><code>CYGWIN_PYTHON_[DEBUG_]LIB_PATH</code></td>
<td>path containing the user's Cygwin Python import lib
<code>libpython$(CYGWIN_PYTHON_[DEBUG_]VERSION).dll.a</code></td>
<td>Autoconfigured from <code>CYGWIN_PYTHON_ROOT</code></td>
<td>Use only when building with <a href=
"http://www.cygwin.com">Cygwin</a> GCC.</td> </tr>
<tr>
<td><code>CYGWIN_PYTHON_[DEBUG_]DLL_PATH</code></td>
<td>path containing the user's Cygwin Python dll
(<code>libpython$(CYGWIN_PYTHON_[DEBUG_]VERSION).dll</code>)</td>
<td><code>/bin</code></td>
<td>Use only when building with <a href=
"http://www.cygwin.com">Cygwin</a> GCC.</td> </tr>
</tr>
</table>
<h3><a name="cygwin">Notes for Cygwin GCC Users</a></h3>
<p>If you are using Cygwin GCC to build extension modules, you must use a
Cygwin build of Python. The regular Win32 Python installation that you
can download from <a href="http://www.python.org">python.org</a> will not
work with your compiler because the dynamic linking conventions are
different (you can use <a href="http://www.mingw.org/">MinGW</a> GCC if
you want to build extension modules which are compatible with a stock
Win32 Python). The Cygwin installer may be able to install an appropriate
version of Python, or you can follow the traditional <a href=
"http://www.python.org/download/download_source.html">Unix installation
process</a> to build Python from source.</p>
<p>The special build configuration variables listed above as "Cygwin
only" make it possible to use a regular Win32 build of bjam to build and
test Boost.Python and Boost.Python extensions using Cygwin GCC and
targeting a Cygwin build of Python.</p>
<h3><a name="results">Results</a></h3>
<p>The build process will create a
<code>libs/python/build/bin-stage</code> subdirectory of the boost root
(or of <code>$(ALL_LOCATE_TARGET)</code>, if you have set that variable),
containing the built libraries. The libraries are actually built to
unique directories for each toolset and variant elsewhere in the
filesystem, and copied to the <code>bin-stage</code> directory as a
convenience, so if you build with multiple toolsets at once, the product
of later toolsets will overwrite that of earlier toolsets in
<code>bin-stage</code>.</p>
<h3><a name="testing">Testing</a></h3>
<p>To build and test Boost.Python, start from the
<code>libs/python/test</code> directory and invoke</p>
<blockquote>
<pre>
bjam -sTOOLS=<i><a href=
"../../../tools/build/index.html#Tools">toolset</a></i> test
</pre>
</blockquote>
This will update all of the Boost.Python v1 test and example targets. The
tests are relatively quiet by default. To get more-verbose output, you
might try
<blockquote>
<pre>
bjam -sTOOLS=<i><a href=
"../../../tools/build/index.html#Tools">toolset</a></i> -sPYTHON_TEST_ARGS=-v test
</pre>
</blockquote>
which will print each test's Python code with the expected output as it
passes.
<h2><a name="building_ext">Building your Extension Module</a></h2>
Though there are other approaches, the best way to build an extension
module using Boost.Python is with Boost.Build. If you have to use another
build system, you should use Boost.Build at least once with the
"<code><b>-n</b></code>" option so you can see the command-lines it uses,
and replicate them. You are likely to run into compilation or linking
problems otherwise.
<h3><a name="easy">The Easy Way</a></h3>
Until Boost.Build v2 is released, cross-project build dependencies are
not supported, so it works most smoothly if you add a new subproject to
your boost installation. The <code>libs/python/example</code>
subdirectory of your boost installation contains a minimal example (along
with many extra sources). To copy the example subproject:
<ol>
<li>Create a new subdirectory in, <code>libs/python</code>, say
<code>libs/python/my_project</code>.</li>
<li>Copy <code><a href=
"../example/Jamfile">libs/python/example/Jamfile</a></code> to your new
directory.</li>
<li>Edit the Jamfile as appropriate for your project. You'll want to
change the "<code>subproject</code>" rule invocation at the top, and
the names of some of the source files and/or targets.</li>
</ol>
The instructions <a href="#testing">above</a> for testing Boost.Python
apply equally to your new extension modules in this subproject.
<h3><a name="outside">Building your module outside the Boost project
tree</a></h3>
If you can't (or don't wish to) modify your boost installation, the
alternative is to create your own Boost.Build project. A similar example
you can use as a starting point is available in <code><a href=
"../example/project.zip">this archive</a></code>. You'll need to edit the
Jamfile and Jamrules files, depending on the relative location of your
Boost installation and the new project. Note that automatic testing of
extension modules is not available in this configuration.
<h2><a name="variants">Build Variants</a></h2>
Three <a href=
"../../../tools/build/build_system.htm#variants">variant</a>
configurations of all python-related targets are supported, and can be
selected by setting the <code><a href=
"../../../tools/build/build_system.htm#user_globals">BUILD</a></code>
variable:
<ul>
<li><code>release</code> (optimization, <tt>-DNDEBUG</tt>)</li>
<li><code>debug</code> (no optimization <tt>-D_DEBUG</tt>)</li>
<li><code>debug-python</code> (no optimization, <tt>-D_DEBUG
-DBOOST_DEBUG_PYTHON</tt>)</li>
</ul>
<p>The first two variants of the <code>boost_python</code> library are
built by default, and are compatible with the default Python
distribution. The <code>debug-python</code> variant corresponds to a
specially-built debugging version of Python. On Unix platforms, this
python is built by adding <code>--with-pydebug</code> when configuring
the Python build. On Windows, the debugging version of Python is
generated by the "Win32 Debug" target of the <code>PCBuild.dsw</code>
Visual C++ 6.0 project in the <code>PCBuild</code> subdirectory of your
Python distribution. Extension modules built with Python debugging
enabled are <b>not link-compatible</b> with a non-debug build of Python.
Since few people actually have a debug build of Python (it doesn't come
with the standard distribution), the normal <code>debug</code> variant
builds modules which are compatible with ordinary Python.</p>
<p>On many windows compilers, when extension modules are built with
<tt>-D_DEBUG</tt>, Python defaults to <i>force</i> linking with a special
debugging version of the Python DLL. Since this debug DLL isn't supplied
with the default Python installation for Windows, Boost.Python uses
<tt><a href=
"../../../boost/python/detail/wrap_python.hpp">boost/python/detail/wrap_python.hpp</a></tt>
to temporarily undefine <tt>_DEBUG</tt> when <tt>Python.h</tt> is
<tt>#include</tt>d - unless <code>BOOST_DEBUG_PYTHON</code> is
defined.</p>
<p>If you want the extra runtime checks available with the debugging
version of the library, <tt>#define BOOST_DEBUG_PYTHON</tt> to re-enable
python debuggin, and link with the <code>debug-python</code> variant of
<tt>boost_python</tt>.</p>
<p>If you do not <tt>#define BOOST_DEBUG_PYTHON</tt>, be sure that any
source files in your extension module <tt>#include&nbsp;&lt;<a href=
"../../../boost/python/detail/wrap_python.hpp">boost/python/detail/wrap_python.hpp</a>&gt;</tt>
instead of the usual <tt>Python.h</tt>, or you will have link
incompatibilities.<br>
</p>
<h2><a name="VisualStudio">Building Using the Microsoft Visual Studio
IDE</a></h2>
<p>For the those of you who feel more comfortable in the IDE world, a
workspace and project file have been included in the <a href=
"../build/VisualStudio">libs/python/build/VisualStudio</a> subdirectory.
It builds release and debug versions of the Boost.Python libraries and
places them and the same directory as Jamfile build does, though the
intermediate object files are placed in a different directory. The files
have been created using Microsoft Visual C++ version 6, but they should
work for later versions as well. You will need to tell the IDE where to
find the Python <code>Include/</code> and <code>Libs/</code> directories.
Under <b>Tools&gt;Options&gt;Directories</b>, add an entry for the Python
include dir (i.e. <code>c:/Python22/Include</code>), and one for the Lib
(i.e. <code>c:/Python/Libs</code>. Make sure it is <code>Libs</code> with
an "<code>s</code>" and not just <code>Lib</code>).</p>
<h3>Using the IDE for your own projects</h3>
<p>Building your own projects using the IDE is slightly more complicated.
Firstly, you need to make sure that the project you create as the right
kind. It should be a "Win32 Dynamic-Link Library". The default one that
Visual Studio 6 creates needs some modifications: turn on RTTI, and
change the debug and release builds to use the respective debug and
release Multithreaded DLL versions. You should probably turn off
incremental linking too -- I believe it a bit flaky. If you do this, then
change the "Debug Info" to "Program Database" to get rid of the Edit and
Continue warning.</p>
<p>You'll need to add the Boost root directory under
<b>Tools&gt;Options&gt;Directories</b> to get your code compiling. To
make it link, add the above <code>boost_python.dsp</code> file to your
workspace, and make your project depend upon it (under
<b>Project&gt;Dependencies</b>). You should be able to build now.</p>
<p>Lastly, go to the <b>Project Settings&gt;Debug</b> Page and add the
<code>Python.exe</code> as the executable for the project. Set a startup
directory, and make sure that your current project's output dll, the
<code>boost_python.dll</code> and the <code>python22.dll</code> are on
the current <code>PATH</code>. If you have a python script that tests
your dll, then add it in the "Program Arguments". Now, if all went well,
you should be able to hit the Run (F5) button, and debug your code.</p>
<blockquote>
<em>The Visual Studio project files are graciously contributed and
maintained by <a href="mailto:brett.calcott@paradise.net.nz">Brett
Calcott</a></em>.
</blockquote>
<hr>
<p>&copy; Copyright David Abrahams 2002. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
<p>Updated: 29 December, 2002 (David Abrahams)</p>
</body>
</html>
<p>Updated: Apr 17, 2001 (R.W. Grosse-Kunstleve)
</div>

View File

@@ -1,231 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Comparisons with Other Systems
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)"><br>
Comparisons with
Other Systems
</h1>
<h2>CXX</h2>
<p>
Like Boost.Python, <a href="http://cxx.sourceforge.net/">CXX</a> attempts to
provide a C++-oriented interface to Python. In most cases, as with the
boost library, it relieves the user from worrying about
reference-counts. Both libraries automatically convert thrown C++
exceptions into Python exceptions. As far as I can tell, CXX has no
support for subclassing C++ extension types in Python. An even
more significant difference is that a user's C++ code is still basically
``dealing with Python objects'', though they are wrapped in
C++ classes. This means such jobs as argument parsing and conversion are
still left to be done explicitly by the user.
<p>
CXX claims to interoperate well with the C++ Standard Library
(a.k.a. STL) by providing iterators into Python Lists and Dictionaries,
but the claim is unfortunately unsupportable. The problem is that in
general, access to Python sequence and mapping elements through
iterators requires the use of proxy objects as the return value of
iterator dereference operations. This usage conflicts with the basic
ForwardIterator requirements in <a
href="http://anubis.dkuug.dk/jtc1/sc22/open/n2356/lib-iterators.html#lib.forward.iterators">
section 24.1.3 of the standard</a> (dereferencing must produce a
reference). Although you may be able to use these iterators with some
operations in some standard library implementations, it is neither
guaranteed to work nor portable.
<p>
As far as I can tell, CXX enables one to write what is essentially
idiomatic Python code in C++, manipulating Python objects through the
same fully-generic interfaces we use in Python. While you're hardly
programming directly to the ``bare metal'' with CXX, it basically
presents a ``C++-ized'' version of the Python 'C' API. Some fraction of
that capability is available in Boost.Python through <tt><a
href="../../../boost/python/objects.hpp">boost/python/objects.hpp</a></tt>,
which provides C++ objects corresponding to Python lists, tuples,
strings, and dictionaries, and through <tt><a
href="../../../boost/python/callback.hpp">boost/python/callback.hpp</a></tt>,
which allows you to call back into python with C++ arguments.
<p>
<a href="mailto:dubois1@llnl.gov">Paul F. Dubois</a>, the original
author of CXX, has told me that what I've described is only half of the
picture with CXX, but I never understood his explanation well-enough to
fill in the other half. Here is his response to the commentary above:
<blockquote>
``My intention with CXX was not to do what you are doing. It was to enable a
person to write an extension directly in C++ rather than C. I figured others had
the wrapping business covered. I thought maybe CXX would provide an easier
target language for those making wrappers, but I never explored
that.''<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
</blockquote>
<h2>SWIG</h2>
<p>
<a href= "http://www.swig.org/">SWIG</a> is an impressively mature tool
for exporting an existing ANSI 'C' interface into various scripting
languages. Swig relies on a parser to read your source code and produce
additional source code files which can be compiled into a Python (or
Perl or Tcl) extension module. It has been successfully used to create
many Python extension modules. Like Boost.Python, SWIG is trying to allow an
existing interface to be wrapped with little or no change to the
existing code. The documentation says ``SWIG parses a form of ANSI C
syntax that has been extended with a number of special directives. As a
result, interfaces are usually built by grabbing a header file and
tweaking it a little bit.'' For C++ interfaces, the tweaking has often
proven to amount to more than just a little bit. One user
writes:
<blockquote> ``The problem with swig (when I used it) is that it
couldnt handle templates, didnt do func overloading properly etc. For
ANSI C libraries this was fine. But for usual C++ code this was a
problem. Simple things work. But for anything very complicated (or
realistic), one had to write code by hand. I believe Boost.Python doesn't have
this problem[<a href="#sic">sic</a>]... IMHO overloaded functions are very important to
wrap correctly.''<br><i>-Prabhu Ramachandran</i>
</blockquote>
<p>
By contrast, Boost.Python doesn't attempt to parse C++ - the problem is simply
too complex to do correctly. <a name="sic">Technically</a>, one does
write code by hand to use Boost.Python. The goal, however, has been to make
that code nearly as simple as listing the names of the classes and
member functions you want to expose in Python.
<h2>SIP</h2>
<p>
<a
href="http://www.thekompany.com/projects/pykde/background.php3?dhtml_ok=1">SIP</a>
is a system similar to SWIG, though seemingly more
C++-oriented. The author says that like Boost.Python, SIP supports overriding
extension class member functions in Python subclasses. It appears to
have been designed specifically to directly support some features of
PyQt/PyKDE, which is its primary client. Documentation is almost
entirely missing at the time of this writing, so a detailed comparison
is difficult.
<h2>ILU</h2>
<p>
<a
href="ftp://ftp.parc.xerox.com/pub/ilu/ilu.html">ILU</a>
is a very ambitious project which tries to describe a module's interface
(types and functions) in terms of an <a
href="ftp://ftp.parc.xerox.com/pub/ilu/2.0b1/manual-html/manual_2.html">Interface
Specification Language</a> (ISL) so that it can be uniformly interfaced
to a wide range of computer languages, including Common Lisp, C++, C,
Modula-3, and Python. ILU can parse the ISL to generate a C++ language
header file describing the interface, of which the user is expected to
provide an implementation. Unlike Boost.Python, this means that the system
imposes implementation details on your C++ code at the deepest level. It
is worth noting that some of the C++ names generated by ILU are supposed
to be reserved to the C++ implementation. It is unclear from the
documentation whether ILU supports overriding C++ virtual functions in Python.
<h2>GRAD</h2>
<p>
<a
href="http://www.python.org/workshops/1996-11/papers/GRAD/html/GRADcover.html">GRAD</a>
is another very ambitious project aimed at generating Python wrappers for
interfaces written in ``legacy languages'', among which C++ is the first one
implemented. Like SWIG, it aims to parse source code and automatically
generate wrappers, though it appears to take a more sophisticated approach
to parsing in general and C++ in particular, so it should do a much better
job with C++. It appears to support function overloading. The
documentation is missing a lot of information I'd like to see, so it is
difficult to give an accurate and fair assessment. I am left with the
following questions:
<ul>
<li>Does it support overriding of virtual functions?
<li>What about overriding private or protected virtual functions (the documentation indicates
that only public interfaces are supported)?
<li>Which C++ language constructs are supportd?
<li>Does it support implicit conversions between wrapped C++ classes that have
an inheritance relationship?
<li>Does it support smart pointers?
</ul>
<p>
Anyone in the possession of the answers to these questions will earn my
gratitude for a write-up <code>;-)</code>
<h2>Zope ExtensionClasses</h2>
<p>
<a href="http:http://www.digicool.com/releases/ExtensionClass">
ExtensionClasses in Zope</a> use the same underlying mechanism as Boost.Python
to support subclassing of extension types in Python, including
multiple-inheritance. Both systems support pickling/unpickling of
extension class instances in very similar ways. Both systems rely on the
same ``<a
href="http://www.python.org/workshops/1994-11/BuiltInClasses/Welcome.html">Don
Beaudry Hack</a>'' that also inspired Don's MESS System.
<p>
The major differences are:
<ul>
<li>Zope is entirely 'C' language-based. It doesn't require a C++
compiler, so it's much more portable than Boost.Python, which stresses
the limits of even some modern C++ implementations.
<li>
Boost.Python lifts the burden on the user to parse and convert function
argument types. Zope provides no such facility.
<li>
Boost.Python lifts the burden on the user to maintain Python
reference-counts.
<li>
Boost.Python supports function overloading; Zope does not.
<li>
Boost.Python supplies a simple mechanism for exposing read-only and
read/write access to data members of the wrapped C++ type as Python
attributes.
<li>
Writing a Zope ExtensionClass is significantly more complex than
exposing a C++ class to python using Boost.Python (mostly a summary of the
previous 4 items). <a href=
"http://www.digicool.com/releases/ExtensionClass/MultiMapping.html">A
Zope Example</a> illustrates the differences.
<li>
Zope's ExtensionClasses are specifically motivated by ``the need for a
C-based persistence mechanism''. Boost.Python's are motivated by the desire
to simply reflect a C++ API into Python with as little modification as
possible.
<li>
The following Zope restriction does not apply to Boost.Python: ``At most one
base extension direct or indirect super class may define C data
members. If an extension subclass inherits from multiple base
extension classes, then all but one must be mix-in classes that
provide extension methods but no data.''
<li>
Zope requires use of the somewhat funky inheritedAttribute (search for
``inheritedAttribute'' on <a
href="http://www.digicool.com/releases/ExtensionClass">this page</a>)
method to access base class methods. In Boost.Python, base class methods can
be accessed in the usual way by writing
``<code>BaseClass.method</code>''.
<li>
Zope supplies some creative but esoteric idioms such as <a href=
"http://www.digicool.com/releases/ExtensionClass/Acquisition.html">
Acquisition</a>. No specific support for this is built into Boost.Python.
<li>
Zope's ComputedAttribute support is designed to be used from Python.
<a href="special.html#getter_setter">The analogous feature of
Boost.Python</a> can be used from C++ or Python. The feature is arguably
easier to use in Boost.Python.
</ul>
<p>
Next: <a href="example1.html">A Simple Example Using Boost.Python</a>
Previous: <a href="extending.html">A Brief Introduction to writing Python Extension Modules</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,336 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>Cross-extension-module dependencies</title>
<div>
<img src="../../../c++boost.gif"
alt="c++boost.gif (8819 bytes)"
align="center"
width="277" height="86">
<hr>
<h1>Cross-extension-module dependencies</h1>
It is good programming practice to organize large projects as modules
that interact with each other via well defined interfaces. With
Boost.Python it is possible to reflect this organization at the C++
level at the Python level. This is, each logical C++ module can be
organized as a separate Python extension module.
<p>
At first sight this might seem natural and straightforward. However, it
is a fairly complex problem to establish cross-extension-module
dependencies while maintaining the same ease of use Boost.Python
provides for classes that are wrapped in the same extension module. To
a large extent this complexity can be hidden from the author of a
Boost.Python extension module, but not entirely.
<hr>
<h2>The recipe</h2>
Suppose there is an extension module that exposes certain instances of
the C++ <tt>std::vector</tt> template library such that it can be used
from Python in the following manner:
<pre>
import std_vector
v = std_vector.double([1, 2, 3, 4])
v.push_back(5)
v.size()
</pre>
Suppose the <tt>std_vector</tt> module is done well and reflects all
C++ functions that are useful at the Python level, for all C++ built-in
data types (<tt>std_vector.int</tt>, <tt>std_vector.long</tt>, etc.).
<p>
Suppose further that there is statistic module with a C++ class that
has constructors or member functions that use or return a
<tt>std::vector</tt>. For example:
<pre>
class xy {
public:
xy(const std::vector&lt;double&gt;&amp; x, const std::vector&lt;double&gt;&amp; y) : m_x(x), m_y(y) {}
const std::vector&lt;double&gt;&amp; x() const { return m_x; }
const std::vector&lt;double&gt;&amp; y() const { return m_y; }
double correlation();
private:
std::vector&lt;double&gt; m_x;
std::vector&lt;double&gt; m_y;
}
</pre>
What is more natural than reusing the <tt>std_vector</tt> extension
module to expose these constructors or functions to Python?
<p>
Unfortunately, what seems natural needs a little work in both the
<tt>std_vector</tt> and the <tt>statistics</tt> module.
<p>
In the <tt>std_vector</tt> extension module,
<tt>std::vector&lt;double&gt;</tt> is exposed to Python in the usual
way with the <tt>class_builder&lt;&gt;</tt> template. To also enable the
automatic conversion of <tt>std::vector&lt;double&gt;</tt> function
arguments or return values in other Boost.Python C++ modules, the
converters that convert a <tt>std::vector&lt;double&gt;</tt> C++ object
to a Python object and vice versa (i.e. the <tt>to_python()</tt> and
<tt>from_python()</tt> template functions) have to be exported. For
example:
<pre>
#include &lt;boost/python/cross_module.hpp&gt;
//...
class_builder&lt;std::vector&lt;double&gt; &gt; v_double(std_vector_module, &quot;double&quot;);
export_converters(v_double);
</pre>
In the extension module that wraps <tt>class xy</tt> we can now import
these converters with the <tt>import_converters&lt;&gt;</tt> template.
For example:
<pre>
#include &lt;boost/python/cross_module.hpp&gt;
//...
import_converters&lt;std::vector&lt;double&gt; &gt; v_double_converters(&quot;std_vector&quot;, &quot;double&quot;);
</pre>
That is all. All the attributes that are defined for
<tt>std_vector.double</tt> in the <tt>std_vector</tt> Boost.Python
module will be available for the returned objects of <tt>xy.x()</tt>
and <tt>xy.y()</tt>. Similarly, the constructor for <tt>xy</tt> will
accept objects that were created by the <tt>std_vector</tt>module.
<hr>
<h2>Placement of <tt>import_converters&lt;&gt;</tt> template instantiations</h2>
<tt>import_converts&lt;&gt;</tt> can be viewed as a drop-in replacement
for <tt>class_wrapper&lt;&gt;</tt>, and the recommendations for the
placement of <tt>class_wrapper&lt;&gt;</tt> template instantiations
also apply to to <tt>import_converts&lt;&gt;</tt>. In particular, it is
important that an instantiation of <tt>class_wrapper&lt;&gt;</tt> is
visible to any code which wraps a C++ function with a <tt>T</tt>,
<tt>T*</tt>, const <tt>T&amp;</tt>, etc. parameter or return value.
Therefore you may want to group all <tt>class_wrapper&lt;&gt;</tt> and
<tt>import_converts&lt;&gt;</tt> instantiations at the top of your
module's init function, then <tt>def()</tt> the member functions later
to avoid problems with inter-class dependencies.
<hr>
<h2>Non-copyable types</h2>
<tt>export_converters()</tt> instantiates C++ template functions that
invoke the copy constructor of the wrapped type. For a type that is
non-copyable this will result in compile-time error messages. In such a
case, <tt>export_converters_noncopyable()</tt> can be used to export
the converters that do not involve the copy constructor of the wrapped
type. For example:
<pre>
class_builder&lt;store&gt; py_store(your_module, &quot;store&quot;);
export_converters_noncopyable(py_store);
</pre>
The corresponding <tt>import_converters&lt;&gt;</tt> statement does not
need any special attention:
<pre>
import_converters&lt;store&gt; py_store(&quot;noncopyable_export&quot;, &quot;store&quot;);
</pre>
<hr>
<h2>Python module search path</h2>
The <tt>std_vector</tt> and <tt>statistics</tt> modules can now be used
in the following way:
<pre>
import std_vector
import statistics
x = std_vector.double([1, 2, 3, 4])
y = std_vector.double([2, 4, 6, 8])
xy = statistics.xy(x, y)
xy.correlation()
</pre>
In this example it is clear that Python has to be able to find both the
<tt>std_vector</tt> and the <tt>statistics</tt> extension module. In
other words, both extension modules need to be in the Python module
search path (<tt>sys.path</tt>).
<p>
The situation is not always this obvious. Suppose the
<tt>statistics</tt> module has a <tt>random()</tt> function that
returns a vector of random numbers with a given length:
<pre>
import statistics
x = statistics.random(5)
y = statistics.random(5)
xy = statistics.xy(x, y)
xy.correlation()
</pre>
A naive user will not easily anticipate that the <tt>std_vector</tt>
module is used to pass the <tt>x</tt> and <tt>y</tt> vectors around. If
the <tt>std_vector</tt> module is in the Python module search path,
this form of ignorance is of no harm. On the contrary, we are glad
that we do not have to bother the user with details like this.
<p>
If the <tt>std_vector</tt> module is not in the Python module search
path, a Python exception will be raised:
<pre>
Traceback (innermost last):
File &quot;foo.py&quot;, line 2, in ?
x = statistics.random(5)
ImportError: No module named std_vector
</pre>
As is the case with any system of a non-trivial complexity, it is
important that the setup is consistent and complete.
<hr>
<h2>Two-way module dependencies</h2>
Boost.Python supports two-way module dependencies. This is best
illustrated by a simple example.
<p>
Suppose there is a module <tt>ivect</tt> that implements vectors of
integers, and a similar module <tt>dvect</tt> that implements vectors
of doubles. We want to be able do convert an integer vector to a double
vector and vice versa. For example:
<pre>
import ivect
iv = ivect.ivect((1,2,3,4,5))
dv = iv.as_dvect()
</pre>
The last expression will implicitly import the <tt>dvect</tt> module in
order to enable the conversion of the C++ representation of
<tt>dvect</tt> to a Python object. The analogous is possible for a
<tt>dvect</tt>:
<pre>
import dvect
dv = dvect.dvect((1,2,3,4,5))
iv = dv.as_ivect()
</pre>
Now the <tt>ivect</tt> module is imported implicitly.
<p>
Note that the two-way dependencies are possible because the
dependencies are resolved only when needed. This is, the initialization
of the <tt>ivect</tt> module does not rely on the <tt>dvect</tt>
module, and vice versa. Only if <tt>as_dvect()</tt> or
<tt>as_ivect()</tt> is actually invoked will the corresponding module
be implicitly imported. This also means that, for example, the
<tt>dvect</tt> module does not have to be available at all if
<tt>as_dvect()</tt> is never used.
<hr>
<h2>Clarification of compile-time and link-time dependencies</h2>
Boost.Python's support for resolving cross-module dependencies at
runtime does not imply that compile-time dependencies are eliminated.
For example, the statistics extension module in the example above will
need to <tt>#include &lt;vector&gt;</tt>. This is immediately obvious
from the definition of <tt>class xy</tt>.
<p>
If a library is wrapped that consists of both header files and compiled
components (e.g. <tt>libdvect.a</tt>, <tt>dvect.lib</tt>, etc.), both
the Boost.Python extension module with the
<tt>export_converters()</tt> statement and the module with the
<tt>import_converters&lt;&gt;</tt> statement need to be linked against
the object library. Ideally one would build a shared library (e.g.
<tt>libdvect.so</tt>, <tt>dvect.dll</tt>, etc.). However, this
introduces the issue of having to configure the search path for the
dynamic loading correctly. For small libraries it is therefore often
more convenient to ignore the fact that the object files are loaded
into memory more than once.
<hr>
<h2>Summary of motivation for cross-module support</h2>
The main purpose of Boost.Python's cross-module support is to allow for
a modular system layout. With this support it is straightforward to
reflect C++ code organization at the Python level. Without the
cross-module support, a multi-purpose module like <tt>std_vector</tt>
would be impractical because the entire wrapper code would somehow have
to be duplicated in all extension modules that use it, making them
harder to maintain and harder to build.
<p>
Another motivation for the cross-module support is that two extension
modules that wrap the same class cannot both be imported into Python.
For example, if there are two modules <tt>A</tt> and <tt>B</tt> that
both wrap a given <tt>class X</tt>, this will work:
<pre>
import A
x = A.X()
</pre>
This will also work:
<pre>
import B
x = B.X()
</pre>
However, this will fail:
<pre>
import A
import B
python: /net/cci/rwgk/boost/boost/python/detail/extension_class.hpp:866:
static void boost::python::detail::class_registry&lt;X&gt;::register_class(boost::python::detail::extension_class_base *):
Assertion `static_class_object == 0' failed.
Abort
</pre>
A good solution is to wrap <tt>class X</tt> only once. Depending on the
situation, this could be done by module <tt>A</tt> or <tt>B</tt>, or an
additional small extension module that only wraps and exports
<tt>class X</tt>.
<p>
Finally, there can be important psychological or political reasons for
using the cross-module support. If a group of classes is lumped
together with many others in a huge module, the authors will have
difficulties in being identified with their work. The situation is
much more transparent if the work is represented by a module with a
recognizable name. This is not just a question of strong egos, but also
of getting credit and funding.
<hr>
<h2>Why not use <tt>export_converters()</tt> universally?</h2>
There is some overhead associated with the Boost.Python cross-module
support. Depending on the platform, the size of the code generated by
<tt>export_converters()</tt> is roughly 10%-20% of that generated
by <tt>class_builder&lt;&gt;</tt>. For a large extension module with
many wrapped classes, this could mean a significant difference.
Therefore the general recommendation is to use
<tt>export_converters()</tt> only for classes that are likely to
be used as function arguments or return values in other modules.
<hr>
&copy; Copyright Ralf W. Grosse-Kunstleve 2001. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided "as
is" without express or implied warranty, and with no claim as to its
suitability for any purpose.
<p>
Updated: April 2001
</div>

View File

@@ -1,192 +0,0 @@
Given a real Python class 'A', a wrapped C++ class 'B', and this definition:
class C(A, B):
def __init__(self):
B.__init__(self)
self.x = 1
...
c = C()
this diagram describes the internal structure of an instance of 'C', including
its inheritance relationships. Note that ExtensionClass<B> is derived from
Class<ExtensionInstance>, and is in fact identical for all intents and purposes.
MetaClass<ExtensionInstance>
+---------+ +---------+
types.ClassType: | | | |
| | | |
| | | |
+---------+ +---------+
^ ^ ^
PyClassObject | ExtensionClass<B> | |
A: +------------+ | B: +------------+ | |
| ob_type -+-+ | ob_type -+-----+ |
| | ()<--+- __bases__ | |
| | | __dict__ -+->{...} |
| | 'B'<-+- __name__ | |
+------------+ +------------+ |
^ ^ |
| | |
+-----+ +-------------+ |
| | |
| | Class<ExtensionInstance> |
| | C: +------------+ |
| | | ob_type -+------------+
tuple:(*, *)<--+- __bases__ |
| __dict__ -+->{__module__, <methods, etc.>}
'C' <-+- __name__ |
+------------+
^ (in case of inheritance from more than one
| extension class, this vector would contain
+---------------+ a pointer to an instance holder for the data
| of each corresponding C++ class)
| ExtensionInstance
| c: +---------------------+ std::vector<InstanceHolderBase>
+----+- __class__ | +---+--
| m_wrapped_objects -+->| * | ...
{'x': 1}<-+- __dict__ | +-|-+--
+---------------------+ | InstanceValueHolder<B>
| +--------------------------------+
+-->| (contains a C++ instance of B) |
+--------------------------------+
In our inheritance test cases in extclass_demo.cpp/test_extclass.py, we have the
following C++ inheritance hierarchy:
+-----+ +----+
| A1 | | A2 |
+-----+ +----+
^ ^ ^ ^ ^
| | | | |
+-----+ | +---------+-----+
| | | |
| +---+----------+
.......!...... | |
: A_callback : +-+--+ +-+--+
:............: | B1 | | B2 |
+----+ +----+
^
|
+-------+---------+
| |
+-+-+ ......!.......
| C | : B_callback :
+---+ :............:
A_callback and B_callback are used as part of the wrapping mechanism but not
represented in Python. C is also not represented in Python but is delivered
there polymorphically through a smart pointer.
This is the data structure in Python.
ExtensionClass<A1>
A1: +------------+
()<--+- __bases__ |
| __dict__ -+->{...}
+------------+
^
| ExtensionInstance
| a1: +---------------------+ vec InstanceValueHolder<A1,A_callback>
+---------+- __class__ | +---+ +---------------------+
| | m_wrapped_objects -+->| *-+-->| contains A_callback |
| +---------------------+ +---+ +---------------------+
|
| ExtensionInstance
| pa1_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ A1
| +---------------------+ +---+ +---+ | +---+
| +->| |
| ExtensionInstance +---+
| pb1_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ B1
| +---------------------+ +---+ +---+ | +---+
| +->| |
| ExtensionInstance +---+
| pb2_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ B2
| +---------------------+ +---+ +---+ | +---+
| +->| |
| +---+
| ExtensionClass<A1>
| A2: +------------+
| ()<--+- __bases__ |
| | __dict__ -+->{...}
| +------------+
| ^
| | ExtensionInstance
| a2: | +---------------------+ vec InstanceValueHolder<A2>
| +-+- __class__ | +---+ +-------------+
| | | m_wrapped_objects -+->| *-+-->| contains A2 |
| | +---------------------+ +---+ +-------------+
| |
| | ExtensionInstance
| pa2_a2: | +---------------------+ vec InstancePtrHolder<auto_ptr<A2>,A2>
| +-+- __class__ | +---+ +---+
| | | m_wrapped_objects -+->| *-+-->| *-+-+ A2
| | +---------------------+ +---+ +---+ | +---+
| | +->| |
| | ExtensionInstance +---+
| pb1_a2: | +---------------------+ vec InstancePtrHolder<auto_ptr<A2>,A2>
| +-+- __class__ | +---+ +---+
| | | m_wrapped_objects -+->| *-+-->| *-+-+ B1
| | +---------------------+ +---+ +---+ | +---+
| | +->| |
| | +---+
| |
| +---------------+------------------------------+
| | |
+------+-------------------------+-|----------------------------+ |
| | | | |
| Class<ExtensionInstance> | | ExtensionClass<B1> | | ExtensionClass<B1>
| DA1: +------------+ | | B1: +------------+ | | B2: +------------+
(*,)<---+- __bases__ | (*,*)<---+- __bases__ | (*,*)<---+- __bases__ |
| __dict__ -+->{...} | __dict__ -+->{...} | __dict__ -+->{...}
+------------+ +------------+ +------------+
^ ^ ^
| ExtensionInstance | |
| da1: +---------------------+ | vec InstanceValueHolder<A1,A_callback>
+-------+- __class__ | | +---+ +---------------------+ |
| m_wrapped_objects -+--|-->| *-+-->| contains A_callback | |
+---------------------+ | +---+ +---------------------+ |
+--------------------------------------+ |
| ExtensionInstance |
b1: | +---------------------+ vec InstanceValueHolder<B1,B_callback> |
+-+- __class__ | +---+ +---------------------+ |
| | m_wrapped_objects -+->| *-+-->| contains B_callback | |
| +---------------------+ +---+ +---------------------+ |
| |
| ExtensionInstance |
pb1_b1: | +---------------------+ vec InstancePtrHolder<auto_ptr<B1>,B1> |
+-+- __class__ | +---+ +---+ |
| | m_wrapped_objects -+->| *-+-->| *-+-+ B1 |
| +---------------------+ +---+ +---+ | +---+ |
| +->| | |
| ExtensionInstance +---+ |
pc_b1: | +---------------------+ vec InstancePtrHolder<auto_ptr<B1>,B1> |
+-+- __class__ | +---+ +---+ |
| | m_wrapped_objects -+->| *-+-->| *-+-+ C |
| +---------------------+ +---+ +---+ | +---+ |
| +->| | |
| +---+ |
| |
| Class<ExtensionInstance> +---------------------------------------+
| DB1: +------------+ | ExtensionInstance
(*,)<---+- __bases__ | a2: | +---------------------+ vec InstanceValueHolder<A2>
| __dict__ -+->{...} +-+- __class__ | +---+ +-------------+
+------------+ | m_wrapped_objects -+->| *-+-->| contains A2 |
^ +---------------------+ +---+ +-------------+
| ExtensionInstance
db1: | +---------------------+ vec InstanceValueHolder<B1,B_callback>
+-+- __class__ | +---+ +----------------------+
| m_wrapped_objects -+-->| *-+-->| contains B1_callback |
+---------------------+ +---+ +----------------------+

View File

@@ -1,120 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Wrapping enums
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)"><br>
Wrapping enums
</h1>
<p>Because there is in general no way to deduce that a value of arbitrary type T
is an enumeration constant, the Boost Python Library cannot automatically
convert enum values to and from Python. To handle this case, you need to decide
how you want the enum to show up in Python (since Python doesn't have
enums). Once you have done that, you can write some simple
<code>from_python()</code> and <code>to_python()</code> functions.
<p>If you are satisfied with a Python int as a way to represent your enum
values, we provide a shorthand for these functions. You just need to cause
<code>boost::python::enum_as_int_converters&lt;EnumType&gt;</code> to be
instantiated, where
<code>EnumType</code> is your enumerated type. There are two convenient ways to do this:
<ol>
<li>Explicit instantiation:
<blockquote><pre>
template class boost::python::enum_as_int_converters&lt;my_enum&gt;;
</blockquote></pre>
Some buggy C++ implementations require a class to be instantiated in the same
namespace in which it is defined. In that case, the simple incantation above becomes:
<blockquote>
<pre>
...
} // close my_namespace
// drop into namespace python and explicitly instantiate
namespace boost { namespace python {
template class enum_as_int_converters&lt;my_enum_type&gt;;
}} // namespace boost::python
namespace my_namespace { // re-open my_namespace
...
</pre>
</blockquote>
<li>If you have such an implementation, you may find this technique more convenient
<blockquote><pre>
// instantiate as base class in any namespace
struct EnumTypeConverters
: boost::python::enum_as_int_converters&lt;EnumType&gt;
{
};
</blockquote></pre>
</ol>
<p>Either of the above is equivalent to the following declarations:
<blockquote><pre>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
MyEnumType from_python(PyObject* x, boost::python::type&lt;MyEnumType&gt;)
{
return static_cast&lt;MyEnum&gt;(
from_python(x, boost::python::type&lt;long&gt;()));
}
MyEnumType from_python(PyObject* x, boost::python::type&lt;const MyEnumType&amp;&gt;)
{
return static_cast&lt;MyEnum&gt;(
from_python(x, boost::python::type&lt;long&gt;()));
}
PyObject* to_python(MyEnumType x)
{
return to_python(static_cast&lt;long&gt;(x));
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
</pre></blockquote>
<p>This technique defines the conversions of
<code>MyEnumType</code> in terms of the conversions for the built-in
<code>long</code> type.
You may also want to add a bunch of lines like this to your module
initialization. These bind the corresponding enum values to the appropriate
names so they can be used from Python:
<blockquote><pre>
mymodule.add(boost::python::make_ref(enum_value_1), "enum_value_1");
mymodule.add(boost::python::make_ref(enum_value_2), "enum_value_2");
...
</pre></blockquote>
You can also add these to an extension class definition, if your enum happens to
be local to a class and you want the analogous interface in Python:
<blockquote><pre>
my_class_builder.add(boost::python::to_python(enum_value_1), "enum_value_1");
my_class_builder.add(boost::python::to_python(enum_value_2), "enum_value_2");
...
</pre></blockquote>
<p>
Next: <a href="pointers.html">Pointers and Smart Pointers</a>
Previous: <a href="building.html">Building an Extension Module</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,82 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
A Simple Example
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" src="../../../c++boost.gif" alt=
"c++boost.gif (8819 bytes)">
</h1>
<h1>
A Simple Example
</h1>
<p>
Suppose we have the following C++ API which we want to expose in
Python:
<blockquote>
<pre>
#include &lt;string&gt;
namespace { // Avoid cluttering the global namespace.
// A couple of simple C++ functions that we want to expose to Python.
std::string greet() { return "hello, world"; }
int square(int number) { return number * number; }
}
</pre>
</blockquote>
<p>
Here is the C++ code for a python module called <tt>getting_started1</tt>
which exposes the API.
<blockquote>
<pre>
#include &lt;boost/python/class_builder.hpp&gt;
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(getting_started1)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started1");
// Add regular functions to the module.
this_module.def(greet, "greet");
this_module.def(square, "square");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
</pre>
</blockquote>
<p>
That's it! If we build this shared library and put it on our <code>
PYTHONPATH</code> we can now access our C++ functions from
Python.
<blockquote>
<pre>
&gt;&gt;&gt; import getting_started1
&gt;&gt;&gt; print getting_started1.greet()
hello, world
&gt;&gt;&gt; number = 11
&gt;&gt;&gt; print number, '*', number, '=', getting_started1.square(number)
11 * 11 = 121
</pre>
<p>
Next: <a href="exporting_classes.html">Exporting Classes</a>
Previous: <a href="comparisons.html">Comparisons with other systems</a> Up:
<a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Mar 6, 2000
</div>

View File

@@ -1,144 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Exporting Classes
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" src="../../../c++boost.gif" alt=
"c++boost.gif (8819 bytes)">
</h1>
<h1>
Exporting Classes
</h1>
<p>
Now let's expose a C++ class to Python:
<blockquote><pre>
#include &lt;iostream&gt;
#include &lt;string&gt;
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class hello
{
public:
hello(const std::string&amp; country) { this-&gt;country = country; }
std::string greet() const { return "Hello from " + country; }
private:
std::string country;
};
// A function taking a hello object as an argument.
std::string invite(const hello&amp; w) {
return w.greet() + "! Please come soon!";
}
}
</blockquote></pre> <p>
To expose the class, we use a <tt>class_builder</tt> in addition to the
<tt>module_builder</tt> from the previous example. Class member functions
are exposed by using the <tt>def()</tt> member function on the
<tt>class_builder</tt>:
<blockquote><pre>
#include &lt;boost/python/class_builder.hpp&gt;
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(getting_started2)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started2");
// Create the Python type object for our extension class.
python::class_builder&lt;hello&gt; hello_class(this_module, "hello");
// Add the __init__ function.
hello_class.def(python::constructor&lt;std::string&gt;());
// Add a regular member function.
hello_class.def(&amp;hello::greet, "greet");
// Add invite() as a regular function to the module.
this_module.def(invite, "invite");
// Even better, invite() can also be made a member of hello_class!!!
hello_class.def(invite, "invite");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
</blockquote></pre>
<p>
Now we can use the class normally from Python:
<blockquote><pre>
&gt;&gt;&gt; from getting_started2 import *
&gt;&gt;&gt; hi = hello('California')
&gt;&gt;&gt; hi.greet()
'Hello from California'
&gt;&gt;&gt; invite(hi)
'Hello from California! Please come soon!'
&gt;&gt;&gt; hi.invite()
'Hello from California! Please come soon!'
</blockquote></pre>
Notes:<ul>
<li> We expose the class' constructor by calling <tt>def()</tt> on the
<tt>class_builder</tt> with an argument whose type is
<tt>constructor&lt;</tt><i>params</i><tt>&gt;</tt>, where <i>params</i>
matches the list of constructor argument types:
<li>Regular member functions are defined by calling <tt>def()</tt> with a
member function pointer and its Python name:
<li>Any function added to a class whose initial argument matches the class (or
any base) will act like a member function in Python.
</ul>
<p>
We can even make a subclass of <code>hello.world</code>:
<blockquote><pre>
&gt;&gt;&gt; class wordy(hello):
... def greet(self):
... return hello.greet(self) + ', where the weather is fine'
...
&gt;&gt;&gt; hi2 = wordy('Florida')
&gt;&gt;&gt; hi2.greet()
'Hello from Florida, where the weather is fine'
&gt;&gt;&gt; invite(hi2)
'Hello from Florida! Please come soon!'
</blockquote></pre>
<p>
Pretty cool! You can't do that with an ordinary Python extension type!
Of course, you may now have a slightly empty feeling in the pit of
your little pythonic stomach. Perhaps you wanted to see the following
<tt>wordy</tt> invitation:
<blockquote><pre>
'Hello from Florida, where the weather is fine! Please come soon!'
</blockquote></pre>
After all, <tt>invite</tt> calls <tt>hello::greet()</tt>, and you
reimplemented that in your Python subclass, <tt>wordy</tt>. If so, <a
href= "overriding.html">read on</a>...
<p>
Next: <a href="overriding.html">Overridable virtual functions</a>
Previous: <a href="example1.html">A Simple Example</a> Up:
<a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,73 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
A Brief Introduction to writing Python extension modules
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center"
width="277" height="86">
</h1>
<h1>
A Brief Introduction to writing Python extension modules
</h1>
<p>
Interfacing any language to Python involves building a module which can
be loaded by the Python interpreter, but which isn't written in Python.
This is known as an <em>extension module</em>. Many of the <a href=
"http://www.python.org/doc/current/lib/lib.html">built-in Python
libraries</a> are constructed in 'C' this way; Python even supplies its
<a href="http://www.python.org/doc/current/lib/types.html">fundamental
types</a> using the same mechanism. An extension module can be statically
linked with the Python interpreter, but it more commonly resides in a
shared library or DLL.
<p>
As you can see from <a href=
"http://www.python.org/doc/current/ext/ext.html"> The Python Extending
and Embedding Tutorial</a>, writing an extension module normally means
worrying about
<ul>
<li>
<a href="http://www.python.org/doc/current/ext/refcounts.html">
maintaining reference counts</a>
<li>
<a href="http://www.python.org/doc/current/ext/callingPython.html"> how
to call back into Python</a>
<li>
<a href="http://www.python.org/doc/current/ext/parseTuple.html">
function argument parsing and typechecking</a>
</ul>
This last item typically occupies a great deal of code in an extension
module. Remember that Python is a completely dynamic language. A callable
object receives its arguments in a tuple; it is up to that object to extract
those arguments from the tuple, check their types, and raise appropriate
exceptions. There are numerous other tedious details that need to be
managed; too many to mention here. The Boost Python Library is designed to
lift most of that burden.<br>
<br>
<p>
Another obstacle that most people run into eventually when extending
Python is that there's no way to make a true Python class in an extension
module. The typical solution is to create a new Python type in the
extension module, and then write an additional module in 100% Python. The
Python module defines a Python class which dispatches to an instance of
the extension type, which it contains. This allows users to write
subclasses of the class in the Python module, almost as though they were
sublcassing the extension type. Aside from being tedious, it's not really
the same as having a true class, because there's no way for the user to
override a method of the extension type which is called from the
extension module. Boost.Python solves this problem by taking advantage of <a
href="http://www.python.org/doc/essays/metaclasses/">Python's metaclass
feature</a> to provide objects which look, walk, and hiss almost exactly
like regular Python classes. Boost.Python classes are actually cleaner than
Python classes in some subtle ways; a more detailed discussion will
follow (someday).</p>
<p>Next: <a href="comparisons.html">Comparisons with Other Systems</a> Up: <a
href="index.html">Top</a> </p>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability for
any purpose.</p>

View File

@@ -1,166 +1,125 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
The Boost Python Library (Boost.Python)
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277"
align="center" height="86"><br>The Boost Python Library (Boost.Python)
</h1>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<h2>Synopsis</h2>
<p>
Use the Boost Python Library to quickly and easily export a C++ library to <a
href="http://www.python.org">Python</a> such that the Python interface is
very similar to the C++ interface. It is designed to be minimally
intrusive on your C++ design. In most cases, you should not have to alter
your C++ classes in any way in order to use them with Boost.Python. The system
<em>should</em> simply ``reflect'' your C++ classes and functions into
Python. The major features of Boost.Python include support for:
<ul>
<li><a href="inheritance.html">Subclassing extension types in Python</a>
<li><a href="overriding.html">Overriding virtual functions in Python</a>
<li><a href="overloading.html">[Member] function Overloading</a>
<li><a href="special.html#numeric_auto">Automatic wrapping of numeric operators</a>
</ul>
among others.
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="boost.css">
<title>Boost.Python</title>
</head>
<h2>Supported Platforms</h2>
<p>Boost.Python is known to have been tested in the following configurations:
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../c++boost.gif" border="0"></a></h3>
</td>
<ul>
<li>Against Python 2.0 using the following compiler/library combinations:
<ul>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>
with the native library.
<td valign="top">
<h1 align="center">Boost.Python</h1>
<li>An upcoming release of <a
href="http://www.metrowerks.com/products/windows/">Metrowerks
CodeWarrior Pro6 for Windows</a> with the native library (the first
release has a bug that's fatal to Boost.Python)
<h2 align="center">Index</h2>
</td>
</tr>
</table>
<hr>
<li><a
href="http://developer.intel.com/software/products/compilers/c50/">Intel
C++ 5.0</a>. Compilation succeeds, but tests <font
color="#FF0000"><b>FAILED at runtime</b></font> due to a bug in its
exception-handling implementation.
</ul>
<h2>Synopsis</h2>
Welcome to version 2 of <b>Boost.Python</b>, a C++ library which enables
seamless interoperability between C++ and the <a href=
"http://www.python.org">Python</a> programming language. The new version
has been rewritten from the ground up, with a more convenient and
flexible interface, and many new capabilities, including support for:
<li>Against Python 1.5.2 using the following compiler/library:
<ul>
<li>References and Pointers</li>
<ul>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>
<li>Globally Registered Type Coercions</li>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>/<a
href="http://www.stlport.org">STLport 4.0</a>
<li>Automatic Cross-Module Type Conversions</li>
<li><a href="http://gcc.gnu.org/">GCC 2.95.2</a> [by <a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich
Koethe</a>]
<li>Efficient Function Overloading</li>
<li><a href="http://gcc.gnu.org/">GCC 2.95.2</a>/<a href="http://www.stlport.org">STLport 4.0</a>
<li>C++ to Python Exception Translation</li>
<li>Compaq C++ V6.2-024 for Digital UNIX V5.0 Rev. 910 (an <a
href="http://www.edg.com/">EDG</a>-based compiler) with <a
href="http://www.stlport.org/beta.html">STLport-4.1b3</a> [by <a
href="mailto:rwgk@cci.lbl.gov">Ralf W. Grosse-Kunstleve</a>]
<li>Default Arguments</li>
<li>An upcoming release of <a href="http://www.metrowerks.com/products/windows/">Metrowerks CodeWarrior
Pro6 for Windows</a> (the first release has a bug that's fatal to Boost.Python)
</ul>
</ul>
<li>Keyword Arguments</li>
<h2>Credits</h2>
<ul>
<li><a href="../../../people/dave_abrahams.htm">David Abrahams</a> originated
and wrote most of the library, and continues to coordinate development.
<li>Manipulating Python objects in C++</li>
<li><a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich Koethe</a>
had independently developed a similar system. When he discovered Boost.Python,
he generously contributed countless hours of coding and much insight into
improving it. He is responsible for an early version of the support for <a
href="overloading.html">function overloading</a> and wrote the support for
<a href="inheritance.html#implicit_conversion">reflecting C++ inheritance
relationships</a>. He has helped to improve error-reporting from both
Python and C++, and has designed an extremely easy-to-use way of
exposing <a href="special.html#numeric">numeric operators</a>, including
a way to avoid explicit coercion by means of overloading.
<li>Exporting C++ Iterators as Python Iterators</li>
<li>Documentation Strings</li>
</ul>
The development of these features was funded in part by grants to <a
href="http://www.boost-consulting.com">Boost Consulting</a> from the <a
href="http://www.llnl.gov/">Lawrence Livermore National Laboratories</a>
and by the <a href="http://cci.lbl.gov/">Computational Crystallography
Initiative</a> at Lawrence Berkeley National Laboratories.
<hr>
<h2>Note for Python 2.3 users</h2>
This is a bugfix release only, and is <b>not</b> compatible with
Python 2.3. Boost 1.31.0, which will be compatible with Python
2.3, is due out shortly. In the meantime, if you need Python 2.3
compatibility, we suggest you get a CVS snapshot, either from the
<a href="../../../more/download.html#CVS">SourceForge anonymous
CVS</a> or from our mirror, updated nightly:
<pre>
cvs -d :pserver:anonymous@boost-consulting.com:/boost login
<i>no password; just hit return</i>
cvs -d :pserver:anonymous@boost-consulting.com:/boost co boost
</pre>
<hr>
<h2>Contents</h2>
<dl class="index">
<dt><a href="tutorial/index.html">Tutorial Introduction</a></dt>
<dt><a href="building.html">Building and Testing</a></dt>
<dt><a href="v2/reference.html">Reference Manual</a></dt>
<dt><a href="v2/configuration.html">Configuration Information</a></dt>
<dt><a href="v2/platforms.html">Known Working Platforms and
Compilers</a></dt>
<dt><a href="v2/definitions.html">Definitions</a></dt>
<dt><a href="projects.html">Projects using Boost.Python</a></dt>
<dt><a href="support.html">Support Resources</a></dt>
<dt><a href="v2/faq.html">Frequently Asked Questions (FAQs)</a></dt>
<li><a href="http://cci.lbl.gov/staff/ralf_grosse-kunstleve.html">Ralf W.
Grosse-Kunstleve</a> contributed <a href="pickle.html">pickle support</a>
and numerous other small improvements. He's working on a way to allow
types exported by multiple modules to interact.
<dt><a href="../pyste/index.html">Pyste (Boost.Python code generator)</a></dt>
<li>The members of the boost mailing list and the Python community
supplied invaluable early feedback. In particular, Ron Clarke, Mark Evans,
Anton Gluck, Chuck Ingold, Prabhu Ramachandran, and Barry Scott took the
brave step of trying to use Boost.Python while it was still in early
stages of development.
<dt><a href="news.html">News/Change Log</a></dt>
<li>The development of Boost.Python wouldn't have been possible without
the generous support of <a href="http://www.dragonsys.com/">Dragon
Systems/Lernout and Hauspie, Inc</a> who supported its development as an
open-source project.
</ul>
<dt><a href="v2/progress_reports.html">LLNL Progress Reports</a></dt>
<h2>Table of Contents</h2>
<dt><a href="v2/acknowledgments.html">Acknowledgments</a></dt>
</dl>
<hr>
<ol>
<li><a href="extending.html">A Brief Introduction to writing Python
extension modules</a>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
4 August, 2003
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<li><a href="comparisons.html">Comparisons between Boost.Python and other
systems for extending Python</a>
<li><a href="example1.html">A Simple Example</a>
<li><a href="exporting_classes.html">Exporting Classes</a>
<li><a href="overriding.html">Overridable Virtual Functions</a>
<li><a href="overloading.html">Function Overloading</a>
<li><a href="inheritance.html">Inheritance</a>
<li><a href="special.html">Special Method and Operator Support</a>
<li><a href="under-the-hood.html">A Peek Under the Hood</a>
<li><a href="building.html">Building an Extension Module</a>
<li><a href="pickle.html">Pickle Support</a>
<li><a href="cross_module.html">Cross-Extension-Module Dependencies</a>
<li><a href="enums.html">Wrapping Enums</a>
<li><a href="pointers.html">Pointers and Smart Pointers</a>
<li><a href="data_structures.txt">Internal Data Structures</a>
</ol>
<p>
Documentation is a major ongoing project; assistance is greatly
appreciated! In the meantime, useful examples of every Boost.Python feature should
be evident in the regression test files <code>test/comprehensive.[<a
href="../test/comprehensive.py">py</a>/<a
href="../test/comprehensive.hpp">hpp</a>/<a
href="../test/comprehensive.cpp">cpp</a>]</code>
<p>
Questions should be directed to <a href=
"http://www.yahoogroups.com/list/boost">the boost mailing list</a>.
<p>
&copy; Copyright David Abrahams 2001. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Mar 6, 2001
<p><i>&copy; Copyright <a href="../../people/dave_abrahams.htm">Dave
Abrahams</a> 2002. All Rights Reserved.</i></p>
</body>
</html>

View File

@@ -1,173 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Inheritance
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Inheritance
</h1>
<h2>Inheritance in Python</h2>
<p>
Boost.Python extension classes support single and multiple-inheritance in
Python, just like regular Python classes. You can arbitrarily mix
built-in Python classes with extension classes in a derived class'
tuple of bases. Whenever a Boost.Python extension class is among the bases for a
new class in Python, the result is an extension class:
<blockquote>
<pre>
&gt;&gt;&gt; class MyPythonClass:
... def f(): return 'MyPythonClass.f()'
...
&gt;&gt;&gt; import my_extension_module
&gt;&gt;&gt; class Derived(my_extension_module.MyExtensionClass, MyPythonClass):
... '''This is an extension class'''
... pass
...
&gt;&gt;&gt; x = Derived()
&gt;&gt;&gt; x.f()
'MyPythonClass.f()'
&gt;&gt;&gt; x.g()
'MyExtensionClass.g()'
</pre>
</blockquote>
<h2><a name="implicit_conversion">Reflecting C++ Inheritance Relationships</a></h2>
<p>
Boost.Python also allows us to represent C++ inheritance relationships so that
wrapped derived classes may be passed where values, pointers, or
references to a base class are expected as arguments. The
<code>declare_base</code> member function of
<code>class_builder&lt;&gt;</code> is used to establish the relationship
between base and derived classes:
<blockquote>
<pre>
#include &lt;memory&gt; // for std::auto_ptr&lt;&gt;
struct Base {
virtual ~Base() {}
virtual const char* name() const { return "Base"; }
};
struct Derived : Base {
Derived() : x(-1) {}
virtual const char* name() const { return "Derived"; }
int x;
};
std::auto_ptr&lt;Base&gt; derived_as_base() {
return std::auto_ptr&lt;Base&gt;(new Derived);
}
const char* get_name(const Base& b) {
return b.name();
}
int get_derived_x(const Derived& d) {
return d.x;
}
<hr>
#include &lt;boost/python/class_builder.hpp&gt;
// namespace alias for code brevity
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(my_module)
{
    try
    {
       python::module_builder my_module("my_module");
       python::class_builder&lt;Base&gt; base_class(my_module, "Base");
       base_class.def(python::constructor&lt;void&gt;());
       python::class_builder&lt;Derived&gt; derived_class(my_module, "Derived");
       derived_class.def(python::constructor&lt;void&gt;());
<b>// Establish the inheritance relationship between Base and Derived
derived_class.declare_base(base_class);</b>
my_module.def(derived_as_base, "derived_as_base");
my_module.def(get_name, "get_name");
my_module.def(get_derived_x, "get_derived_x");
    }
    catch(...)
    {
       python::handle_exception();    // Deal with the exception for Python
    }
}
</pre>
</blockquote>
<p>
Then, in Python:
<blockquote>
<pre>
&gt;&gt;&gt; from my_module import *
&gt;&gt;&gt; base = Base()
&gt;&gt;&gt; derived = Derived()
&gt;&gt;&gt; get_name(base)
'Base'
</pre>
</blockquote>
<i>objects of wrapped class Derived may be passed where Base is expected</i>
<blockquote>
<pre>
&gt;&gt;&gt; get_name(derived)
'Derived'
</pre>
</blockquote>
<i>objects of wrapped class Derived can be passed where Derived is
expected but where type information has been lost.</i>
<blockquote>
<pre>
&gt;&gt;&gt; get_derived_x(derived_as_base())
-1
</pre>
</blockquote>
<h2>Inheritance Without Virtual Functions</h2>
<p>
If for some reason your base class has no virtual functions but you still want
to represent the inheritance relationship between base and derived classes,
pass the special symbol <code>boost::python::without_downcast</code> as the 2nd parameter
to <code>declare_base</code>:
<blockquote>
<pre>
struct Base2 {};
struct Derived2 { int f(); };
<hr>
...
   python::class_builder&lt;Base&gt; base2_class(my_module, "Base2");
   base2_class.def(python::constructor&lt;void&gt;());
   python::class_builder&lt;Derived2&gt; derived2_class(my_module, "Derived2");
   derived2_class.def(python::constructor&lt;void&gt;());
derived_class.declare_base(base_class, <b>python::without_downcast</b>);
</pre>
</blockquote>
<p>This approach will allow <code>Derived2</code> objects to be passed where
<code>Base2</code> is expected, but does not attempt to implicitly convert (downcast)
smart-pointers to <code>Base2</code> into <code>Derived2</code> pointers,
references, or values.
<p>
Next: <a href="special.html">Special Method and Operator Support</a>
Previous: <a href="overloading.html">Function Overloading</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Nov 26, 2000
</div>

328
doc/new-conversions.html Normal file
View File

@@ -0,0 +1,328 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>A New Type Conversion Mechanism for Boost.Python</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<p><img border="0" src="../../../c++boost.gif" width="277" height="86"
alt="boost logo"></p>
<h1>A New Type Conversion Mechanism for Boost.Python</h1>
<p>By <a href="../../../people/dave_abrahams.htm">David Abrahams</a>.
<h2>Introduction</h2>
This document describes a redesign of the mechanism for automatically
converting objects between C++ and Python. The current implementation
uses two functions for any type <tt>T</tt>:
<blockquote><pre>
U from_python(PyObject*, type&lt;T&gt;);
void to_python(V);
</pre></blockquote>
where U is convertible to T and T is convertible to V. These functions
are at the heart of C++/Python interoperability in Boost.Python, so
why would we want to change them? There are many reasons:
<h3>Bugs</h3>
<p>Firstly, the current mechanism relies on a common C++ compiler
bug. This is not just embarrassing: as compilers get to be more
conformant, the library stops working. The issue, in detail, is the
use of inline friend functions in templates to generate
conversions. It is a very powerful, and legal technique as long as
it's used correctly:
<blockquote><pre>
template &lt;class Derived&gt;
struct add_some_functions
{
friend <i>return-type</i> some_function1(..., Derived <i>cv-*-&amp;-opt</i>, ...);
friend <i>return-type</i> some_function2(..., Derived <i>cv-*-&amp;-opt</i>, ...);
};
template &lt;class T&gt;
struct some_template : add_some_functions&lt;some_template&lt;T&gt; &gt;
{
};
</pre></blockquote>
The <tt>add_some_functions</tt> template generates free functions
which operate on <tt>Derived</tt>, or on related types. Strictly
speaking the related types are not just cv-qualified <tt>Derived</tt>
values, pointers and/or references. Section 3.4.2 in the standard
describes exactly which types you must use as parameters to these
functions if you want the functions to be found
(there is also a less-technical description in section 11.5.1 of
C++PL3 <a href="#ref_1">[1]</a>). Suffice it to say that
with the current design, the <tt>from_python</tt> and
<tt>to_python</tt> functions are not supposed to be callable under any
conditions!
<h3>Compilation and Linking Time</h3>
The conversion functions generated for each wrapped class using the
above technique are not function templates, but regular functions. The
upshot is that they must <i>all</i> be generated regardless of whether
they are actually used. Generating all of those functions can slow
down module compilation, and resolving the references can slow down
linking.
<h3>Efficiency</h3>
The conversion functions are primarily used in (member) function
wrappers to convert the arguments and return values. Being functions,
converters have no interface which allows us to ask &quot;will the
conversion succeed?&quot; without calling the function. Since the
return value of the function must be the object to be passed as an
argument, Boost.Python currently uses C++ exception-handling to detect
an unsuccessful conversion. It's not a particularly good use of
exception-handling, since the failure is not handled very far from
where it occurred. More importantly, it means that C++ exceptions are
thrown during overload resolution as we seek an overload that matches
the arguments passed. Depending on the implementation, this approach
can result in significant slowdowns.
<p>It is also unclear that the current library generates a minimal
amount of code for any type conversion. Many of the conversion
functions are nontrivial, and partly because of compiler limitations,
they are declared <tt>inline</tt>. Also, we could have done a better
job separating the type-specific conversion code from the code which
is type-independent.
<h3>Cross-module Support</h3>
The current strategy requires every module to contain the definition
of conversions it uses. In general, a new module can never supply
conversion code which is used by another module. Ralf Grosse-Kunstleve
designed a clever system which imports conversions directly from one
library into another using some explicit declarations, but it has some
disadvantages also:
<ol>
<li>The system Ullrich Koethe designed for implicit conversion between
wrapped classes related through inheritance does not currently work if
the classes are defined in separate modules.
<li>The writer of the importing module is required to know the name of
the module supplying the imported conversions.
<li>There can be only one way to extract any given C++ type from a
Python object in a given module.
</ol>
The first item might be addressed by moving Boost.Python into a shared
library, but the other two cannot. Ralf turned the limitation in item
two into a feature: the required module is loaded implicitly when a
conversion it defines is invoked. We will probably want to provide
that functionality anyway, but it's not clear that we should require
the declaration of all such conversions. The final item is a more
serious limitation. If, for example, new numeric types are defined in
separate modules, and these types can all be converted to
<tt>double</tt>s, we have to choose just one conversion method.
<h3>Ease-of-use</h3>
One persistent source of confusion for users of Boost.Python has been
the fact that conversions for a class are not be visible at
compile-time until the declaration of that class has been seen. When
the user tries to expose a (member) function operating on or returning
an instance of the class in question, compilation fails...even though
the user goes on to expose the class in the same translation unit!
<p>
The new system lifts all compile-time checks for the existence of
particular type conversions and replaces them with runtime checks, in
true Pythonic style. While this might seem cavalier, the compile-time
checks are actually not much use in the current system if many classes
are wrapped in separate modules, since the checks are based only on
the user's declaration that the conversions exist.
<h2>The New Design</h2>
<h3>Motivation</h3>
The new design was heavily influenced by a desire to generate as
little code as possible in extension modules. Some of Boost.Python's
clients are enormous projects where link time is proportional to the
amount of object code, and there are many Python extension modules. As
such, we try to keep type-specific conversion code out of modules
other than the one the converters are defined in, and rely as much as
possible on centralized control through a shared library.
<h3>The Basics</h3>
The library contains a <tt>registry</tt> which maps runtime type
identifiers (actually an extension of <tt>std::type_info</tt> which
preserves references and constness) to entries containing type
converters. An <tt>entry</tt> can contain only one converter from C++ to Python
(<tt>wrapper</tt>), but many converters from Python to C++
(<tt>unwrapper</tt>s). <font color="#ff0000">What should happen if
multiple modules try to register wrappers for the same type?</font>. Wrappers
and unwrappers are known as <tt>body</tt> objects, and are accessed
by the user and the library (in its function-wrapping code) through
corresponding <tt>handle</tt> (<tt>wrap&lt;T&gt;</tt> and
<tt>unwrap&lt;T&gt;</tt>) objects. The <tt>handle</tt> objects are
extremely lightweight, and delegate <i>all</i> of their operations to
the corresponding <tt>body</tt>.
<p>
When a <tt>handle</tt> object is constructed, it accesses the
registry to find a corresponding <tt>body</tt> that can convert the
handle's constructor argument. Actually the registry record for any
type
<tt>T</tt>used in a module is looked up only once and stored in a
static <tt>registration&lt;T&gt;</tt> object for efficiency. For
example, if the handle is an <tt>unwrap&lt;Foo&amp;&gt;</tt> object,
the <tt>entry</tt> for <tt>Foo&amp;</tt> is looked up in the
<tt>registry</tt>, and each <tt>unwrapper</tt> it contains is queried
to determine if it can convert the
<tt>PyObject*</tt> with which the <tt>unwrap</tt> was constructed. If
a body object which can perform the conversion is found, a pointer to
it is stored in the handle. A body object may at any point store
additional data in the handle to speed up the conversion process.
<p>
Now that the handle has been constructed, the user can ask it whether
the conversion can be performed. All handles can be tested as though
they were convertible to <tt>bool</tt>; a <tt>true</tt> value
indicates success. If the user forges ahead and tries to do the
conversion without checking when no conversion is possible, an
exception will be thrown as usual. The conversion itself is performed
by the body object.
<h3>Handling complex conversions</h3>
<p>Some conversions may require a dynamic allocation. For example,
when a Python tuple is converted to a <tt>std::vector&lt;double&gt;
const&amp;</tt>, we need some storage into which to construct the
vector so that a reference to it can be formed. Furthermore, multiple
conversions of the same type may need to be &quot;active&quot;
simultaneously, so we can't keep a single copy of the storage
anywhere. We could keep the storage in the <tt>body</tt> object, and
have the body clone itself in case the storage is used, but in that
case the storage in the body which lives in the registry is never
used. If the storage was actually an object of the target type (the
safest way in C++), we'd have to find a way to construct one for the
body in the registry, since it may not have a default constructor.
<p>
The most obvious way out of this quagmire is to allocate the object using a
<i>new-expression</i>, and store a pointer to it in the handle. Since
the <tt>body</tt> object knows everything about the data it needs to
allocate (if any), it is also given responsibility for destroying that
data. When the <tt>handle</tt> is destroyed it asks the <tt>body</tt>
object to tear down any data it may have stored there. In many ways,
you can think of the <tt>body</tt> as a &quot;dynamically-determined
vtable&quot; for the handle.
<h3>Eliminating Redundancy</h3>
If you look at the current Boost.Python code, you'll see that there
are an enormous number of conversion functions generated for each
wrapped class. For a given class <tt>T</tt>, functions are generated
to extract the following types <tt>from_python</tt>:
<blockquote><pre>
T*
T const*
T const* const&amp;
T* const&amp;
T&amp;
T const&amp;
T
std::auto_ptr&lt;T&gt;&amp;
std::auto_ptr&lt;T&gt;
std::auto_ptr&lt;T&gt; const&amp;
boost::shared_ptr&lt;T&gt;&amp;
boost::shared_ptr&lt;T&gt;
boost::shared_ptr&lt;T&gt; const&amp;
</pre></blockquote>
Most of these are implemented in terms of just a few conversions, and
<t>if you're lucky</t>, they will be inlined and cause no extra
overhead. In the new system, however, a significant amount of data
will be associated with each type that needs to be converted. We
certainly don't want to register a separate unwrapper object for all
of the above types.
<p>Fortunately, much of the redundancy can be eliminated. For example,
if we generate an unwrapper for <tt>T&</tt>, we don't need an
unwrapper for <tt>T const&</tt> or <tt>T</tt>. Accordingly, the user's
request to wrap/unwrap a given type is translated at compile-time into
a request which helps to eliminate redundancy. The rules used to
<tt>unwrap</tt> a type are:
<ol>
<li> Treat built-in types specially: when unwrapping a value or
constant reference to one of these, use a value for the target
type. It will bind to a const reference if neccessary, and more
importantly, avoids having to dynamically allocate room for
an lvalue of types which can be cheaply copied.
<li>
Reduce everything else to a reference to an un-cv-qualified type
where possible. Since cv-qualification is lost on Python
anyway, there's no point in trying to convert to a
<tt>const&amp;</tt>. <font color="#ff0000">What about conversions
to values like the tuple-&gt;vector example above? It seems to me
that we don't want to make a <tt>vector&lt;double&gt;&amp;</tt>
(non-const) converter available for that case. We may need to
rethink this slightly.</font>
</ol>
<p>To handle the problem described above in item 2, we modify the
procedure slightly. To unwrap any non-scalar <tt>T</tt>, we seek an
unwrapper for <tt>add_reference&lt;T&gt;::type</tt>. Unwrappers for
<tt>T&nbsp;const&amp;</tt> always return <tt>T&amp;</tt>, and are
registered under both <tt>T&nbsp;&amp;</tt> and
<tt>T&nbsp;const&amp;</tt>.
<p>For compilers not supporting partial specialization, unwrappers for
<tt>T&nbsp;const&amp;</tt> must return <tt>T&nbsp;const&amp;</tt>
(since constness can't be stripped), but a separate unwrapper object
need to be registered for <tt>T&nbsp;&amp;</tt> and
<tt>T&nbsp;const&amp;</tt> anyway, for the same reasons.
<font color="#ff0000">We may want to make it possible to compile as
though partial specialization were unavailable even on compilers where
it is available, in case modules could be compiled by different
compilers with compatible ABIs (e.g. Intel C++ and MSVC6).</font>
<h3>Efficient Argument Conversion</h3>
Since type conversions are primarily used in function wrappers, an
optimization is provided for the case where a group of conversions are
used together. Each <tt>handle</tt> class has a corresponding
&quot;<tt>_more</tt>&quot; class which does the same job, but has a
trivial destructor. Instead of asking each &quot;<tt>_more</tt>&quot;
handle to destroy its own body, it is linked into an endogenous list
managed by the first (ordinary) handle. The <tt>wrap</tt> and
<tt>unwrap</tt> destructors are responsible for traversing that list
and asking each <tt>body</tt> class to tear down its
<tt>handle</tt>. This mechanism is also used to determine if all of
the argument/return-value conversions can succeed with a single
function call in the function wrapping code. <font color="#ff0000">We
might need to handle return values in a separate step for Python
callbacks, since the availablility of a conversion won't be known
until the result object is retrieved.</font>
<br>
<hr>
<h2>References</h2>
<p><a name="ref_1">[1]</a>B. Stroustrup, The C++ Programming Language
Special Edition Addison-Wesley, ISBN 0-201-70073-5.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->
13 November, 2002
<!--webbot bot="Timestamp" endspan i-checksum="31283" --></p>
<p>© Copyright David Abrahams, 2001</p>
</body>
</html>

111
doc/new-conversions.txt Normal file
View File

@@ -0,0 +1,111 @@
This hierarchy contains converter handle classes.
+-------------+
| noncopyable |
+-------------+
^
| A common base class used so that
+--------+--------+ conversions can be linked into a
| conversion_base | chain for efficient argument
+-----------------+ conversion
^
|
+---------+-----------+
| |
+-----------+----+ +------+-------+ only used for
| unwrap_more<T> | | wrap_more<T> | chaining, and don't manage any
+----------------+ +--------------+ resources.
^ ^
| |
+-----+-----+ +-------+-+ These converters are what users
| unwrap<T> | | wrap<T> | actually touch, but they do so
+-----------+ +---------+ through a type generator which
minimizes the number of converters
that must be generated, so they
Each unwrap<T>, unwrap_more<T>, wrap<T>, wrap_more<T> converter holds
a reference to an appropriate converter object
This hierarchy contains converter body classes
Exposes use/release which
are needed in case the converter
+-----------+ in the registry needs to be
| converter | cloned. That occurs when a
+-----------+ unwrap target type is not
^ contained within the Python object.
|
+------------------+-----+
| |
+--------+-------+ Exposes |
| unwrapper_base | convertible() |
+----------------+ |
^ |
| |
+--------+----+ +-----+-----+
| unwrapper<T>| | wrapper<T>|
+-------------+ +-----------+
Exposes T convert(PyObject*) Exposes PyObject* convert(T)
unwrap:
constructed with a PyObject*, whose reference count is
incremented.
find the registry entry for the target type
look in the collection of converters for one which claims to be
able to convert the PyObject to the target type.
stick a pointer to the unwrapper in the unwrap object
when unwrap is queried for convertibility, it checks to see
if it has a pointer to an unwrapper.
on conversion, the unwrapper is asked to allocate an
implementation if the unwrap object isn't already holding
one. The unwrap object "takes ownership" of the unwrapper's
implementation. No memory allocation will actually take place
unless this is a value conversion.
on destruction, the unwrapper is asked to free any implementation
held by the unwrap object. No memory deallocation actually
takes place unless this is a value conversion
on destruction, the reference count on the held PyObject is
decremented.
We need to make sure that by default, you can't instantiate
callback<> for reference and pointer return types: although the
unwrappers may exist, they may convert by-value, which would cause
the referent to be destroyed upon return.
wrap:
find the registry entry for the source type
see if there is a converter. If found, stick a pointer to it in
the wrap object.
when queried for convertibility, it checks to see if it has a
pointer to a converter.
on conversion, a reference to the target PyObject is held by the
converter. Generally, the PyObject will have been created by the
converter, but in certain cases it may be a pre-existing object,
whose reference count will have been incremented.
when a wrap<T> x is used to return from a C++ function,
x.release() is returned so that x no longer holds a reference to
the PyObject when destroyed.
Otherwise, on destruction, any PyObject still held has its
reference-count decremented.
When a converter is created by the user, the appropriate element must
be added to the registry; when it is destroyed, it must be removed
from the registry.

109
doc/news.html Normal file
View File

@@ -0,0 +1,109 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="boost.css">
<title>Boost.Python - News/Change Log</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="index.html">Boost.Python</a></h1>
<h2 align="center">News/Change Log</h2>
</td>
</tr>
</table>
<hr>
<dl class="page-index">
<dt>24 February 2003</dt>
<dd>Finished improved support
for <code>boost::shared_ptr</code>. Now any wrapped object of
C++ class <code>X</code> can be converted automatically
to <code>shared_ptr&lt;X&gt;</code>, regardless of how it was
wrapped. The <code>shared_ptr</code> will manage the lifetime
of the Python object which supplied the <code>X</code>, rather
than just the <code>X</code> object itself, and when such
a <code>shared_ptr</code> is converted back to Python, the
original Python object will be returned.</dd>
<dt>19 January 2003</dt>
<dd>Integrated <code>staticmethod</code> support from <a href=
"mailto:nickm-at-sitius.com">Nikolay Mladenov</a>. Thanks,
Nikolay!</dd>
<dt>29 December 2002</dt>
<dd>Added Visual Studio project file and instructions from Brett
Calcott. Thanks, Brett!</dd>
<dt>20 December 2002</dt>
<dd>Added automatic downcasting for pointers, references, and smart
pointers to polymorphic class types upon conversion to python</dd>
<dt>18 December 2002</dt>
<dd>Optimized from_python conversions for wrapped classes by putting
the conversion logic in the shared library instead of registering
separate converters for each class in each extension module</dd>
<dt>19 November 2002</dt>
<dd>Removed the need for users to cast base class member function
pointers when used as arguments to <a href=
"v2/class.html#class_-spec-modifiers">add_property</a></dd>
<dt>13 December 2002</dt>
<dd>Allow exporting of <a href=
"v2/enum.html#enum_-spec"><code>enum_</code></a> values into enclosing
<a href="v2/scope.html#scope-spec"><code>scope</code></a>.<br>
Fixed unsigned integer conversions to deal correctly with numbers that
are out-of-range of <code>signed long</code>.</dd>
<dt>14 November 2002</dt>
<dd>Auto-detection of class data members wrapped with <a href=
"v2/data_members.html#make_getter-spec"><code>make_getter</code></a></dd>
<dt>13 November 2002</dt>
<dd>Full Support for <code>std::auto_ptr&lt;&gt;</code> added.</dd>
<dt>October 2002</dt>
<dd>Ongoing updates and improvements to tutorial documentation</dd>
<dt>10 October 2002</dt>
<dd>Boost.Python V2 is released!</dd>
</dl>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
20 December, 2002
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href="../../../people/dave_abrahams.htm">Dave
Abrahams</a> 2002. All Rights Reserved.</i></p>
</body>
</html>

View File

@@ -1,155 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Function Overloading
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Function Overloading
</h1>
<h2>An Example</h2>
<p>
To expose overloaded functions in Python, simply <code>def()</code> each
one with the same Python name:
<blockquote>
<pre>
inline int f1() { return 3; }
inline int f2(int x) { return x + 1; }
class X {
public:
X() : m_value(0) {}
X(int n) : m_value(n) {}
int value() const { return m_value; }
void value(int v) { m_value = v; }
private:
int m_value;
};
...
BOOST_PYTHON_MODULE_INIT(overload_demo)
{
    try
    {
boost::python::module_builder overload_demo("overload_demo");
// Overloaded functions at module scope
overload_demo.def(f1, "f");
overload_demo.def(f2, "f");
boost::python::class_builder&lt;X&gt; x_class(overload_demo, "X");
// Overloaded constructors
x_class.def(boost::python::constructor&lt;&gt;());
x_class.def(boost::python::constructor&lt;int&gt;());
// Overloaded member functions
x_class.def((int (X::*)() const)&amp;X::value, "value");
x_class.def((void (X::*)(int))&amp;X::value, "value");
...
</pre>
</blockquote>
<p>
Now in Python:
<blockquote>
<pre>
>>> from overload_demo import *
>>> x0 = X()
>>> x1 = X(1)
>>> x0.value()
0
>>> x1.value()
1
>>> x0.value(3)
>>> x0.value()
3
>>> X('hello')
TypeError: No overloaded functions match (X, string). Candidates are:
void (*)()
void (*)(int)
>>> f()
3
>>> f(4)
5
</pre>
</blockquote>
<h2>Discussion</h2>
<p>
Notice that overloading in the Python module was produced three ways:<ol>
<li>by combining the non-overloaded C++ functions <code>int f1()</code>
and <code>int f2(int)</code> and exposing them as <code>f</code> in Python.
<li>by exposing the overloaded constructors of <code>class X</code>
<li>by exposing the overloaded member functions <code>X::value</code>.
</ol>
<p>
Techniques 1. and 3. above are really alternatives. In case 3, you need
to form a pointer to each of the overloaded functions. The casting
syntax shown above is one way to do that in C++. Case 1 does not require
complicated-looking casts, but may not be viable if you can't change
your C++ interface. N.B. There's really nothing unsafe about casting an
overloaded (member) function address this way: the compiler won't let
you write it at all unless you get it right.
<h2>An Alternative to Casting</h2>
<p>
This approach is not neccessarily better, but may be preferable for some
people who have trouble writing out the types of (member) function
pointers or simply prefer to avoid all casts as a matter of principle:
<blockquote>
<pre>
// Forwarding functions for X::value
inline void set_x_value(X&amp; self, int v) { self.value(v); }
inline int get_x_value(X&amp; self) { return self.value(); }
...
// Overloaded member functions
x_class.def(set_x_value, "value");
x_class.def(get_x_value, "value");
</pre>
</blockquote>
<p>Here we are taking advantage of the ability to expose C++ functions at
namespace scope as Python member functions.
<h2>Overload Resolution</h2>
<p>
The function overload resolution mechanism works as follows:
<ul>
<li>Attribute lookup for extension classes proceeds in <a
href="http://www.python.org/doc/current/tut/node11.html#SECTION0011510000000000000000">the
usual Python way</a> using a depth-first, left-to-right search. When a
class is found which has a matching attribute, only functions overloaded
in the context of that class are candidates for overload resolution. In
this sense, overload resolution mirrors the C++ mechanism, where a name
in a derived class ``hides'' all functions with the same name from a base
class.
<p>
<li>Within a name-space context (extension class or module), overloaded
functions are tried in the same order they were
<code>def()</code>ed. The first function whose signature can be made to
match each argument passed is the one which is ultimately called.
This means in particular that you cannot overload the same function on
both ``<code>int</code>'' and ``<code>float</code>'' because Python
automatically converts either of the two types into the other one.
If the ``<code>float</code>'' overload is found first, it is used
also used for arguments of type ``<code>int</code>'' as well, and the
``<code>int</code>'' version of the function is never invoked.
</ul>
<p>
Next: <a href="inheritance.html">Inheritance</a>
Previous: <a href="overriding.html">Overridable Virtual Functions</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2001. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,215 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Overridable Virtual Functions</title>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center"
width="277" height="86">
<h1>Overridable Virtual Functions</h1>
<p>
In the <a href="exporting_classes.html">previous example</a> we exposed a simple
C++ class in Python and showed that we could write a subclass. We even
redefined one of the functions in our derived class. Now we will learn
how to make the function behave virtually <em>when called from C++</em>.
<h2><a name="overriding_example">Example</a></h2>
<p>In this example, it is assumed that <code>hello::greet()</code> is a virtual
member function:
<blockquote><pre>
class hello
{
public:
hello(const std::string&amp; country) { this-&gt;country = country; }
<b>virtual</b> std::string greet() const { return "Hello from " + country; }
    virtual ~hello(); // Good practice
...
};
</pre></blockquote>
<p>
We'll need a derived class<a href="#why_derived">*</a> to help us
dispatch the call to Python. In our derived class, we need the following
elements:
<ol>
<li><a name="derived_1">A</a> <code>PyObject*</code> data member (usually
called <tt>self</tt>) that holds a pointer to the Python object corresponding
to our C++ <tt>hello</tt> instance.
<li><a name="derived_2">For</a> each exposed constructor of the
base class <tt>T</tt>, a constructor which takes the same parameters preceded by an initial
<code>PyObject*</code> argument. The initial argument should be stored in the <tt>self</tt> data
member described above.
<li><a name="derived_3">If</a> the class being wrapped is ever returned <i>by
value</i> from a wrapped function, be sure you do the same for the
<tt>T</tt>'s copy constructor: you'll need a constructor taking arguments
<tt>(PyObject*,&nbsp;const&nbsp;T&amp;)</tt>.
<li><a name="derived_4">An</a> implementation of each virtual function you may
wish to override in Python which uses
<tt>callback&lt</tt><i>return-type</i><tt>&gt;::call_method(self,&nbsp;&quot;</tt><i>name</i><tt>&quot;,&nbsp;</tt><i>args...</i><tt>)</tt> to call
the Python override.
<li><a name="derived_5">For</a> each non-pure virtual function meant to be
overridable from Python, a static member function (or a free function) taking
a reference or pointer to the <tt>T</tt> as the first parameter and which
forwards any additional parameters neccessary to the <i>default</i>
implementation of the virtual function. See also <a href="#private">this
note</a> if the base class virtual function is private.
</ol>
<blockquote><pre>
struct hello_callback : hello
{
// hello constructor storing initial self_ parameter
hello_callback(PyObject* self_, const std::string&amp; x) // <a href="#derived_2">2</a>
: hello(x), self(self_) {}
// In case hello is returned by-value from a wrapped function
hello_callback(PyObject* self_, const hello&amp; x) // <a href="#derived_3">3</a>
: hello(x), self(self_) {}
// Override greet to call back into Python
std::string greet() const // <a href="#derived_4">4</a>
{ return boost::python::callback&lt;std::string&gt;::call_method(self, "greet"); }
// Supplies the default implementation of greet
static std::string <a name= "default_implementation">default_greet</a>(const hello& self_) const // <a href="#derived_5">5</a>
{ return self_.hello::greet(); }
private:
PyObject* self; // <a href="#derived_1">1</a>
};
</pre></blockquote>
<p>
Finally, we add <tt>hello_callback</tt> to the <tt>
class_builder&lt;&gt;</tt> declaration in our module initialization
function, and when we define the function, we must tell Boost.Python about the default
implementation:
<blockquote><pre>
// Create the <a name=
"hello_class">Python type object</a> for our extension class
boost::python::class_builder&lt;hello<strong>,hello_callback&gt;</strong> hello_class(hello, "hello");
// Add a virtual member function
hello_class.def(&amp;hello::greet, "greet", &amp;<b>hello_callback::default_greet</b>);
</pre></blockquote>
<p>
Now our Python subclass of <tt>hello</tt> behaves as expected:
<blockquote><pre>
&gt;&gt;&gt; class wordy(hello):
... def greet(self):
... return hello.greet(self) + ', where the weather is fine'
...
&gt;&gt;&gt; hi2 = wordy('Florida')
&gt;&gt;&gt; hi2.greet()
'Hello from Florida, where the weather is fine'
&gt;&gt;&gt; invite(hi2)
'Hello from Florida, where the weather is fine! Please come soon!'
</pre></blockquote>
<p>
<a name="why_derived">*</a>You may ask, "Why do we need this derived
class? This could have been designed so that everything gets done right
inside of <tt>hello</tt>." One of the goals of Boost.Python is to be
minimally intrusive on an existing C++ design. In principle, it should be
possible to expose the interface for a 3rd party library without changing
it. To unintrusively hook into the virtual functions so that a Python
override may be called, we must use a derived class.
<h2>Pure Virtual Functions</h2>
<p>
A pure virtual function with no implementation is actually a lot easier to
deal with than a virtual function with a default implementation. First of
all, you obviously don't need to <a href="#default_implementation"> supply
a default implementation</a>. Secondly, you don't need to call
<tt>def()</tt> on the <tt>extension_class&lt;&gt;</tt> instance
for the virtual function. In fact, you wouldn't <em>want</em> to: if the
corresponding attribute on the Python class stays undefined, you'll get an
<tt>AttributeError</tt> in Python when you try to call the function,
indicating that it should have been implemented. For example:
<blockquote>
<pre>
struct baz {
<strong>virtual</strong> int pure(int) = 0;
int calls_pure(int x) { return pure(x) + 1000; }
};
struct baz_callback {
int pure(int x) { boost::python::callback&lt;int&gt;::call_method(m_self, "pure", x); }
};
BOOST_PYTHON_MODULE_INIT(foobar)
{
try
{
boost::python::module_builder foobar("foobar");
boost::python::class_builder&lt;baz,baz_callback&gt; baz_class("baz");
baz_class.def(&amp;baz::calls_pure, "calls_pure");
}
catch(...)
{
boost::python::handle_exception(); // Deal with the exception for Python
}
}
</pre>
</blockquote>
<p>
Now in Python:
<blockquote>
<pre>
&gt;&gt;&gt; from foobar import baz
&gt;&gt;&gt; x = baz()
&gt;&gt;&gt; x.pure(1)
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
AttributeError: pure
&gt;&gt;&gt; x.calls_pure(1)
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
AttributeError: pure
&gt;&gt;&gt; class mumble(baz):
... def pure(self, x): return x + 1
...
&gt;&gt;&gt; y = mumble()
&gt;&gt;&gt; y.pure(99)
100
&gt;&gt;&gt; y.calls_pure(99)
1100
</pre></blockquote>
<a name="private"><h2>Private Non-Pure Virtual Functions</h2></a>
<p>This is one area where some minor intrusiveness on the wrapped library is
required. Once it has been overridden, the only way to call the base class
implementation of a private virtual function is to make the derived class a
friend of the base class. You didn't hear it from me, but most C++
implementations will allow you to change the declaration of the base class in
this limited way without breaking binary compatibility (though it will certainly
break the <a
href="http://cs.calvin.edu/c++/C++Standard-Nov97/basic.html#basic.def.odr">ODR</a>).
<hr>
<p>
Next: <a href="overloading.html">Function Overloading</a>
Previous: <a href="exporting_classes.html">Exporting Classes</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2001. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Mar 21, 2001

View File

@@ -1,148 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Pointers
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Pointers
</h1>
<h2><a name="problem">The Problem With Pointers</a></h2>
<p>
In general, raw pointers passed to or returned from functions are problematic
for Boost.Python because pointers have too many potential meanings. Is it an iterator?
A pointer to a single element? An array? When used as a return value, is the
caller expected to manage (delete) the pointed-to object or is the pointer
really just a reference? If the latter, what happens to Python references to the
referent when some C++ code deletes it?
<p>
There are a few cases in which pointers are converted automatically:
<ul>
<li>Both const- and non-const pointers to wrapped class instances can be passed
<i>to</i> C++ functions.
<li>Values of type <code>const char*</code> are interpreted as
null-terminated 'C' strings and when passed to or returned from C++ functions are
converted from/to Python strings.
</ul>
<h3>Can you avoid the problem?</h3>
<p>My first piece of advice to anyone with a case not covered above is
``find a way to avoid the problem.'' For example, if you have just one
or two functions that return a pointer to an individual <code>const
T</code>, and <code>T</code> is a wrapped class, you may be able to write a ``thin
converting wrapper'' over those two functions as follows:
<blockquote><pre>
const Foo* f(); // original function
const Foo& f_wrapper() { return *f(); }
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>
Foo must have a public copy constructor for this technique to work, since Boost.Python
converts <code>const T&</code> values <code>to_python</code> by copying the <code>T</code>
value into a new extension instance.
<h2>Dealing with the problem</h2>
<p>The first step in handling the remaining cases is to figure out what the pointer
means. Several potential solutions are provided in the examples that follow:
<h3>Returning a pointer to a wrapped type</h3>
<h4>Returning a const pointer</h4>
<p>If you have lots of functions returning a <code>const T*</code> for some
wrapped <code>T</code>, you may want to provide an automatic
<code>to_python</code> conversion function so you don't have to write lots of
thin wrappers. You can do this simply as follows:
<blockquote><pre>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
PyObject* to_python(const Foo* p) {
return to_python(*p); // convert const Foo* in terms of const Foo&
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
</pre></blockquote>
<h4>If you can't (afford to) copy the referent, or the pointer is non-const</h4>
<p>If the wrapped type doesn't have a public copy constructor, if copying is
<i>extremely</i> costly (remember, we're dealing with Python here), or if the
pointer is non-const and you really need to be able to modify the referent from
Python, you can use the following dangerous trick. Why dangerous? Because python
can not control the lifetime of the referent, so it may be destroyed by your C++
code before the last Python reference to it disappears:
<blockquote><pre>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
PyObject* to_python(Foo* p)
{
return boost::python::python_extension_class_converters&lt;Foo&gt;::smart_ptr_to_python(p);
}
PyObject* to_python(const Foo* p)
{
return to_python(const_cast&lt;Foo*&gt;(p));
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
</pre></blockquote>
This will cause the Foo* to be treated as though it were an owning smart
pointer, even though it's not. Be sure you don't use the reference for anything
from Python once the pointer becomes invalid, though. Don't worry too much about
the <code>const_cast&lt;&gt;</code> above: Const-correctness is completely lost
to Python anyway!
<h3>[In/]Out Parameters and Immutable Types</h3>
<p>If you have an interface that uses non-const pointers (or references) as
in/out parameters to types which in Python are immutable (e.g. int, string),
there simply is <i>no way</i> to get the same interface in Python. You must
resort to transforming your interface with simple thin wrappers as shown below:
<blockquote><pre>
const void f(int* in_out_x); // original function
const int f_wrapper(int in_x) { f(in_x); return in_x; }
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>Of course, [in/]out parameters commonly occur only when there is already a
return value. You can handle this case by returning a Python tuple:
<blockquote><pre>
typedef unsigned ErrorCode;
const char* f(int* in_out_x); // original function
...
#include &lt;boost/python/objects.hpp&gt;
const boost::python::tuple f_wrapper(int in_x) {
const char* s = f(in_x);
return boost::python::tuple(s, in_x);
}
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>Now, in Python:
<blockquote><pre>
&gt;&gt;&gt; str,out_x = f(3)
</pre></blockquote>
<p>
Previous: <a href="enums.html">Enums</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Nov 26, 2000
</div>

217
doc/polymorphism.txt Normal file
View File

@@ -0,0 +1,217 @@
How Runtime Polymorphism is expressed in Boost.Python:
-----------------------------------------------------
struct A { virtual std::string f(); virtual ~A(); };
std::string call_f(A& x) { return x.f(); }
struct B { virtual std::string f() { return "B"; } };
struct Bcb : B
{
Bcb(PyObject* self) : m_self(self) {}
virtual std::string f() { return call_method<std::string>(m_sef, "f"); }
static std::string f_default(B& b) { return b.B::f(); }
PyObject* m_self;
};
struct C : B
{
virtual std::string f() { return "C"; }
};
>>> class D(B):
... def f():
... return 'D'
...
>>> class E(B): pass
...
When we write, "invokes B::f non-virtually", we mean:
void g(B& x) { x.B::f(); }
This will call B::f() regardless of the dynamic type of x. Any other
way of invoking B::f, including through a function pointer, is a
"virtual invocation", and will call the most-derived override of f().
Case studies
C++\Python class
\___A_____B_____C_____D____E___
|
A | 1
|
B | 2 3
|
Bcb | 4 5 6
|
C | 7 8
|
1. Simple case
2. Python A holds a B*. Probably won't happen once we have forced
downcasting.
Requires:
x.f() -> 'B'
call_f(x) -> 'B'
Implies: A.f invokes A::f() (virtually or otherwise)
3. Python B holds a B*.
Requires:
x.f() -> 'B'
call_f(x) -> 'B'
Implies: B.f invokes B::f (virtually or otherwise)
4. B constructed from Python
Requires:
x.f() -> 'B'
call_f(x) -> 'B'
Implies: B.f invokes B::f non-virtually. Bcb::f invokes B::f
non-virtually.
Question: Does it help if we arrange for Python B construction to
build a true B object? Then this case doesn't arise.
5. D is a Python class derived from B
Requires:
x.f() -> 'D'
call_f(x) -> 'D'
Implies: Bcb::f must invoke call_method to look up the Python
method override, otherwise call_f wouldn't work.
6. E is like D, but doesn't override f
Requires:
x.f() -> 'B'
call_f(x) -> 'B'
Implies: B.f invokes B::f non-virtually. If it were virtual, x.f()
would cause infinite recursion, because we've already
determined that Bcb::f must invoke call_method to look up
the Python method override.
7. Python B object holds a C*
Requires:
x.f() -> 'C'
call_f(x) -> 'C'
Implies: B.f invokes B::f virtually.
8. C object constructed from Python
Requires:
x.f() -> 'C'
call_f(x) -> 'C'
Implies: nothing new.
------
Total implications:
2: A.f invokes A::f() (virtually or otherwise)
3: B.f invokes B::f (virtually or otherwise)
4: B.f invokes B::f non-virtually. Bcb::f invokes B::f non-virtually
6: B.f invokes B::f non-virtually.
7: B.f invokes B::f virtually.
5: Bcb::f invokes call_method to look up the Python method
Though (4) is avoidable, clearly 6 and 7 are not, and they
conflict. The implication is that B.f must choose its behavior
according to the type of the contained C++ object. If it is Bcb, a
non-virtual call to B::f must occur. Otherwise, a virtual call to B::f
must occur. This is essentially the same scheme we had with
Boost.Python v1.
Note: in early versions of Boost.Python v1, we solved this problem by
introducing a new Python class in the hierarchy, so that D and E
actually derive from a B', and B'.f invokes B::f non-virtually, while
B.f invokes B::f virtually. However, people complained about the
artificial class in the hierarchy, which was revealed when they tried
to do normal kinds of Python introspection.
-------
Assumption: we will have a function which builds a virtual function
dispatch callable Python object.
make_virtual_function(pvmf, default_impl, call_policies, dispatch_type)
Pseudocode:
Get first argument from Python arg tuple
if it contains dispatch_type
call default_impl
else
call through pvmf
Open questions:
1. What about Python multiple inheritance? Do we have the right
check in the if clause above?
A: Not quite. The correct test looks like:
Deduce target type of pvmf, i.e. T in R(T::*)(A1...AN).
Find holder in first argument which holds T
if it holds dispatch_type...
2. Can we make this more efficient?
The current "returning" mechanism will look up a holder for T
again. I don't know if we know how to avoid that.
OK, the solution involves reworking the call mechanism. This is
neccesary anyway in order to enable wrapping of function objects.
It can result in a reduction in the overall amount of source code,
because returning<> won't need to be specialized for every
combination of function and member function... though it will still
need a void specialization. We will still need a way to dispatch to
member functions through a regular function interface. mem_fn is
almost the right tool, but it only goes up to 8
arguments. Forwarding is tricky if you don't want to incur copies.
I think the trick is to use arg_from_python<T>::result_type for each
argument to the forwarder.
Another option would be to use separate function, function object,
and member function dispatchers. Once you know you have a member
function, you don't need cv-qualified overloads to call it.
Hmm, while we're at this, maybe we should solve the write-back
converter problem. Can we do it? Maybe not. Ralf doesn't want to
write special write-back functions here, does he? He wants the
converter to do the work automatically. We could add
cleanup/destructor registration. That would relieve the client from
having accessible destructors for types which are being converted by
rvalue. I'm not sure that this will really save any code,
however. It rather depends on the linker, doesn't it? I wonder if
this can be done in a backwards-compatible fashion by generating the
delete function when it's not supplied?

224
doc/projects.html Normal file
View File

@@ -0,0 +1,224 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Cygwin (vers 1st April 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="boost.css">
<title>Boost.Python - Projects using Boost.Python</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="index.html">Boost.Python</a></h1>
<h2 align="center">Projects using Boost.Python</h2>
</td>
</tr>
</table>
<hr>
<h2>Introduction</h2>
<p>This is a partial list of projects using Boost.Python. If you are
using Boost.Python as your Python/C++ binding solution, we'd be proud to
list your project on this page. Just <a href=
"mailto:c++-sig@python.org">post</a> a short description of your project
and how Boost.Python helps you get the job done, and we'll add it to this
page .</p>
<hr>
<h3>Enterprise Software</h3>
<dl class="page-index">
<dt><b><a href="http://openwbem.sourceforge.net">OpenWBEM</a></b></dt>
<dd>
The OpenWBEM project is an effort to develop an open-source
implementation of Web Based Enterprise Management suitable for
commercial and non-commercial application
<p><a href="mailto:dnuffer@sco.com">Dan Nuffer</a> writes:</p>
<blockquote>
I'm using Boost.Python to wrap the client API of OpenWBEM.This will
make it easier to do rapid prototyping, testing, and scripting when
developing management solutions that use WBEM.
</blockquote>
</dd>
</dl>
<h3>Financial Analysis</h3>
<dl class="page-index">
<dt><b>TSLib</b> - <a href="http://www.fortressinv.com">Fortress
Investment Group LLC</a></dt>
<dd>
Fortress Investment Group has contracted <a href=
"http://www.boost-consulting.com">Boost Consulting</a> to develop
core internal financial analysis tools in C++ and to prepare Python
bindings for them using Boost.Python.
<p>Tom Barket of Fortress writes:</p>
<blockquote>
We have a large C++ analytical library specialized for research in
finance and economics, built for speed and mission critical
stability. Yet Python offers us the flexibility to test out new
ideas quickly and increase the productivity of our time versus
working in C++. There are several key features which make Python
stand out. Its elegance, stability, and breadth of resources on the
web are all valuable, but the most important is its extensibility,
due to its open source transparency. Boost.Python makes Python
extensibility extremely simple and straightforward, yet preserves a
great deal of power and control.
</blockquote>
</dd>
</dl>
<h3>Graphics</h3>
<dl class="page-index">
<dt><b><a href=
"http://www.openscenegraph.org">OpenSceneGraph</a></b></dt>
<dd><a href="mailto:gideon@computer.org">Gideon May</a> has created a
set of bindings for OpenSceneGraph, a cross-platform C++/OpenGL library
for the real-time visualization. You can read the release announcement
at <a href="http://www.hypereyes.com">www.hypereyes.com</a>. <a href=
"mailto:gideon@computer.org">Contact Gideon</a> for more
information.<br>
&nbsp;</dd>
<dt><a href=
"http://pythonmagick.procoders.net/"><b>PythonMagick</b></a></dt>
<dd>PythonMagick binds the <a href=
"http://www.imagemagick.org">ImageMagick</a> image manipulation library
to Python.<br>
&nbsp;</dd>
<dt><b><a href=
"http://www.slac.stanford.edu/grp/ek/hippodraw/index.html">HippoDraw</a></b></dt>
<dd>
HippoDraw is a data analysis environment consisting of a canvas upon
which graphs such as histograms, scattter plots, etc, are prsented.
It has a highly interactive GUI interface, but some things you need
to do with scripts. HippoDraw can be run as Python extension module
so that all the manipulation can be done from either Python or the
GUI.
<p>Before the web page came online, <a
href="mailto:Paul_Kunz@SLAC.Stanford.EDU">Paul F. Kunz</a>
wrote:</p>
<blockquote>
Don't have a web page for the project, but the organization's is <a
href=
"http://www.slac.stanford.edu">http://www.slac.stanford.edu</a>
(the first web server site in America, I installed it).
</blockquote>
Which was just too cool a piece of trivia to omit.<br>
&nbsp;
</dd>
</dl>
<h3>Scientific Computing</h3>
<dl class="page index">
<dt><a href="http://camfr.sourceforge.net"><b>CAMFR</b></a></dt>
<dd>
CAMFR is a photonics and electromagnetics modelling tool. Python is
used for computational steering.
<p><a href="mailto:Peter.Bienstman@rug.ac.be">Peter Bienstman</a>
writes:</p>
<blockquote>
Thanks for providing such a great tool!
</blockquote>
</dd>
<dt><a href="http://cctbx.sourceforge.net"><b>cctbx - Computational
Crystallography Toolbox</b></a></dt>
<dd>
Computational Crystallography is concerned with the derivation of
atomic models of crystal structures, given experimental X-ray
diffraction data. The cctbx is an open-source library of fundamental
algorithms for crystallographic computations. The core algorithms are
implemented in C++ and accessed through higher-level Python
interfaces.
<p>The cctbx grew together with Boost.Python and is designed from the
ground up as a hybrid Python/C++ system. With one minor exception,
run-time polymorphism is completely handled by Python. C++
compile-time polymorphism is used to implement performance critical
algorithms. The Python and C++ layers are seamlessly integrated using
Boost.Python.</p>
<p>The SourceForge cctbx project is organized in modules to
facilitate use in non-crystallographic applications. The scitbx
module implements a general purpose array family for scientific
applications and pure C++ ports of FFTPACK and the LBFGS conjugate
gradient minimizer.</p>
</dd>
<dt><a href="http://www.llnl.gov/CASC/emsolve"><b>EMSolve</b></a></dt>
<dd>EMSolve is a provably stable, charge conserving, and energy
conserving solver for Maxwell's equations.<br>
&nbsp;</dd>
<dt><b><a href="http://cern.ch/gaudi">Gaudi</a></b> and <b><a href=
"http://cern.ch/Gaudi/RootPython/">RootPython</a></b></dt>
<dd>
Gaudi is a framework for particle physics collision data processing
applications developed in the context of the LHCb and ATLAS
experiments at CERN.
<p><a href="mailto:Pere.Mato@cern.ch">Pere Mato Vila</a> writes:</p>
<blockquote>
We are using Boost.Python to provide scripting/interactive
capability to our framework. We have a module called "GaudiPython"
implemented using Boost.Python that allows the interaction with any
framework service or algorithm from python. RootPython also uses
Boost.Python to provide a generic "gateway" between the <a href=
"http://root.cern.ch">ROOT</a> framework and python
<p>Boost.Python is great. We managed very quickly to interface our
framework to python, which is great language. We are trying to
facilitate to our physicists (end-users) a rapid analysis
application development environment based on python. For that,
Boost.Python plays and essential role.</p>
</blockquote>
</dd>
</dl>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
22 March, 2003
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href="../../../people/dave_abrahams.htm">Dave
Abrahams</a> 2002-2003. All Rights Reserved.</i></p>
</body>
</html>

View File

@@ -1,106 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>Rich Comparisons</title>
<div>
<img src="../../../c++boost.gif"
alt="c++boost.gif (8819 bytes)"
align="center"
width="277" height="86">
<hr>
<h1>Rich Comparisons</h1>
<hr>
In Python versions up to and including Python 2.0, support for
implementing comparisons on user-defined classes and extension types
was quite simple. Classes could implement a <tt>__cmp__</tt> method
that was given two instances of a class as arguments, and could only
return <tt>0</tt> if they were equal or <tt>+1</tt> or <tt>-1</tt> if
they were not. The method could not raise an exception or return
anything other than an integer value.
In Python 2.1, <b>Rich Comparisons</b> were added (see
<a href="http://python.sourceforge.net/peps/pep-0207.html">PEP 207</a>).
Python classes can now individually overload each of the &lt;, &lt;=,
&gt;, &gt;=, ==, and != operations.
<p>
For more detailed information, search for "rich comparison"
<a href="http://www.python.org/doc/current/ref/customization.html"
>here</a>.
<p>
Boost.Python supports both automatic overloading and manual overloading
of the Rich Comparison operators. The <b>compile-time</b> support is
independent of the Python version that is used when compiling
Boost.Python extension modules. That is, <tt>op_lt</tt> for example can
always be used, and the C++ <tt>operator&lt;</tt> will always be bound
to the Python method <tt>__lt__</tt>. However, the <b>run-time</b>
behavior will depend on the Python version.
<p>
With Python versions before 2.1, the Rich Comparison operators will not
be called by Python when any of the six comparison operators
(<tt>&lt;</tt>, <tt>&lt;=</tt>, <tt>==</tt>, <tt>!=</tt>,
<tt>&gt;</tt>, <tt>&gt;=</tt>) is used in an expression. The only way
to access the corresponding methods is to call them explicitly, e.g.
<tt>a.__lt__(b)</tt>. Only with Python versions 2.1 or higher will
expressions like <tt>a &lt; b</tt> work as expected.
<p>
To support Rich Comparisions, the Python C API was modified between
Python versions 2.0 and 2.1. A new slot was introduced in the
<tt>PyTypeObject</tt> structure: <tt>tp_richcompare</tt>. For backwards
compatibility, a flag (<tt>Py_TPFLAGS_HAVE_RICHCOMPARE</tt>) has to be
set to signal to the Python interpreter that Rich Comparisions are
supported by a particular type.
There is only one flag for all the six comparison operators.
When any of the six operators is wrapped automatically or
manually, Boost.Python will set this flag. Attempts to use comparison
operators at the Python level that are not defined at the C++ level
will then lead to an <tt>AttributeError</tt> when the Python 2.1
(or higher) interpreter tries, e.g., <tt>a.__lt__(b)</tt>. That
is, in general all six operators should be supplied. Automatically
wrapped operators and manually wrapped operators can be mixed. For
example:<pre>
boost::python::class_builder&lt;code&gt; py_code(this_module, "code");
py_code.def(boost::python::constructor&lt;&gt;());
py_code.def(boost::python::constructor&lt;int&gt;());
py_code.def(boost::python::operators&lt;( boost::python::op_eq
| boost::python::op_ne)&gt;());
py_code.def(NotImplemented, "__lt__");
py_code.def(NotImplemented, "__le__");
py_code.def(NotImplemented, "__gt__");
py_code.def(NotImplemented, "__ge__");
</pre>
<tt>NotImplemented</tt> is a simple free function that (currently) has
to be provided by the user. For example:<pre>
boost::python::ref
NotImplemented(const code&amp;, const code&amp;) {
return
boost::python::ref(Py_NotImplemented, boost::python::ref::increment_count);
}
</pre>
See also:
<ul>
<li><a href="../example/richcmp1.cpp"><tt>../example/richcmp1.cpp</tt></a>
<li><a href="../example/richcmp2.cpp"><tt>../example/richcmp2.cpp</tt></a>
<li><a href="../example/richcmp3.cpp"><tt>../example/richcmp3.cpp</tt></a>
</ul>
<hr>
&copy; Copyright Nicholas K. Sauter &amp; Ralf W. Grosse-Kunstleve 2001.
Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This
document is provided "as is" without express or implied warranty, and
with no claim as to its suitability for any purpose.
<p>
Updated: July 2001
</div>

View File

@@ -1,944 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<title>
Special Method and Operator Support
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="middle" src=
"../../../c++boost.gif" alt="c++boost.gif (8819 bytes)">Special Method and
Operator Support
</h1>
<h2>
Overview
</h2>
<p>
Boost.Python supports all of the standard <a href=
"http://www.python.org/doc/current/ref/specialnames.html">
special method names</a> supported by real Python class instances <em>
except</em> <code>__complex__</code> (more on the reasons <a href=
"#reasons">below</a>). In addition, it can quickly and easily expose
suitable C++ functions and operators as Python operators. The following
categories of special method names are supported:
<ul>
<li><a href="#general">Basic Customization</a>
<li><a href="#numeric">Numeric Operators</a>
<li><a href="#sequence_and_mapping">Sequence and Mapping protocols</a>
<li><a href="#getter_setter">Attribute Getters and Setters</a>
</ul>
<h2><a name="general">Basic Customization</a></h2>
<p>
Python provides a number of special operators for basic customization of a
class. Only a brief description is provided below; more complete
documentation can be found <a
href="http://www.python.org/doc/current/ref/customization.html">here</a>.
<dl>
<dt>
<b><tt class='method'>__init__</tt></b>(<i>self</i>)
<dd>
Initialize the class instance. For extension classes not subclassed in
Python, <code> __init__</code> is defined by
<pre> my_class.def(boost::python::constructor<...>())</pre>
(see section <a href="example1.html">"A Simple Example Using Boost.Python"</a>).<p>
<dt>
<b><tt class='method'>__del__</tt></b>(<i>self</i>)
<dd>
Called when the extension instance is about to be destroyed. For extension classes
not subclassed in Python, <code> __del__</code> is always defined automatically by
means of the class' destructor.
<dt>
<b><tt class='method'>__repr__</tt></b>(<i>self</i>)
<dd>
Create a string representation from which the object can be
reconstructed.
<dt>
<b><tt class='method'>__str__</tt></b>(<i>self</i>)
<dd>
Create a string representation which is suitable for printing.
<dt>
<b><tt class='method'>__lt__</tt></b>(<i>self, other</i>)
<dt>
<b><tt class='method'>__le__</tt></b>(<i>self, other</i>)
<dt>
<b><tt class='method'>__eq__</tt></b>(<i>self, other</i>)
<dt>
<b><tt class='method'>__ne__</tt></b>(<i>self, other</i>)
<dt>
<b><tt class='method'>__gt__</tt></b>(<i>self, other</i>)
<dt>
<b><tt class='method'>__ge__</tt></b>(<i>self, other</i>)
<dd>
Rich Comparison methods.
New in Python 2.1.
See <a href="richcmp.html">Rich Comparisons</a>.
<dt>
<b><tt class='method'>__cmp__</tt></b>(<i>self, other</i>)
<dd>
Three-way compare function.
See <a href="richcmp.html">Rich Comparisons</a>.
<dt>
<b><tt class='method'>__hash__</tt></b>(<i>self</i>)
<dd>
Called for the key object for dictionary operations, and by the
built-in function hash(). Should return a 32-bit integer usable as a
hash value for dictionary operations (only allowed if __cmp__ is also
defined)
<dt>
<b><tt class='method'>__nonzero__</tt></b>(<i>self</i>)
<dd>
called if the object is used as a truth value (e.g. in an if
statement)
<dt>
<b><tt class='method'>__call__</tt></b> (<var>self</var><big>[</big><var>, args...</var><big>]</big>)
<dd>
Called when the instance is ``called'' as a function; if this method
is defined, <code><var>x</var>(arg1, arg2, ...)</code> is a shorthand for
<code><var>x</var>.__call__(arg1, arg2, ...)</code>.
</dl>
If we have a suitable C++ function that supports any of these features,
we can export it like any other function, using its Python special name.
For example, suppose that class <code>Foo</code> provides a string
conversion function:
<blockquote><pre>
std::string to_string(Foo const&amp; f)
{
std::ostringstream s;
s &lt;&lt; f;
return s.str();
}
</pre></blockquote>
This function would be wrapped like this:
<blockquote><pre>
boost::python::class_builder&lt;Foo&gt; foo_class(my_module, "Foo");
foo_class.def(&amp;to_string, "__str__");
</pre></blockquote>
Note that Boost.Python also supports <em>automatic wrapping</em> of
<code>__str__</code> and <code>__cmp__</code>. This is explained in the <a
href="#numeric">next section</a> and the <a href="#numeric_table">Table of
Automatically Wrapped Methods</a>.
<h2><a name="numeric">Numeric Operators</a></h2>
<p>
Numeric operators can be exposed manually, by <code>def</code>ing C++
[member] functions that support the standard Python <a
href="http://www.python.org/doc/current/ref/numeric-types.html">numeric
protocols</a>. This is the same basic technique used to expose
<code>to_string()</code> as <code>__str__()</code> above, and is <a
href="#numeric_manual">covered in detail below</a>. Boost.Python also supports
<i>automatic wrapping</i> of numeric operators whenever they have already
been defined in C++.
<h3><a name="numeric_auto">Exposing C++ Operators Automatically</a></h3>
<p>
Supose we wanted to expose a C++ class
<code>BigNum</code> which supports addition. That is, in C++ we can write:
<blockquote><pre>
BigNum a, b, c;
...
c = a + b;
</pre></blockquote>
<p>
To enable the same functionality in Python, we first wrap the <code>
BigNum</code> class as usual:
<blockquote><pre>
boost::python::class_builder&lt;BigNum&gt; bignum_class(my_module, "BigNum");
bignum_class.def(boost::python::constructor&lt;&gt;());
...
</pre></blockquote>
Then we export the addition operator like this:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;());
</pre></blockquote>
Since BigNum also supports subtraction, multiplication, and division, we
want to export those also. This can be done in a single command by
``or''ing the operator identifiers together (a complete list of these
identifiers and the corresponding operators can be found in the <a href=
"#numeric_table">Table of Automatically Wrapped Methods</a>):
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::python::op_mul | boost::python::op_div)&gt;());
</pre></blockquote>
[Note that the or-expression must be enclosed in parentheses.]
<p>This form of operator definition can be used to wrap unary and
homogeneous binary operators (a <i>homogeneous</i> operator has left and
right operands of the same type). Now suppose that our C++ library also
supports addition of BigNums and plain integers:
<blockquote><pre>
BigNum a, b;
int i;
...
a = b + i;
a = i + b;
</pre></blockquote>
To wrap these heterogeneous operators, we need to specify a different type for
one of the operands. This is done using the <code>right_operand</code>
and <code>left_operand</code> templates:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;(), boost::python::right_operand&lt;int&gt;());
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;(), boost::python::left_operand&lt;int&gt;());
</pre></blockquote>
Boost.Python uses overloading to register several variants of the same
operation (more on this in the context of <a href="#coercion">
coercion</a>). Again, several operators can be exported at once:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::python::op_mul | boost::python::op_div)&gt;(),
boost::python::right_operand&lt;int&gt;());
bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::python::op_mul | boost::python::op_div)&gt;(),
boost::python::left_operand&lt;int&gt;());
</pre></blockquote>
The type of the operand not mentioned is taken from the class being wrapped. In
our example, the class object is <code>bignum_class</code>, and thus the
other operand's type is ``<code>BigNum const&amp;</code>''. You can override
this default by explicitly specifying a type in the <code>
operators</code> template:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;boost::python::op_add, BigNum&gt;(), boost::python::right_operand&lt;int&gt;());
</pre></blockquote>
<p>
Note that automatic wrapping uses the <em>expression</em>
``<code>left + right</code>'' and can be used uniformly
regardless of whether the C++ operators are supplied as free functions
<blockquote><pre>
BigNum operator+(BigNum, BigNum)
</pre></blockquote>
or as member functions
<blockquote><pre>
BigNum::operator+(BigNum).
</pre></blockquote>
<p>
For the Python built-in functions <code>pow()</code> and
<code>abs()</code>, there is no corresponding C++ operator. Instead,
automatic wrapping attempts to wrap C++ functions of the same name. This
only works if those functions are known in namespace
<code>python</code>. On some compilers (e.g. MSVC) it might be
necessary to add a using declaration prior to wrapping:
<blockquote><pre>
namespace boost { namespace python {
using my_namespace::pow;
using my_namespace::abs;
}
</pre></blockquote>
<h3><a name="numeric_manual">Wrapping Numeric Operators Manually</a></h3>
<p>
In some cases, automatic wrapping of operators may be impossible or
undesirable. Suppose, for example, that the modulo operation for BigNums
is defined by a set of functions called <code>mod()</code>:
<blockquote><pre>
BigNum mod(BigNum const&amp; left, BigNum const&amp; right);
BigNum mod(BigNum const&amp; left, int right);
BigNum mod(int left, BigNum const&amp; right);
</pre></blockquote>
<p>
For automatic wrapping of the modulo function, <code>operator%()</code> would be needed.
Therefore, the <code>mod()</code>-functions must be wrapped manually. That is, we have
to export them explicitly with the Python special name "__mod__":
<blockquote><pre>
bignum_class.def((BigNum (*)(BigNum const&amp;, BigNum const&amp;))&amp;mod, "__mod__");
bignum_class.def((BigNum (*)(BigNum const&amp;, int))&amp;mod, "__mod__");
</pre></blockquote>
<p>
The third form of <code>mod()</code> (with <code>int</code> as left operand) cannot
be wrapped directly. We must first create a function <code>rmod()</code> with the
operands reversed:
<blockquote><pre>
BigNum rmod(BigNum const&amp; right, int left)
{
return mod(left, right);
}
</pre></blockquote>
This function must be wrapped under the name "__rmod__" (standing for "reverse mod"):
<blockquote><pre>
bignum_class.def(&amp;rmod, "__rmod__");
</pre></blockquote>
Many of the possible operator names can be found in the <a href=
"#numeric_table">Table of Automatically Wrapped Methods</a>. Special treatment is
necessary to export the <a href="#ternary_pow">ternary pow</a> operator.
<p>
Automatic and manual wrapping can be mixed arbitrarily. Note that you
cannot overload the same operator for a given extension class on both
``<code>int</code>'' and ``<code>float</code>'', because Python implicitly
converts these types into each other. Thus, the overloaded variant
found first (be it ``<code>int</code>`` or ``<code>float</code>'') will be
used for either of the two types.
<h3><a name="coercion">Coercion</a></h3>
Plain Python can only execute operators with identical types on the left
and right hand side. If it encounters an expression where the types of
the left and right operand differ, it tries to coerce these types to a
common type before invoking the actual operator. Implementing good
coercion functions can be difficult if many type combinations must be
supported.
<p>
Boost.Python solves this problem the same way that C++ does: with <em><a
href="overloading.html">overloading</a></em>. This technique drastically
simplifies the code neccessary to support operators: you just register
operators for all desired type combinations, and Boost.Python automatically
ensures that the correct function is called in each case; there is no
need for user-defined coercion functions. To enable operator
overloading, Boost.Python provides a standard coercion which is <em>implicitly
registered</em> whenever automatic operator wrapping is used.
<p>
If you wrap all operator functions manually, but still want to use
operator overloading, you have to register the standard coercion
function explicitly:
<blockquote><pre>
// this is not necessary if automatic operator wrapping is used
bignum_class.def_standard_coerce();
</pre></blockquote>
If you encounter a situation where you absolutely need a customized
coercion, you can still define the "__coerce__" operator manually. The signature
of a coercion function should look like one of the following (the first is
the safest):
<blockquote><pre>
boost::python::tuple custom_coerce(boost::python::reference left, boost::python::reference right);
boost::python::tuple custom_coerce(PyObject* left, PyObject* right);
PyObject* custom_coerce(PyObject* left, PyObject* right);
</pre></blockquote>
The resulting <code>tuple</code> must contain two elements which
represent the values of <code>left</code> and <code>right</code>
converted to the same type. Such a function is wrapped as usual:
<blockquote><pre>
// this must be called before any use of automatic operator
// wrapping or a call to some_class.def_standard_coerce()
some_class.def(&amp;custom_coerce, "__coerce__");
</pre></blockquote>
Note that the standard coercion (defined by use of automatic
operator wrapping on a <code>class_builder</code> or a call to
<code>class_builder::def_standard_coerce()</code>) will never be applied if
a custom coercion function has been registered. Therefore, in
your coercion function you should call
<blockquote><pre>
boost::python::standard_coerce(left, right);
</pre></blockquote>
for all cases that you don't want to handle yourself.
<h3><a name="ternary_pow">The Ternary <code>pow()</code> Operator</a></h3>
<p>
In addition to the usual binary <code>pow(x, y)</code> operator (meaning
<i>x<sup>y</sup></i>), Python also provides a ternary variant that implements
<i>x<sup>y</sup> <b>mod</b> z</i>, presumably using a more efficient algorithm than
concatenation of power and modulo operators. Automatic operator wrapping
can only be used with the binary variant. Ternary <code>pow()</code> must
always be wrapped manually. For a homgeneous ternary <code>pow()</code>,
this is done as usual:
<blockquote><pre>
BigNum power(BigNum const&amp; first, BigNum const&amp; second, BigNum const&amp; modulus);
typedef BigNum (ternary_function1)(const BigNum&amp;, const BigNum&amp;, const BigNum&amp;);
...
bignum_class.def((ternary_function1)&amp;power, "__pow__");
</pre></blockquote>
If you want to support this function with non-uniform argument
types, wrapping is a little more involved. Suppose you have to wrap:
<blockquote><pre>
BigNum power(BigNum const&amp; first, int second, int modulus);
BigNum power(int first, BigNum const&amp; second, int modulus);
BigNum power(int first, int second, BigNum const&amp; modulus);
</pre></blockquote>
The first variant can be wrapped as usual:
<blockquote><pre>
typedef BigNum (ternary_function2)(const BigNum&amp;, int, int);
bignum_class.def((ternary_function2)&amp;power, "__pow__");
</pre></blockquote>
In the second variant, however, <code>BigNum</code> appears only as second
argument, and in the last one it's the third argument. These functions
must be presented to Boost.Python such that that the <code>BigNum</code>
argument appears in first position:
<blockquote><pre>
BigNum rpower(BigNum const&amp; second, int first, int modulus)
{
return power(first, second, modulus);
}
BigNum rrpower(BigNum const&amp; modulus, int first, int second)
{
return power(first, second, modulus);
}
</pre></blockquote>
<p>These functions must be wrapped under the names "__rpow__" and "__rrpow__"
respectively:
<blockquote><pre>
bignum_class.def((ternary_function2)&amp;rpower, "__rpow__");
bignum_class.def((ternary_function2)&amp;rrpower, "__rrpow__");
</pre></blockquote>
Note that "__rrpow__" is an extension not present in plain Python.
<h2><a name="numeric_table">Table of Automatically Wrapped Methods</a></h2>
<p>
Boost.Python can automatically wrap the following <a href=
"http://www.python.org/doc/current/ref/specialnames.html">
special methods</a>:
<p>
<table summary="special numeric methods" cellpadding="5" border="1"
width="100%">
<tr>
<td align="center">
<b>Python Operator Name</b>
<td align="center">
<b>Python Expression</b>
<td align="center">
<b>C++ Operator Id</b>
<td align="center">
<b>C++ Expression Used For Automatic Wrapping</b><br>
with <code>cpp_left = from_python(left,
type&lt;Left&gt;())</code>,<br>
<code>cpp_right = from_python(right,
type&lt;Right&gt;())</code>,<br>
and <code>cpp_oper = from_python(oper, type&lt;Oper&gt;())</code>
<tr>
<td>
<code>__add__, __radd__</code>
<td>
<code>left + right</code>
<td>
<code>op_add</code>
<td>
<code>cpp_left + cpp_right</code>
<tr>
<td>
<code>__sub__, __rsub__</code>
<td>
<code>left - right</code>
<td>
<code>op_sub</code>
<td>
<code>cpp_left - cpp_right</code>
<tr>
<td>
<code>__mul__, __rmul__</code>
<td>
<code>left * right</code>
<td>
<code>op_mul</code>
<td>
<code>cpp_left * cpp_right</code>
<tr>
<td>
<code>__div__, __rdiv__</code>
<td>
<code>left / right</code>
<td>
<code>op_div</code>
<td>
<code>cpp_left / cpp_right</code>
<tr>
<td>
<code>__mod__, __rmod__</code>
<td>
<code>left % right</code>
<td>
<code>op_mod</code>
<td>
<code>cpp_left % cpp_right</code>
<tr>
<td>
<code>__divmod__, __rdivmod__</code>
<td>
<code>(quotient, remainder)<br>
= divmod(left, right)</code>
<td>
<code>op_divmod</code>
<td>
<code>cpp_left / cpp_right</code>
<br><code>cpp_left % cpp_right</code>
<tr>
<td>
<code>__pow__, __rpow__</code>
<td>
<code>pow(left, right)</code><br>
(binary power)
<td>
<code>op_pow</code>
<td>
<code>pow(cpp_left, cpp_right)</code>
<tr>
<td>
<code>__rrpow__</code>
<td>
<code>pow(left, right, modulo)</code><br>
(ternary power modulo)
<td colspan="2">
no automatic wrapping, <a href="#ternary_pow">special treatment</a>
required
<tr>
<td>
<code>__lshift__, __rlshift__</code>
<td>
<code>left &lt;&lt; right</code>
<td>
<code>op_lshift</code>
<td>
<code>cpp_left &lt;&lt; cpp_right</code>
<tr>
<td>
<code>__rshift__, __rrshift__</code>
<td>
<code>left &gt;&gt; right</code>
<td>
<code>op_rshift</code>
<td>
<code>cpp_left &gt;&gt; cpp_right</code>
<tr>
<td>
<code>__and__, __rand__</code>
<td>
<code>left &amp; right</code>
<td>
<code>op_and</code>
<td>
<code>cpp_left &amp; cpp_right</code>
<tr>
<td>
<code>__xor__, __rxor__</code>
<td>
<code>left ^ right</code>
<td>
<code>op_xor</code>
<td>
<code>cpp_left ^ cpp_right</code>
<tr>
<td>
<code>__or__, __ror__</code>
<td>
<code>left | right</code>
<td>
<code>op_or</code>
<td>
<code>cpp_left | cpp_right</code>
<tr>
<td>
<code>__cmp__, __rcmp__</code>
<td>
<code>cmp(left, right)</code><br>
<br>See <a href="richcmp.html">Rich Comparisons</a>.
<td>
<code>op_cmp</code>
<td>
<code>cpp_left &lt; cpp_right </code>
<br><code>cpp_right &lt; cpp_left</code>
<tr>
<td>
<code>__lt__</code>
<br><code>__le__</code>
<br><code>__eq__</code>
<br><code>__ne__</code>
<br><code>__gt__</code>
<br><code>__ge__</code>
<td>
<code>left &lt; right</code>
<br><code>left &lt;= right</code>
<br><code>left == right</code>
<br><code>left != right</code>
<br><code>left &gt; right</code>
<br><code>left &gt;= right</code>
<br>See <a href="richcmp.html">Rich Comparisons</a>
<td>
<code>op_lt</code>
<br><code>op_le</code>
<br><code>op_eq</code>
<br><code>op_ne</code>
<br><code>op_gt</code>
<br><code>op_ge</code>
<td>
<code>cpp_left &lt; cpp_right </code>
<br><code>cpp_left &lt;= cpp_right </code>
<br><code>cpp_left == cpp_right </code>
<br><code>cpp_left != cpp_right </code>
<br><code>cpp_left &gt; cpp_right </code>
<br><code>cpp_left &gt;= cpp_right </code>
<tr>
<td>
<code>__neg__</code>
<td>
<code>-oper </code> (unary negation)
<td>
<code>op_neg</code>
<td>
<code>-cpp_oper</code>
<tr>
<td>
<code>__pos__</code>
<td>
<code>+oper </code> (identity)
<td>
<code>op_pos</code>
<td>
<code>+cpp_oper</code>
<tr>
<td>
<code>__abs__</code>
<td>
<code>abs(oper) </code> (absolute value)
<td>
<code>op_abs</code>
<td>
<code>abs(cpp_oper)</code>
<tr>
<td>
<code>__invert__</code>
<td>
<code>~oper </code> (bitwise inversion)
<td>
<code>op_invert</code>
<td>
<code>~cpp_oper</code>
<tr>
<td>
<code>__int__</code>
<td>
<code>int(oper) </code> (integer conversion)
<td>
<code>op_int</code>
<td>
<code>long(cpp_oper)</code>
<tr>
<td>
<code>__long__</code>
<td>
<code>long(oper) </code><br>
(infinite precision integer conversion)
<td>
<code>op_long</code>
<td>
<code>PyLong_FromLong(cpp_oper)</code>
<tr>
<td>
<code>__float__</code>
<td>
<code>float(oper) </code> (float conversion)
<td>
<code>op_float</code>
<td>
<code>double(cpp_oper)</code>
<tr>
<td>
<code>__str__</code>
<td>
<code>str(oper) </code> (string conversion)
<td>
<code>op_str</code>
<td>
<code>std::ostringstream s; s &lt;&lt; oper;</code>
<tr>
<td>
<code>__coerce__</code>
<td>
<code>coerce(left, right)</code>
<td colspan="2">
usually defined automatically, otherwise <a href="#coercion">
special treatment</a> required
</table>
<h2><a name="sequence_and_mapping">Sequence and Mapping Operators</a></h2>
<p>
Sequence and mapping operators let wrapped objects behave in accordance
to Python's iteration and access protocols. These protocols differ
considerably from the ones found in C++. For example, Python's typical
iteration idiom looks like
<blockquote><pre>
for i in S:
</pre></blockquote>
while in C++ one writes
<blockquote><pre>
for (iterator i = S.begin(), end = S.end(); i != end; ++i)
</pre></blockquote>
<p>One could try to wrap C++ iterators in order to carry the C++ idiom into
Python. However, this does not work very well because
<ol>
<li>It leads to
non-uniform Python code (wrapped sequences support a usage different from
Python built-in sequences) and
<li>Iterators (e.g. <code>std::vector::iterator</code>) are often implemented as plain C++
pointers which are <a href="pointers.html#problem">problematic</a> for any automatic
wrapping system.
</ol>
<p>
It is a better idea to support the standard <a
href="http://www.python.org/doc/current/ref/sequence-types.html">Python
sequence and mapping protocols</a> for your wrapped containers. These
operators have to be wrapped manually because there are no corresponding
C++ operators that could be used for automatic wrapping. The Python
documentation lists the relevant <a href=
"http://www.python.org/doc/current/ref/sequence-types.html">
container operators</a>. In particular, expose __getitem__, __setitem__
and remember to raise the appropriate Python exceptions
(<code>PyExc_IndexError</code> for sequences,
<code>PyExc_KeyError</code> for mappings) when the requested item is not
present.
<p>
In the following example, we expose <code>std::map&lt;std::size_t,std::string&gt;</code>:
<blockquote>
<pre>
typedef std::map&lt;std::size_t, std::string&gt; StringMap;
// A helper function for dealing with errors. Throw a Python exception
// if p == m.end().
void throw_key_error_if_end(
const StringMap&amp; m,
StringMap::const_iterator p,
std::size_t key)
{
if (p == m.end())
{
PyErr_SetObject(PyExc_KeyError, boost::python::converters::to_python(key));
throw boost::python::error_already_set();
}
}
// Define some simple wrapper functions which match the Python protocol
// for __getitem__, __setitem__, and __delitem__. Just as in Python, a
// free function with a ``self'' first parameter makes a fine class method.
const std::string&amp; get_item(const StringMap&amp; self, std::size_t key)
{
const StringMap::const_iterator p = self.find(key);
throw_key_error_if_end(self, p, key);
return p-&gt;second;
}
// Sets the item corresponding to key in the map.
void StringMapPythonClass::set_item(StringMap&amp; self, std::size_t key, const std::string&amp; value)
{
self[key] = value;
}
// Deletes the item corresponding to key from the map.
void StringMapPythonClass::del_item(StringMap&amp; self, std::size_t key)
{
const StringMap::iterator p = self.find(key);
throw_key_error_if_end(self, p, key);
self.erase(p);
}
class_builder&lt;StringMap&gt; string_map(my_module, "StringMap");
string_map.def(boost::python::constructor&lt;&gt;());
string_map.def(&amp;StringMap::size, "__len__");
string_map.def(get_item, "__getitem__");
string_map.def(set_item, "__setitem__");
string_map.def(del_item, "__delitem__");
</pre>
</blockquote>
<p>
Then in Python:
<blockquote>
<pre>
&gt;&gt;&gt; m = StringMap()
&gt;&gt;&gt; m[1]
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 1
&gt;&gt;&gt; m[1] = 'hello'
&gt;&gt;&gt; m[1]
'hello'
&gt;&gt;&gt; del m[1]
&gt;&gt;&gt; m[1] # prove that it's gone
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 1
&gt;&gt;&gt; del m[2]
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 2
&gt;&gt;&gt; len(m)
0
&gt;&gt;&gt; m[0] = 'zero'
&gt;&gt;&gt; m[1] = 'one'
&gt;&gt;&gt; m[2] = 'two'
&gt;&gt;&gt; m[3] = 'three'
&gt;&gt;&gt; len(m)
4
</pre>
</blockquote>
<h2><a name="getter_setter">Customized Attribute Access</a></h2>
<p>
Just like built-in Python classes, Boost.Python extension classes support <a
href="http://www.python.org/doc/current/ref/attribute-access.html">special
the usual attribute access methods</a> <code>__getattr__</code>,
<code>__setattr__</code>, and <code>__delattr__</code>.
Because writing these functions can
be tedious in the common case where the attributes being accessed are
known statically, Boost.Python checks the special names
<ul>
<li>
<code>__getattr__<em>&lt;name&gt;</em>__</code>
<li>
<code>__setattr__<em>&lt;name&gt;</em>__</code>
<li>
<code>__delattr__<em>&lt;name&gt;</em>__</code>
</ul>
to provide functional access to the attribute <em>&lt;name&gt;</em>. This
facility can be used from C++ or entirely from Python. For example, the
following shows how we can implement a ``computed attribute'' in Python:
<blockquote>
<pre>
&gt;&gt;&gt; class Range(AnyBoost.PythonExtensionClass):
... def __init__(self, start, end):
... self.start = start
... self.end = end
... def __getattr__length__(self):
... return self.end - self.start
...
&gt;&gt;&gt; x = Range(3, 9)
&gt;&gt;&gt; x.length
6
</pre>
</blockquote>
<h4>
Direct Access to Data Members
</h4>
<p>
Boost.Python uses the special <code>
__xxxattr__<em>&lt;name&gt;</em>__</code> functionality described above
to allow direct access to data members through the following special
functions on <code>class_builder&lt;&gt;</code> and <code>
extension_class&lt;&gt;</code>:
<ul>
<li>
<code>def_getter(<em>pointer-to-member</em>, <em>name</em>)</code> //
read access to the member via attribute <em>name</em>
<li>
<code>def_setter(<em>pointer-to-member</em>, <em>name</em>)</code> //
write access to the member via attribute <em>name</em>
<li>
<code>def_readonly(<em>pointer-to-member</em>, <em>name</em>)</code>
// read-only access to the member via attribute <em>name</em>
<li>
<code>def_read_write(<em>pointer-to-member</em>, <em>
name</em>)</code> // read/write access to the member via attribute
<em>name</em>
</ul>
<p>
Note that the first two functions, used alone, may produce surprising
behavior. For example, when <code>def_getter()</code> is used, the
default functionality for <code>setattr()</code> and <code>
delattr()</code> remains in effect, operating on items in the extension
instance's name-space (i.e., its <code>__dict__</code>). For that
reason, you'll usually want to stick with <code>def_readonly</code> and
<code>def_read_write</code>.
<p>
For example, to expose a <code>std::pair&lt;int,long&gt;</code> we
might write:
<blockquote>
<pre>
typedef std::pair&lt;int,long&gt; Pil;
int first(const Pil&amp; x) { return x.first; }
long second(const Pil&amp; x) { return x.second; }
...
my_module.def(first, "first");
my_module.def(second, "second");
class_builder&lt;Pil&gt; pair_int_long(my_module, "Pair");
pair_int_long.def(boost::python::constructor&lt;&gt;());
pair_int_long.def(boost::python::constructor&lt;int,long&gt;());
pair_int_long.def_read_write(&amp;Pil::first, "first");
pair_int_long.def_read_write(&amp;Pil::second, "second");
</pre>
</blockquote>
<p>
Now your Python class has attributes <code>first</code> and <code>
second</code> which, when accessed, actually modify or reflect the
values of corresponding data members of the underlying C++ object. Now
in Python:
<blockquote>
<pre>
&gt;&gt;&gt; x = Pair(3,5)
&gt;&gt;&gt; x.first
3
&gt;&gt;&gt; x.second
5
&gt;&gt;&gt; x.second = 8
&gt;&gt;&gt; x.second
8
&gt;&gt;&gt; second(x) # Prove that we're not just changing the instance __dict__
8
</pre>
</blockquote>
<h2>
<a name="reasons">And what about <code>__complex__</code>?</a>
</h2>
<p>
That, dear reader, is one problem we don't know how to solve. The
Python source contains the following fragment, indicating the
special-case code really is hardwired:
<blockquote>
<pre>
/* XXX Hack to support classes with __complex__ method */
if (PyInstance_Check(r)) { ...
</pre>
</blockquote>
<p>
Next: <a href="under-the-hood.html">A Peek Under the Hood</a>
Previous: <a href="inheritance.html">Inheritance</a>
Up: <a href= "index.html">Top</a>
<p>
&copy; Copyright David Abrahams and Ullrich K&ouml;the 2000.
Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This
document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any purpose.
<p>
Updated: Nov 26, 2000
</div>

68
doc/support.html Normal file
View File

@@ -0,0 +1,68 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="boost.css">
<title>Boost.Python - Support Resources</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="index.html">Boost.Python</a></h1>
<h2 align="center">Support Resources</h2>
</td>
</tr>
</table>
<hr>
<h2>Synopsis</h2>
<p>This is a list of available resources for support with Boost.Python
problems and feature requests.</p>
<hr>
<dl class="page-index">
<dt><b><a href="http://www.boost-consulting.com">Boost
Consulting</a></b> - Commercial support, development, training, and
distribution for all the Boost libraries, from the people who brought
you Boost.Python.<br>
&nbsp;</dt>
<dt><b><a href="http://www.python.org/sigs/c++-sig/">The Python
C++-sig</a></b> mailing list is a forum for discussing Python/C++
interoperability, and Boost.Python in particular.<br>
&nbsp;</dt>
<dt>The <b>Boost.Python <a href=
"http://www.python.org/cgi-bin/moinmoin/boost_2epython">Wiki
Pages</a></b> established by Mike Rovner as part of the <a href=
"http://www.python.org/cgi-bin/moinmoin">PythonInfo Wiki</a> serves as
a forum to gather peoples' experience and as a cookbook.<br>
&nbsp;</dt>
</dl>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
17 November, 2002
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href="../../../people/dave_abrahams.htm">Dave
Abrahams</a> 2002. All Rights Reserved.</i></p>
</body>
</html>

View File

@@ -0,0 +1,112 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Auto-Overloading</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="default_arguments.html">
<link rel="next" href="object_interface.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Auto-Overloading</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="default_arguments.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="object_interface.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
It was mentioned in passing in the previous section that
<tt>BOOST_PYTHON_FUNCTION_OVERLOADS</tt> and <tt>BOOST_PYTHON_FUNCTION_OVERLOADS</tt>
can also be used for overloaded functions and member functions with a
common sequence of initial arguments. Here is an example:</p>
<code><pre>
<span class=keyword>void </span><span class=identifier>foo</span><span class=special>()
{
/*...*/
}
</span><span class=keyword>void </span><span class=identifier>foo</span><span class=special>(</span><span class=keyword>bool </span><span class=identifier>a</span><span class=special>)
{
/*...*/
}
</span><span class=keyword>void </span><span class=identifier>foo</span><span class=special>(</span><span class=keyword>bool </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>int </span><span class=identifier>b</span><span class=special>)
{
/*...*/
}
</span><span class=keyword>void </span><span class=identifier>foo</span><span class=special>(</span><span class=keyword>bool </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>int </span><span class=identifier>b</span><span class=special>, </span><span class=keyword>char </span><span class=identifier>c</span><span class=special>)
{
/*...*/
}
</span></pre></code>
<p>
Like in the previous section, we can generate thin wrappers for these
overloaded functions in one-shot:</p>
<code><pre>
<span class=identifier>BOOST_PYTHON_FUNCTION_OVERLOADS</span><span class=special>(</span><span class=identifier>foo_overloads</span><span class=special>, </span><span class=identifier>foo</span><span class=special>, </span><span class=number>0</span><span class=special>, </span><span class=number>3</span><span class=special>)
</span></pre></code>
<p>
Then...</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;foo&quot;</span><span class=special>, </span><span class=identifier>foo</span><span class=special>, </span><span class=identifier>foo_overloads</span><span class=special>());
</span></pre></code>
<p>
Notice though that we have a situation now where we have a minimum of zero
(0) arguments and a maximum of 3 arguments.</p>
<a name="manual_wrapping"></a><h2>Manual Wrapping</h2><p>
It is important to emphasize however that <b>the overloaded functions must
have a common sequence of initial arguments</b>. Otherwise, our scheme above
will not work. If this is not the case, we have to wrap our functions
<a href="overloading.html">
manually</a>.</p>
<p>
Actually, we can mix and match manual wrapping of overloaded functions and
automatic wrapping through <tt>BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS</tt> and
its sister, <tt>BOOST_PYTHON_FUNCTION_OVERLOADS</tt>. Following up on our example
presented in the section <a href="overloading.html">
on overloading</a>, since the
first 4 overload functins have a common sequence of initial arguments, we
can use <tt>BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS</tt> to automatically wrap the
first three of the <tt>def</tt>s and manually wrap just the last. Here's
how we'll do this:</p>
<code><pre>
<span class=identifier>BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS</span><span class=special>(</span><span class=identifier>xf_overloads</span><span class=special>, </span><span class=identifier>f</span><span class=special>, </span><span class=number>1</span><span class=special>, </span><span class=number>4</span><span class=special>)
</span></pre></code>
<p>
Create a member function pointers as above for both X::f overloads:</p>
<code><pre>
<span class=keyword>bool </span><span class=special>(</span><span class=identifier>X</span><span class=special>::*</span><span class=identifier>fx1</span><span class=special>)(</span><span class=keyword>int</span><span class=special>, </span><span class=keyword>double</span><span class=special>, </span><span class=keyword>char</span><span class=special>) = &amp;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>f</span><span class=special>;
</span><span class=keyword>int </span><span class=special>(</span><span class=identifier>X</span><span class=special>::*</span><span class=identifier>fx2</span><span class=special>)(</span><span class=keyword>int</span><span class=special>, </span><span class=keyword>int</span><span class=special>, </span><span class=keyword>int</span><span class=special>) = &amp;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>f</span><span class=special>;
</span></pre></code>
<p>
Then...</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>fx1</span><span class=special>, </span><span class=identifier>xf_overloads</span><span class=special>());
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>fx2</span><span class=special>)
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="default_arguments.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="object_interface.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,77 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Basic Interface</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="object_interface.html">
<link rel="next" href="derived_object_types.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Basic Interface</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="object_interface.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="derived_object_types.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Class <tt>object</tt> wraps <tt>PyObject*</tt>. All the intricacies of dealing with
<tt>PyObject</tt>s such as managing reference counting are handled by the
<tt>object</tt> class. C++ object interoperability is seamless. Boost.Python C++
<tt>object</tt>s can in fact be explicitly constructed from any C++ object.</p>
<p>
To illustrate, this Python code snippet:</p>
<code><pre>
<span class=identifier>def </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>x</span><span class=special>, </span><span class=identifier>y</span><span class=special>):
</span><span class=keyword>if </span><span class=special>(</span><span class=identifier>y </span><span class=special>== </span><span class=literal>'foo'</span><span class=special>):
</span><span class=identifier>x</span><span class=special>[</span><span class=number>3</span><span class=special>:</span><span class=number>7</span><span class=special>] = </span><span class=literal>'bar'
</span><span class=keyword>else</span><span class=special>:
</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>items </span><span class=special>+= </span><span class=identifier>y</span><span class=special>(</span><span class=number>3</span><span class=special>, </span><span class=identifier>x</span><span class=special>)
</span><span class=keyword>return </span><span class=identifier>x
</span><span class=identifier>def </span><span class=identifier>getfunc</span><span class=special>():
</span><span class=keyword>return </span><span class=identifier>f</span><span class=special>;
</span></pre></code>
<p>
Can be rewritten in C++ using Boost.Python facilities this way:</p>
<code><pre>
<span class=identifier>object </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>object </span><span class=identifier>x</span><span class=special>, </span><span class=identifier>object </span><span class=identifier>y</span><span class=special>) {
</span><span class=keyword>if </span><span class=special>(</span><span class=identifier>y </span><span class=special>== </span><span class=string>&quot;foo&quot;</span><span class=special>)
</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>slice</span><span class=special>(</span><span class=number>3</span><span class=special>,</span><span class=number>7</span><span class=special>) = </span><span class=string>&quot;bar&quot;</span><span class=special>;
</span><span class=keyword>else
</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;items&quot;</span><span class=special>) += </span><span class=identifier>y</span><span class=special>(</span><span class=number>3</span><span class=special>, </span><span class=identifier>x</span><span class=special>);
</span><span class=keyword>return </span><span class=identifier>x</span><span class=special>;
}
</span><span class=identifier>object </span><span class=identifier>getfunc</span><span class=special>() {
</span><span class=keyword>return </span><span class=identifier>object</span><span class=special>(</span><span class=identifier>f</span><span class=special>);
}
</span></pre></code>
<p>
Apart from cosmetic differences due to the fact that we are writing the
code in C++, the look and feel should be immediately apparent to the Python
coder.</p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="object_interface.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="derived_object_types.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,191 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Building Hello World</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="quickstart.html">
<link rel="next" href="exposing_classes.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Building Hello World</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="quickstart.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="exposing_classes.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<a name="from_start_to_finish"></a><h2>From Start To Finish</h2><p>
Now the first thing you'd want to do is to build the Hello World module and
try it for yourself in Python. In this section, we shall outline the steps
necessary to achieve that. We shall use the build tool that comes bundled
with every boost distribution: <b>bjam</b>.</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/lens.gif"></img> <b>Building without bjam</b><br><br>
Besides bjam, there are of course other ways to get your module built.
What's written here should not be taken as &quot;the one and only way&quot;.
There are of course other build tools apart from <tt>bjam</tt>.
</td>
</tr>
</table>
<p>
We shall skip over the details. Our objective will be to simply create the
hello world module and run it in Python. For a complete reference to
building Boost.Python, check out: <a href="../../building.html">
building.html</a>.
After this brief <i>bjam</i> tutorial, we should have built two DLLs:</p>
<ul><li>boost_python.dll</li><li>hello.pyd</li></ul><p>
if you are on Windows, and</p>
<ul><li>libboost_python.so</li><li>hello.so</li></ul><p>
if you are on Unix.</p>
<p>
The tutorial example can be found in the directory:
<tt>libs/python/example/tutorial</tt>. There, you can find:</p>
<ul><li>hello.cpp</li><li>Jamfile</li></ul><p>
The <tt>hello.cpp</tt> file is our C++ hello world example. The <tt>Jamfile</tt> is a
minimalist <i>bjam</i> script that builds the DLLs for us.</p>
<p>
Before anything else, you should have the bjam executable in your boost
directory or somewhere in your path such that <tt>bjam</tt> can be executed in
the command line. Pre-built Boost.Jam executables are available for most
platforms. For example, a pre-built Microsoft Windows bjam executable can
be downloaded <a href="http://boost.sourceforge.net/jam-executables/bin.ntx86/bjam.zip">
here</a>.
The complete list of bjam pre-built
executables can be found <a href="../../../../../tools/build/index.html#Jam">
here</a>.</p>
<a name="lets_jam_"></a><h2>Lets Jam!</h2><p>
<img src="theme/jam.png"></img></p>
<p>
Here is our minimalist Jamfile:</p>
<code><pre>
subproject libs/python/example/tutorial ;
SEARCH on python.jam = $(BOOST_BUILD_PATH) ;
include python.jam ;
extension hello # Declare a Python extension called hello
: hello.cpp # source
&lt;dll&gt;../../build/boost_python # dependencies
;
</pre></code><p>
First, we need to specify our location in the boost project hierarchy.
It so happens that the tutorial example is located in <tt>/libs/python/example/tutorial</tt>.
Thus:</p>
<code><pre>
subproject libs/python/example/tutorial ;
</pre></code><p>
Then we will include the definitions needed by Python modules:</p>
<code><pre>
SEARCH on python.jam = $(BOOST_BUILD_PATH) ;
include python.jam ;
</pre></code><p>
Finally we declare our <tt>hello</tt> extension:</p>
<code><pre>
extension hello # Declare a Python extension called hello
: hello.cpp # source
&lt;dll&gt;../../build/boost_python # dependencies
;
</pre></code><a name="running_bjam"></a><h2>Running bjam</h2><p>
<i>bjam</i> is run using your operating system's command line interpreter.</p>
<blockquote><p>Start it up.</p></blockquote><p>
Make sure that the environment is set so that we can invoke the C++
compiler. With MSVC, that would mean running the <tt>Vcvars32.bat</tt> batch
file. For instance:</p>
<code><pre>
<span class=identifier>C</span><span class=special>:\</span><span class=identifier>Program </span><span class=identifier>Files</span><span class=special>\</span><span class=identifier>Microsoft </span><span class=identifier>Visual </span><span class=identifier>Studio</span><span class=special>\</span><span class=identifier>VC98</span><span class=special>\</span><span class=identifier>bin</span><span class=special>\</span><span class=identifier>Vcvars32</span><span class=special>.</span><span class=identifier>bat
</span></pre></code>
<p>
Some environment variables will have to be setup for proper building of our
Python modules. Example:</p>
<code><pre>
<span class=identifier>set </span><span class=identifier>PYTHON_ROOT</span><span class=special>=</span><span class=identifier>c</span><span class=special>:/</span><span class=identifier>dev</span><span class=special>/</span><span class=identifier>tools</span><span class=special>/</span><span class=identifier>python
</span><span class=identifier>set </span><span class=identifier>PYTHON_VERSION</span><span class=special>=</span><span class=number>2.2
</span></pre></code>
<p>
The above assumes that the Python installation is in <tt>c:/dev/tools/python</tt>
and that we are using Python version 2.2. You'll have to tweak this path
appropriately. <img src="theme/note.gif"></img> Be sure not to include a third number, e.g. <b>not</b> &quot;2.2.1&quot;,
even if that's the version you have.</p>
<p>
Now we are ready... Be sure to <tt>cd</tt> to <tt>libs/python/example/tutorial</tt>
where the tutorial <tt>&quot;hello.cpp&quot;</tt> and the <tt>&quot;Jamfile&quot;</tt> is situated.</p>
<p>
Finally:</p>
<code><pre>
<span class=identifier>bjam </span><span class=special>-</span><span class=identifier>sTOOLS</span><span class=special>=</span><span class=identifier>msvc
</span></pre></code>
<p>
We are again assuming that we are using Microsoft Visual C++ version 6. If
not, then you will have to specify the appropriate tool. See
<a href="../../../../../tools/build/index.html">
Building Boost Libraries</a> for
further details.</p>
<p>
It should be building now:</p>
<code><pre>
cd C:\dev\boost\libs\python\example\tutorial
bjam -sTOOLS=msvc
...patience...
...found 1703 targets...
...updating 40 targets...
</pre></code><p>
And so on... Finally:</p>
<code><pre>
vc-C++ ..\..\..\..\libs\python\example\tutorial\bin\hello.pyd\msvc\debug\
runtime-link-dynamic\hello.obj
hello.cpp
vc-Link ..\..\..\..\libs\python\example\tutorial\bin\hello.pyd\msvc\debug\
runtime-link-dynamic\hello.pyd ..\..\..\..\libs\python\example\tutorial\bin\
hello.pyd\msvc\debug\runtime-link-dynamic\hello.lib
Creating library ..\..\..\..\libs\python\example\tutorial\bin\hello.pyd\
msvc\debug\runtime-link-dynamic\hello.lib and object ..\..\..\..\libs\python\
example\tutorial\bin\hello.pyd\msvc\debug\runtime-link-dynamic\hello.exp
...updated 40 targets...
</pre></code><p>
If all is well, you should now have:</p>
<ul><li>boost_python.dll</li><li>hello.pyd</li></ul><p>
if you are on Windows, and</p>
<ul><li>libboost_python.so</li><li>hello.so</li></ul><p>
if you are on Unix.</p>
<p>
<tt>boost_python.dll</tt> can be found somewhere in <tt>libs\python\build\bin</tt>
while <tt>hello.pyd</tt> can be found somewhere in
<tt>libs\python\example\tutorial\bin</tt>. After a successful build, you can just
link in these DLLs with the Python interpreter. In Windows for example, you
can simply put these libraries inside the directory where the Python
executable is.</p>
<p>
You may now fire up Python and run our hello module:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>import </span><span class=identifier>hello
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>print </span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>greet</span><span class=special>()
</span><span class=identifier>hello</span><span class=special>, </span><span class=identifier>world
</span></pre></code>
<blockquote><p><b>There you go... Have fun!</b></p></blockquote><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="quickstart.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="exposing_classes.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,169 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Call Policies</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="functions.html">
<link rel="next" href="overloading.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Call Policies</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="functions.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="overloading.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
In C++, we often deal with arguments and return types such as pointers
and references. Such primitive types are rather, ummmm, low level and
they really don't tell us much. At the very least, we don't know the
owner of the pointer or the referenced object. No wonder languages
such as Java and Python never deal with such low level entities. In
C++, it's usually considered a good practice to use smart pointers
which exactly describe ownership semantics. Still, even good C++
interfaces use raw references and pointers sometimes, so Boost.Python
must deal with them. To do this, it may need your help. Consider the
following C++ function:</p>
<code><pre>
<span class=identifier>X</span><span class=special>&amp; </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>Y</span><span class=special>&amp; </span><span class=identifier>y</span><span class=special>, </span><span class=identifier>Z</span><span class=special>* </span><span class=identifier>z</span><span class=special>);
</span></pre></code>
<p>
How should the library wrap this function? A naive approach builds a
Python X object around result reference. This strategy might or might
not work out. Here's an example where it didn't</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>x </span><span class=special>= </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>y</span><span class=special>, </span><span class=identifier>z</span><span class=special>) </span>##<span class=identifier>x </span><span class=identifier>refers </span><span class=identifier>to </span><span class=identifier>some </span><span class=identifier>C</span><span class=special>++ </span><span class=identifier>X
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>del </span><span class=identifier>y
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>some_method</span><span class=special>() </span>##<span class=identifier>CRASH</span><span class=special>!
</span></pre></code>
<p>
What's the problem?</p>
<p>
Well, what if f() was implemented as shown below:</p>
<code><pre>
<span class=identifier>X</span><span class=special>&amp; </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>Y</span><span class=special>&amp; </span><span class=identifier>y</span><span class=special>, </span><span class=identifier>Z</span><span class=special>* </span><span class=identifier>z</span><span class=special>)
{
</span><span class=identifier>y</span><span class=special>.</span><span class=identifier>z </span><span class=special>= </span><span class=identifier>z</span><span class=special>;
</span><span class=keyword>return </span><span class=identifier>y</span><span class=special>.</span><span class=identifier>x</span><span class=special>;
}
</span></pre></code>
<p>
The problem is that the lifetime of result X&amp; is tied to the lifetime
of y, because the f() returns a reference to a member of the y
object. This idiom is is not uncommon and perfectly acceptable in the
context of C++. However, Python users should not be able to crash the
system just by using our C++ interface. In this case deleting y will
invalidate the reference to X. We have a dangling reference.</p>
<p>
Here's what's happening:</p>
<ol><li><tt>f</tt> is called passing in a reference to <tt>y</tt> and a pointer to <tt>z</tt></li><li>A reference to <tt>y.x</tt> is returned</li><li><tt>y</tt> is deleted. <tt>x</tt> is a dangling reference</li><li><tt>x.some_method()</tt> is called</li><li><b>BOOM!</b></li></ol><p>
We could copy result into a new object:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>y</span><span class=special>, </span><span class=identifier>z</span><span class=special>).</span><span class=identifier>set</span><span class=special>(</span><span class=number>42</span><span class=special>) </span>##<span class=identifier>Result </span><span class=identifier>disappears
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>y</span><span class=special>.</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>get</span><span class=special>() </span>##<span class=identifier>No </span><span class=identifier>crash</span><span class=special>, </span><span class=identifier>but </span><span class=identifier>still </span><span class=identifier>bad
</span><span class=number>3.14
</span></pre></code>
<p>
This is not really our intent of our C++ interface. We've broken our
promise that the Python interface should reflect the C++ interface as
closely as possible.</p>
<p>
Our problems do not end there. Suppose Y is implemented as follows:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Y
</span><span class=special>{
</span><span class=identifier>X </span><span class=identifier>x</span><span class=special>; </span><span class=identifier>Z</span><span class=special>* </span><span class=identifier>z</span><span class=special>;
</span><span class=keyword>int </span><span class=identifier>z_value</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>z</span><span class=special>-&gt;</span><span class=identifier>value</span><span class=special>(); }
};
</span></pre></code>
<p>
Notice that the data member <tt>z</tt> is held by class Y using a raw
pointer. Now we have a potential dangling pointer problem inside Y:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>x </span><span class=special>= </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>y</span><span class=special>, </span><span class=identifier>z</span><span class=special>) </span>##<span class=identifier>y </span><span class=identifier>refers </span><span class=identifier>to </span><span class=identifier>z
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>del </span><span class=identifier>z </span>##<span class=identifier>Kill </span><span class=identifier>the </span><span class=identifier>z </span><span class=identifier>object
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>y</span><span class=special>.</span><span class=identifier>z_value</span><span class=special>() </span>##<span class=identifier>CRASH</span><span class=special>!
</span></pre></code>
<p>
For reference, here's the implementation of <tt>f</tt> again:</p>
<code><pre>
<span class=identifier>X</span><span class=special>&amp; </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>Y</span><span class=special>&amp; </span><span class=identifier>y</span><span class=special>, </span><span class=identifier>Z</span><span class=special>* </span><span class=identifier>z</span><span class=special>)
{
</span><span class=identifier>y</span><span class=special>.</span><span class=identifier>z </span><span class=special>= </span><span class=identifier>z</span><span class=special>;
</span><span class=keyword>return </span><span class=identifier>y</span><span class=special>.</span><span class=identifier>x</span><span class=special>;
}
</span></pre></code>
<p>
Here's what's happening:</p>
<ol><li><tt>f</tt> is called passing in a reference to <tt>y</tt> and a pointer to <tt>z</tt></li><li>A pointer to <tt>z</tt> is held by <tt>y</tt></li><li>A reference to <tt>y.x</tt> is returned</li><li><tt>z</tt> is deleted. <tt>y.z</tt> is a dangling pointer</li><li><tt>y.z_value()</tt> is called</li><li><tt>z-&gt;value()</tt> is called</li><li><b>BOOM!</b></li></ol><a name="call_policies"></a><h2>Call Policies</h2><p>
Call Policies may be used in situations such as the example detailed above.
In our example, <tt>return_internal_reference</tt> and <tt>with_custodian_and_ward</tt>
are our friends:</p>
<code><pre>
<span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>f</span><span class=special>,
</span><span class=identifier>return_internal_reference</span><span class=special>&lt;</span><span class=number>1</span><span class=special>,
</span><span class=identifier>with_custodian_and_ward</span><span class=special>&lt;</span><span class=number>1</span><span class=special>, </span><span class=number>2</span><span class=special>&gt; &gt;());
</span></pre></code>
<p>
What are the <tt>1</tt> and <tt>2</tt> parameters, you ask?</p>
<code><pre>
<span class=identifier>return_internal_reference</span><span class=special>&lt;</span><span class=number>1
</span></pre></code>
<p>
Informs Boost.Python that the first argument, in our case <tt>Y&amp; y</tt>, is the
owner of the returned reference: <tt>X&amp;</tt>. The &quot;<tt>1</tt>&quot; simply specifies the
first argument. In short: &quot;return an internal reference <tt>X&amp;</tt> owned by the
1st argument <tt>Y&amp; y</tt>&quot;.</p>
<code><pre>
<span class=identifier>with_custodian_and_ward</span><span class=special>&lt;</span><span class=number>1</span><span class=special>, </span><span class=number>2</span><span class=special>&gt;
</span></pre></code>
<p>
Informs Boost.Python that the lifetime of the argument indicated by ward
(i.e. the 2nd argument: <tt>Z* z</tt>) is dependent on the lifetime of the
argument indicated by custodian (i.e. the 1st argument: <tt>Y&amp; y</tt>).</p>
<p>
It is also important to note that we have defined two policies above. Two
or more policies can be composed by chaining. Here's the general syntax:</p>
<code><pre>
<span class=identifier>policy1</span><span class=special>&lt;</span><span class=identifier>args</span><span class=special>...,
</span><span class=identifier>policy2</span><span class=special>&lt;</span><span class=identifier>args</span><span class=special>...,
</span><span class=identifier>policy3</span><span class=special>&lt;</span><span class=identifier>args</span><span class=special>...&gt; &gt; &gt;
</span></pre></code>
<p>
Here is the list of predefined call policies. A complete reference detailing
these can be found <a href="../../v2/reference.html#models_of_call_policies">
here</a>.</p>
<ul><li><b>with_custodian_and_ward</b><br> Ties lifetimes of the arguments</li><li><b>with_custodian_and_ward_postcall</b><br> Ties lifetimes of the arguments and results</li><li><b>return_internal_reference</b><br> Ties lifetime of one argument to that of result</li><li><b>return_value_policy&lt;T&gt; with T one of:</b><br></li><li><b>reference_existing_object</b><br>naïve (dangerous) approach</li><li><b>copy_const_reference</b><br>Boost.Python v1 approach</li><li><b>copy_non_const_reference</b><br></li><li><b>manage_new_object</b><br> Adopt a pointer and hold the instance</li></ul><table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/smiley.gif"></img> <b>Remember the Zen, Luke:</b><br><br>
&quot;Explicit is better than implicit&quot;<br>
&quot;In the face of ambiguity, refuse the temptation to guess&quot;<br> </td>
</tr>
</table>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="functions.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="overloading.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,78 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Class Data Members</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="constructors.html">
<link rel="next" href="class_properties.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Class Data Members</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="constructors.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_properties.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Data members may also be exposed to Python so that they can be
accessed as attributes of the corresponding Python class. Each data
member that we wish to be exposed may be regarded as <b>read-only</b> or
<b>read-write</b>. Consider this class <tt>Var</tt>:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Var
</span><span class=special>{
</span><span class=identifier>Var</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>name</span><span class=special>) : </span><span class=identifier>name</span><span class=special>(</span><span class=identifier>name</span><span class=special>), </span><span class=identifier>value</span><span class=special>() {}
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=keyword>const </span><span class=identifier>name</span><span class=special>;
</span><span class=keyword>float </span><span class=identifier>value</span><span class=special>;
};
</span></pre></code>
<p>
Our C++ <tt>Var</tt> class and its data members can be exposed to Python:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Var</span><span class=special>&gt;(</span><span class=string>&quot;Var&quot;</span><span class=special>, </span><span class=identifier>init</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt;())
.</span><span class=identifier>def_readonly</span><span class=special>(</span><span class=string>&quot;name&quot;</span><span class=special>, &amp;</span><span class=identifier>Var</span><span class=special>::</span><span class=identifier>name</span><span class=special>)
.</span><span class=identifier>def_readwrite</span><span class=special>(</span><span class=string>&quot;value&quot;</span><span class=special>, &amp;</span><span class=identifier>Var</span><span class=special>::</span><span class=identifier>value</span><span class=special>);
</span></pre></code>
<p>
Then, in Python, assuming we have placed our Var class inside the namespace
hello as we did before:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>x </span><span class=special>= </span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>Var</span><span class=special>(</span><span class=literal>'pi'</span><span class=special>)
&gt;&gt;&gt; </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>value </span><span class=special>= </span><span class=number>3.14
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>print </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>name</span><span class=special>, </span><span class=literal>'is around'</span><span class=special>, </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>value
</span><span class=identifier>pi </span><span class=identifier>is </span><span class=identifier>around </span><span class=number>3.14
</span></pre></code>
<p>
Note that <tt>name</tt> is exposed as <b>read-only</b> while <tt>value</tt> is exposed
as <b>read-write</b>.</p>
<code><pre>
&gt;&gt;&gt; x.name = 'e' # can't change name
Traceback (most recent call last):
File &quot;&lt;stdin&gt;&quot;, line 1, in ?
AttributeError: can't set attribute
</pre></code><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="constructors.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_properties.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,109 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Class Operators/Special Functions</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="virtual_functions_with_default_implementations.html">
<link rel="next" href="functions.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Class Operators/Special Functions</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="virtual_functions_with_default_implementations.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="functions.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<a name="python_operators"></a><h2>Python Operators</h2><p>
C is well known for the abundance of operators. C++ extends this to the
extremes by allowing operator overloading. Boost.Python takes advantage of
this and makes it easy to wrap C++ operator-powered classes.</p>
<p>
Consider a file position class <tt>FilePos</tt> and a set of operators that take
on FilePos instances:</p>
<code><pre>
<span class=keyword>class </span><span class=identifier>FilePos </span><span class=special>{ /*...*/ };
</span><span class=identifier>FilePos </span><span class=keyword>operator</span><span class=special>+(</span><span class=identifier>FilePos</span><span class=special>, </span><span class=keyword>int</span><span class=special>);
</span><span class=identifier>FilePos </span><span class=keyword>operator</span><span class=special>+(</span><span class=keyword>int</span><span class=special>, </span><span class=identifier>FilePos</span><span class=special>);
</span><span class=keyword>int </span><span class=keyword>operator</span><span class=special>-(</span><span class=identifier>FilePos</span><span class=special>, </span><span class=identifier>FilePos</span><span class=special>);
</span><span class=identifier>FilePos </span><span class=keyword>operator</span><span class=special>-(</span><span class=identifier>FilePos</span><span class=special>, </span><span class=keyword>int</span><span class=special>);
</span><span class=identifier>FilePos</span><span class=special>&amp; </span><span class=keyword>operator</span><span class=special>+=(</span><span class=identifier>FilePos</span><span class=special>&amp;, </span><span class=keyword>int</span><span class=special>);
</span><span class=identifier>FilePos</span><span class=special>&amp; </span><span class=keyword>operator</span><span class=special>-=(</span><span class=identifier>FilePos</span><span class=special>&amp;, </span><span class=keyword>int</span><span class=special>);
</span><span class=keyword>bool </span><span class=keyword>operator</span><span class=special>&lt;(</span><span class=identifier>FilePos</span><span class=special>, </span><span class=identifier>FilePos</span><span class=special>);
</span></pre></code>
<p>
The class and the various operators can be mapped to Python rather easily
and intuitively:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>FilePos</span><span class=special>&gt;(</span><span class=string>&quot;FilePos&quot;</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>self </span><span class=special>+ </span><span class=keyword>int</span><span class=special>()) // </span><span class=identifier>__add__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=keyword>int</span><span class=special>() + </span><span class=identifier>self</span><span class=special>) // </span><span class=identifier>__radd__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>self </span><span class=special>- </span><span class=identifier>self</span><span class=special>) // </span><span class=identifier>__sub__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>self </span><span class=special>- </span><span class=keyword>int</span><span class=special>()) // </span><span class=identifier>__sub__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>self </span><span class=special>+= </span><span class=keyword>int</span><span class=special>()) // </span><span class=identifier>__iadd__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>self </span><span class=special>-= </span><span class=identifier>other</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;())
.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>self </span><span class=special>&lt; </span><span class=identifier>self</span><span class=special>); // </span><span class=identifier>__lt__
</span></pre></code>
<p>
The code snippet above is very clear and needs almost no explanation at
all. It is virtually the same as the operators' signatures. Just take
note that <tt>self</tt> refers to FilePos object. Also, not every class <tt>T</tt> that
you might need to interact with in an operator expression is (cheaply)
default-constructible. You can use <tt>other&lt;T&gt;()</tt> in place of an actual
<tt>T</tt> instance when writing &quot;self expressions&quot;.</p>
<a name="special_methods"></a><h2>Special Methods</h2><p>
Python has a few more <i>Special Methods</i>. Boost.Python supports all of the
standard special method names supported by real Python class instances. A
similar set of intuitive interfaces can also be used to wrap C++ functions
that correspond to these Python <i>special functions</i>. Example:</p>
<code><pre>
<span class=keyword>class </span><span class=identifier>Rational
</span><span class=special>{ </span><span class=keyword>operator </span><span class=keyword>double</span><span class=special>() </span><span class=keyword>const</span><span class=special>; };
</span><span class=identifier>Rational </span><span class=identifier>pow</span><span class=special>(</span><span class=identifier>Rational</span><span class=special>, </span><span class=identifier>Rational</span><span class=special>);
</span><span class=identifier>Rational </span><span class=identifier>abs</span><span class=special>(</span><span class=identifier>Rational</span><span class=special>);
</span><span class=identifier>ostream</span><span class=special>&amp; </span><span class=keyword>operator</span><span class=special>&lt;&lt;(</span><span class=identifier>ostream</span><span class=special>&amp;,</span><span class=identifier>Rational</span><span class=special>);
</span><span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Rational</span><span class=special>&gt;()
.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>float_</span><span class=special>(</span><span class=identifier>self</span><span class=special>)) // </span><span class=identifier>__float__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>pow</span><span class=special>(</span><span class=identifier>self</span><span class=special>, </span><span class=identifier>other</span><span class=special>&lt;</span><span class=identifier>Rational</span><span class=special>&gt;)) // </span><span class=identifier>__pow__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>abs</span><span class=special>(</span><span class=identifier>self</span><span class=special>)) // </span><span class=identifier>__abs__
</span><span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>str</span><span class=special>(</span><span class=identifier>self</span><span class=special>)) // </span><span class=identifier>__str__
</span><span class=special>;
</span></pre></code>
<p>
Need we say more?</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/lens.gif"></img> What is the business of <tt>operator&lt;&lt;</tt> <tt>.def(str(self))</tt>?
Well, the method <tt>str</tt> requires the <tt>operator&lt;&lt;</tt> to do its work (i.e.
<tt>operator&lt;&lt;</tt> is used by the method defined by def(str(self)). </td>
</tr>
</table>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="virtual_functions_with_default_implementations.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="functions.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,81 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Class Properties</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="class_data_members.html">
<link rel="next" href="inheritance.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Class Properties</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_data_members.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="inheritance.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
In C++, classes with public data members are usually frowned
upon. Well designed classes that take advantage of encapsulation hide
the class' data members. The only way to access the class' data is
through access (getter/setter) functions. Access functions expose class
properties. Here's an example:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Num
</span><span class=special>{
</span><span class=identifier>Num</span><span class=special>();
</span><span class=keyword>float </span><span class=identifier>get</span><span class=special>() </span><span class=keyword>const</span><span class=special>;
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=keyword>float </span><span class=identifier>value</span><span class=special>);
...
};
</span></pre></code>
<p>
However, in Python attribute access is fine; it doesn't neccessarily break
encapsulation to let users handle attributes directly, because the
attributes can just be a different syntax for a method call. Wrapping our
<tt>Num</tt> class using Boost.Python:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Num</span><span class=special>&gt;(</span><span class=string>&quot;Num&quot;</span><span class=special>)
.</span><span class=identifier>add_property</span><span class=special>(</span><span class=string>&quot;rovalue&quot;</span><span class=special>, &amp;</span><span class=identifier>Num</span><span class=special>::</span><span class=identifier>get</span><span class=special>)
.</span><span class=identifier>add_property</span><span class=special>(</span><span class=string>&quot;value&quot;</span><span class=special>, &amp;</span><span class=identifier>Num</span><span class=special>::</span><span class=identifier>get</span><span class=special>, &amp;</span><span class=identifier>Num</span><span class=special>::</span><span class=identifier>set</span><span class=special>);
</span></pre></code>
<p>
And at last, in Python:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>x </span><span class=special>= </span><span class=identifier>Num</span><span class=special>()
&gt;&gt;&gt; </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>value </span><span class=special>= </span><span class=number>3.14
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>value</span><span class=special>, </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>rovalue
</span><span class=special>(</span><span class=number>3.14</span><span class=special>, </span><span class=number>3.14</span><span class=special>)
&gt;&gt;&gt; </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>rovalue </span><span class=special>= </span><span class=number>2.17 </span>##<span class=identifier>error</span><span class=special>!
</span></pre></code>
<p>
Take note that the class property <tt>rovalue</tt> is exposed as <b>read-only</b>
since the <tt>rovalue</tt> setter member function is not passed in:</p>
<code><pre>
<span class=special>.</span><span class=identifier>add_property</span><span class=special>(</span><span class=string>&quot;rovalue&quot;</span><span class=special>, &amp;</span><span class=identifier>Num</span><span class=special>::</span><span class=identifier>get</span><span class=special>)
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_data_members.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="inheritance.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,129 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Class Virtual Functions</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="inheritance.html">
<link rel="next" href="deriving_a_python_class.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Class Virtual Functions</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="inheritance.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="deriving_a_python_class.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
In this section, we shall learn how to make functions behave
polymorphically through virtual functions. Continuing our example, let us
add a virtual function to our <tt>Base</tt> class:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Base
</span><span class=special>{
</span><span class=keyword>virtual </span><span class=keyword>int </span><span class=identifier>f</span><span class=special>() = </span><span class=number>0</span><span class=special>;
};
</span></pre></code>
<p>
Since <tt>f</tt> is a pure virtual function, <tt>Base</tt> is now an abstract
class. Given an instance of our class, the free function <tt>call_f</tt>
calls some implementation of this virtual function in a concrete
derived class:</p>
<code><pre>
<span class=keyword>int </span><span class=identifier>call_f</span><span class=special>(</span><span class=identifier>Base</span><span class=special>&amp; </span><span class=identifier>b</span><span class=special>) { </span><span class=keyword>return </span><span class=identifier>b</span><span class=special>.</span><span class=identifier>f</span><span class=special>(); }
</span></pre></code>
<p>
To allow this function to be implemented in a Python derived class, we
need to create a class wrapper:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>BaseWrap </span><span class=special>: </span><span class=identifier>Base
</span><span class=special>{
</span><span class=identifier>BaseWrap</span><span class=special>(</span><span class=identifier>PyObject</span><span class=special>* </span><span class=identifier>self_</span><span class=special>)
: </span><span class=identifier>self</span><span class=special>(</span><span class=identifier>self_</span><span class=special>) {}
</span><span class=keyword>int </span><span class=identifier>f</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>call_method</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;(</span><span class=identifier>self</span><span class=special>, </span><span class=string>&quot;f&quot;</span><span class=special>); }
</span><span class=identifier>PyObject</span><span class=special>* </span><span class=identifier>self</span><span class=special>;
};
</span></pre></code>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/lens.gif"></img> <b>member function and methods</b><br><br> Python, like
many object oriented languages uses the term <b>methods</b>. Methods
correspond roughly to C++'s <b>member functions</b> </td>
</tr>
</table>
<p>
Our class wrapper <tt>BaseWrap</tt> is derived from <tt>Base</tt>. Its overridden
virtual member function <tt>f</tt> in effect calls the corresponding method
of the Python object <tt>self</tt>, which is a pointer back to the Python
<tt>Base</tt> object holding our <tt>BaseWrap</tt> instance.</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img> <b>Why do we need BaseWrap?</b><br><br>
<i>You may ask</i>, &quot;Why do we need the <tt>BaseWrap</tt> derived class? This could
have been designed so that everything gets done right inside of
Base.&quot;<br><br>
One of the goals of Boost.Python is to be minimally intrusive on an
existing C++ design. In principle, it should be possible to expose the
interface for a 3rd party library without changing it. To unintrusively
hook into the virtual functions so that a Python override may be called, we
must use a derived class.<br><br>
Note however that you don't need to do this to get methods overridden
in Python to behave virtually when called <i>from</i> <b>Python</b>. The only
time you need to do the <tt>BaseWrap</tt> dance is when you have a virtual
function that's going to be overridden in Python and called
polymorphically <i>from</i> <b>C++</b>. </td>
</tr>
</table>
<p>
Wrapping <tt>Base</tt> and the free function <tt>call_f</tt>:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Base</span><span class=special>, </span><span class=identifier>BaseWrap</span><span class=special>, </span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>noncopyable</span><span class=special>&gt;(</span><span class=string>&quot;Base&quot;</span><span class=special>, </span><span class=identifier>no_init</span><span class=special>)
;
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;call_f&quot;</span><span class=special>, </span><span class=identifier>call_f</span><span class=special>);
</span></pre></code>
<p>
Notice that we parameterized the <tt>class_</tt> template with <tt>BaseWrap</tt> as the
second parameter. What is <tt>noncopyable</tt>? Without it, the library will try
to create code for converting Base return values of wrapped functions to
Python. To do that, it needs Base's copy constructor... which isn't
available, since Base is an abstract class.</p>
<p>
In Python, let us try to instantiate our <tt>Base</tt> class:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>base </span><span class=special>= </span><span class=identifier>Base</span><span class=special>()
</span><span class=identifier>RuntimeError</span><span class=special>: </span><span class=identifier>This </span><span class=keyword>class </span><span class=identifier>cannot </span><span class=identifier>be </span><span class=identifier>instantiated </span><span class=identifier>from </span><span class=identifier>Python
</span></pre></code>
<p>
Why is it an error? <tt>Base</tt> is an abstract class. As such it is advisable
to define the Python wrapper with <tt>no_init</tt> as we have done above. Doing
so will disallow abstract base classes such as <tt>Base</tt> to be instantiated.</p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="inheritance.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="deriving_a_python_class.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,102 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Constructors</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="exposing_classes.html">
<link rel="next" href="class_data_members.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Constructors</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="exposing_classes.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_data_members.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Our previous example didn't have any explicit constructors.
Since <tt>World</tt> is declared as a plain struct, it has an implicit default
constructor. Boost.Python exposes the default constructor by default,
which is why we were able to write</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>planet </span><span class=special>= </span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>World</span><span class=special>()
</span></pre></code>
<p>
We may wish to wrap a class with a non-default constructor. Let us
build on our previous example:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>World
</span><span class=special>{
</span><span class=identifier>World</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>): </span><span class=identifier>msg</span><span class=special>(</span><span class=identifier>msg</span><span class=special>) {} // </span><span class=identifier>added </span><span class=identifier>constructor
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>) { </span><span class=keyword>this</span><span class=special>-&gt;</span><span class=identifier>msg </span><span class=special>= </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>greet</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>;
};
</span></pre></code>
<p>
This time <tt>World</tt> has no default constructor; our previous
wrapping code would fail to compile when the library tried to expose
it. We have to tell <tt>class_&lt;World&gt;</tt> about the constructor we want to
expose instead.</p>
<code><pre>
<span class=preprocessor>#include </span><span class=special>&lt;</span><span class=identifier>boost</span><span class=special>/</span><span class=identifier>python</span><span class=special>.</span><span class=identifier>hpp</span><span class=special>&gt;
</span><span class=keyword>using </span><span class=keyword>namespace </span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>python</span><span class=special>;
</span><span class=identifier>BOOST_PYTHON_MODULE</span><span class=special>(</span><span class=identifier>hello</span><span class=special>)
{
</span><span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>World</span><span class=special>&gt;(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=identifier>init</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt;())
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;greet&quot;</span><span class=special>, &amp;</span><span class=identifier>World</span><span class=special>::</span><span class=identifier>greet</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;set&quot;</span><span class=special>, &amp;</span><span class=identifier>World</span><span class=special>::</span><span class=identifier>set</span><span class=special>)
;
}
</span></pre></code>
<p>
<tt>init&lt;std::string&gt;()</tt> exposes the constructor taking in a
<tt>std::string</tt> (in Python, constructors are spelled
&quot;<tt>&quot;__init__&quot;</tt>&quot;).</p>
<p>
We can expose additional constructors by passing more <tt>init&lt;...&gt;</tt>s to
the <tt>def()</tt> member function. Say for example we have another World
constructor taking in two doubles:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>World</span><span class=special>&gt;(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=identifier>init</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt;())
.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>init</span><span class=special>&lt;</span><span class=keyword>double</span><span class=special>, </span><span class=keyword>double</span><span class=special>&gt;())
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;greet&quot;</span><span class=special>, &amp;</span><span class=identifier>World</span><span class=special>::</span><span class=identifier>greet</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;set&quot;</span><span class=special>, &amp;</span><span class=identifier>World</span><span class=special>::</span><span class=identifier>set</span><span class=special>)
;
</span></pre></code>
<p>
On the other hand, if we do not wish to expose any constructors at
all, we may use <tt>no_init</tt> instead:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Abstract</span><span class=special>&gt;(</span><span class=string>&quot;Abstract&quot;</span><span class=special>, </span><span class=identifier>no_init</span><span class=special>)
</span></pre></code>
<p>
This actually adds an <tt>__init__</tt> method which always raises a
Python RuntimeError exception.</p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="exposing_classes.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_data_members.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,158 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Default Arguments</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="overloading.html">
<link rel="next" href="auto_overloading.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Default Arguments</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="overloading.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="auto_overloading.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Boost.Python wraps (member) function pointers. Unfortunately, C++ function
pointers carry no default argument info. Take a function <tt>f</tt> with default
arguments:</p>
<code><pre>
<span class=keyword>int </span><span class=identifier>f</span><span class=special>(</span><span class=keyword>int</span><span class=special>, </span><span class=keyword>double </span><span class=special>= </span><span class=number>3.14</span><span class=special>, </span><span class=keyword>char </span><span class=keyword>const</span><span class=special>* = </span><span class=string>&quot;hello&quot;</span><span class=special>);
</span></pre></code>
<p>
But the type of a pointer to the function <tt>f</tt> has no information
about its default arguments:</p>
<code><pre>
<span class=keyword>int</span><span class=special>(*</span><span class=identifier>g</span><span class=special>)(</span><span class=keyword>int</span><span class=special>,</span><span class=keyword>double</span><span class=special>,</span><span class=keyword>char </span><span class=keyword>const</span><span class=special>*) = </span><span class=identifier>f</span><span class=special>; // </span><span class=identifier>defaults </span><span class=identifier>lost</span><span class=special>!
</span></pre></code>
<p>
When we pass this function pointer to the <tt>def</tt> function, there is no way
to retrieve the default arguments:</p>
<code><pre>
<span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>f</span><span class=special>); // </span><span class=identifier>defaults </span><span class=identifier>lost</span><span class=special>!
</span></pre></code>
<p>
Because of this, when wrapping C++ code, we had to resort to manual
wrapping as outlined in the <a href="overloading.html">
previous section</a>, or
writing thin wrappers:</p>
<code><pre>
<span class=comment>// write &quot;thin wrappers&quot;
</span><span class=keyword>int </span><span class=identifier>f1</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>x</span><span class=special>) { </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>x</span><span class=special>); }
</span><span class=keyword>int </span><span class=identifier>f2</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>x</span><span class=special>, </span><span class=keyword>double </span><span class=identifier>y</span><span class=special>) { </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>x</span><span class=special>,</span><span class=identifier>y</span><span class=special>); }
/*...*/
// </span><span class=identifier>in </span><span class=identifier>module </span><span class=identifier>init
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>f</span><span class=special>); // </span><span class=identifier>all </span><span class=identifier>arguments
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>f2</span><span class=special>); // </span><span class=identifier>two </span><span class=identifier>arguments
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>f1</span><span class=special>); // </span><span class=identifier>one </span><span class=identifier>argument
</span></pre></code>
<p>
When you want to wrap functions (or member functions) that either:</p>
<ul><li>have default arguments, or</li><li>are overloaded with a common sequence of initial arguments</li></ul><a name="boost_python_function_overloads"></a><h2>BOOST_PYTHON_FUNCTION_OVERLOADS</h2><p>
Boost.Python now has a way to make it easier. For instance, given a function:</p>
<code><pre>
<span class=keyword>int </span><span class=identifier>foo</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>char </span><span class=identifier>b </span><span class=special>= </span><span class=number>1</span><span class=special>, </span><span class=keyword>unsigned </span><span class=identifier>c </span><span class=special>= </span><span class=number>2</span><span class=special>, </span><span class=keyword>double </span><span class=identifier>d </span><span class=special>= </span><span class=number>3</span><span class=special>)
{
/*...*/
}
</span></pre></code>
<p>
The macro invocation:</p>
<code><pre>
<span class=identifier>BOOST_PYTHON_FUNCTION_OVERLOADS</span><span class=special>(</span><span class=identifier>foo_overloads</span><span class=special>, </span><span class=identifier>foo</span><span class=special>, </span><span class=number>1</span><span class=special>, </span><span class=number>4</span><span class=special>)
</span></pre></code>
<p>
will automatically create the thin wrappers for us. This macro will create
a class <tt>foo_overloads</tt> that can be passed on to <tt>def(...)</tt>. The third
and fourth macro argument are the minimum arguments and maximum arguments,
respectively. In our <tt>foo</tt> function the minimum number of arguments is 1
and the maximum number of arguments is 4. The <tt>def(...)</tt> function will
automatically add all the foo variants for us:</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;foo&quot;</span><span class=special>, </span><span class=identifier>foo</span><span class=special>, </span><span class=identifier>foo_overloads</span><span class=special>());
</span></pre></code>
<a name="boost_python_member_function_overloads"></a><h2>BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS</h2><p>
Objects here, objects there, objects here there everywhere. More frequently
than anything else, we need to expose member functions of our classes to
Python. Then again, we have the same inconveniences as before when default
arguments or overloads with a common sequence of initial arguments come
into play. Another macro is provided to make this a breeze.</p>
<p>
Like <tt>BOOST_PYTHON_FUNCTION_OVERLOADS</tt>,
<tt>BOOST_PYTHON_FUNCTION_OVERLOADS</tt> may be used to automatically create
the thin wrappers for wrapping member functions. Let's have an example:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>george
</span><span class=special>{
</span><span class=keyword>void
</span><span class=identifier>wack_em</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>int </span><span class=identifier>b </span><span class=special>= </span><span class=number>0</span><span class=special>, </span><span class=keyword>char </span><span class=identifier>c </span><span class=special>= </span><span class=literal>'x'</span><span class=special>)
{
/*...*/
}
};
</span></pre></code>
<p>
The macro invocation:</p>
<code><pre>
<span class=identifier>BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS</span><span class=special>(</span><span class=identifier>george_overloads</span><span class=special>, </span><span class=identifier>wack_em</span><span class=special>, </span><span class=number>1</span><span class=special>, </span><span class=number>3</span><span class=special>)
</span></pre></code>
<p>
will generate a set of thin wrappers for george's <tt>wack_em</tt> member function
accepting a minimum of 1 and a maximum of 3 arguments (i.e. the third and
fourth macro argument). The thin wrappers are all enclosed in a class named
<tt>george_overloads</tt> that can then be used as an argument to <tt>def(...)</tt>:</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;wack_em&quot;</span><span class=special>, &amp;</span><span class=identifier>george</span><span class=special>::</span><span class=identifier>wack_em</span><span class=special>, </span><span class=identifier>george_overloads</span><span class=special>());
</span></pre></code>
<p>
See the <a href="../../v2/overloads.html#BOOST_PYTHON_FUNCTION_OVERLOADS-spec">
overloads reference</a>
for details.</p>
<a name="init_and_optional"></a><h2>init and optional</h2><p>
A similar facility is provided for class constructors, again, with
default arguments or a sequence of overloads. Remember <tt>init&lt;...&gt;</tt>? For example,
given a class X with a constructor:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>X
</span><span class=special>{
</span><span class=identifier>X</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>char </span><span class=identifier>b </span><span class=special>= </span><span class=literal>'D'</span><span class=special>, </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>c </span><span class=special>= </span><span class=string>&quot;constructor&quot;</span><span class=special>, </span><span class=keyword>double </span><span class=identifier>d </span><span class=special>= </span><span class=number>0.0</span><span class=special>);
/*...*/
}
</span></pre></code>
<p>
You can easily add this constructor to Boost.Python in one shot:</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=identifier>init</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>, </span><span class=identifier>optional</span><span class=special>&lt;</span><span class=keyword>char</span><span class=special>, </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>, </span><span class=keyword>double</span><span class=special>&gt; &gt;())
</span></pre></code>
<p>
Notice the use of <tt>init&lt;...&gt;</tt> and <tt>optional&lt;...&gt;</tt> to signify the default
(optional arguments).</p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="overloading.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="auto_overloading.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,117 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Derived Object types</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="basic_interface.html">
<link rel="next" href="extracting_c___objects.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Derived Object types</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="basic_interface.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="extracting_c___objects.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Boost.Python comes with a set of derived <tt>object</tt> types corresponding to
that of Python's:</p>
<ul><li>list</li><li>dict</li><li>tuple</li><li>str</li><li>long_</li><li>enum</li></ul><p>
These derived <tt>object</tt> types act like real Python types. For instance:</p>
<code><pre>
<span class=identifier>str</span><span class=special>(</span><span class=number>1</span><span class=special>) ==&gt; </span><span class=string>&quot;1&quot;
</span></pre></code>
<p>
Wherever appropriate, a particular derived <tt>object</tt> has corresponding
Python type's methods. For instance, <tt>dict</tt> has a <tt>keys()</tt> method:</p>
<code><pre>
<span class=identifier>d</span><span class=special>.</span><span class=identifier>keys</span><span class=special>()
</span></pre></code>
<p>
<tt>make_tuple</tt> is provided for declaring <i>tuple literals</i>. Example:</p>
<code><pre>
<span class=identifier>make_tuple</span><span class=special>(</span><span class=number>123</span><span class=special>, </span><span class=literal>'D'</span><span class=special>, </span><span class=string>&quot;Hello, World&quot;</span><span class=special>, </span><span class=number>0.0</span><span class=special>);
</span></pre></code>
<p>
In C++, when Boost.Python <tt>object</tt>s are used as arguments to functions,
subtype matching is required. For example, when a function <tt>f</tt>, as
declared below, is wrapped, it will only accept instances of Python's
<tt>str</tt> type and subtypes.</p>
<code><pre>
<span class=keyword>void </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>str </span><span class=identifier>name</span><span class=special>)
{
</span><span class=identifier>object </span><span class=identifier>n2 </span><span class=special>= </span><span class=identifier>name</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;upper&quot;</span><span class=special>)(); // </span><span class=identifier>NAME </span><span class=special>= </span><span class=identifier>name</span><span class=special>.</span><span class=identifier>upper</span><span class=special>()
</span><span class=identifier>str </span><span class=identifier>NAME </span><span class=special>= </span><span class=identifier>name</span><span class=special>.</span><span class=identifier>upper</span><span class=special>(); // </span><span class=identifier>better
</span><span class=identifier>object </span><span class=identifier>msg </span><span class=special>= </span><span class=string>&quot;%s is bigger than %s&quot; </span><span class=special>% </span><span class=identifier>make_tuple</span><span class=special>(</span><span class=identifier>NAME</span><span class=special>,</span><span class=identifier>name</span><span class=special>);
}
</span></pre></code>
<p>
In finer detail:</p>
<code><pre>
<span class=identifier>str </span><span class=identifier>NAME </span><span class=special>= </span><span class=identifier>name</span><span class=special>.</span><span class=identifier>upper</span><span class=special>();
</span></pre></code>
<p>
Illustrates that we provide versions of the str type's methods as C++
member functions.</p>
<code><pre>
<span class=identifier>object </span><span class=identifier>msg </span><span class=special>= </span><span class=string>&quot;%s is bigger than %s&quot; </span><span class=special>% </span><span class=identifier>make_tuple</span><span class=special>(</span><span class=identifier>NAME</span><span class=special>,</span><span class=identifier>name</span><span class=special>);
</span></pre></code>
<p>
Demonstrates that you can write the C++ equivalent of <tt>&quot;format&quot; % x,y,z</tt>
in Python, which is useful since there's no easy way to do that in std C++.</p>
<p>
<img src="theme/alert.gif"></img> <b>Beware</b> the common pitfall of forgetting that the constructors
of most of Python's mutable types make copies, just as in Python.</p>
<p>
Python:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>d </span><span class=special>= </span><span class=identifier>dict</span><span class=special>(</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>__dict__</span><span class=special>) </span>##<span class=identifier>copies </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>__dict__
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>d</span><span class=special>[</span><span class=literal>'whatever'</span><span class=special>] </span>##<span class=identifier>modifies </span><span class=identifier>the </span><span class=identifier>copy
</span></pre></code>
<p>
C++:</p>
<code><pre>
<span class=identifier>dict </span><span class=identifier>d</span><span class=special>(</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;__dict__&quot;</span><span class=special>)); </span>##<span class=identifier>copies </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>__dict__
</span><span class=identifier>d</span><span class=special>[</span><span class=literal>'whatever'</span><span class=special>] = </span><span class=number>3</span><span class=special>; </span>##<span class=identifier>modifies </span><span class=identifier>the </span><span class=identifier>copy
</span></pre></code>
<a name="class__lt_t_gt__as_objects"></a><h2>class_&lt;T&gt; as objects</h2><p>
Due to the dynamic nature of Boost.Python objects, any <tt>class_&lt;T&gt;</tt> may
also be one of these types! The following code snippet wraps the class
(type) object.</p>
<p>
We can use this to create wrapped instances. Example:</p>
<code><pre>
<span class=identifier>object </span><span class=identifier>vec345 </span><span class=special>= (
</span><span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Vec2</span><span class=special>&gt;(</span><span class=string>&quot;Vec2&quot;</span><span class=special>, </span><span class=identifier>init</span><span class=special>&lt;</span><span class=keyword>double</span><span class=special>, </span><span class=keyword>double</span><span class=special>&gt;())
.</span><span class=identifier>def_readonly</span><span class=special>(</span><span class=string>&quot;length&quot;</span><span class=special>, &amp;</span><span class=identifier>Point</span><span class=special>::</span><span class=identifier>length</span><span class=special>)
.</span><span class=identifier>def_readonly</span><span class=special>(</span><span class=string>&quot;angle&quot;</span><span class=special>, &amp;</span><span class=identifier>Point</span><span class=special>::</span><span class=identifier>angle</span><span class=special>)
)(</span><span class=number>3.0</span><span class=special>, </span><span class=number>4.0</span><span class=special>);
</span><span class=identifier>assert</span><span class=special>(</span><span class=identifier>vec345</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;length&quot;</span><span class=special>) == </span><span class=number>5.0</span><span class=special>);
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="basic_interface.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="extracting_c___objects.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,83 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Deriving a Python Class</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="class_virtual_functions.html">
<link rel="next" href="virtual_functions_with_default_implementations.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Deriving a Python Class</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_virtual_functions.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="virtual_functions_with_default_implementations.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Continuing, we can derive from our base class Base in Python and override
the virtual function in Python. Before we can do that, we have to set up
our <tt>class_</tt> wrapper as:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Base</span><span class=special>, </span><span class=identifier>BaseWrap</span><span class=special>, </span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>noncopyable</span><span class=special>&gt;(</span><span class=string>&quot;Base&quot;</span><span class=special>)
;
</span></pre></code>
<p>
Otherwise, we have to suppress the Base class' <tt>no_init</tt> by adding an
<tt>__init__()</tt> method to all our derived classes. <tt>no_init</tt> actually adds
an <tt>__init__</tt> method that raises a Python RuntimeError exception.</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=keyword>class </span><span class=identifier>Derived</span><span class=special>(</span><span class=identifier>Base</span><span class=special>):
... </span><span class=identifier>def </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>self</span><span class=special>):
... </span><span class=keyword>return </span><span class=number>42
</span><span class=special>...
</span></pre></code>
<p>
Cool eh? A Python class deriving from a C++ class!</p>
<p>
Let's now make an instance of our Python class <tt>Derived</tt>:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>derived </span><span class=special>= </span><span class=identifier>Derived</span><span class=special>()
</span></pre></code>
<p>
Calling <tt>derived.f()</tt>:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>derived</span><span class=special>.</span><span class=identifier>f</span><span class=special>()
</span><span class=number>42
</span></pre></code>
<p>
Will yield the expected result. Finally, calling calling the free function
<tt>call_f</tt> with <tt>derived</tt> as argument:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>call_f</span><span class=special>(</span><span class=identifier>derived</span><span class=special>)
</span><span class=number>42
</span></pre></code>
<p>
Will also yield the expected result.</p>
<p>
Here's what's happening:</p>
<ol><li><tt>call_f(derived)</tt> is called in Python</li><li>This corresponds to <tt>def(&quot;call_f&quot;, call_f);</tt>. Boost.Python dispatches this call.</li><li><tt>int call_f(Base&amp; b) { return b.f(); }</tt> accepts the call.</li><li>The overridden virtual function <tt>f</tt> of <tt>BaseWrap</tt> is called.</li><li><tt>call_method&lt;int&gt;(self, &quot;f&quot;);</tt> dispatches the call back to Python.</li><li><tt>def f(self): return 42</tt> is finally called.</li></ol><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_virtual_functions.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="virtual_functions_with_default_implementations.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,97 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Embedding</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="enums.html">
<link rel="next" href="using_the_interpreter.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Embedding</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="enums.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="using_the_interpreter.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
By now you should know how to use Boost.Python to call your C++ code from
Python. However, sometimes you may need to do the reverse: call Python code
from the C++-side. This requires you to <i>embed</i> the Python interpreter
into your C++ program.</p>
<p>
Currently, Boost.Python does not directly support everything you'll need
when embedding. Therefore you'll need to use the
<a href="http://www.python.org/doc/current/api/api.html">
Python/C API</a> to fill in
the gaps. However, Boost.Python already makes embedding a lot easier and,
in a future version, it may become unnecessary to touch the Python/C API at
all. So stay tuned... <img src="theme/smiley.gif"></img></p>
<a name="building_embedded_programs"></a><h2>Building embedded programs</h2><p>
To be able to use embedding in your programs, they have to be linked to
both Boost.Python's and Python's static link library.</p>
<p>
Boost.Python's static link library comes in two variants. Both are located
in Boost's <tt>/libs/python/build/bin-stage</tt> subdirectory. On Windows, the
variants are called <tt>boost_python.lib</tt> (for release builds) and
<tt>boost_python_debug.lib</tt> (for debugging). If you can't find the
libraries, you probably haven't built Boost.Python yet. See <a
href="../../building.html">Building and Testing</a> on how to do
this.</p>
<p>
Python's static link library can be found in the <tt>/libs</tt> subdirectory of
your Python directory. On Windows it is called pythonXY.lib where X.Y is
your major Python version number.</p>
<p>
Additionally, Python's <tt>/include</tt> subdirectory has to be added to your
include path.</p>
<p>
In a Jamfile, all the above boils down to:</p>
<code><pre>
projectroot c:\projects\embedded_program ; # location of the program
# bring in the rules for python
SEARCH on python.jam = $(BOOST_BUILD_PATH) ;
include python.jam ;
exe embedded_program # name of the executable
: #sources
embedded_program.cpp
: # requirements
&lt;find-library&gt;boost_python &lt;library-path&gt;c:\boost\libs\python
$(PYTHON_PROPERTIES)
&lt;library-path&gt;$(PYTHON_LIB_PATH)
&lt;find-library&gt;$(PYTHON_EMBEDDED_LIBRARY) ;
</pre></code><a name="getting_started"></a><h2>Getting started</h2><p>
Being able to build is nice, but there is nothing to build yet. Embedding
the Python interpreter into one of your C++ programs requires these 4
steps:</p>
<ol><li>#include <tt>&lt;boost/python.hpp&gt;</tt><br><br></li><li>Call <a href="http://www.python.org/doc/current/api/initialization.html#l2h-652">
Py_Initialize</a>() to start the interpreter and create the <tt>__main__</tt> module.<br><br></li><li>Call other Python C API routines to use the interpreter.<br><br></li><li>Call <a href="http://www.python.org/doc/current/api/initialization.html#l2h-656">
Py_Finalize</a>() to stop the interpreter and release its resources.</li></ol><p>
(Of course, there can be other C++ code between all of these steps.)</p>
<blockquote><p><i><b>Now that we can embed the interpreter in our programs, lets see how to put it to use...</b></i></p></blockquote><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="enums.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="using_the_interpreter.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 Dirk Gerrits<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,95 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Enums</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="extracting_c___objects.html">
<link rel="next" href="embedding.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Enums</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="extracting_c___objects.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="embedding.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Boost.Python has a nifty facility to capture and wrap C++ enums. While
Python has no <tt>enum</tt> type, we'll often want to expose our C++ enums to
Python as an <tt>int</tt>. Boost.Python's enum facility makes this easy while
taking care of the proper conversions from Python's dynamic typing to C++'s
strong static typing (in C++, ints cannot be implicitly converted to
enums). To illustrate, given a C++ enum:</p>
<code><pre>
<span class=keyword>enum </span><span class=identifier>choice </span><span class=special>{ </span><span class=identifier>red</span><span class=special>, </span><span class=identifier>blue </span><span class=special>};
</span></pre></code>
<p>
the construct:</p>
<code><pre>
<span class=identifier>enum_</span><span class=special>&lt;</span><span class=identifier>choice</span><span class=special>&gt;(</span><span class=string>&quot;choice&quot;</span><span class=special>)
.</span><span class=identifier>value</span><span class=special>(</span><span class=string>&quot;red&quot;</span><span class=special>, </span><span class=identifier>red</span><span class=special>)
.</span><span class=identifier>value</span><span class=special>(</span><span class=string>&quot;blue&quot;</span><span class=special>, </span><span class=identifier>blue</span><span class=special>)
;
</span></pre></code>
<p>
can be used to expose to Python. The new enum type is created in the
current <tt>scope()</tt>, which is usually the current module. The snippet above
creates a Python class derived from Python's <tt>int</tt> type which is
associated with the C++ type passed as its first parameter.</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/lens.gif"></img> <b>what is a scope?</b><br><br> The scope is a class that has an
associated global Python object which controls the Python namespace in
which new extension classes and wrapped functions will be defined as
attributes. Details can be found <a href="../../v2/scope.html">
here</a>. </td>
</tr>
</table>
<p>
You can access those values in Python as</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>my_module</span><span class=special>.</span><span class=identifier>choice</span><span class=special>.</span><span class=identifier>red
</span><span class=identifier>my_module</span><span class=special>.</span><span class=identifier>choice</span><span class=special>.</span><span class=identifier>red
</span></pre></code>
<p>
where my_module is the module where the enum is declared. You can also
create a new scope around a class:</p>
<code><pre>
<span class=identifier>scope </span><span class=identifier>in_X </span><span class=special>= </span><span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>X</span><span class=special>&gt;(</span><span class=string>&quot;X&quot;</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>( ... )
.</span><span class=identifier>def</span><span class=special>( ... )
;
// </span><span class=identifier>Expose </span><span class=identifier>X</span><span class=special>::</span><span class=identifier>nested </span><span class=identifier>as </span><span class=identifier>X</span><span class=special>.</span><span class=identifier>nested
</span><span class=identifier>enum_</span><span class=special>&lt;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>nested</span><span class=special>&gt;(</span><span class=string>&quot;nested&quot;</span><span class=special>)
.</span><span class=identifier>value</span><span class=special>(</span><span class=string>&quot;red&quot;</span><span class=special>, </span><span class=identifier>red</span><span class=special>)
.</span><span class=identifier>value</span><span class=special>(</span><span class=string>&quot;blue&quot;</span><span class=special>, </span><span class=identifier>blue</span><span class=special>)
;
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="extracting_c___objects.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="embedding.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,60 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Exception Translation</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="iterators.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Exception Translation</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="iterators.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><img src="theme/r_arr_disabled.gif" border="0"></td>
</tr>
</table>
<p>
All C++ exceptions must be caught at the boundary with Python code. This
boundary is the point where C++ meets Python. Boost.Python provides a
default exception handler that translates selected standard exceptions,
then gives up:</p>
<code><pre>
<span class=identifier>raise </span><span class=identifier>RuntimeError</span><span class=special>, </span><span class=literal>'unidentifiable C++ Exception'
</span></pre></code>
<p>
Users may provide custom translation. Here's an example:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>PodBayDoorException</span><span class=special>;
</span><span class=keyword>void </span><span class=identifier>translator</span><span class=special>(</span><span class=identifier>PodBayDoorException </span><span class=keyword>const</span><span class=special>&amp; </span><span class=identifier>x</span><span class=special>) {
</span><span class=identifier>PyErr_SetString</span><span class=special>(</span><span class=identifier>PyExc_UserWarning</span><span class=special>, </span><span class=string>&quot;I'm sorry Dave...&quot;</span><span class=special>);
}
</span><span class=identifier>BOOST_PYTHON_MODULE</span><span class=special>(</span><span class=identifier>kubrick</span><span class=special>) {
</span><span class=identifier>register_exception_translator</span><span class=special>&lt;
</span><span class=identifier>PodBayDoorException</span><span class=special>&gt;(</span><span class=identifier>translator</span><span class=special>);
...
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="iterators.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><img src="theme/r_arr_disabled.gif" border="0"></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,79 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Exposing Classes</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="building_hello_world.html">
<link rel="next" href="constructors.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Exposing Classes</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="building_hello_world.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="constructors.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Now let's expose a C++ class to Python.</p>
<p>
Consider a C++ class/struct that we want to expose to Python:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>World
</span><span class=special>{
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>) { </span><span class=keyword>this</span><span class=special>-&gt;</span><span class=identifier>msg </span><span class=special>= </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>greet</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>;
};
</span></pre></code>
<p>
We can expose this to Python by writing a corresponding Boost.Python
C++ Wrapper:</p>
<code><pre>
<span class=preprocessor>#include </span><span class=special>&lt;</span><span class=identifier>boost</span><span class=special>/</span><span class=identifier>python</span><span class=special>.</span><span class=identifier>hpp</span><span class=special>&gt;
</span><span class=keyword>using </span><span class=keyword>namespace </span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>python</span><span class=special>;
</span><span class=identifier>BOOST_PYTHON_MODULE</span><span class=special>(</span><span class=identifier>hello</span><span class=special>)
{
</span><span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>World</span><span class=special>&gt;(</span><span class=string>&quot;World&quot;</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;greet&quot;</span><span class=special>, &amp;</span><span class=identifier>World</span><span class=special>::</span><span class=identifier>greet</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;set&quot;</span><span class=special>, &amp;</span><span class=identifier>World</span><span class=special>::</span><span class=identifier>set</span><span class=special>)
;
}
</span></pre></code>
<p>
Here, we wrote a C++ class wrapper that exposes the member functions
<tt>greet</tt> and <tt>set</tt>. Now, after building our module as a shared library, we
may use our class <tt>World</tt> in Python. Here's a sample Python session:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>import </span><span class=identifier>hello
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>planet </span><span class=special>= </span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>World</span><span class=special>()
&gt;&gt;&gt; </span><span class=identifier>planet</span><span class=special>.</span><span class=identifier>set</span><span class=special>(</span><span class=literal>'howdy'</span><span class=special>)
&gt;&gt;&gt; </span><span class=identifier>planet</span><span class=special>.</span><span class=identifier>greet</span><span class=special>()
</span><span class=literal>'howdy'
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="building_hello_world.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="constructors.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,79 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Extracting C++ objects</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="derived_object_types.html">
<link rel="next" href="enums.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Extracting C++ objects</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="derived_object_types.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="enums.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
At some point, we will need to get C++ values out of object instances. This
can be achieved with the <tt>extract&lt;T&gt;</tt> function. Consider the following:</p>
<code><pre>
<span class=keyword>double </span><span class=identifier>x </span><span class=special>= </span><span class=identifier>o</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;length&quot;</span><span class=special>); // </span><span class=identifier>compile </span><span class=identifier>error
</span></pre></code>
<p>
In the code above, we got a compiler error because Boost.Python
<tt>object</tt> can't be implicitly converted to <tt>double</tt>s. Instead, what
we wanted to do above can be achieved by writing:</p>
<code><pre>
<span class=keyword>double </span><span class=identifier>l </span><span class=special>= </span><span class=identifier>extract</span><span class=special>&lt;</span><span class=keyword>double</span><span class=special>&gt;(</span><span class=identifier>o</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;length&quot;</span><span class=special>));
</span><span class=identifier>Vec2</span><span class=special>&amp; </span><span class=identifier>v </span><span class=special>= </span><span class=identifier>extract</span><span class=special>&lt;</span><span class=identifier>Vec2</span><span class=special>&amp;&gt;(</span><span class=identifier>o</span><span class=special>);
</span><span class=identifier>assert</span><span class=special>(</span><span class=identifier>l </span><span class=special>== </span><span class=identifier>v</span><span class=special>.</span><span class=identifier>length</span><span class=special>());
</span></pre></code>
<p>
The first line attempts to extract the &quot;length&quot; attribute of the
Boost.Python <tt>object</tt> <tt>o</tt>. The second line attempts to <i>extract</i> the
<tt>Vec2</tt> object from held by the Boost.Python <tt>object</tt> <tt>o</tt>.</p>
<p>
Take note that we said &quot;attempt to&quot; above. What if the Boost.Python
<tt>object</tt> <tt>o</tt> does not really hold a <tt>Vec2</tt> type? This is certainly
a possibility considering the dynamic nature of Python <tt>object</tt>s. To
be on the safe side, if the C++ type can't be extracted, an
appropriate exception is thrown. To avoid an exception, we need to
test for extractibility:</p>
<code><pre>
<span class=identifier>extract</span><span class=special>&lt;</span><span class=identifier>Vec2</span><span class=special>&amp;&gt; </span><span class=identifier>x</span><span class=special>(</span><span class=identifier>o</span><span class=special>);
</span><span class=keyword>if </span><span class=special>(</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>check</span><span class=special>()) {
</span><span class=identifier>Vec2</span><span class=special>&amp; </span><span class=identifier>v </span><span class=special>= </span><span class=identifier>x</span><span class=special>(); ...
</span></pre></code>
<p>
<img src="theme/bulb.gif"></img> The astute reader might have noticed that the <tt>extract&lt;T&gt;</tt>
facility in fact solves the mutable copying problem:</p>
<code><pre>
<span class=identifier>dict </span><span class=identifier>d </span><span class=special>= </span><span class=identifier>extract</span><span class=special>&lt;</span><span class=identifier>dict</span><span class=special>&gt;(</span><span class=identifier>x</span><span class=special>.</span><span class=identifier>attr</span><span class=special>(</span><span class=string>&quot;__dict__&quot;</span><span class=special>));
</span><span class=identifier>d</span><span class=special>[</span><span class=literal>'whatever'</span><span class=special>] = </span><span class=number>3</span><span class=special>; </span>##<span class=identifier>modifies </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>__dict__ </span><span class=special>!
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="derived_object_types.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="enums.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,73 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Functions</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="class_operators_special_functions.html">
<link rel="next" href="call_policies.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Functions</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_operators_special_functions.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="call_policies.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
In this chapter, we'll look at Boost.Python powered functions in closer
detail. We shall see some facilities to make exposing C++ functions to
Python safe from potential pifalls such as dangling pointers and
references. We shall also see facilities that will make it even easier for
us to expose C++ functions that take advantage of C++ features such as
overloading and default arguments.</p>
<blockquote><p><i>Read on...</i></p></blockquote><p>
But before you do, you might want to fire up Python 2.2 or later and type
<tt>&gt;&gt;&gt; import this</tt>.</p>
<code><pre>
&gt;&gt;&gt; import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
</pre></code><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_operators_special_functions.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="call_policies.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,98 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Inheritance</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="class_properties.html">
<link rel="next" href="class_virtual_functions.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Inheritance</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_properties.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_virtual_functions.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
In the previous examples, we dealt with classes that are not polymorphic.
This is not often the case. Much of the time, we will be wrapping
polymorphic classes and class hierarchies related by inheritance. We will
often have to write Boost.Python wrappers for classes that are derived from
abstract base classes.</p>
<p>
Consider this trivial inheritance structure:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Base </span><span class=special>{ </span><span class=keyword>virtual </span><span class=special>~</span><span class=identifier>Base</span><span class=special>(); };
</span><span class=keyword>struct </span><span class=identifier>Derived </span><span class=special>: </span><span class=identifier>Base </span><span class=special>{};
</span></pre></code>
<p>
And a set of C++ functions operating on <tt>Base</tt> and <tt>Derived</tt> object
instances:</p>
<code><pre>
<span class=keyword>void </span><span class=identifier>b</span><span class=special>(</span><span class=identifier>Base</span><span class=special>*);
</span><span class=keyword>void </span><span class=identifier>d</span><span class=special>(</span><span class=identifier>Derived</span><span class=special>*);
</span><span class=identifier>Base</span><span class=special>* </span><span class=identifier>factory</span><span class=special>() { </span><span class=keyword>return </span><span class=keyword>new </span><span class=identifier>Derived</span><span class=special>; }
</span></pre></code>
<p>
We've seen how we can wrap the base class <tt>Base</tt>:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Base</span><span class=special>&gt;(</span><span class=string>&quot;Base&quot;</span><span class=special>)
/*...*/
;
</span></pre></code>
<p>
Now we can inform Boost.Python of the inheritance relationship between
<tt>Derived</tt> and its base class <tt>Base</tt>. Thus:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Derived</span><span class=special>, </span><span class=identifier>bases</span><span class=special>&lt;</span><span class=identifier>Base</span><span class=special>&gt; &gt;(</span><span class=string>&quot;Derived&quot;</span><span class=special>)
/*...*/
;
</span></pre></code>
<p>
Doing so, we get some things for free:</p>
<ol><li>Derived automatically inherits all of Base's Python methods (wrapped C++ member functions)</li><li><b>If</b> Base is polymorphic, <tt>Derived</tt> objects which have been passed to Python via a pointer or reference to <tt>Base</tt> can be passed where a pointer or reference to <tt>Derived</tt> is expected.</li></ol><p>
Now, we shall expose the C++ free functions <tt>b</tt> and <tt>d</tt> and <tt>factory</tt>:</p>
<code><pre>
<span class=identifier>def</span><span class=special>(</span><span class=string>&quot;b&quot;</span><span class=special>, </span><span class=identifier>b</span><span class=special>);
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;d&quot;</span><span class=special>, </span><span class=identifier>d</span><span class=special>);
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;factory&quot;</span><span class=special>, </span><span class=identifier>factory</span><span class=special>);
</span></pre></code>
<p>
Note that free function <tt>factory</tt> is being used to generate new
instances of class <tt>Derived</tt>. In such cases, we use
<tt>return_value_policy&lt;manage_new_object&gt;</tt> to instruct Python to adopt
the pointer to <tt>Base</tt> and hold the instance in a new Python <tt>Base</tt>
object until the the Python object is destroyed. We shall see more of
Boost.Python <a href="call_policies.html">
call policies</a> later.</p>
<code><pre>
<span class=comment>// Tell Python to take ownership of factory's result
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;factory&quot;</span><span class=special>, </span><span class=identifier>factory</span><span class=special>,
</span><span class=identifier>return_value_policy</span><span class=special>&lt;</span><span class=identifier>manage_new_object</span><span class=special>&gt;());
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="class_properties.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_virtual_functions.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,101 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Iterators</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="using_the_interpreter.html">
<link rel="next" href="exception_translation.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Iterators</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="using_the_interpreter.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="exception_translation.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
In C++, and STL in particular, we see iterators everywhere. Python also has
iterators, but these are two very different beasts.</p>
<p>
<b>C++ iterators:</b></p>
<ul><li>C++ has 5 type categories (random-access, bidirectional, forward, input, output)</li><li>There are 2 Operation categories: reposition, access</li><li>A pair of iterators is needed to represent a (first/last) range.</li></ul><p>
<b>Python Iterators:</b></p>
<ul><li>1 category (forward)</li><li>1 operation category (next())</li><li>Raises StopIteration exception at end</li></ul><p>
The typical Python iteration protocol: <tt><b>for y in x...</b></tt> is as follows:</p>
<code><pre>
<span class=identifier>iter </span><span class=special>= </span><span class=identifier>x</span><span class=special>.</span><span class=identifier>__iter__</span><span class=special>() </span>##<span class=identifier>get </span><span class=identifier>iterator
</span><span class=keyword>try</span><span class=special>:
</span><span class=keyword>while </span><span class=number>1</span><span class=special>:
</span><span class=identifier>y </span><span class=special>= </span><span class=identifier>iter</span><span class=special>.</span><span class=identifier>next</span><span class=special>() </span>##<span class=identifier>get </span><span class=identifier>each </span><span class=identifier>item
</span><span class=special>... </span>##<span class=identifier>process </span><span class=identifier>y
</span><span class=identifier>except </span><span class=identifier>StopIteration</span><span class=special>: </span><span class=identifier>pass </span>##<span class=identifier>iterator </span><span class=identifier>exhausted
</span></pre></code>
<p>
Boost.Python provides some mechanisms to make C++ iterators play along
nicely as Python iterators. What we need to do is to produce
appropriate __iter__ function from C++ iterators that is compatible
with the Python iteration protocol. For example:</p>
<code><pre>
<span class=identifier>object </span><span class=identifier>get_iterator </span><span class=special>= </span><span class=identifier>iterator</span><span class=special>&lt;</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt; &gt;();
</span><span class=identifier>object </span><span class=identifier>iter </span><span class=special>= </span><span class=identifier>get_iterator</span><span class=special>(</span><span class=identifier>v</span><span class=special>);
</span><span class=identifier>object </span><span class=identifier>first </span><span class=special>= </span><span class=identifier>iter</span><span class=special>.</span><span class=identifier>next</span><span class=special>();
</span></pre></code>
<p>
Or for use in class_&lt;&gt;:</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;__iter__&quot;</span><span class=special>, </span><span class=identifier>iterator</span><span class=special>&lt;</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt; &gt;())
</span></pre></code>
<p>
<b>range</b></p>
<p>
We can create a Python savvy iterator using the range function:</p>
<ul><li>range(start, finish)</li><li>range&lt;Policies,Target&gt;(start, finish)</li></ul><p>
Here, start/finish may be one of:</p>
<ul><li>member data pointers</li><li>member function pointers</li><li>adaptable function object (use Target parameter)</li></ul><p>
<b>iterator</b></p>
<ul><li>iterator&lt;T, Policies&gt;()</li></ul><p>
Given a container <tt>T</tt>, iterator is a shortcut that simply calls <tt>range</tt>
with &amp;T::begin, &amp;T::end.</p>
<p>
Let's put this into action... Here's an example from some hypothetical
bogon Particle accelerator code:</p>
<code><pre>
<span class=identifier>f </span><span class=special>= </span><span class=identifier>Field</span><span class=special>()
</span><span class=keyword>for </span><span class=identifier>x </span><span class=identifier>in </span><span class=identifier>f</span><span class=special>.</span><span class=identifier>pions</span><span class=special>:
</span><span class=identifier>smash</span><span class=special>(</span><span class=identifier>x</span><span class=special>)
</span><span class=keyword>for </span><span class=identifier>y </span><span class=identifier>in </span><span class=identifier>f</span><span class=special>.</span><span class=identifier>bogons</span><span class=special>:
</span><span class=identifier>count</span><span class=special>(</span><span class=identifier>y</span><span class=special>)
</span></pre></code>
<p>
Now, our C++ Wrapper:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>F</span><span class=special>&gt;(</span><span class=string>&quot;Field&quot;</span><span class=special>)
.</span><span class=identifier>property</span><span class=special>(</span><span class=string>&quot;pions&quot;</span><span class=special>, </span><span class=identifier>range</span><span class=special>(&amp;</span><span class=identifier>F</span><span class=special>::</span><span class=identifier>p_begin</span><span class=special>, &amp;</span><span class=identifier>F</span><span class=special>::</span><span class=identifier>p_end</span><span class=special>))
.</span><span class=identifier>property</span><span class=special>(</span><span class=string>&quot;bogons&quot;</span><span class=special>, </span><span class=identifier>range</span><span class=special>(&amp;</span><span class=identifier>F</span><span class=special>::</span><span class=identifier>b_begin</span><span class=special>, &amp;</span><span class=identifier>F</span><span class=special>::</span><span class=identifier>b_end</span><span class=special>));
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="using_the_interpreter.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="exception_translation.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,54 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Object Interface</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="auto_overloading.html">
<link rel="next" href="basic_interface.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Object Interface</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="auto_overloading.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="basic_interface.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Python is dynamically typed, unlike C++ which is statically typed. Python
variables may hold an integer, a float, list, dict, tuple, str, long etc.,
among other things. In the viewpoint of Boost.Python and C++, these
Pythonic variables are just instances of class <tt>object</tt>. We shall see in
this chapter how to deal with Python objects.</p>
<p>
As mentioned, one of the goals of Boost.Python is to provide a
bidirectional mapping between C++ and Python while maintaining the Python
feel. Boost.Python C++ <tt>object</tt>s are as close as possible to Python. This
should minimize the learning curve significantly.</p>
<p>
<img src="theme/python.png"></img></p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="auto_overloading.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="basic_interface.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,88 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Overloading</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="call_policies.html">
<link rel="next" href="default_arguments.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Overloading</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="call_policies.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="default_arguments.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
The following illustrates a scheme for manually wrapping an overloaded
member functions. Of course, the same technique can be applied to wrapping
overloaded non-member functions.</p>
<p>
We have here our C++ class:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>X
</span><span class=special>{
</span><span class=keyword>bool </span><span class=identifier>f</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>)
{
</span><span class=keyword>return </span><span class=keyword>true</span><span class=special>;
}
</span><span class=keyword>bool </span><span class=identifier>f</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>double </span><span class=identifier>b</span><span class=special>)
{
</span><span class=keyword>return </span><span class=keyword>true</span><span class=special>;
}
</span><span class=keyword>bool </span><span class=identifier>f</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>double </span><span class=identifier>b</span><span class=special>, </span><span class=keyword>char </span><span class=identifier>c</span><span class=special>)
{
</span><span class=keyword>return </span><span class=keyword>true</span><span class=special>;
}
</span><span class=keyword>int </span><span class=identifier>f</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>a</span><span class=special>, </span><span class=keyword>int </span><span class=identifier>b</span><span class=special>, </span><span class=keyword>int </span><span class=identifier>c</span><span class=special>)
{
</span><span class=keyword>return </span><span class=identifier>a </span><span class=special>+ </span><span class=identifier>b </span><span class=special>+ </span><span class=identifier>c</span><span class=special>;
};
};
</span></pre></code>
<p>
Class X has 4 overloaded functions. We shall start by introducing some
member function pointer variables:</p>
<code><pre>
<span class=keyword>bool </span><span class=special>(</span><span class=identifier>X</span><span class=special>::*</span><span class=identifier>fx1</span><span class=special>)(</span><span class=keyword>int</span><span class=special>) = &amp;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>f</span><span class=special>;
</span><span class=keyword>bool </span><span class=special>(</span><span class=identifier>X</span><span class=special>::*</span><span class=identifier>fx2</span><span class=special>)(</span><span class=keyword>int</span><span class=special>, </span><span class=keyword>double</span><span class=special>) = &amp;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>f</span><span class=special>;
</span><span class=keyword>bool </span><span class=special>(</span><span class=identifier>X</span><span class=special>::*</span><span class=identifier>fx3</span><span class=special>)(</span><span class=keyword>int</span><span class=special>, </span><span class=keyword>double</span><span class=special>, </span><span class=keyword>char</span><span class=special>)= &amp;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>f</span><span class=special>;
</span><span class=keyword>int </span><span class=special>(</span><span class=identifier>X</span><span class=special>::*</span><span class=identifier>fx4</span><span class=special>)(</span><span class=keyword>int</span><span class=special>, </span><span class=keyword>int</span><span class=special>, </span><span class=keyword>int</span><span class=special>) = &amp;</span><span class=identifier>X</span><span class=special>::</span><span class=identifier>f</span><span class=special>;
</span></pre></code>
<p>
With these in hand, we can proceed to define and wrap this for Python:</p>
<code><pre>
<span class=special>.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>fx1</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>fx2</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>fx3</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, </span><span class=identifier>fx4</span><span class=special>)
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="call_policies.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="default_arguments.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,79 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>QuickStart</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="next" href="building_hello_world.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>QuickStart</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><img src="theme/l_arr_disabled.gif" border="0"></td>
<td width="20"><a href="building_hello_world.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
The Boost Python Library is a framework for interfacing Python and
C++. It allows you to quickly and seamlessly expose C++ classes
functions and objects to Python, and vice-versa, using no special
tools -- just your C++ compiler. It is designed to wrap C++ interfaces
non-intrusively, so that you should not have to change the C++ code at
all in order to wrap it, making Boost.Python ideal for exposing
3rd-party libraries to Python. The library's use of advanced
metaprogramming techniques simplifies its syntax for users, so that
wrapping code takes on the look of a kind of declarative interface
definition language (IDL).</p>
<a name="hello_world"></a><h2>Hello World</h2><p>
Following C/C++ tradition, let's start with the &quot;hello, world&quot;. A C++
Function:</p>
<code><pre>
<span class=keyword>char </span><span class=keyword>const</span><span class=special>* </span><span class=identifier>greet</span><span class=special>()
{
</span><span class=keyword>return </span><span class=string>&quot;hello, world&quot;</span><span class=special>;
}
</span></pre></code>
<p>
can be exposed to Python by writing a Boost.Python wrapper:</p>
<code><pre>
<span class=preprocessor>#include </span><span class=special>&lt;</span><span class=identifier>boost</span><span class=special>/</span><span class=identifier>python</span><span class=special>.</span><span class=identifier>hpp</span><span class=special>&gt;
</span><span class=keyword>using </span><span class=keyword>namespace </span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>python</span><span class=special>;
</span><span class=identifier>BOOST_PYTHON_MODULE</span><span class=special>(</span><span class=identifier>hello</span><span class=special>)
{
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;greet&quot;</span><span class=special>, </span><span class=identifier>greet</span><span class=special>);
}
</span></pre></code>
<p>
That's it. We're done. We can now build this as a shared library. The
resulting DLL is now visible to Python. Here's a sample Python session:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>import </span><span class=identifier>hello
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>print </span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>greet</span><span class=special>()
</span><span class=identifier>hello</span><span class=special>, </span><span class=identifier>world
</span></pre></code>
<blockquote><p><i><b>Next stop... Building your Hello World module from start to finish...</b></i></p></blockquote><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><img src="theme/l_arr_disabled.gif" border="0"></td>
<td width="20"><a href="building_hello_world.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

File diff suppressed because it is too large Load Diff

BIN
doc/tutorial/doc/theme/alert.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 577 B

BIN
doc/tutorial/doc/theme/arrow.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 B

BIN
doc/tutorial/doc/theme/bkd.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 KiB

BIN
doc/tutorial/doc/theme/bkd2.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

BIN
doc/tutorial/doc/theme/bulb.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 944 B

BIN
doc/tutorial/doc/theme/bullet.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 B

BIN
doc/tutorial/doc/theme/c++boost.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 KiB

BIN
doc/tutorial/doc/theme/jam.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

BIN
doc/tutorial/doc/theme/l_arr.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 B

BIN
doc/tutorial/doc/theme/lens.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 897 B

BIN
doc/tutorial/doc/theme/note.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 B

BIN
doc/tutorial/doc/theme/python.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
doc/tutorial/doc/theme/r_arr.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 B

BIN
doc/tutorial/doc/theme/smiley.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 879 B

170
doc/tutorial/doc/theme/style.css vendored Normal file
View File

@@ -0,0 +1,170 @@
body
{
background-image: url(bkd.gif);
background-color: #FFFFFF;
margin: 1em 2em 1em 2em;
}
h1 { font-family: Verdana, Arial, Helvetica, sans-serif; font-weight: bold; text-align: left; }
h2 { font: 140% sans-serif; font-weight: bold; text-align: left; }
h3 { font: 120% sans-serif; font-weight: bold; text-align: left; }
h4 { font: bold 100% sans-serif; font-weight: bold; text-align: left; }
h5 { font: italic 100% sans-serif; font-weight: bold; text-align: left; }
h6 { font: small-caps 100% sans-serif; font-weight: bold; text-align: left; }
pre
{
border-top: gray 1pt solid;
border-right: gray 1pt solid;
border-left: gray 1pt solid;
border-bottom: gray 1pt solid;
padding-top: 2pt;
padding-right: 2pt;
padding-left: 2pt;
padding-bottom: 2pt;
display: block;
font-family: "courier new", courier, mono;
background-color: #eeeeee; font-size: small
}
code
{
font-family: "Courier New", Courier, mono;
font-size: small
}
tt
{
display: inline;
font-family: "Courier New", Courier, mono;
color: #000099;
font-size: small
}
p
{
text-align: justify;
font-family: Georgia, "Times New Roman", Times, serif
}
ul
{
list-style-image: url(bullet.gif);
font-family: Georgia, "Times New Roman", Times, serif
}
ol
{
font-family: Georgia, "Times New Roman", Times, serif
}
a
{
font-weight: bold;
color: #003366;
text-decoration: none;
}
a:hover { color: #8080FF; }
.literal { color: #666666; font-style: italic}
.keyword { color: #000099}
.identifier {}
.comment { font-style: italic; color: #990000}
.special { color: #800040}
.preprocessor { color: #FF0000}
.string { font-style: italic; color: #666666}
.copyright { color: #666666; font-size: small}
.white_bkd { background-color: #FFFFFF}
.dk_grey_bkd { background-color: #999999}
.quotes { color: #666666; font-style: italic; font-weight: bold}
.note_box
{
display: block;
border-top: gray 1pt solid;
border-right: gray 1pt solid;
border-left: gray 1pt solid;
border-bottom: gray 1pt solid;
padding-right: 12pt;
padding-left: 12pt;
padding-bottom: 12pt;
padding-top: 12pt;
font-family: Arial, Helvetica, sans-serif;
background-color: #E2E9EF;
font-size: small; text-align: justify
}
.table_title
{
background-color: #648CCA;
font-family: Verdana, Arial, Helvetica, sans-serif; color: #FFFFFF;
font-weight: bold
; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 4px
}
.table_cells
{
background-color: #E2E9EF;
font-family: Geneva, Arial, Helvetica, san-serif;
font-size: small
; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 4px
}
.toc
{
DISPLAY: block;
background-color: #E2E9EF
font-family: Arial, Helvetica, sans-serif;
border-top: gray 1pt solid;
border-left: gray 1pt solid;
border-bottom: gray 1pt solid;
border-right: gray 1pt solid;
padding-top: 24pt;
padding-right: 24pt;
padding-left: 24pt;
padding-bottom: 24pt;
}
.toc_title
{
background-color: #648CCA;
padding-top: 4px;
padding-right: 4px;
padding-bottom: 4px;
padding-left: 4px;
font-family: Geneva, Arial, Helvetica, san-serif;
color: #FFFFFF;
font-weight: bold
}
.toc_cells
{
background-color: #E2E9EF;
padding-top: 4px;
padding-right: 4px;
padding-bottom: 4px;
padding-left: 4px;
font-family: Geneva, Arial, Helvetica, san-serif;
font-size: small
}
div.logo
{
float: right;
}
.toc_cells_L0 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 4px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L1 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 44px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L2 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 88px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L3 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 122px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L4 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 166px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }

BIN
doc/tutorial/doc/theme/u_arr.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 B

View File

@@ -0,0 +1,236 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Using the interpreter</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="embedding.html">
<link rel="next" href="iterators.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Using the interpreter</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="embedding.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="iterators.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
As you probably already know, objects in Python are reference-counted.
Naturally, the <tt>PyObject</tt>s of the Python/C API are also reference-counted.
There is a difference however. While the reference-counting is fully
automatic in Python, the Python/C API requires you to do it
<a href="http://www.python.org/doc/current/api/refcounts.html">
by hand</a>. This is
messy and especially hard to get right in the presence of C++ exceptions.
Fortunately Boost.Python provides the <a href="../../v2/handle.html">
handle</a> class
template to automate the process.</p>
<a name="reference_counting_handles"></a><h2>Reference-counting handles</h2><p>
There are two ways in which a function in the Python/C API can return a
<tt>PyObject*</tt>: as a <i>borrowed reference</i> or as a <i>new reference</i>. Which of
these a function uses, is listed in that function's documentation. The two
require slightely different approaches to reference-counting but both can
be 'handled' by Boost.Python.</p>
<p>
For a function returning a <i>borrowed reference</i> we'll have to tell the
<tt>handle</tt> that the <tt>PyObject*</tt> is borrowed with the aptly named
<a href="../../v2/handle.html#borrowed-spec">
borrowed</a> function. Two functions
returning borrowed references are <a href="http://www.python.org/doc/current/api/importing.html#l2h-125">
PyImport_AddModule</a> and <a href="http://www.python.org/doc/current/api/moduleObjects.html#l2h-594">
PyModule_GetDict</a>.
The former returns a reference to an already imported module, the latter
retrieves a module's namespace dictionary. Let's use them to retrieve the
namespace of the <tt>__main__</tt> module:</p>
<code><pre>
<span class=identifier>handle</span><span class=special>&lt;&gt; </span><span class=identifier>main_module</span><span class=special>(</span><span class=identifier>borrowed</span><span class=special>( </span><span class=identifier>PyImport_AddModule</span><span class=special>(</span><span class=string>&quot;__main__&quot;</span><span class=special>) ));
</span><span class=identifier>handle</span><span class=special>&lt;&gt; </span><span class=identifier>main_namespace</span><span class=special>(</span><span class=identifier>borrowed</span><span class=special>( </span><span class=identifier>PyModule_GetDict</span><span class=special>(</span><span class=identifier>main_module</span><span class=special>.</span><span class=identifier>get</span><span class=special>()) ));
</span></pre></code>
<p>
Because the Python/C API doesn't know anything about <tt>handle</tt>s, we used
the <a href="../../v2/handle.html#handle-spec-observers">
get</a> member function to
retrieve the <tt>PyObject*</tt> from which the <tt>handle</tt> was constructed.</p>
<p>
For a function returning a <i>new reference</i> we can just create a <tt>handle</tt>
out of the raw <tt>PyObject*</tt> without wrapping it in a call to borrowed. One
such function that returns a new reference is <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-55">
PyRun_String</a> which we'll
discuss in the next section.</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/lens.gif"></img> <b>Handle is a class <i>template</i>, so why haven't we been using any template parameters?</b><br>
<br>
<tt>handle</tt> has a single template parameter specifying the type of the managed object. This type is <tt>PyObject</tt> 99% of the time, so the parameter was defaulted to <tt>PyObject</tt> for convenience. Therefore we can use the shorthand <tt>handle&lt;&gt;</tt> instead of the longer, but equivalent, <tt>handle&lt;PyObject&gt;</tt>.
</td>
</tr>
</table>
<a name="running_python_code"></a><h2>Running Python code</h2><p>
To run Python code from C++ there is a family of functions in the API
starting with the PyRun prefix. You can find the full list of these
functions <a href="http://www.python.org/doc/current/api/veryhigh.html">
here</a>. They
all work similarly so we will look at only one of them, namely:</p>
<code><pre>
<span class=identifier>PyObject</span><span class=special>* </span><span class=identifier>PyRun_String</span><span class=special>(</span><span class=keyword>char </span><span class=special>*</span><span class=identifier>str</span><span class=special>, </span><span class=keyword>int </span><span class=identifier>start</span><span class=special>, </span><span class=identifier>PyObject </span><span class=special>*</span><span class=identifier>globals</span><span class=special>, </span><span class=identifier>PyObject </span><span class=special>*</span><span class=identifier>locals</span><span class=special>)
</span></pre></code>
<p>
<a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-55">
PyRun_String</a> takes the code to execute as a null-terminated (C-style)
string in its <tt>str</tt> parameter. The function returns a new reference to a
Python object. Which object is returned depends on the <tt>start</tt> paramater.</p>
<p>
The <tt>start</tt> parameter is the start symbol from the Python grammar to use
for interpreting the code. The possible values are:</p>
<table width="90%" border="0" align="center"> <tr>
<td class="table_title" colspan="6">
Start symbols </td>
</tr>
<tr><tr><td class="table_cells"><a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-58">
Py_eval_input</a></td><td class="table_cells">for interpreting isolated expressions</td></tr><td class="table_cells"><a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-59">
Py_file_input</a></td><td class="table_cells">for interpreting sequences of statements</td></tr><td class="table_cells"><a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-60">
Py_single_input</a></td><td class="table_cells">for interpreting a single statement</td></tr></table>
<p>
When using <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-58">
Py_eval_input</a>, the input string must contain a single expression
and its result is returned. When using <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-59">
Py_file_input</a>, the string can
contain an abitrary number of statements and None is returned.
<a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-60">
Py_single_input</a> works in the same way as <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-59">
Py_file_input</a> but only accepts a
single statement.</p>
<p>
Lastly, the <tt>globals</tt> and <tt>locals</tt> parameters are Python dictionaries
containing the globals and locals of the context in which to run the code.
For most intents and purposes you can use the namespace dictionary of the
<tt>__main__</tt> module for both parameters.</p>
<p>
We have already seen how to get the <tt>__main__</tt> module's namespace so let's
run some Python code in it:</p>
<code><pre>
<span class=identifier>handle</span><span class=special>&lt;&gt; </span><span class=identifier>main_module</span><span class=special>(</span><span class=identifier>borrowed</span><span class=special>( </span><span class=identifier>PyImport_AddModule</span><span class=special>(</span><span class=string>&quot;__main__&quot;</span><span class=special>) ));
</span><span class=identifier>handle</span><span class=special>&lt;&gt; </span><span class=identifier>main_namespace</span><span class=special>(</span><span class=identifier>borrowed</span><span class=special>( </span><span class=identifier>PyModule_GetDict</span><span class=special>(</span><span class=identifier>main_module</span><span class=special>.</span><span class=identifier>get</span><span class=special>()) ));
</span><span class=identifier>handle</span><span class=special>&lt;&gt;( </span><span class=identifier>PyRun_String</span><span class=special>(</span><span class=string>&quot;hello = file('hello.txt', 'w')\n&quot;
</span><span class=string>&quot;hello.write('Hello world!')\n&quot;
</span><span class=string>&quot;hello.close()&quot;</span><span class=special>, </span><span class=identifier>Py_file_input</span><span class=special>,
</span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>get</span><span class=special>(), </span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>get</span><span class=special>()) );
</span></pre></code>
<p>
This should create a file called 'hello.txt' in the current directory
containing a phrase that is well-known in programming circles.</p>
<p>
<img src="theme/note.gif"></img> <b>Note</b> that we wrap the return value of <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-55">
PyRun_String</a> in a
(nameless) <tt>handle</tt> even though we are not interested in it. If we didn't
do this, the the returned object would be kept alive unnecessarily. Unless
you want to be a Dr. Frankenstein, always wrap <tt>PyObject*</tt>s in <tt>handle</tt>s.</p>
<a name="beyond_handles"></a><h2>Beyond handles</h2><p>
It's nice that <tt>handle</tt> manages the reference counting details for us, but
other than that it doesn't do much. Often we'd like to have a more useful
class to manipulate Python objects. But we have already seen such a class
in the <a href="object_interface.html">
previous section</a>: the aptly named <tt>object</tt>
class and it's derivatives. What we haven't seen, is that they can be
constructed from a <tt>handle</tt>. The following examples should illustrate this
fact:</p>
<code><pre>
<span class=identifier>handle</span><span class=special>&lt;&gt; </span><span class=identifier>main_module</span><span class=special>(</span><span class=identifier>borrowed</span><span class=special>( </span><span class=identifier>PyImport_AddModule</span><span class=special>(</span><span class=string>&quot;__main__&quot;</span><span class=special>) ));
</span><span class=identifier>main_namespace </span><span class=identifier>dict</span><span class=special>(</span><span class=identifier>handle</span><span class=special>&lt;&gt;(</span><span class=identifier>borrowed</span><span class=special>( </span><span class=identifier>PyModule_GetDict</span><span class=special>(</span><span class=identifier>main_module</span><span class=special>.</span><span class=identifier>get</span><span class=special>()) )));
</span><span class=identifier>handle</span><span class=special>&lt;&gt;( </span><span class=identifier>PyRun_String</span><span class=special>(</span><span class=string>&quot;result = 5 ** 2&quot;</span><span class=special>, </span><span class=identifier>Py_file_input</span><span class=special>,
</span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>(), </span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>()) );
</span><span class=keyword>int </span><span class=identifier>five_squared </span><span class=special>= </span><span class=identifier>extract</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;( </span><span class=identifier>main_namespace</span><span class=special>[</span><span class=string>&quot;result&quot;</span><span class=special>] );
</span></pre></code>
<p>
Here we create a dictionary object for the <tt>__main__</tt> module's namespace.
Then we assign 5 squared to the result variable and read this variable from
the dictionary. Another way to achieve the same result is to let
<a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-55">
PyRun_String</a> return the result directly with <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-58">
Py_eval_input</a>:</p>
<code><pre>
<span class=identifier>object </span><span class=identifier>result</span><span class=special>(</span><span class=identifier>handle</span><span class=special>&lt;&gt;( </span><span class=identifier>PyRun_String</span><span class=special>(</span><span class=string>&quot;5 ** 2&quot;</span><span class=special>, </span><span class=identifier>Py_eval_input</span><span class=special>,
</span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>(), </span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>()) ));
</span><span class=keyword>int </span><span class=identifier>five_squared </span><span class=special>= </span><span class=identifier>extract</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;(</span><span class=identifier>result</span><span class=special>);
</span></pre></code>
<p>
<img src="theme/note.gif"></img> <b>Note</b> that <tt>object</tt>'s member function to return the wrapped
<tt>PyObject*</tt> is called <tt>ptr</tt> instead of <tt>get</tt>. This makes sense if you
take into account the different functions that <tt>object</tt> and <tt>handle</tt>
perform.</p>
<a name="exception_handling"></a><h2>Exception handling</h2><p>
If an exception occurs in the execution of some Python code, the <a href="http://www.python.org/doc/current/api/veryhigh.html#l2h-55">
PyRun_String</a> function returns a null pointer. Constructing a <tt>handle</tt> out of this null pointer throws <a href="../../v2/errors.html#error_already_set-spec">
error_already_set</a>, so basically, the Python exception is automatically translated into a C++ exception when using <tt>handle</tt>:</p>
<code><pre>
<span class=keyword>try
</span><span class=special>{
</span><span class=identifier>object </span><span class=identifier>result</span><span class=special>(</span><span class=identifier>handle</span><span class=special>&lt;&gt;( </span><span class=identifier>PyRun_String</span><span class=special>(</span><span class=string>&quot;5/0&quot;</span><span class=special>, </span><span class=identifier>Py_eval_input</span><span class=special>,
</span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>(), </span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>()) ));
// </span><span class=identifier>execution </span><span class=identifier>will </span><span class=identifier>never </span><span class=identifier>get </span><span class=identifier>here</span><span class=special>:
</span><span class=keyword>int </span><span class=identifier>five_divided_by_zero </span><span class=special>= </span><span class=identifier>extract</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;(</span><span class=identifier>result</span><span class=special>);
}
</span><span class=keyword>catch</span><span class=special>(</span><span class=identifier>error_already_set</span><span class=special>)
{
// </span><span class=identifier>handle </span><span class=identifier>the </span><span class=identifier>exception </span><span class=identifier>in </span><span class=identifier>some </span><span class=identifier>way
</span><span class=special>}
</span></pre></code>
<p>
The <tt>error_already_set</tt> exception class doesn't carry any information in itself. To find out more about the Python exception that occurred, you need to use the <a href="http://www.python.org/doc/api/exceptionHandling.html">
exception handling functions</a> of the Python/C API in your catch-statement. This can be as simple as calling <a href="http://www.python.org/doc/api/exceptionHandling.html#l2h-70">
PyErr_Print()</a> to print the exception's traceback to the console, or comparing the type of the exception with those of the <a href="http://www.python.org/doc/api/standardExceptions.html">
standard exceptions</a>:</p>
<code><pre>
<span class=keyword>catch</span><span class=special>(</span><span class=identifier>error_already_set</span><span class=special>)
{
</span><span class=keyword>if </span><span class=special>(</span><span class=identifier>PyErr_ExceptionMatches</span><span class=special>(</span><span class=identifier>PyExc_ZeroDivisionError</span><span class=special>))
{
// </span><span class=identifier>handle </span><span class=identifier>ZeroDivisionError </span><span class=identifier>specially
</span><span class=special>}
</span><span class=keyword>else
</span><span class=special>{
// </span><span class=identifier>print </span><span class=identifier>all </span><span class=identifier>other </span><span class=identifier>errors </span><span class=identifier>to </span><span class=identifier>stderr
</span><span class=identifier>PyErr_Print</span><span class=special>();
}
}
</span></pre></code>
<p>
(To retrieve even more information from the exception you can use some of the other exception handling functions listed <a href="http://www.python.org/doc/api/exceptionHandling.html">
here</a>.)</p>
<p>
If you'd rather not have <tt>handle</tt> throw a C++ exception when it is constructed, you can use the <a href="../../v2/handle.html#allow_null-spec">
allow_null</a> function in the same way you'd use borrowed:</p>
<code><pre>
<span class=identifier>handle</span><span class=special>&lt;&gt; </span><span class=identifier>result</span><span class=special>(</span><span class=identifier>allow_null</span><span class=special>( </span><span class=identifier>PyRun_String</span><span class=special>(</span><span class=string>&quot;5/0&quot;</span><span class=special>, </span><span class=identifier>Py_eval_input</span><span class=special>,
</span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>(), </span><span class=identifier>main_namespace</span><span class=special>.</span><span class=identifier>ptr</span><span class=special>()) ));
</span><span class=keyword>if </span><span class=special>(!</span><span class=identifier>result</span><span class=special>)
// </span><span class=identifier>Python </span><span class=identifier>exception </span><span class=identifier>occurred
</span><span class=keyword>else
</span><span class=comment>// everything went okay, it's safe to use the result
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="embedding.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="iterators.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 Dirk Gerrits<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -0,0 +1,122 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Virtual Functions with Default Implementations</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="deriving_a_python_class.html">
<link rel="next" href="class_operators_special_functions.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Virtual Functions with Default Implementations</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="deriving_a_python_class.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_operators_special_functions.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Recall that in the <a href="class_virtual_functions.html">
previous section</a>, we
wrapped a class with a pure virtual function that we then implemented in
C++ or Python classes derived from it. Our base class:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Base
</span><span class=special>{
</span><span class=keyword>virtual </span><span class=keyword>int </span><span class=identifier>f</span><span class=special>() = </span><span class=number>0</span><span class=special>;
};
</span></pre></code>
<p>
had a pure virtual function <tt>f</tt>. If, however, its member function <tt>f</tt> was
not declared as pure virtual:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>Base
</span><span class=special>{
</span><span class=keyword>virtual </span><span class=keyword>int </span><span class=identifier>f</span><span class=special>() { </span><span class=keyword>return </span><span class=number>0</span><span class=special>; }
};
</span></pre></code>
<p>
and instead had a default implementation that returns <tt>0</tt>, as shown above,
we need to add a forwarding function that calls the <tt>Base</tt> default virtual
function <tt>f</tt> implementation:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>BaseWrap </span><span class=special>: </span><span class=identifier>Base
</span><span class=special>{
</span><span class=identifier>BaseWrap</span><span class=special>(</span><span class=identifier>PyObject</span><span class=special>* </span><span class=identifier>self_</span><span class=special>)
: </span><span class=identifier>self</span><span class=special>(</span><span class=identifier>self_</span><span class=special>) {}
</span><span class=keyword>int </span><span class=identifier>f</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>call_method</span><span class=special>&lt;</span><span class=keyword>int</span><span class=special>&gt;(</span><span class=identifier>self</span><span class=special>, </span><span class=string>&quot;f&quot;</span><span class=special>); }
</span><span class=keyword>int </span><span class=identifier>default_f</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>Base</span><span class=special>::</span><span class=identifier>f</span><span class=special>(); } // &lt;&lt;=== ***</span><span class=identifier>ADDED</span><span class=special>***
</span><span class=identifier>PyObject</span><span class=special>* </span><span class=identifier>self</span><span class=special>;
};
</span></pre></code>
<p>
Then, Boost.Python needs to keep track of 1) the dispatch function <tt>f</tt> and
2) the forwarding function to its default implementation <tt>default_f</tt>.
There's a special <tt>def</tt> function for this purpose. Here's how it is
applied to our example above:</p>
<code><pre>
<span class=identifier>class_</span><span class=special>&lt;</span><span class=identifier>Base</span><span class=special>, </span><span class=identifier>BaseWrap</span><span class=special>&gt;(</span><span class=string>&quot;Base&quot;</span><span class=special>)
.</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;f&quot;</span><span class=special>, &amp;</span><span class=identifier>Base</span><span class=special>::</span><span class=identifier>f</span><span class=special>, &amp;</span><span class=identifier>BaseWrap</span><span class=special>::</span><span class=identifier>default_f</span><span class=special>)
</span></pre></code>
<p>
Note that we are allowing <tt>Base</tt> objects to be instantiated this time,
unlike before where we specifically defined the <tt>class_&lt;Base&gt;</tt> with
<tt>no_init</tt>.</p>
<p>
In Python, the results would be as expected:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>base </span><span class=special>= </span><span class=identifier>Base</span><span class=special>()
&gt;&gt;&gt; </span><span class=keyword>class </span><span class=identifier>Derived</span><span class=special>(</span><span class=identifier>Base</span><span class=special>):
... </span><span class=identifier>def </span><span class=identifier>f</span><span class=special>(</span><span class=identifier>self</span><span class=special>):
... </span><span class=keyword>return </span><span class=number>42
</span><span class=special>...
&gt;&gt;&gt; </span><span class=identifier>derived </span><span class=special>= </span><span class=identifier>Derived</span><span class=special>()
</span></pre></code>
<p>
Calling <tt>base.f()</tt>:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>base</span><span class=special>.</span><span class=identifier>f</span><span class=special>()
</span><span class=number>0
</span></pre></code>
<p>
Calling <tt>derived.f()</tt>:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>derived</span><span class=special>.</span><span class=identifier>f</span><span class=special>()
</span><span class=number>42
</span></pre></code>
<p>
Calling <tt>call_f</tt>, passing in a <tt>base</tt> object:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>call_f</span><span class=special>(</span><span class=identifier>base</span><span class=special>)
</span><span class=number>0
</span></pre></code>
<p>
Calling <tt>call_f</tt>, passing in a <tt>derived</tt> object:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>call_f</span><span class=special>(</span><span class=identifier>derived</span><span class=special>)
</span><span class=number>42
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="deriving_a_python_class.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="class_operators_special_functions.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

156
doc/tutorial/index.html Normal file
View File

@@ -0,0 +1,156 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Boost Python Tutorial</title>
<link rel="stylesheet" href="doc/theme/style.css" type="text/css">
<link rel="next" href="quickstart.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="doc/theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Boost Python Tutorial</b></font>
</td>
</tr>
</table>
<br>
<table width="80%" border="0" align="center">
<tr>
<td class="toc_title">Table of contents</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/quickstart.html">QuickStart</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/building_hello_world.html">Building Hello World</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/exposing_classes.html">Exposing Classes</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/constructors.html">Constructors</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/class_data_members.html">Class Data Members</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/class_properties.html">Class Properties</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/inheritance.html">Inheritance</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/class_virtual_functions.html">Class Virtual Functions</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/deriving_a_python_class.html">Deriving a Python Class</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/virtual_functions_with_default_implementations.html">Virtual Functions with Default Implementations</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/class_operators_special_functions.html">Class Operators/Special Functions</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/functions.html">Functions</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/call_policies.html">Call Policies</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/overloading.html">Overloading</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/default_arguments.html">Default Arguments</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/auto_overloading.html">Auto-Overloading</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/object_interface.html">Object Interface</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/basic_interface.html">Basic Interface</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/derived_object_types.html">Derived Object types</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/extracting_c___objects.html">Extracting C++ objects</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/enums.html">Enums</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/embedding.html">Embedding</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/using_the_interpreter.html">Using the interpreter</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/iterators.html">Iterators</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/exception_translation.html">Exception Translation</a>
</td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2002-2003 David Abrahams<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,61 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
A Peek Under the Hood
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center"
width="277" height="86">
</h1>
<h1>
A Peek Under the Hood
</h1>
<p>
Declaring a <code>class_builder&lt;T&gt;</code> causes the instantiation
of an <code>extension_class&lt;T&gt;</code> to which it forwards all
member function calls and which is doing most of the real work.
<code>extension_class&lt;T&gt;</code> is a subclass of <code>
PyTypeObject</code>, the <code> struct</code> which Python's 'C' API uses
to describe a type. <a href="example1.html#world_class">An instance of the
<code>extension_class&lt;&gt;</code></a> becomes the Python type object
corresponding to <code>hello::world</code>. When we <a href=
"example1.html#add_world_class">add it to the module</a> it goes into the
module's dictionary to be looked up under the name "world".
<p>
Boost.Python uses C++'s template argument deduction mechanism to determine the
types of arguments to functions (except constructors, for which we must
<a href="example1.html#Constructor_example">provide an argument list</a>
because they can't be named in C++). Then, it calls the appropriate
overloaded functions <code>PyObject*
to_python(</code><em>S</em><code>)</code> and <em>
S'</em><code>from_python(PyObject*,
type&lt;</code><em>S</em><code>&gt;)</code> which convert between any C++
type <em>S</em> and a <code>PyObject*</code>, the type which represents a
reference to any Python object in its 'C' API. The <a href=
"example1.html#world_class"><code>extension_class&lt;T&gt;</code></a>
template defines a whole raft of these conversions (for <code>T, T*,
T&amp;, std::auto_ptr&lt;T&gt;</code>, etc.), using the same inline
friend function technique employed by <a href="../../utility/operators.htm">the boost operators
library</a>.
<p>
Because the <code>to_python</code> and <code>from_python</code> functions
for a user-defined class are defined by <code>
extension_class&lt;T&gt;</code>, it is important that an instantiation of
<code> extension_class&lt;T&gt;</code> is visible to any code which wraps
a C++ function with a <code>T, T*, const T&amp;</code>, etc. parameter or
return value. In particular, you may want to create all of the classes at
the top of your module's init function, then <code>def</code> the member
functions later to avoid problems with inter-class dependencies.
<p>
Next: <a href="building.html">Building a Module with Boost.Python</a>
Previous: <a href="special.html">Special Method and Operator Support</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Nov 26, 2000

163
doc/v2/Apr2002.html Normal file
View File

@@ -0,0 +1,163 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../boost.css">
<title>Boost.Python - April 2002 Progress Report</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="../index.html">Boost.Python</a></h1>
<h2 align="center">April 2002 Progress Report</h2>
</td>
</tr>
</table>
<hr>
<h2>Contents</h2>
<dl class="index">
<dt><a href="#accomplishments">Accomplishments</a></dt>
<dl class="index">
<dt><a href="#arity">Arbitrary Arity Support</a></dt>
<dt><a href="#callbacks">New Callback Interface</a></dt>
<dt><a href="#policies">Call Policies for Construtors</a></dt>
<dt><a href="#bugs">Real Users, Real Bugs</a></dt>
<dt><a href="#insights">New Insights</a></dt>
<dt><a href="#v1">Boost.Python V1 Maintenance</a></dt>
</dl>
<dt><a href="#missing">What's Missing</a></dt>
</dl>
<h2><a name="accomplishments">Accomplishments</a></h2>
April was a short month as far as Boost.Python was concerned, since
the spring ISO C++ Committee Meeting (and associated vacation)
occupied me for the 2nd half of the month. However, a suprising amount
of work got done...
<h3><a name="arity">Arbitrary Arity Support</a></h3>
I began using the <a
href="../../../preprocessor/doc/index.htm">Boost.Preprocessor</a>
metaprogramming library to generate support for functions and member
functions of arbitrary arity, which was, to say the least, quite an
adventure. The feedback cycle resulting from my foray into
Boost.Preprocessor resulted in several improvements to the library,
most notably in its documentation.
<p>
Boost.Python now supports calls of up to 17 arguments on most
compilers. Because most EDG-based compilers have dismal preprocessor
performance, I had to &quot;manually&quot; expand the metaprograms for
arities from zero to fifteen arguments, and EDG-based compilers with
<code>__EDG_VERSION__&nbsp;&lt;=&nbsp;245</code> only support 15
arguments by default. If some crazy program finds a need for more than
the default arity support, users can increase the base support by
setting the <code>BOOST_PYTHON_MAX_ARITY</code> preprocessor symbol.
<h3><a name="callbacks">New Callback Interface</a></h3>
I mentioned in <a href="Mar2002.html">last month's report</a> that I
wasn't pleased with the interface for the interface for calling into
Python, so now it has been redesigned. The new interface is outlined
in <a
href="http://mail.python.org/pipermail/c++-sig/2002-April/000953.html">this
message</a> (though the GCC 2.95.3 bugs have been fixed).
<h3><a name="policies">Call Policies for Constructors</a></h3>
On April 2nd, I <a
href="http://mail.python.org/pipermail/c++-sig/2002-April/000916.html">announced</a>
support for the use of call policies with constructors.
<h3><a name="bugs">Real Users, Real Bugs</a></h3>
At least two people outside of Kull began actually using Boost.Python
v2 in earnest this month. Peter Bienstman and Pearu Pearson both
provided valuable real-world bug reports that helped me to improve the
library's robustness.
<h3><a name="insights">New Insights</a></h3>
<a
href="http://mail.python.org/pipermail/c++-sig/2002-May/001010.html"
>Answering some of Pearu's questions</a> about explicitly converting
objects between Python and C++ actually led me to a new understanding
of the role of the current conversion facilities. In Boost.Python v1,
all conversions between Python and C++ were handled by a single family
of functions, called <code>to_python()</code> and
<code>from_python()</code>. Since the primary role of Boost.Python is
to wrap C++ functions in Python, I used these names for the first kind
of converters I needed: those that extract C++ objects to be used as
function arguments and which C++ function return values to
Python. The better-considered approach in Boost.Python v2 uses a
completely different mechanism for conversions used when calling
Python from C++, as in wrapped virtual function implementations. I
usually think of this as a &quot;callback&quot;, as in &quot;calling
back into Python&quot;, and I named the converters used in callbacks
accordingly: <code>to_python_callback</code> and
<code>from_python_callback</code>. However, as it turns out, the
behavior of the &quot;callback&quot; converters is the appropriate one
for users who want to explicitly extract a C++ value from a Python
object, or create a Python object from a C++ value. The upshot is that
it probably makes sense to change the name of the existing <code>to_python</code> and
<code>from_python</code> so those names are available for the
user-friendly explicit converters.
<p>
<a
href="http://mail.python.org/pipermail/c++-sig/2002-May/001013.html">Another
of Pearu's questions</a> pushes momentum further in the direction of a
more-sophisticated overloading mechanism than the current
simple-minded &quot;first match&quot; approach, as I suggested <a
href="Mar2002.html#implicit_conversions">last month</a>.
<h3><a name="v1">Boost.Python V1 Maintenance</a></h3>
As much as I'm looking forward to retiring Boost.Python v1, a
significant amount of effort has been being spent dealing with support
problems; the saying that code rots when left alone is true, and
Boost.Python is no exception. Eventually it became obvious to me that
we were going to have to invest some effort in keeping V1 healthy
while working on V2. Ralf and I have expanded support for various
compilers and stabilized the V1 codebase considerably. We discarded
the obsolete Visual Studio projects which were causing so much
confusion. Still to do before the next Boost release:
<ol>
<li>Update the build/test documentation with detailed instructions for
configuring various toolsets.
<li>Provide some links to Boost.Python v2 to let people know what's
coming.
</ol>
<h2><a name="missing">What's Missing</a></h2>
Last month I announced that I would implement the following which are
not yet complete:
<ol>
<li>Document all implemented features
<li>Implement conversions for <code>char</code> types. This is
implemented but not tested, so we have to assume it doesn't work.
</ol>
These are my first priority for this month (especially the
documentation).
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
13 November, 2002
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href="../../../../people/dave_abrahams.htm">Dave Abrahams</a>
2002. All Rights Reserved.</i></p>
</body>
</html>

153
doc/v2/CallPolicies.html Normal file
View File

@@ -0,0 +1,153 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href=../../../../boost.css>
<title>Boost.Python - CallPolicies Concept</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../../index.htm"><img height="86" width="277"
alt="C++ Boost" src="../../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="../index.html">Boost.Python</a></h1>
<h2 align="center">CallPolicies Concept</h2>
</td>
</tr>
</table>
<hr>
<dl class="page-index">
<dt><a href="#introduction">Introduction</a></dt>
<dt><a href="#composition">CallPolicies Composition</a></dt>
<dt><a href="#concept-requirements">Concept Requirements</a></dt>
<dd>
<dl class="page-index">
<dt><a href="#CallPolicies-concept">CallPolicies Concept</a></dt>
</dl>
</dd>
</dl>
<h2><a name="introduction"></a>Introduction</h2>
<p>Models of the CallPolicies concept are used to specialize the behavior
of Python callable objects generated by Boost.Python to wrapped C++
objects like function and member function pointers, providing three
behaviors:</p>
<ol>
<li><code>precall</code> - Python argument tuple management before the
wrapped object is invoked</li>
<li><code>result_converter</code> - C++ return value handling</li>
<li><code>postcall</code> - Python argument tuple and result management
after the wrapped object is invoked</li>
</ol>
<h2><a name="composition"></a>CallPolicies Composition</h2>
In order to allow the use of multiple models of CallPolicies in the same
callable object, Boost.Python's CallPolicies class templates provide a
chaining interface which allows them to be recursively composed. This
interface takes the form of an optional template parameter,
<code>Base</code> which defaults to <a href=
"default_call_policies.html#default_call_policies-spec"><code>default_call_policies</code></a>.
By convention, the <code>precall</code> function of the <code>Base</code>
is invoked <i>after</i> the <code>precall</code> function supplied by the
outer template, and the <code>postcall</code> function of the
<code>Base</code> is invoked <i>before</i> the <code>postcall</code>
function of the outer template. If a <code>result_converter</code> is
supplied by the outer template, it <i>replaces</i> any
<code>result_converter</code> supplied by the <code>Base</code>. For an
example, see <a href=
"return_internal_reference.html#return_internal_reference-spec"><code>return_internal_reference</code></a>.
<h2><a name="concept-requirements"></a>Concept Requirements</h2>
<h3><a name="CallPolicies-concept"></a>CallPolicies Concept</h3>
<p>In the table below, <code><b>x</b></code> denotes an object whose type
<code><b>P</b></code> is a model of CallPolicies, <code><b>a</b></code>
denotes a <code>PyObject*</code> pointing to a Python argument tuple
object, and <code><b>r</b></code> denotes a <code>PyObject*</code>
referring to a "preliminary" result object.</p>
<table summary="CallPolicies expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Type</b></td>
<td><b>Result/Semantics</b></td>
</tr>
<tr>
<td valign="top"><code>x.precall(a)</code></td>
<td>convertible to <code>bool</code></td>
<td>returns <code>false</code> and <code><a href=
"http://www.python.org/doc/2.2/api/exceptionHandling.html#l2h-71">PyErr_Occurred</a>()&nbsp;!=&nbsp;0</code>
upon failure, <code>true</code> otherwise.</td>
</tr>
<tr>
<td valign="top"><code>P::result_converter</code></td>
<td>A model of <a href=
"ResultConverter.html#ResultConverterGenerator-concept">ResultConverterGenerator</a>.</td>
<td>An MPL unary <a href=
"../../../mpl/doc/paper/html/usage.html#metafunctions.classes">Metafunction
Class</a> used produce the "preliminary" result object.</td>
</tr>
<tr>
<td valign="top"><code>x.postcall(a, r)</code></td>
<td>convertible to <code>PyObject*</code></td>
<td>0 <code>0</code> and <code><a href=
"http://www.python.org/doc/2.2/api/exceptionHandling.html#l2h-71">PyErr_Occurred</a>()&nbsp;!=&nbsp;0</code>
upon failure. Must "conserve references" even in the event of an
exception. In other words, if <code>r</code> is not returned, its
reference count must be decremented; if another existing object is
returned, its reference count must be incremented.</td>
</tr>
</table>
Models of CallPolicies are required to be <a href=
"../../../utility/CopyConstructible.html">CopyConstructible</a>.
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
13 November, 2002
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href=
"../../../../people/dave_abrahams.htm">Dave Abrahams</a> 2002. All Rights
Reserved.</i></p>
<p>Permission to copy, use, modify, sell and distribute this software is
granted provided this copyright notice appears in all copies. This
software is provided "as is" without express or implied warranty, and
with no claim as to its suitability for any purpose.</p>
</body>
</html>

View File

@@ -0,0 +1,81 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href=../../../../boost.css>
<title>Boost.Python - Dereferenceable Concept</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../../index.htm"><img height="86" width="277" alt="C++ Boost" src="../../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="../index.html">Boost.Python</a></h1>
<h2 align="center">Dereferenceable Concept</h2>
</td>
</tr>
</table>
<hr>
<dl class="page-index">
<dt><a href="#introduction">Introduction</a></dt>
<dt><a href="#concept-requirements">Concept Requirements</a></dt>
<dl class="page-index">
<dt><a href="#Dereferenceable-concept">Dereferenceable Concept</a></dt>
</dl>
</dl>
<h2><a name="introduction"></a>Introduction</h2>
<p>Instances of a dereferenceable type can be used like a pointer to access an lvalue.
<h2><a name="concept-requirements"></a>Concept Requirements</h2>
<h3><a name="Dereferenceable-concept"></a>Dereferenceable Concept</h3>
<p>In the table below, <code><b>x</b></code> denotes an object whose
type is a model of Dereferenceable.
<table summary="Dereferenceable expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Requirements</b></td>
</tr>
<tr>
<td valign="top"><code>*x</code></td>
<td>An lvalue
</tr>
</table>
If <code><b>x</b></code> is not a pointer type, it also must satsify the following expression:
<table summary="Dereferenceable expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Operational Semantics</b></td>
</tr>
<tr>
<td valign="top"><code>x.get()</code></td>
<td><code>&amp;*x</code>, or a null pointer
</tr>
</table>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
29 November, 2002
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href="../../../../people/dave_abrahams.htm">Dave
Abrahams</a> 2002. All Rights Reserved.</i>
<p>Permission to copy, use, modify, sell
and distribute this software is granted provided this copyright notice appears
in all copies. This software is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.
</body>
</html>

Some files were not shown because too many files have changed in this diff Show More