2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-14 01:02:16 +00:00

tab to space again!

svn path=/trunk/boost/boost/numeric/ublas/; revision=23828
This commit is contained in:
Michael Stevens
2004-07-20 09:18:07 +00:00
parent 5e3502309b
commit 2f11a2435d

View File

@@ -193,29 +193,29 @@ namespace boost { namespace numeric { namespace ublas {
/** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an
optimized fashion.
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the vector expression \c x
\param v the result vector \c v
\param init a boolean parameter
\param e1 the matrix expression \c A
\param e2 the vector expression \c x
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(A, x, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
<tt>axpy_prod(A, x, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a matrix expression \c A
\param E2 type of a vector expression \c x
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a matrix expression \c A
\param E2 type of a vector expression \c x
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
@@ -419,29 +419,29 @@ namespace boost { namespace numeric { namespace ublas {
/** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
optimized fashion.
optimized fashion.
\param e1 the vector expression \c x
\param e2 the matrix expression \c A
\param v the result vector \c v
\param init a boolean parameter
\param e1 the vector expression \c x
\param e2 the matrix expression \c A
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(x, A, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
<tt>axpy_prod(x, A, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a vector expression \c x
\param E2 type of a matrix expression \c A
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a vector expression \c x
\param E2 type of a matrix expression \c A
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
@@ -493,7 +493,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm ( m ) ;
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
@@ -523,7 +523,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef F functor_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm ( m ) ;
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
@@ -572,7 +572,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm ( m ) ;
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
@@ -602,7 +602,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef F functor_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm ( m ) ;
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
@@ -669,28 +669,28 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
optimized fashion.
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
<tt>axpy_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
<tt>axpy_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are no specialisations.
\ingroup blas3
Up to now there are no specialisations.
\ingroup blas3
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
*/
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
@@ -733,7 +733,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm ( m ) ;
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
@@ -764,7 +764,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm ( m ) ;
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
@@ -813,30 +813,30 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
optimized fashion.
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
<tt>opb_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
<tt>opb_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
This function may give a speedup if \c A has less columns than
rows, because the product is computed as a sum of outer
products.
\ingroup blas3
This function may give a speedup if \c A has less columns than
rows, because the product is computed as a sum of outer
products.
\ingroup blas3
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
*/
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE