diff --git a/include/boost/numeric/ublas/operation.hpp b/include/boost/numeric/ublas/operation.hpp index 2aa10970..38ca2895 100644 --- a/include/boost/numeric/ublas/operation.hpp +++ b/include/boost/numeric/ublas/operation.hpp @@ -193,29 +193,29 @@ namespace boost { namespace numeric { namespace ublas { /** \brief computes v += A x or v = A x in an - optimized fashion. + optimized fashion. - \param e1 the matrix expression \c A - \param e2 the vector expression \c x - \param v the result vector \c v - \param init a boolean parameter + \param e1 the matrix expression \c A + \param e2 the vector expression \c x + \param v the result vector \c v + \param init a boolean parameter - axpy_prod(A, x, v, init) implements the well known - axpy-product. Setting \a init to \c true is equivalent to call - v.clear() before axpy_prod. Currently \a init - defaults to \c true, but this may change in the future. + axpy_prod(A, x, v, init) implements the well known + axpy-product. Setting \a init to \c true is equivalent to call + v.clear() before axpy_prod. Currently \a init + defaults to \c true, but this may change in the future. - Up to now there are some specialisation for compressed - matrices that give a large speed up compared to prod. - - \ingroup blas2 + Up to now there are some specialisation for compressed + matrices that give a large speed up compared to prod. + + \ingroup blas2 - \internal - - template parameters: - \param V type of the result vector \c v - \param E1 type of a matrix expression \c A - \param E2 type of a vector expression \c x + \internal + + template parameters: + \param V type of the result vector \c v + \param E1 type of a matrix expression \c A + \param E2 type of a vector expression \c x */ template BOOST_UBLAS_INLINE @@ -419,29 +419,29 @@ namespace boost { namespace numeric { namespace ublas { /** \brief computes v += AT x or v = AT x in an - optimized fashion. + optimized fashion. - \param e1 the vector expression \c x - \param e2 the matrix expression \c A - \param v the result vector \c v - \param init a boolean parameter + \param e1 the vector expression \c x + \param e2 the matrix expression \c A + \param v the result vector \c v + \param init a boolean parameter - axpy_prod(x, A, v, init) implements the well known - axpy-product. Setting \a init to \c true is equivalent to call - v.clear() before axpy_prod. Currently \a init - defaults to \c true, but this may change in the future. + axpy_prod(x, A, v, init) implements the well known + axpy-product. Setting \a init to \c true is equivalent to call + v.clear() before axpy_prod. Currently \a init + defaults to \c true, but this may change in the future. - Up to now there are some specialisation for compressed - matrices that give a large speed up compared to prod. - - \ingroup blas2 + Up to now there are some specialisation for compressed + matrices that give a large speed up compared to prod. + + \ingroup blas2 - \internal - - template parameters: - \param V type of the result vector \c v - \param E1 type of a vector expression \c x - \param E2 type of a matrix expression \c A + \internal + + template parameters: + \param V type of the result vector \c v + \param E1 type of a vector expression \c x + \param E2 type of a matrix expression \c A */ template BOOST_UBLAS_INLINE @@ -493,7 +493,7 @@ namespace boost { namespace numeric { namespace ublas { typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK - matrix cm ( m ) ; + matrix cm (m); typedef typename type_traits::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), row_major_tag ()); @@ -523,7 +523,7 @@ namespace boost { namespace numeric { namespace ublas { typedef F functor_type; #if BOOST_UBLAS_TYPE_CHECK - matrix cm ( m ) ; + matrix cm (m); typedef typename type_traits::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), row_major_tag ()); @@ -572,7 +572,7 @@ namespace boost { namespace numeric { namespace ublas { typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK - matrix cm ( m ) ; + matrix cm (m); typedef typename type_traits::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), column_major_tag ()); @@ -602,7 +602,7 @@ namespace boost { namespace numeric { namespace ublas { typedef F functor_type; #if BOOST_UBLAS_TYPE_CHECK - matrix cm ( m ) ; + matrix cm (m); typedef typename type_traits::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), column_major_tag ()); @@ -669,28 +669,28 @@ namespace boost { namespace numeric { namespace ublas { } /** \brief computes M += A X or M = A X in an - optimized fashion. + optimized fashion. - \param e1 the matrix expression \c A - \param e2 the matrix expression \c X - \param m the result matrix \c M - \param init a boolean parameter + \param e1 the matrix expression \c A + \param e2 the matrix expression \c X + \param m the result matrix \c M + \param init a boolean parameter - axpy_prod(A, X, M, init) implements the well known - axpy-product. Setting \a init to \c true is equivalent to call - M.clear() before axpy_prod. Currently \a init - defaults to \c true, but this may change in the future. + axpy_prod(A, X, M, init) implements the well known + axpy-product. Setting \a init to \c true is equivalent to call + M.clear() before axpy_prod. Currently \a init + defaults to \c true, but this may change in the future. - Up to now there are no specialisations. - - \ingroup blas3 + Up to now there are no specialisations. + + \ingroup blas3 - \internal - - template parameters: - \param M type of the result matrix \c M - \param E1 type of a matrix expression \c A - \param E2 type of a matrix expression \c X + \internal + + template parameters: + \param M type of the result matrix \c M + \param E1 type of a matrix expression \c A + \param E2 type of a matrix expression \c X */ template BOOST_UBLAS_INLINE @@ -733,7 +733,7 @@ namespace boost { namespace numeric { namespace ublas { typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK - matrix cm ( m ) ; + matrix cm (m); typedef typename type_traits::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), row_major_tag ()); @@ -764,7 +764,7 @@ namespace boost { namespace numeric { namespace ublas { typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK - matrix cm ( m ) ; + matrix cm (m); typedef typename type_traits::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), column_major_tag ()); @@ -813,30 +813,30 @@ namespace boost { namespace numeric { namespace ublas { } /** \brief computes M += A X or M = A X in an - optimized fashion. + optimized fashion. - \param e1 the matrix expression \c A - \param e2 the matrix expression \c X - \param m the result matrix \c M - \param init a boolean parameter + \param e1 the matrix expression \c A + \param e2 the matrix expression \c X + \param m the result matrix \c M + \param init a boolean parameter - opb_prod(A, X, M, init) implements the well known - axpy-product. Setting \a init to \c true is equivalent to call - M.clear() before opb_prod. Currently \a init - defaults to \c true, but this may change in the future. + opb_prod(A, X, M, init) implements the well known + axpy-product. Setting \a init to \c true is equivalent to call + M.clear() before opb_prod. Currently \a init + defaults to \c true, but this may change in the future. - This function may give a speedup if \c A has less columns than - rows, because the product is computed as a sum of outer - products. - - \ingroup blas3 + This function may give a speedup if \c A has less columns than + rows, because the product is computed as a sum of outer + products. + + \ingroup blas3 - \internal - - template parameters: - \param M type of the result matrix \c M - \param E1 type of a matrix expression \c A - \param E2 type of a matrix expression \c X + \internal + + template parameters: + \param M type of the result matrix \c M + \param E1 type of a matrix expression \c A + \param E2 type of a matrix expression \c X */ template BOOST_UBLAS_INLINE