diff --git a/include/boost/numeric/ublas/operation.hpp b/include/boost/numeric/ublas/operation.hpp
index 2aa10970..38ca2895 100644
--- a/include/boost/numeric/ublas/operation.hpp
+++ b/include/boost/numeric/ublas/operation.hpp
@@ -193,29 +193,29 @@ namespace boost { namespace numeric { namespace ublas {
/** \brief computes v += A x or v = A x in an
- optimized fashion.
+ optimized fashion.
- \param e1 the matrix expression \c A
- \param e2 the vector expression \c x
- \param v the result vector \c v
- \param init a boolean parameter
+ \param e1 the matrix expression \c A
+ \param e2 the vector expression \c x
+ \param v the result vector \c v
+ \param init a boolean parameter
- axpy_prod(A, x, v, init) implements the well known
- axpy-product. Setting \a init to \c true is equivalent to call
- v.clear() before axpy_prod. Currently \a init
- defaults to \c true, but this may change in the future.
+ axpy_prod(A, x, v, init) implements the well known
+ axpy-product. Setting \a init to \c true is equivalent to call
+ v.clear() before axpy_prod. Currently \a init
+ defaults to \c true, but this may change in the future.
- Up to now there are some specialisation for compressed
- matrices that give a large speed up compared to prod.
-
- \ingroup blas2
+ Up to now there are some specialisation for compressed
+ matrices that give a large speed up compared to prod.
+
+ \ingroup blas2
- \internal
-
- template parameters:
- \param V type of the result vector \c v
- \param E1 type of a matrix expression \c A
- \param E2 type of a vector expression \c x
+ \internal
+
+ template parameters:
+ \param V type of the result vector \c v
+ \param E1 type of a matrix expression \c A
+ \param E2 type of a vector expression \c x
*/
template
BOOST_UBLAS_INLINE
@@ -419,29 +419,29 @@ namespace boost { namespace numeric { namespace ublas {
/** \brief computes v += AT x or v = AT x in an
- optimized fashion.
+ optimized fashion.
- \param e1 the vector expression \c x
- \param e2 the matrix expression \c A
- \param v the result vector \c v
- \param init a boolean parameter
+ \param e1 the vector expression \c x
+ \param e2 the matrix expression \c A
+ \param v the result vector \c v
+ \param init a boolean parameter
- axpy_prod(x, A, v, init) implements the well known
- axpy-product. Setting \a init to \c true is equivalent to call
- v.clear() before axpy_prod. Currently \a init
- defaults to \c true, but this may change in the future.
+ axpy_prod(x, A, v, init) implements the well known
+ axpy-product. Setting \a init to \c true is equivalent to call
+ v.clear() before axpy_prod. Currently \a init
+ defaults to \c true, but this may change in the future.
- Up to now there are some specialisation for compressed
- matrices that give a large speed up compared to prod.
-
- \ingroup blas2
+ Up to now there are some specialisation for compressed
+ matrices that give a large speed up compared to prod.
+
+ \ingroup blas2
- \internal
-
- template parameters:
- \param V type of the result vector \c v
- \param E1 type of a vector expression \c x
- \param E2 type of a matrix expression \c A
+ \internal
+
+ template parameters:
+ \param V type of the result vector \c v
+ \param E1 type of a vector expression \c x
+ \param E2 type of a matrix expression \c A
*/
template
BOOST_UBLAS_INLINE
@@ -493,7 +493,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
- matrix cm ( m ) ;
+ matrix cm (m);
typedef typename type_traits::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
@@ -523,7 +523,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef F functor_type;
#if BOOST_UBLAS_TYPE_CHECK
- matrix cm ( m ) ;
+ matrix cm (m);
typedef typename type_traits::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
@@ -572,7 +572,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
- matrix cm ( m ) ;
+ matrix cm (m);
typedef typename type_traits::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
@@ -602,7 +602,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef F functor_type;
#if BOOST_UBLAS_TYPE_CHECK
- matrix cm ( m ) ;
+ matrix cm (m);
typedef typename type_traits::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
@@ -669,28 +669,28 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief computes M += A X or M = A X in an
- optimized fashion.
+ optimized fashion.
- \param e1 the matrix expression \c A
- \param e2 the matrix expression \c X
- \param m the result matrix \c M
- \param init a boolean parameter
+ \param e1 the matrix expression \c A
+ \param e2 the matrix expression \c X
+ \param m the result matrix \c M
+ \param init a boolean parameter
- axpy_prod(A, X, M, init) implements the well known
- axpy-product. Setting \a init to \c true is equivalent to call
- M.clear() before axpy_prod. Currently \a init
- defaults to \c true, but this may change in the future.
+ axpy_prod(A, X, M, init) implements the well known
+ axpy-product. Setting \a init to \c true is equivalent to call
+ M.clear() before axpy_prod. Currently \a init
+ defaults to \c true, but this may change in the future.
- Up to now there are no specialisations.
-
- \ingroup blas3
+ Up to now there are no specialisations.
+
+ \ingroup blas3
- \internal
-
- template parameters:
- \param M type of the result matrix \c M
- \param E1 type of a matrix expression \c A
- \param E2 type of a matrix expression \c X
+ \internal
+
+ template parameters:
+ \param M type of the result matrix \c M
+ \param E1 type of a matrix expression \c A
+ \param E2 type of a matrix expression \c X
*/
template
BOOST_UBLAS_INLINE
@@ -733,7 +733,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
- matrix cm ( m ) ;
+ matrix cm (m);
typedef typename type_traits::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
@@ -764,7 +764,7 @@ namespace boost { namespace numeric { namespace ublas {
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
- matrix cm ( m ) ;
+ matrix cm (m);
typedef typename type_traits::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign (scalar_plus_assign::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
@@ -813,30 +813,30 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief computes M += A X or M = A X in an
- optimized fashion.
+ optimized fashion.
- \param e1 the matrix expression \c A
- \param e2 the matrix expression \c X
- \param m the result matrix \c M
- \param init a boolean parameter
+ \param e1 the matrix expression \c A
+ \param e2 the matrix expression \c X
+ \param m the result matrix \c M
+ \param init a boolean parameter
- opb_prod(A, X, M, init) implements the well known
- axpy-product. Setting \a init to \c true is equivalent to call
- M.clear() before opb_prod. Currently \a init
- defaults to \c true, but this may change in the future.
+ opb_prod(A, X, M, init) implements the well known
+ axpy-product. Setting \a init to \c true is equivalent to call
+ M.clear() before opb_prod. Currently \a init
+ defaults to \c true, but this may change in the future.
- This function may give a speedup if \c A has less columns than
- rows, because the product is computed as a sum of outer
- products.
-
- \ingroup blas3
+ This function may give a speedup if \c A has less columns than
+ rows, because the product is computed as a sum of outer
+ products.
+
+ \ingroup blas3
- \internal
-
- template parameters:
- \param M type of the result matrix \c M
- \param E1 type of a matrix expression \c A
- \param E2 type of a matrix expression \c X
+ \internal
+
+ template parameters:
+ \param M type of the result matrix \c M
+ \param E1 type of a matrix expression \c A
+ \param E2 type of a matrix expression \c X
*/
template
BOOST_UBLAS_INLINE