2
0
mirror of https://github.com/boostorg/thread.git synced 2026-02-06 10:32:14 +00:00

Compare commits

..

3 Commits

Author SHA1 Message Date
Daniel James
83d2bb6716 Merge from trunk.
[SVN r40260]
2007-10-21 07:28:23 +00:00
Daniel James
b937d909e9 Merge with the offending files removed.
[SVN r39995]
2007-10-13 23:18:35 +00:00
Daniel James
94d9b1b288 Create a development branch for the hash library.
[SVN r38869]
2007-08-23 19:28:19 +00:00
100 changed files with 1545 additions and 16036 deletions

View File

@@ -1,208 +1,39 @@
# $Id$
# Copyright 2006-2007 Roland Schwarz.
# Copyright 2007 Anthony Williams
# Distributed under the Boost Software License, Version 1.0. (See
# accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
#########################################################################
# The boost threading library can be built on top of different API's
# Currently this is the win32 API and the pthreads API.
# Pthread is native on unix variants.
# To get pthread on windows you need the pthread win32 library
# http://sourceware.org/pthreads-win32 which is available under LGPL.
#
# You need to provide the include path and lib path in the variables
# PTW32_INCLUDE and PTW32_LIB respectively. You can specify these
# paths in site-config.jam, user-config.jam or in the environment.
# A new feature is provided to request a specific API:
# <threadapi>win32 and <threadapi)pthread.
#
# The naming of the resulting libraries is mostly the same for the
# variant native to the build platform, i.e.
# boost_thread and the boost specific tagging.
# For the library variant that is not native on the build platform
# an additional tag is applied:
# boost_thread_pthread for the pthread variant on windows, and
# boost_thread_win32 for the win32 variant (likely when built on cygwin).
#
# To request the pthread variant on windows, from boost root you would
# say e.g:
# bjam msvc-8.0 --with-thread install threadapi=pthread
#########################################################################
# (C) Copyright Vladimir Prus, David Abrahams, Michael Stevens, Hartmut Kaiser,
# William E Kempf 2002-2006
# Use, modification and distribution are subject to the
# Boost Software License, Version 1.0. (See accompanying file
# LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
import os ;
import feature ;
import indirect ;
import path ;
project boost/thread
: source-location ../src
: requirements <threading>multi
<link>static:<define>BOOST_THREAD_BUILD_LIB=1
<link>shared:<define>BOOST_THREAD_BUILD_DLL=1
-<tag>@$(BOOST_JAMROOT_MODULE)%$(BOOST_JAMROOT_MODULE).tag
<tag>@$(__name__).tag
: source-location ../src
: requirements <link>shared:<define>BOOST_THREAD_BUILD_DLL=1 <threading>multi
: default-build <threading>multi
;
local rule default_threadapi ( )
{
local api = pthread ;
if [ os.name ] = "NT" { api = win32 ; }
return $(api) ;
}
feature.feature threadapi : pthread win32 : propagated ;
feature.set-default threadapi : [ default_threadapi ] ;
rule tag ( name : type ? : property-set )
{
local result = $(name) ;
if $(type) in STATIC_LIB SHARED_LIB IMPORT_LIB
{
local api = [ $(property-set).get <threadapi> ] ;
# non native api gets additional tag
if $(api) != [ default_threadapi ] {
result = $(result)_$(api) ;
}
}
# forward to the boost tagging rule
return [ indirect.call $(BOOST_JAMROOT_MODULE)%$(BOOST_JAMROOT_MODULE).tag
$(result) : $(type) : $(property-set) ] ;
}
rule win32_pthread_paths ( properties * )
{
local result ;
local PTW32_INCLUDE ;
local PTW32_LIB ;
PTW32_INCLUDE = [ modules.peek : PTW32_INCLUDE ] ;
PTW32_LIB = [ modules.peek : PTW32_LIB ] ;
PTW32_INCLUDE ?= [ modules.peek user-config : PTW32_INCLUDE ] ;
PTW32_LIB ?= [ modules.peek user-config : PTW32_LIB ] ;
PTW32_INCLUDE ?= [ modules.peek site-config : PTW32_INCLUDE ] ;
PTW32_LIB ?= [ modules.peek site-config : PTW32_LIB ] ;
if ! ( $(PTW32_INCLUDE) && $(PTW32_LIB) )
{
if ! $(.notified)
{
echo "************************************************************" ;
echo "Trying to build Boost.Thread with pthread support." ;
echo "If you need pthread you should specify the paths." ;
echo "You can specify them in site-config.jam, user-config.jam" ;
echo "or in the environment." ;
echo "For example:" ;
echo "PTW32_INCLUDE=C:\\Program Files\\ptw32\\Pre-built2\\include" ;
echo "PTW32_LIB=C:\\Program Files\\ptw32\\Pre-built2\\lib" ;
echo "************************************************************" ;
.notified = true ;
}
}
else
{
local include_path = [ path.make $(PTW32_INCLUDE) ] ;
local lib_path = [ path.make $(PTW32_LIB) ] ;
local libname = pthread ;
if <toolset>msvc in $(properties)
{
libname = $(libname)VC2.lib ;
}
if <toolset>gcc in $(properties)
{
libname = lib$(libname)GC2.a ;
}
lib_path = [ path.glob $(lib_path) : $(libname) ] ;
if ! $(lib_path)
{
if ! $(.notified)
{
echo "************************************************************" ;
echo "Trying to build Boost.Thread with pthread support." ;
echo "But the library" $(libname) "could not be found in path" ;
echo $(PTW32_LIB) ;
echo "************************************************************" ;
.notified = true ;
}
}
else
{
result += <include>$(include_path) ;
result += <library>$(lib_path) ;
}
}
return $(result) ;
}
rule usage-requirements ( properties * )
{
local result ;
if <threadapi>pthread in $(properties)
{
result += <define>BOOST_THREAD_POSIX ;
if <target-os>windows in $(properties)
{
result += [ win32_pthread_paths $(properties) ] ;
# TODO: What is for static linking? Is the <library> also needed
# in that case?
}
}
return $(result) ;
}
rule requirements ( properties * )
{
local result ;
if <threadapi>pthread in $(properties)
{
result += <define>BOOST_THREAD_POSIX ;
if <target-os>windows in $(properties)
{
local paths = [ win32_pthread_paths $(properties) ] ;
if $(paths)
{
result += $(paths) ;
}
else
{
result = <build>no ;
}
}
}
return $(result) ;
}
alias thread_sources
: ## win32 sources ##
win32/thread.cpp
win32/exceptions.cpp
win32/tss_dll.cpp
win32/tss_pe.cpp
: ## requirements ##
<threadapi>win32
CPP_SOURCES =
# barrier
# condition
exceptions
# mutex
# once
# recursive_mutex
# read_write_mutex
thread
tss_hooks
tss_dll
tss_pe
tss
xtime
;
alias thread_sources
: ## pthread sources ##
pthread/thread.cpp
pthread/exceptions.cpp
pthread/once.cpp
: ## requirements ##
<threadapi>pthread
;
explicit thread_sources ;
lib boost_thread
: thread_sources
: <conditional>@requirements
:
: <link>shared:<define>BOOST_THREAD_USE_DLL=1
<link>static:<define>BOOST_THREAD_USE_LIB=1
<conditional>@usage-requirements
;
: $(CPP_SOURCES).cpp
: <link>shared:<define>BOOST_THREAD_BUILD_DLL=1
<link>static:<define>BOOST_THREAD_BUILD_LIB=1
: # default build
: <link>shared:<define>BOOST_THREAD_BUILD_DLL=1
<link>static:<define>BOOST_THREAD_BUILD_LIB=1
;

View File

@@ -1,55 +1,11 @@
# (C) Copyright 2008 Anthony Williams
# Copyright (C) 2001-2003
# William E. Kempf
#
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
path-constant boost-images : ../../../doc/src/images ;
import toolset ;
toolset.using doxygen ;
xml thread : thread.qbk ;
boostbook standalone
:
thread
:
# HTML options first:
# Use graphics not text for navigation:
<xsl:param>navig.graphics=1
# How far down we chunk nested sections, basically all of them:
<xsl:param>chunk.section.depth=3
# Don't put the first section on the same page as the TOC:
<xsl:param>chunk.first.sections=1
# How far down sections get TOC's
<xsl:param>toc.section.depth=10
# Max depth in each TOC:
<xsl:param>toc.max.depth=3
# How far down we go with TOC's
<xsl:param>generate.section.toc.level=10
# Path for links to Boost:
<xsl:param>boost.root=../../../..
# Path for libraries index:
<xsl:param>boost.libraries=../../../../libs/libraries.htm
# Use the main Boost stylesheet:
<xsl:param>html.stylesheet=../../../../doc/html/boostbook.css
# PDF Options:
# TOC Generation: this is needed for FOP-0.9 and later:
#<xsl:param>fop1.extensions=1
# Or enable this if you're using XEP:
<xsl:param>xep.extensions=1
# TOC generation: this is needed for FOP 0.2, but must not be set to zero for FOP-0.9!
<xsl:param>fop.extensions=0
# No indent on body text:
<xsl:param>body.start.indent=0pt
# Margin size:
<xsl:param>page.margin.inner=0.5in
# Margin size:
<xsl:param>page.margin.outer=0.5in
# Yes, we want graphics for admonishments:
<xsl:param>admon.graphics=1
# Set this one for PDF generation *only*:
# default pnd graphics are awful in PDF form,
# better use SVG's instead:
<format>pdf:<xsl:param>admon.graphics.extension=".svg"
<format>pdf:<xsl:param>admon.graphics.path=$(boost-images)/
;
boostbook thread : thread.xml ;

View File

@@ -1,23 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:acknowledgements Acknowledgments]
The original implementation of __boost_thread__ was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite __boost_thread__ to William Kempf's design with fresh code that could be
released under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a
thread library for C++, this library has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as
possible.
Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original __boost_thread__ library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.
Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on the
implementation details of the code.
[endsect]

View File

@@ -1,72 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:barriers Barriers]
A barrier is a simple concept. Also known as a ['rendezvous], it is a synchronization point between multiple threads. The barrier is
configured for a particular number of threads (`n`), and as threads reach the barrier they must wait until all `n` threads have
arrived. Once the `n`-th thread has reached the barrier, all the waiting threads can proceed, and the barrier is reset.
[section:barrier Class `barrier`]
#include <boost/thread/barrier.hpp>
class barrier
{
public:
barrier(unsigned int count);
~barrier();
bool wait();
};
Instances of __barrier__ are not copyable or movable.
[heading Constructor]
barrier(unsigned int count);
[variablelist
[[Effects:] [Construct a barrier for `count` threads.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[heading Destructor]
~barrier();
[variablelist
[[Precondition:] [No threads are waiting on `*this`.]]
[[Effects:] [Destroys `*this`.]]
[[Throws:] [Nothing.]]
]
[heading Member function `wait`]
bool wait();
[variablelist
[[Effects:] [Block until `count` threads have called `wait` on `*this`. When the `count`-th thread calls `wait`, all waiting threads
are unblocked, and the barrier is reset. ]]
[[Returns:] [`true` for exactly one thread from each batch of waiting threads, `false` otherwise.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[endsect]
[endsect]

View File

@@ -1,83 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:changes Changes since boost 1.35]
The 1.36.0 release of Boost includes a few new features in the thread library:
* New generic __lock_multiple_ref__ and __try_lock_multiple_ref__ functions for locking multiple mutexes at once.
* Rvalue reference support for move semantics where the compilers supports it.
* A few bugs fixed and missing functions added (including the serious win32 condition variable bug).
* `scoped_try_lock` types are now backwards-compatible with Boost 1.34.0 and previous releases.
* Support for passing function arguments to the thread function by supplying additional arguments to the __thread__ constructor.
* Backwards-compatibility overloads added for `timed_lock` and `timed_wait` functions to allow use of `xtime` for timeouts.
[heading Changes since boost 1.34]
Almost every line of code in __boost_thread__ has been changed since the 1.34 release of boost. However, most of the interface
changes have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking
changes are described below.
[heading New Features]
* Instances of __thread__ and of the various lock types are now movable.
* Threads can be interrupted at __interruption_points__.
* Condition variables can now be used with any type that implements the __lockable_concept__, through the use of
`boost::condition_variable_any` (`boost::condition` is a `typedef` to `boost::condition_variable_any`, provided for backwards
compatibility). `boost::condition_variable` is provided as an optimization, and will only work with
`boost::unique_lock<boost::mutex>` (`boost::mutex::scoped_lock`).
* Thread IDs are separated from __thread__, so a thread can obtain it's own ID (using `boost::this_thread::get_id()`), and IDs can
be used as keys in associative containers, as they have the full set of comparison operators.
* Timeouts are now implemented using the Boost DateTime library, through a typedef `boost::system_time` for absolute timeouts, and
with support for relative timeouts in many cases. `boost::xtime` is supported for backwards compatibility only.
* Locks are implemented as publicly accessible templates `boost::lock_guard`, `boost::unique_lock`, `boost::shared_lock`, and
`boost::upgrade_lock`, which are templated on the type of the mutex. The __lockable_concept__ has been extended to include publicly
available __lock_ref__ and __unlock_ref__ member functions, which are used by the lock types.
[heading Breaking Changes]
The list below should cover all changes to the public interface which break backwards compatibility.
* __try_mutex__ has been removed, and the functionality subsumed into __mutex__. __try_mutex__ is left as a `typedef`,
but is no longer a separate class.
* __recursive_try_mutex__ has been removed, and the functionality subsumed into
__recursive_mutex__. __recursive_try_mutex__ is left as a `typedef`, but is no longer a separate class.
* `boost::detail::thread::lock_ops` has been removed. Code that relies on the `lock_ops` implementation detail will no longer work,
as this has been removed, as it is no longer necessary now that mutex types now have public __lock_ref__ and __unlock_ref__ member
functions.
* `scoped_lock` constructors with a second parameter of type `bool` are no longer provided. With previous boost releases,
``boost::mutex::scoped_lock some_lock(some_mutex,false);`` could be used to create a lock object that was associated with a mutex,
but did not lock it on construction. This facility has now been replaced with the constructor that takes a
`boost::defer_lock_type` as the second parameter: ``boost::mutex::scoped_lock some_lock(some_mutex,boost::defer_lock);``
* The `locked()` member function of the `scoped_lock` types has been renamed to __owns_lock_ref__.
* You can no longer obtain a __thread__ instance representing the current thread: a default-constructed __thread__ object is not
associated with any thread. The only use for such a thread object was to support the comparison operators: this functionality has
been moved to __thread_id__.
* The broken `boost::read_write_mutex` has been replaced with __shared_mutex__.
* __mutex__ is now never recursive. For Boost releases prior to 1.35 __mutex__ was recursive on Windows and not on POSIX platforms.
* When using a __recursive_mutex__ with a call to [cond_any_wait_link `boost::condition_variable_any::wait()`], the mutex is only
unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.
[endsect]

View File

@@ -1,513 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:condvar_ref Condition Variables]
[heading Synopsis]
The classes `condition_variable` and `condition_variable_any` provide a
mechanism for one thread to wait for notification from another thread that a
particular condition has become true. The general usage pattern is that one
thread locks a mutex and then calls `wait` on an instance of
`condition_variable` or `condition_variable_any`. When the thread is woken from
the wait, then it checks to see if the appropriate condition is now true, and
continues if so. If the condition is not true, then the thread then calls `wait`
again to resume waiting. In the simplest case, this condition is just a boolean
variable:
boost::condition_variable cond;
boost::mutex mut;
bool data_ready;
void process_data();
void wait_for_data_to_process()
{
boost::unique_lock<boost::mutex> lock(mut);
while(!data_ready)
{
cond.wait(lock);
}
process_data();
}
Notice that the `lock` is passed to `wait`: `wait` will atomically add the
thread to the set of threads waiting on the condition variable, and unlock the
mutex. When the thread is woken, the mutex will be locked again before the call
to `wait` returns. This allows other threads to acquire the mutex in order to
update the shared data, and ensures that the data associated with the condition
is correctly synchronized.
In the mean time, another thread sets the condition to `true`, and then calls
either `notify_one` or `notify_all` on the condition variable to wake one
waiting thread or all the waiting threads respectively.
void retrieve_data();
void prepare_data();
void prepare_data_for_processing()
{
retrieve_data();
prepare_data();
{
boost::lock_guard<boost::mutex> lock(mut);
data_ready=true;
}
cond.notify_one();
}
Note that the same mutex is locked before the shared data is updated, but that
the mutex does not have to be locked across the call to `notify_one`.
This example uses an object of type `condition_variable`, but would work just as
well with an object of type `condition_variable_any`: `condition_variable_any`
is more general, and will work with any kind of lock or mutex, whereas
`condition_variable` requires that the lock passed to `wait` is an instance of
`boost::unique_lock<boost::mutex>`. This enables `condition_variable` to make
optimizations in some cases, based on the knowledge of the mutex type;
`condition_variable_any` typically has a more complex implementation than
`condition_variable`.
[section:condition_variable Class `condition_variable`]
#include <boost/thread/condition_variable.hpp>
namespace boost
{
class condition_variable
{
public:
condition_variable();
~condition_variable();
void notify_one();
void notify_all();
void wait(boost::unique_lock<boost::mutex>& lock);
template<typename predicate_type>
void wait(boost::unique_lock<boost::mutex>& lock,predicate_type predicate);
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time);
template<typename duration_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time);
template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time,predicate_type predicate);
template<typename duration_type,typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time,predicate_type predicate);
// backwards compatibility
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time);
template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time,predicate_type predicate);
};
}
[section:constructor `condition_variable()`]
[variablelist
[[Effects:] [Constructs an object of class `condition_variable`.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[endsect]
[section:destructor `~condition_variable()`]
[variablelist
[[Precondition:] [All threads waiting on `*this` have been notified by a call to
`notify_one` or `notify_all` (though the respective calls to `wait` or
`timed_wait` need not have returned).]]
[[Effects:] [Destroys the object.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_one `void notify_one()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks one of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_all `void notify_all()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks all of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:wait `void wait(boost::unique_lock<boost::mutex>& lock)`]
[variablelist
[[Precondition:] [`lock` is locked by the current thread, and either no other
thread is currently waiting on `*this`, or the execution of the `mutex()` member
function on the `lock` objects supplied in the calls to `wait` or `timed_wait`
in all the threads currently waiting on `*this` would return the same value as
`lock->mutex()` for this call to `wait`.]]
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:wait_predicate `template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
wait(lock);
}
``]]
]
[endsect]
[section:timed_wait `bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)`]
[variablelist
[[Precondition:] [`lock` is locked by the current thread, and either no other
thread is currently waiting on `*this`, or the execution of the `mutex()` member
function on the `lock` objects supplied in the calls to `wait` or `timed_wait`
in all the threads currently waiting on `*this` would return the same value as
`lock->mutex()` for this call to `wait`.]]
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, when the time as reported by `boost::get_system_time()`
would be equal to or later than the specified `abs_time`, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by
invoking `lock.lock()` before the call to `wait` returns. The lock is also
reacquired by invoking `lock.lock()` if the function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time specified by
`abs_time` was reached, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:timed_wait_rel `template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)`]
[variablelist
[[Precondition:] [`lock` is locked by the current thread, and either no other
thread is currently waiting on `*this`, or the execution of the `mutex()` member
function on the `lock` objects supplied in the calls to `wait` or `timed_wait`
in all the threads currently waiting on `*this` would return the same value as
`lock->mutex()` for this call to `wait`.]]
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, after the period of time indicated by the `rel_time`
argument has elapsed, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time period specified
by `rel_time` has elapsed, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[note The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred in most cases.]
[endsect]
[section:timed_wait_predicate `template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
if(!timed_wait(lock,abs_time))
{
return pred();
}
}
return true;
``]]
]
[endsect]
[endsect]
[section:condition_variable_any Class `condition_variable_any`]
#include <boost/thread/condition_variable.hpp>
namespace boost
{
class condition_variable_any
{
public:
condition_variable_any();
~condition_variable_any();
void notify_one();
void notify_all();
template<typename lock_type>
void wait(lock_type& lock);
template<typename lock_type,typename predicate_type>
void wait(lock_type& lock,predicate_type predicate);
template<typename lock_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time);
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time);
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time,predicate_type predicate);
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time,predicate_type predicate);
// backwards compatibility
template<typename lock_type>
bool timed_wait(lock_type>& lock,boost::xtime const& abs_time);
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::xtime const& abs_time,predicate_type predicate);
};
}
[section:constructor `condition_variable_any()`]
[variablelist
[[Effects:] [Constructs an object of class `condition_variable_any`.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[endsect]
[section:destructor `~condition_variable_any()`]
[variablelist
[[Precondition:] [All threads waiting on `*this` have been notified by a call to
`notify_one` or `notify_all` (though the respective calls to `wait` or
`timed_wait` need not have returned).]]
[[Effects:] [Destroys the object.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_one `void notify_one()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks one of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_all `void notify_all()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks all of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:wait `template<typename lock_type> void wait(lock_type& lock)`]
[variablelist
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:wait_predicate `template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
wait(lock);
}
``]]
]
[endsect]
[section:timed_wait `template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)`]
[variablelist
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, when the time as reported by `boost::get_system_time()`
would be equal to or later than the specified `abs_time`, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by
invoking `lock.lock()` before the call to `wait` returns. The lock is also
reacquired by invoking `lock.lock()` if the function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time specified by
`abs_time` was reached, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:timed_wait_rel `template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)`]
[variablelist
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, after the period of time indicated by the `rel_time`
argument has elapsed, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time period specified
by `rel_time` has elapsed, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[note The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred in most cases.]
[endsect]
[section:timed_wait_predicate `template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
if(!timed_wait(lock,abs_time))
{
return pred();
}
}
return true;
``]]
]
[endsect]
[endsect]
[section:condition Typedef `condition`]
#include <boost/thread/condition.hpp>
typedef condition_variable_any condition;
The typedef `condition` is provided for backwards compatibility with previous boost releases.
[endsect]
[endsect]

View File

@@ -1,6 +1,6 @@
<!-- Copyright (c) 2002-2003 Beman Dawes, William E. Kempf.
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<html>
<head>

File diff suppressed because it is too large Load Diff

View File

@@ -1,224 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:mutex_types Mutex Types]
[section:mutex Class `mutex`]
#include <boost/thread/mutex.hpp>
class mutex:
boost::noncopyable
{
public:
mutex();
~mutex();
void lock();
bool try_lock();
void unlock();
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
};
__mutex__ implements the __lockable_concept__ to provide an exclusive-ownership mutex. At most one thread can own the lock on a given
instance of __mutex__ at any time. Multiple concurrent calls to __lock_ref__, __try_lock_ref__ and __unlock_ref__ shall be permitted.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:try_mutex Typedef `try_mutex`]
#include <boost/thread/mutex.hpp>
typedef mutex try_mutex;
__try_mutex__ is a `typedef` to __mutex__, provided for backwards compatibility with previous releases of boost.
[endsect]
[section:timed_mutex Class `timed_mutex`]
#include <boost/thread/mutex.hpp>
class timed_mutex:
boost::noncopyable
{
public:
timed_mutex();
~timed_mutex();
void lock();
void unlock();
bool try_lock();
bool timed_lock(system_time const & abs_time);
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
__timed_mutex__ implements the __timed_lockable_concept__ to provide an exclusive-ownership mutex. At most one thread can own the
lock on a given instance of __timed_mutex__ at any time. Multiple concurrent calls to __lock_ref__, __try_lock_ref__,
__timed_lock_ref__, __timed_lock_duration_ref__ and __unlock_ref__ shall be permitted.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:recursive_mutex Class `recursive_mutex`]
#include <boost/thread/recursive_mutex.hpp>
class recursive_mutex:
boost::noncopyable
{
public:
recursive_mutex();
~recursive_mutex();
void lock();
bool try_lock();
void unlock();
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<recursive_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
};
__recursive_mutex__ implements the __lockable_concept__ to provide an exclusive-ownership recursive mutex. At most one thread can
own the lock on a given instance of __recursive_mutex__ at any time. Multiple concurrent calls to __lock_ref__, __try_lock_ref__ and
__unlock_ref__ shall be permitted. A thread that already has exclusive ownership of a given __recursive_mutex__ instance can call
__lock_ref__ or __try_lock_ref__ to acquire an additional level of ownership of the mutex. __unlock_ref__ must be called once for
each level of ownership acquired by a single thread before ownership can be acquired by another thread.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:recursive_try_mutex Typedef `recursive_try_mutex`]
#include <boost/thread/recursive_mutex.hpp>
typedef recursive_mutex recursive_try_mutex;
__recursive_try_mutex__ is a `typedef` to __recursive_mutex__, provided for backwards compatibility with previous releases of boost.
[endsect]
[section:recursive_timed_mutex Class `recursive_timed_mutex`]
#include <boost/thread/recursive_mutex.hpp>
class recursive_timed_mutex:
boost::noncopyable
{
public:
recursive_timed_mutex();
~recursive_timed_mutex();
void lock();
bool try_lock();
void unlock();
bool timed_lock(system_time const & abs_time);
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<recursive_timed_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_lock scoped_timed_lock;
};
__recursive_timed_mutex__ implements the __timed_lockable_concept__ to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of __recursive_timed_mutex__ at any time. Multiple concurrent calls to __lock_ref__,
__try_lock_ref__, __timed_lock_ref__, __timed_lock_duration_ref__ and __unlock_ref__ shall be permitted. A thread that already has
exclusive ownership of a given __recursive_timed_mutex__ instance can call __lock_ref__, __timed_lock_ref__,
__timed_lock_duration_ref__ or __try_lock_ref__ to acquire an additional level of ownership of the mutex. __unlock_ref__ must be
called once for each level of ownership acquired by a single thread before ownership can be acquired by another thread.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[include shared_mutex_ref.qbk]
[endsect]

View File

@@ -1,56 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:once One-time Initialization]
`boost::call_once` provides a mechanism for ensuring that an initialization routine is run exactly once without data races or deadlocks.
[section:once_flag Typedef `once_flag`]
#include <boost/thread/once.hpp>
typedef platform-specific-type once_flag;
#define BOOST_ONCE_INIT platform-specific-initializer
Objects of type `boost::once_flag` shall be initialized with `BOOST_ONCE_INIT`:
boost::once_flag f=BOOST_ONCE_INIT;
[endsect]
[section:call_once Non-member function `call_once`]
#include <boost/thread/once.hpp>
template<typename Callable>
void call_once(once_flag& flag,Callable func);
[variablelist
[[Requires:] [`Callable` is `CopyConstructible`. Copying `func` shall have no side effects, and the effect of calling the copy shall
be equivalent to calling the original. ]]
[[Effects:] [Calls to `call_once` on the same `once_flag` object are serialized. If there has been no prior effective `call_once` on
the same `once_flag` object, the argument `func` (or a copy thereof) is called as-if by invoking `func()`, and the invocation of
`call_once` is effective if and only if `func()` returns without exception. If an exception is thrown, the exception is
propagated to the caller. If there has been a prior effective `call_once` on the same `once_flag` object, the `call_once` returns
without invoking `func`. ]]
[[Synchronization:] [The completion of an effective `call_once` invocation on a `once_flag` object, synchronizes with
all subsequent `call_once` invocations on the same `once_flag` object. ]]
[[Throws:] [`thread_resource_error` when the effects cannot be achieved. or any exception propagated from `func`.]]
]
void call_once(void (*func)(),once_flag& flag);
This second overload is provided for backwards compatibility. The effects of `call_once(func,flag)` shall be the same as those of
`call_once(flag,func)`.
[endsect]
[endsect]

View File

@@ -1,30 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:overview Overview]
__boost_thread__ enables the use of multiple threads of execution with shared data in portable C++ code. It provides classes and
functions for managing the threads themselves, along with others for synchronizing data between the threads or providing separate
copies of data specific to individual threads.
The __boost_thread__ library was originally written and designed by William E. Kempf. This version is a major rewrite designed to
closely follow the proposals presented to the C++ Standards Committee, in particular
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html N2497],
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html N2320],
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html N2184],
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html N2139], and
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html N2094]
In order to use the classes and functions described here, you can
either include the specific headers specified by the descriptions of
each class or function, or include the master thread library header:
#include <boost/thread.hpp>
which includes all the other headers in turn.
[endsect]

View File

@@ -1,44 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:shared_mutex Class `shared_mutex`]
#include <boost/thread/shared_mutex.hpp>
class shared_mutex
{
public:
shared_mutex();
~shared_mutex();
void lock_shared();
bool try_lock_shared();
bool timed_lock_shared(system_time const& timeout);
void unlock_shared();
void lock();
bool try_lock();
bool timed_lock(system_time const& timeout);
void unlock();
void lock_upgrade();
void unlock_upgrade();
void unlock_upgrade_and_lock();
void unlock_and_lock_upgrade();
void unlock_and_lock_shared();
void unlock_upgrade_and_lock_shared();
};
The class `boost::shared_mutex` provides an implementation of a multiple-reader / single-writer mutex. It implements the
__upgrade_lockable_concept__.
Multiple concurrent calls to __lock_ref__, __try_lock_ref__, __timed_lock_ref__, __lock_shared_ref__, __try_lock_shared_ref__ and
__timed_lock_shared_ref__ shall be permitted.
[endsect]

View File

@@ -1,167 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[article Thread
[quickbook 1.4]
[authors [Williams, Anthony]]
[copyright 2007-8 Anthony Williams]
[purpose C++ Library for launching threads and synchronizing data between them]
[category text]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[template lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.lockable [link_text]]]
[def __lockable_concept__ [lockable_concept_link `Lockable` concept]]
[def __lockable_concept_type__ [lockable_concept_link `Lockable`]]
[template timed_lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.timed_lockable [link_text]]]
[def __timed_lockable_concept__ [timed_lockable_concept_link `TimedLockable` concept]]
[def __timed_lockable_concept_type__ [timed_lockable_concept_link `TimedLockable`]]
[template shared_lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable [link_text]]]
[def __shared_lockable_concept__ [shared_lockable_concept_link `SharedLockable` concept]]
[def __shared_lockable_concept_type__ [shared_lockable_concept_link `SharedLockable`]]
[template upgrade_lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable [link_text]]]
[def __upgrade_lockable_concept__ [upgrade_lockable_concept_link `UpgradeLockable` concept]]
[def __upgrade_lockable_concept_type__ [upgrade_lockable_concept_link `UpgradeLockable`]]
[template lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.lockable.lock [link_text]]]
[def __lock_ref__ [lock_ref_link `lock()`]]
[template lock_multiple_ref_link[link_text] [link thread.synchronization.lock_functions.lock_multiple [link_text]]]
[def __lock_multiple_ref__ [lock_multiple_ref_link `lock()`]]
[template try_lock_multiple_ref_link[link_text] [link thread.synchronization.lock_functions.try_lock_multiple [link_text]]]
[def __try_lock_multiple_ref__ [try_lock_multiple_ref_link `try_lock()`]]
[template unlock_ref_link[link_text] [link thread.synchronization.mutex_concepts.lockable.unlock [link_text]]]
[def __unlock_ref__ [unlock_ref_link `unlock()`]]
[template try_lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.lockable.try_lock [link_text]]]
[def __try_lock_ref__ [try_lock_ref_link `try_lock()`]]
[template timed_lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.timed_lockable.timed_lock [link_text]]]
[def __timed_lock_ref__ [timed_lock_ref_link `timed_lock()`]]
[template timed_lock_duration_ref_link[link_text] [link thread.synchronization.mutex_concepts.timed_lockable.timed_lock_duration [link_text]]]
[def __timed_lock_duration_ref__ [timed_lock_duration_ref_link `timed_lock()`]]
[template lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.lock_shared [link_text]]]
[def __lock_shared_ref__ [lock_shared_ref_link `lock_shared()`]]
[template unlock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.unlock_shared [link_text]]]
[def __unlock_shared_ref__ [unlock_shared_ref_link `unlock_shared()`]]
[template try_lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.try_lock_shared [link_text]]]
[def __try_lock_shared_ref__ [try_lock_shared_ref_link `try_lock_shared()`]]
[template timed_lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.timed_lock_shared [link_text]]]
[def __timed_lock_shared_ref__ [timed_lock_shared_ref_link `timed_lock_shared()`]]
[template timed_lock_shared_duration_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.timed_lock_shared_duration [link_text]]]
[def __timed_lock_shared_duration_ref__ [timed_lock_shared_duration_ref_link `timed_lock_shared()`]]
[template lock_upgrade_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.lock_upgrade [link_text]]]
[def __lock_upgrade_ref__ [lock_upgrade_ref_link `lock_upgrade()`]]
[template unlock_upgrade_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_upgrade [link_text]]]
[def __unlock_upgrade_ref__ [unlock_upgrade_ref_link `unlock_upgrade()`]]
[template unlock_upgrade_and_lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_upgrade_and_lock [link_text]]]
[def __unlock_upgrade_and_lock_ref__ [unlock_upgrade_and_lock_ref_link `unlock_upgrade_and_lock()`]]
[template unlock_and_lock_upgrade_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_and_lock_upgrade [link_text]]]
[def __unlock_and_lock_upgrade_ref__ [unlock_and_lock_upgrade_ref_link `unlock_and_lock_upgrade()`]]
[template unlock_upgrade_and_lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_upgrade_and_lock_shared [link_text]]]
[def __unlock_upgrade_and_lock_shared_ref__ [unlock_upgrade_and_lock_shared_ref_link `unlock_upgrade_and_lock_shared()`]]
[template owns_lock_ref_link[link_text] [link thread.synchronization.locks.unique_lock.owns_lock [link_text]]]
[def __owns_lock_ref__ [owns_lock_ref_link `owns_lock()`]]
[template owns_lock_shared_ref_link[link_text] [link thread.synchronization.locks.shared_lock.owns_lock [link_text]]]
[def __owns_lock_shared_ref__ [owns_lock_shared_ref_link `owns_lock()`]]
[template mutex_func_ref_link[link_text] [link thread.synchronization.locks.unique_lock.mutex [link_text]]]
[def __mutex_func_ref__ [mutex_func_ref_link `mutex()`]]
[def __boost_thread__ [*Boost.Thread]]
[def __not_a_thread__ ['Not-a-Thread]]
[def __interruption_points__ [link interruption_points ['interruption points]]]
[def __mutex__ [link thread.synchronization.mutex_types.mutex `boost::mutex`]]
[def __try_mutex__ [link thread.synchronization.mutex_types.try_mutex `boost::try_mutex`]]
[def __timed_mutex__ [link thread.synchronization.mutex_types.timed_mutex `boost::timed_mutex`]]
[def __recursive_mutex__ [link thread.synchronization.mutex_types.recursive_mutex `boost::recursive_mutex`]]
[def __recursive_try_mutex__ [link thread.synchronization.mutex_types.recursive_try_mutex `boost::recursive_try_mutex`]]
[def __recursive_timed_mutex__ [link thread.synchronization.mutex_types.recursive_timed_mutex `boost::recursive_timed_mutex`]]
[def __shared_mutex__ [link thread.synchronization.mutex_types.shared_mutex `boost::shared_mutex`]]
[template unique_lock_link[link_text] [link thread.synchronization.locks.unique_lock [link_text]]]
[def __lock_guard__ [link thread.synchronization.locks.lock_guard `boost::lock_guard`]]
[def __unique_lock__ [unique_lock_link `boost::unique_lock`]]
[def __shared_lock__ [link thread.synchronization.locks.shared_lock `boost::shared_lock`]]
[def __upgrade_lock__ [link thread.synchronization.locks.upgrade_lock `boost::upgrade_lock`]]
[def __upgrade_to_unique_lock__ [link thread.synchronization.locks.upgrade_to_unique_lock `boost::upgrade_to_unique_lock`]]
[def __thread__ [link thread.thread_management.thread `boost::thread`]]
[def __thread_id__ [link thread.thread_management.thread.id `boost::thread::id`]]
[template join_link[link_text] [link thread.thread_management.thread.join [link_text]]]
[def __join__ [join_link `join()`]]
[template timed_join_link[link_text] [link thread.thread_management.thread.timed_join [link_text]]]
[def __timed_join__ [timed_join_link `timed_join()`]]
[def __detach__ [link thread.thread_management.thread.detach `detach()`]]
[def __interrupt__ [link thread.thread_management.thread.interrupt `interrupt()`]]
[def __sleep__ [link thread.thread_management.this_thread.sleep `boost::this_thread::sleep()`]]
[def __interruption_enabled__ [link thread.thread_management.this_thread.interruption_enabled `boost::this_thread::interruption_enabled()`]]
[def __interruption_requested__ [link thread.thread_management.this_thread.interruption_requested `boost::this_thread::interruption_requested()`]]
[def __interruption_point__ [link thread.thread_management.this_thread.interruption_point `boost::this_thread::interruption_point()`]]
[def __disable_interruption__ [link thread.thread_management.this_thread.disable_interruption `boost::this_thread::disable_interruption`]]
[def __restore_interruption__ [link thread.thread_management.this_thread.restore_interruption `boost::this_thread::restore_interruption`]]
[def __thread_resource_error__ `boost::thread_resource_error`]
[def __thread_interrupted__ `boost::thread_interrupted`]
[def __barrier__ [link thread.synchronization.barriers.barrier `boost::barrier`]]
[template cond_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable.wait [link_text]]]
[def __cond_wait__ [cond_wait_link `wait()`]]
[template cond_timed_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable.timed_wait [link_text]]]
[def __cond_timed_wait__ [cond_timed_wait_link `timed_wait()`]]
[template cond_any_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable_any.wait [link_text]]]
[def __cond_any_wait__ [cond_any_wait_link `wait()`]]
[template cond_any_timed_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable_any.timed_wait [link_text]]]
[def __cond_any_timed_wait__ [cond_any_timed_wait_link `timed_wait()`]]
[def __blocked__ ['blocked]]
[include overview.qbk]
[include changes.qbk]
[include thread_ref.qbk]
[section:synchronization Synchronization]
[include mutex_concepts.qbk]
[include mutexes.qbk]
[include condition_variables.qbk]
[include once.qbk]
[include barrier.qbk]
[endsect]
[include tss.qbk]
[include time.qbk]
[include acknowledgements.qbk]

File diff suppressed because it is too large Load Diff

View File

@@ -1,75 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:time Date and Time Requirements]
As of Boost 1.35.0, the __boost_thread__ library uses the [link date_time Boost.Date_Time] library for all operations that require a
time out. These include (but are not limited to):
* __sleep__
* __timed_join__
* __cond_timed_wait__
* __timed_lock_ref__
For the overloads that accept an absolute time parameter, an object of type [link thread.time.system_time `boost::system_time`] is
required. Typically, this will be obtained by adding a duration to the current time, obtained with a call to [link
thread.time.get_system_time `boost::get_system_time()`]. e.g.
boost::system_time const timeout=boost::get_system_time() + boost::posix_time::milliseconds(500);
extern bool done;
extern boost::mutex m;
extern boost::condition_variable cond;
boost::unique_lock<boost::mutex> lk(m);
while(!done)
{
if(!cond.timed_wait(lk,timeout))
{
throw "timed out";
}
}
For the overloads that accept a ['TimeDuration] parameter, an object of any type that meets the [link
date_time.posix_time.time_duration Boost.Date_Time Time Duration requirements] can be used, e.g.
boost::this_thread::sleep(boost::posix_time::milliseconds(25));
boost::mutex m;
if(m.timed_lock(boost::posix_time::nanoseconds(100)))
{
// ...
}
[section:system_time Typedef `system_time`]
#include <boost/thread/thread_time.hpp>
typedef boost::posix_time::ptime system_time;
See the documentation for [link date_time.posix_time.ptime_class `boost::posix_time::ptime`] in the Boost.Date_Time library.
[endsect]
[section:get_system_time Non-member function `get_system_time()`]
#include <boost/thread/thread_time.hpp>
system_time get_system_time();
[variablelist
[[Returns:] [The current time.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]

View File

@@ -1,184 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section Thread Local Storage]
[heading Synopsis]
Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a
multi-threaded application. One example is the C `errno` variable, used for storing the error code related to functions from the
Standard C library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide
a separate instance of `errno` for each thread, in order to avoid different threads competing to read or update the value.
Though compilers often provide this facility in the form of extensions to the declaration syntax (such as `__declspec(thread)` or
`__thread` annotations on `static` or namespace-scope variable declarations), such support is non-portable, and is often limited in
some way, such as only supporting POD types.
[heading Portable thread-local storage with `boost::thread_specific_ptr`]
`boost::thread_specific_ptr` provides a portable mechanism for thread-local storage that works on all compilers supported by
__boost_thread__. Each instance of `boost::thread_specific_ptr` represents a pointer to an object (such as `errno`) where each
thread must have a distinct value. The value for the current thread can be obtained using the `get()` member function, or by using
the `*` and `->` pointer deference operators. Initially the pointer has a value of `NULL` in each thread, but the value for the
current thread can be set using the `reset()` member function.
If the value of the pointer for the current thread is changed using `reset()`, then the previous value is destroyed by calling the
cleanup routine. Alternatively, the stored value can be reset to `NULL` and the prior value returned by calling the `release()`
member function, allowing the application to take back responsibility for destroying the object.
[heading Cleanup at thread exit]
When a thread exits, the objects associated with each `boost::thread_specific_ptr` instance are destroyed. By default, the object
pointed to by a pointer `p` is destroyed by invoking `delete p`, but this can be overridden for a specific instance of
`boost::thread_specific_ptr` by providing a cleanup routine to the constructor. In this case, the object is destroyed by invoking
`func(p)` where `func` is the cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified
order. If a cleanup routine sets the value of associated with an instance of `boost::thread_specific_ptr` that has already been
cleaned up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of
`boost::thread_specific_ptr` with values.
[section:thread_specific_ptr Class `thread_specific_ptr`]
#include <boost/thread/tss.hpp>
template <typename T>
class thread_specific_ptr
{
public:
thread_specific_ptr();
explicit thread_specific_ptr(void (*cleanup_function)(T*));
~thread_specific_ptr();
T* get() const;
T* operator->() const;
T& operator*() const;
T* release();
void reset(T* new_value=0);
};
[section:default_constructor `thread_specific_ptr();`]
[variablelist
[[Requires:] [`delete this->get()` is well-formed.]]
[[Effects:] [Construct a `thread_specific_ptr` object for storing a pointer to an object of type `T` specific to each thread. The
default `delete`-based cleanup function will be used to destroy any thread-local objects when `reset()` is called, or the thread
exits.]]
[[Throws:] [`boost::thread_resource_error` if an error occurs.]]
]
[endsect]
[section:constructor_with_custom_cleanup `explicit thread_specific_ptr(void (*cleanup_function)(T*));`]
[variablelist
[[Requires:] [`cleanup_function(this->get())` does not throw any exceptions.]]
[[Effects:] [Construct a `thread_specific_ptr` object for storing a pointer to an object of type `T` specific to each thread. The
supplied `cleanup_function` will be used to destroy any thread-local objects when `reset()` is called, or the thread exits.]]
[[Throws:] [`boost::thread_resource_error` if an error occurs.]]
]
[endsect]
[section:destructor `~thread_specific_ptr();`]
[variablelist
[[Effects:] [Calls `this->reset()` to clean up the associated value for the current thread, and destroys `*this`.]]
[[Throws:] [Nothing.]]
]
[note Care needs to be taken to ensure that any threads still running after an instance of `boost::thread_specific_ptr` has been
destroyed do not call any member functions on that instance.]
[endsect]
[section:get `T* get() const;`]
[variablelist
[[Returns:] [The pointer associated with the current thread.]]
[[Throws:] [Nothing.]]
]
[note The initial value associated with an instance of `boost::thread_specific_ptr` is `NULL` for each thread.]
[endsect]
[section:operator_arrow `T* operator->() const;`]
[variablelist
[[Returns:] [`this->get()`]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:operator_star `T& operator*() const;`]
[variablelist
[[Requires:] [`this->get` is not `NULL`.]]
[[Returns:] [`*(this->get())`]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:reset `void reset(T* new_value=0);`]
[variablelist
[[Effects:] [If `this->get()!=new_value` and `this->get()` is non-`NULL`, invoke `delete this->get()` or
`cleanup_function(this->get())` as appropriate. Store `new_value` as the pointer associated with the current thread.]]
[[Postcondition:] [`this->get()==new_value`]]
[[Throws:] [`boost::thread_resource_error` if an error occurs.]]
]
[endsect]
[section:release `T* release();`]
[variablelist
[[Effects:] [Return `this->get()` and store `NULL` as the pointer associated with the current thread without invoking the cleanup
function.]]
[[Postcondition:] [`this->get()==0`]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[endsect]

View File

@@ -46,16 +46,11 @@ private:
bounded_buffer buf(2);
boost::mutex io_mutex;
void sender() {
int n = 0;
while (n < 100) {
buf.send(n);
{
boost::mutex::scoped_lock io_lock(io_mutex);
std::cout << "sent: " << n << std::endl;
}
std::cout << "sent: " << n << std::endl;
++n;
}
buf.send(-1);
@@ -65,10 +60,7 @@ void receiver() {
int n;
do {
n = buf.receive();
{
boost::mutex::scoped_lock io_lock(io_mutex);
std::cout << "received: " << n << std::endl;
}
std::cout << "received: " << n << std::endl;
} while (n != -1); // -1 indicates end of buffer
}

View File

@@ -1,25 +1,19 @@
// Copyright (C) 2001-2003
// William E. Kempf
// (C) Copyright 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See www.boost.org/libs/thread for documentation.
#if !defined(BOOST_THREAD_WEK01082003_HPP)
#define BOOST_THREAD_WEK01082003_HPP
#include <boost/thread/thread.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/thread/xtime.hpp>
#endif

View File

@@ -1,6 +1,6 @@
// Copyright (C) 2002-2003
// David Moore, William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -11,12 +11,10 @@
#include <boost/thread/detail/config.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/condition.hpp>
#include <string>
#include <stdexcept>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
@@ -50,7 +48,7 @@ namespace boost
private:
mutex m_mutex;
condition_variable m_cond;
condition m_cond;
unsigned int m_threshold;
unsigned int m_count;
unsigned int m_generation;
@@ -58,6 +56,4 @@ namespace boost
} // namespace boost
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,11 +1,5 @@
#ifndef BOOST_THREAD_CONDITION_HPP
#define BOOST_THREAD_CONDITION_HPP
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/condition_variable.hpp>
namespace boost

View File

@@ -10,12 +10,6 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/condition_variable.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/condition_variable.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#include BOOST_THREAD_PLATFORM(condition_variable.hpp)
#endif

View File

@@ -17,7 +17,8 @@
# pragma warn -8066 // Unreachable code
#endif
#include "platform.hpp"
// insist on threading support being available:
#include <boost/config/requires_threads.hpp>
// compatibility with the rest of Boost's auto-linking code:
#if defined(BOOST_THREAD_DYN_DLL) || defined(BOOST_ALL_DYN_LINK)
@@ -30,7 +31,7 @@
#elif defined(BOOST_THREAD_USE_DLL) //Use dll
#elif defined(BOOST_THREAD_USE_LIB) //Use lib
#else //Use default
# if defined(BOOST_THREAD_PLATFORM_WIN32)
# if defined(BOOST_HAS_WINTHREADS)
# if defined(BOOST_MSVC) || defined(BOOST_INTEL_WIN)
//For compilers supporting auto-tss cleanup
//with Boost.Threads lib, use Boost.Threads lib

View File

@@ -1,209 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_XLOCK_WEK070601_HPP
#define BOOST_XLOCK_WEK070601_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/utility.hpp>
#include <boost/thread/exceptions.hpp>
namespace boost {
class condition;
struct xtime;
namespace detail { namespace thread {
template <typename Mutex>
class lock_ops : private noncopyable
{
private:
lock_ops() { }
public:
typedef typename Mutex::cv_state lock_state;
static void lock(Mutex& m)
{
m.do_lock();
}
static bool trylock(Mutex& m)
{
return m.do_trylock();
}
static bool timedlock(Mutex& m, const xtime& xt)
{
return m.do_timedlock(xt);
}
static void unlock(Mutex& m)
{
m.do_unlock();
}
static void lock(Mutex& m, lock_state& state)
{
m.do_lock(state);
}
static void unlock(Mutex& m, lock_state& state)
{
m.do_unlock(state);
}
};
template <typename Mutex>
class scoped_lock : private noncopyable
{
public:
typedef Mutex mutex_type;
explicit scoped_lock(Mutex& mx, bool initially_locked=true)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<Mutex>::lock(m_mutex);
m_locked = true;
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<Mutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
Mutex& m_mutex;
bool m_locked;
};
template <typename TryMutex>
class scoped_try_lock : private noncopyable
{
public:
typedef TryMutex mutex_type;
explicit scoped_try_lock(TryMutex& mx)
: m_mutex(mx), m_locked(false)
{
try_lock();
}
scoped_try_lock(TryMutex& mx, bool initially_locked)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_try_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<TryMutex>::lock(m_mutex);
m_locked = true;
}
bool try_lock()
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TryMutex>::trylock(m_mutex));
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<TryMutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
TryMutex& m_mutex;
bool m_locked;
};
template <typename TimedMutex>
class scoped_timed_lock : private noncopyable
{
public:
typedef TimedMutex mutex_type;
scoped_timed_lock(TimedMutex& mx, const xtime& xt)
: m_mutex(mx), m_locked(false)
{
timed_lock(xt);
}
scoped_timed_lock(TimedMutex& mx, bool initially_locked)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_timed_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<TimedMutex>::lock(m_mutex);
m_locked = true;
}
bool try_lock()
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TimedMutex>::trylock(m_mutex));
}
bool timed_lock(const xtime& xt)
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TimedMutex>::timedlock(m_mutex, xt));
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<TimedMutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
TimedMutex& m_mutex;
bool m_locked;
};
} // namespace thread
} // namespace detail
} // namespace boost
#endif // BOOST_XLOCK_WEK070601_HPP
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs.
// 30 Jul 01 WEKEMPF Moved lock types into boost::detail::thread. Renamed
// some types. Added locked() methods.

View File

@@ -1,60 +1,33 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007 Anthony Williams
#ifndef BOOST_THREAD_MOVE_HPP
#define BOOST_THREAD_MOVE_HPP
#ifndef BOOST_NO_SFINAE
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
template<typename T>
struct move_t
{
template<typename T>
struct thread_move_t
T& t;
move_t(T& t_):
t(t_)
{}
T* operator->() const
{
T& t;
explicit thread_move_t(T& t_):
t(t_)
{}
return &t;
}
};
T& operator*() const
{
return t;
}
T* operator->() const
{
return &t;
}
private:
void operator=(thread_move_t&);
};
}
#ifndef BOOST_NO_SFINAE
template<typename T>
typename enable_if<boost::is_convertible<T&,detail::thread_move_t<T> >, T >::type move(T& t)
move_t<T> move(T& t)
{
return T(detail::thread_move_t<T>(t));
return move_t<T>(t);
}
#endif
template<typename T>
detail::thread_move_t<T> move(detail::thread_move_t<T> t)
{
return t;
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,5 +1,4 @@
// Copyright 2006 Roland Schwarz.
// (C) Copyright 2007 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@@ -42,9 +41,9 @@
#elif defined(__QNXNTO__)
# define BOOST_THREAD_QNXNTO
#elif defined(unix) || defined(__unix) || defined(_XOPEN_SOURCE) || defined(_POSIX_SOURCE)
# if defined(BOOST_HAS_PTHREADS) && !defined(BOOST_THREAD_POSIX)
# define BOOST_THREAD_POSIX
# endif
# if defined(BOOST_HAS_PTHREADS) && !defined(BOOST_THREAD_POSIX)
# define BOOST_THREAD_POSIX
# endif
#endif
// For every supported platform add a new entry into the dispatch table below.
@@ -57,15 +56,17 @@
// available the preprocessor will fail with a diagnostic message.
#if defined(BOOST_THREAD_POSIX)
# define BOOST_THREAD_PLATFORM_PTHREAD
# define BOOST_THREAD_PPFX pthread
#else
# if defined(BOOST_THREAD_WIN32)
# define BOOST_THREAD_PLATFORM_WIN32
# define BOOST_THREAD_PPFX win32
# elif defined(BOOST_HAS_PTHREADS)
# define BOOST_THREAD_PLATFORM_PTHREAD
# define BOOST_THREAD_PPFX pthread
# else
# error "Sorry, no boost threads are available for this platform."
# endif
#endif
#define BOOST_THREAD_PLATFORM(header) <boost/thread/BOOST_THREAD_PPFX/header>
#endif // BOOST_THREAD_RS06040501_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -1,575 +0,0 @@
#ifndef BOOST_THREAD_THREAD_COMMON_HPP
#define BOOST_THREAD_THREAD_COMMON_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/thread/exceptions.hpp>
#include <ostream>
#include <boost/thread/detail/move.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/thread/detail/thread_heap_alloc.hpp>
#include <boost/utility.hpp>
#include <boost/assert.hpp>
#include <list>
#include <algorithm>
#include <boost/ref.hpp>
#include <boost/cstdint.hpp>
#include <boost/bind.hpp>
#include <stdlib.h>
#include <memory>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4251)
#endif
namespace boost
{
namespace detail
{
template<typename F>
class thread_data:
public detail::thread_data_base
{
public:
#ifdef BOOST_HAS_RVALUE_REFS
thread_data(F&& f_):
f(static_cast<F&&>(f_))
{}
#else
thread_data(F f_):
f(f_)
{}
thread_data(detail::thread_move_t<F> f_):
f(f_)
{}
#endif
void run()
{
f();
}
private:
F f;
void operator=(thread_data&);
thread_data(thread_data&);
};
template<typename F>
class thread_data<boost::reference_wrapper<F> >:
public detail::thread_data_base
{
private:
F& f;
void operator=(thread_data&);
thread_data(thread_data&);
public:
thread_data(boost::reference_wrapper<F> f_):
f(f_)
{}
void run()
{
f();
}
};
template<typename F>
class thread_data<const boost::reference_wrapper<F> >:
public detail::thread_data_base
{
private:
F& f;
void operator=(thread_data&);
thread_data(thread_data&);
public:
thread_data(const boost::reference_wrapper<F> f_):
f(f_)
{}
void run()
{
f();
}
};
}
class BOOST_THREAD_DECL thread
{
private:
thread(thread&);
thread& operator=(thread&);
void release_handle();
mutable boost::mutex thread_info_mutex;
detail::thread_data_ptr thread_info;
void start_thread();
explicit thread(detail::thread_data_ptr data);
detail::thread_data_ptr get_thread_info() const;
#ifdef BOOST_HAS_RVALUE_REFS
template<typename F>
static inline detail::thread_data_ptr make_thread_info(F&& f)
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<typename boost::remove_reference<F>::type> >(static_cast<F&&>(f)));
}
static inline detail::thread_data_ptr make_thread_info(void (*f)())
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<void(*)()> >(f));
}
#else
template<typename F>
static inline detail::thread_data_ptr make_thread_info(F f)
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<F> >(f));
}
template<typename F>
static inline detail::thread_data_ptr make_thread_info(boost::detail::thread_move_t<F> f)
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<F> >(f));
}
struct dummy;
#endif
public:
thread();
~thread();
#ifdef BOOST_HAS_RVALUE_REFS
template <class F>
thread(F&& f):
thread_info(make_thread_info(static_cast<F&&>(f)))
{
start_thread();
}
thread(thread&& other)
{
thread_info.swap(other.thread_info);
}
thread& operator=(thread&& other)
{
thread_info=other.thread_info;
other.thread_info.reset();
return *this;
}
thread&& move()
{
return static_cast<thread&&>(*this);
}
#else
#ifdef BOOST_NO_SFINAE
template <class F>
explicit thread(F f):
thread_info(make_thread_info(f))
{
start_thread();
}
#else
template <class F>
explicit thread(F f,typename disable_if<boost::is_convertible<F&,detail::thread_move_t<F> >, dummy* >::type=0):
thread_info(make_thread_info(f))
{
start_thread();
}
#endif
template <class F>
explicit thread(detail::thread_move_t<F> f):
thread_info(make_thread_info(f))
{
start_thread();
}
thread(detail::thread_move_t<thread> x)
{
thread_info=x->thread_info;
x->thread_info.reset();
}
thread& operator=(detail::thread_move_t<thread> x)
{
thread new_thread(x);
swap(new_thread);
return *this;
}
operator detail::thread_move_t<thread>()
{
return move();
}
detail::thread_move_t<thread> move()
{
detail::thread_move_t<thread> x(*this);
return x;
}
#endif
template <class F,class A1>
thread(F f,A1 a1):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1)))
{
start_thread();
}
template <class F,class A1,class A2>
thread(F f,A1 a1,A2 a2):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2)))
{
start_thread();
}
template <class F,class A1,class A2,class A3>
thread(F f,A1 a1,A2 a2,A3 a3):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6,class A7>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6,A7 a7):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6,a7)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6,class A7,class A8>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6,A7 a7,A8 a8):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6,a7,a8)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6,class A7,class A8,class A9>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6,A7 a7,A8 a8,A9 a9):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6,a7,a8,a9)))
{
start_thread();
}
void swap(thread& x)
{
thread_info.swap(x.thread_info);
}
class id;
id get_id() const;
bool joinable() const;
void join();
bool timed_join(const system_time& wait_until);
template<typename TimeDuration>
inline bool timed_join(TimeDuration const& rel_time)
{
return timed_join(get_system_time()+rel_time);
}
void detach();
static unsigned hardware_concurrency();
typedef detail::thread_data_base::native_handle_type native_handle_type;
native_handle_type native_handle();
// backwards compatibility
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;
static inline void yield()
{
this_thread::yield();
}
static inline void sleep(const system_time& xt)
{
this_thread::sleep(xt);
}
// extensions
void interrupt();
bool interruption_requested() const;
};
inline void swap(thread& lhs,thread& rhs)
{
return lhs.swap(rhs);
}
#ifdef BOOST_HAS_RVALUE_REFS
inline thread&& move(thread&& t)
{
return t;
}
#else
inline thread move(detail::thread_move_t<thread> t)
{
return thread(t);
}
#endif
namespace this_thread
{
class BOOST_THREAD_DECL disable_interruption
{
disable_interruption(const disable_interruption&);
disable_interruption& operator=(const disable_interruption&);
bool interruption_was_enabled;
friend class restore_interruption;
public:
disable_interruption();
~disable_interruption();
};
class BOOST_THREAD_DECL restore_interruption
{
restore_interruption(const restore_interruption&);
restore_interruption& operator=(const restore_interruption&);
public:
explicit restore_interruption(disable_interruption& d);
~restore_interruption();
};
thread::id BOOST_THREAD_DECL get_id();
void BOOST_THREAD_DECL interruption_point();
bool BOOST_THREAD_DECL interruption_enabled();
bool BOOST_THREAD_DECL interruption_requested();
inline void sleep(xtime const& abs_time)
{
sleep(system_time(abs_time));
}
}
class thread::id
{
private:
detail::thread_data_ptr thread_data;
id(detail::thread_data_ptr thread_data_):
thread_data(thread_data_)
{}
friend class thread;
friend id this_thread::get_id();
public:
id():
thread_data()
{}
bool operator==(const id& y) const
{
return thread_data==y.thread_data;
}
bool operator!=(const id& y) const
{
return thread_data!=y.thread_data;
}
bool operator<(const id& y) const
{
return thread_data<y.thread_data;
}
bool operator>(const id& y) const
{
return y.thread_data<thread_data;
}
bool operator<=(const id& y) const
{
return !(y.thread_data<thread_data);
}
bool operator>=(const id& y) const
{
return !(thread_data<y.thread_data);
}
template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x)
{
if(x.thread_data)
{
return os<<x.thread_data;
}
else
{
return os<<"{Not-any-thread}";
}
}
};
inline bool thread::operator==(const thread& other) const
{
return get_id()==other.get_id();
}
inline bool thread::operator!=(const thread& other) const
{
return get_id()!=other.get_id();
}
namespace detail
{
struct thread_exit_function_base
{
virtual ~thread_exit_function_base()
{}
virtual void operator()() const=0;
};
template<typename F>
struct thread_exit_function:
thread_exit_function_base
{
F f;
thread_exit_function(F f_):
f(f_)
{}
void operator()() const
{
f();
}
};
void add_thread_exit_function(thread_exit_function_base*);
}
namespace this_thread
{
template<typename F>
void at_thread_exit(F f)
{
detail::thread_exit_function_base* const thread_exit_func=detail::heap_new<detail::thread_exit_function<F> >(f);
detail::add_thread_exit_function(thread_exit_func);
}
}
class thread_group:
private noncopyable
{
public:
~thread_group()
{
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
delete *it;
}
}
template<typename F>
thread* create_thread(F threadfunc)
{
boost::lock_guard<mutex> guard(m);
std::auto_ptr<thread> new_thread(new thread(threadfunc));
threads.push_back(new_thread.get());
return new_thread.release();
}
void add_thread(thread* thrd)
{
if(thrd)
{
boost::lock_guard<mutex> guard(m);
threads.push_back(thrd);
}
}
void remove_thread(thread* thrd)
{
boost::lock_guard<mutex> guard(m);
std::list<thread*>::iterator const it=std::find(threads.begin(),threads.end(),thrd);
if(it!=threads.end())
{
threads.erase(it);
}
}
void join_all()
{
boost::lock_guard<mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->join();
}
}
void interrupt_all()
{
boost::lock_guard<mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->interrupt();
}
}
size_t size() const
{
boost::lock_guard<mutex> guard(m);
return threads.size();
}
private:
std::list<thread*> threads;
mutable mutex m;
};
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,23 +0,0 @@
#ifndef BOOST_THREAD_THREAD_HEAP_ALLOC_HPP
#define BOOST_THREAD_THREAD_HEAP_ALLOC_HPP
// thread_heap_alloc.hpp
//
// (C) Copyright 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/thread_heap_alloc.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/thread_heap_alloc.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#endif

View File

@@ -8,8 +8,6 @@
#include <boost/thread/detail/config.hpp>
#include <boost/config/abi_prefix.hpp>
#if defined(BOOST_HAS_WINTHREADS)
typedef void (__cdecl *thread_exit_handler)(void);
@@ -61,7 +59,7 @@
//a method for doing so has been discovered.
//May be omitted; may be called multiple times.
extern "C" BOOST_THREAD_DECL void __cdecl on_thread_exit(void);
extern "C" BOOST_THREAD_DECL void on_thread_exit(void);
//Function to be called just be fore a thread ends
//in an exe or dll that uses Boost.Threads.
//Must be called in the context of the thread
@@ -69,7 +67,7 @@
//Called automatically by Boost.Threads when
//a method for doing so has been discovered.
//Must not be omitted; may be called multiple times.
extern "C" void tss_cleanup_implemented(void);
//Dummy function used both to detect whether tss cleanup
//cleanup has been implemented and to force
@@ -77,6 +75,4 @@
#endif //defined(BOOST_HAS_WINTHREADS)
#include <boost/config/abi_suffix.hpp>
#endif //!defined(BOOST_TLS_HOOKS_HPP)

View File

@@ -1,6 +1,6 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -19,13 +19,7 @@
#include <string>
#include <stdexcept>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class BOOST_THREAD_DECL thread_interrupted
{};
namespace boost {
class BOOST_THREAD_DECL thread_exception : public std::exception
{
@@ -105,8 +99,6 @@ public:
} // namespace boost
#include <boost/config/abi_suffix.hpp>
#endif // BOOST_THREAD_CONFIG_PDM070801_H
// Change log:

File diff suppressed because it is too large Load Diff

View File

@@ -10,12 +10,6 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/mutex.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/mutex.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#include BOOST_THREAD_PLATFORM(mutex.hpp)
#endif

View File

@@ -10,15 +10,7 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/once.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/once.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#include <boost/config/abi_prefix.hpp>
#include BOOST_THREAD_PLATFORM(once.hpp)
namespace boost
{
@@ -28,6 +20,4 @@ namespace boost
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,47 +1,91 @@
#ifndef BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP
#ifndef BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007 Anthony Williams
#include <boost/thread/mutex.hpp>
#include <limits.h>
#include <boost/assert.hpp>
#include <algorithm>
#include <boost/thread/thread.hpp>
#include <boost/thread/thread_time.hpp>
#include <pthread.h>
#include "timespec.hpp"
#include "pthread_mutex_scoped_lock.hpp"
#include "thread_data.hpp"
#include "condition_variable_fwd.hpp"
#include <boost/config/abi_prefix.hpp>
namespace boost
{
inline void condition_variable::wait(unique_lock<mutex>& m)
class condition_variable
{
detail::interruption_checker check_for_interruption(&cond);
BOOST_VERIFY(!pthread_cond_wait(&cond,m.mutex()->native_handle()));
}
inline bool condition_variable::timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until)
{
detail::interruption_checker check_for_interruption(&cond);
struct timespec const timeout=detail::get_timespec(wait_until);
int const cond_res=pthread_cond_timedwait(&cond,m.mutex()->native_handle(),&timeout);
if(cond_res==ETIMEDOUT)
{
return false;
}
BOOST_ASSERT(!cond_res);
return true;
}
inline void condition_variable::notify_one()
{
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
private:
pthread_cond_t cond;
inline void condition_variable::notify_all()
{
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
}
condition_variable(condition_variable&);
condition_variable& operator=(condition_variable&);
public:
condition_variable()
{
int const res=pthread_cond_init(&cond,NULL);
if(res)
{
throw thread_resource_error();
}
}
~condition_variable()
{
int const res=pthread_cond_destroy(&cond);
BOOST_ASSERT(!res);
}
void wait(unique_lock<mutex>& m)
{
int const cond_res=pthread_cond_wait(&cond,m.mutex()->native_handle());
BOOST_ASSERT(!cond_res);
}
template<typename predicate_type>
void wait(unique_lock<mutex>& m,predicate_type pred)
{
while(!pred()) wait(m);
}
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until)
{
struct timespec const timeout=detail::get_timespec(wait_until);
int const cond_res=pthread_cond_timedwait(&cond,m.mutex()->native_handle(),&timeout);
if(cond_res==ETIMEDOUT)
{
return false;
}
BOOST_ASSERT(!cond_res);
return true;
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until,predicate_type pred)
{
while (!pred())
{
if(!timed_wait(m, wait_until))
return false;
}
return true;
}
void notify_one()
{
int const res=pthread_cond_signal(&cond);
BOOST_ASSERT(!res);
}
void notify_all()
{
int const res=pthread_cond_broadcast(&cond);
BOOST_ASSERT(!res);
}
};
class condition_variable_any
{
@@ -62,14 +106,17 @@ namespace boost
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
int const destroy_res=pthread_mutex_destroy(&internal_mutex);
BOOST_ASSERT(!destroy_res);
throw thread_resource_error();
}
}
~condition_variable_any()
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
BOOST_VERIFY(!pthread_cond_destroy(&cond));
int const res=pthread_mutex_destroy(&internal_mutex);
BOOST_ASSERT(!res);
int const res2=pthread_cond_destroy(&cond);
BOOST_ASSERT(!res2);
}
template<typename lock_type>
@@ -77,14 +124,11 @@ namespace boost
{
int res=0;
{
detail::interruption_checker check_for_interruption(&cond);
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_wait(&cond,&internal_mutex);
}
m.lock();
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_wait(&cond,&internal_mutex);
}
m.lock();
if(res)
{
throw condition_error();
@@ -103,14 +147,11 @@ namespace boost
struct timespec const timeout=detail::get_timespec(wait_until);
int res=0;
{
detail::interruption_checker check_for_interruption(&cond);
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout);
}
m.lock();
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout);
}
m.lock();
if(res==ETIMEDOUT)
{
return false;
@@ -121,17 +162,6 @@ namespace boost
}
return true;
}
template<typename lock_type>
bool timed_wait(lock_type& m,xtime const& wait_until)
{
return timed_wait(m,system_time(wait_until));
}
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration)
{
return timed_wait(m,get_system_time()+wait_duration);
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::system_time const& wait_until,predicate_type pred)
@@ -139,38 +169,26 @@ namespace boost
while (!pred())
{
if(!timed_wait(m, wait_until))
return pred();
return false;
}
return true;
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,xtime const& wait_until,predicate_type pred)
{
return timed_wait(m,system_time(wait_until),pred);
}
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
{
return timed_wait(m,get_system_time()+wait_duration,pred);
}
void notify_one()
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_signal(&cond));
int const res=pthread_cond_signal(&cond);
BOOST_ASSERT(!res);
}
void notify_all()
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
int const res=pthread_cond_broadcast(&cond);
BOOST_ASSERT(!res);
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,97 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_CONDITION_VARIABLE_FWD_HPP
#define BOOST_THREAD_PTHREAD_CONDITION_VARIABLE_FWD_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/assert.hpp>
#include <pthread.h>
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class condition_variable
{
private:
pthread_cond_t cond;
condition_variable(condition_variable&);
condition_variable& operator=(condition_variable&);
public:
condition_variable()
{
int const res=pthread_cond_init(&cond,NULL);
if(res)
{
throw thread_resource_error();
}
}
~condition_variable()
{
BOOST_VERIFY(!pthread_cond_destroy(&cond));
}
void wait(unique_lock<mutex>& m);
template<typename predicate_type>
void wait(unique_lock<mutex>& m,predicate_type pred)
{
while(!pred()) wait(m);
}
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until);
bool timed_wait(unique_lock<mutex>& m,xtime const& wait_until)
{
return timed_wait(m,system_time(wait_until));
}
template<typename duration_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration)
{
return timed_wait(m,get_system_time()+wait_duration);
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until,predicate_type pred)
{
while (!pred())
{
if(!timed_wait(m, wait_until))
return pred();
}
return true;
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,xtime const& wait_until,predicate_type pred)
{
return timed_wait(m,system_time(wait_until),pred);
}
template<typename duration_type,typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration,predicate_type pred)
{
return timed_wait(m,get_system_time()+wait_duration,pred);
}
typedef pthread_cond_t* native_handle_type;
native_handle_type native_handle()
{
return &cond;
}
void notify_one();
void notify_all();
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,6 +1,6 @@
#ifndef BOOST_THREAD_PTHREAD_MUTEX_HPP
#define BOOST_THREAD_PTHREAD_MUTEX_HPP
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@@ -10,8 +10,8 @@
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/assert.hpp>
#include <unistd.h>
#include <errno.h>
#include "timespec.hpp"
#include "pthread_mutex_scoped_lock.hpp"
@@ -22,8 +22,6 @@
#endif
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class mutex:
@@ -42,17 +40,20 @@ namespace boost
}
~mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
int const res=pthread_mutex_destroy(&m);
BOOST_ASSERT(!res);
}
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
int const res=pthread_mutex_lock(&m);
BOOST_ASSERT(!res);
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
int const res=pthread_mutex_unlock(&m);
BOOST_ASSERT(!res);
}
bool try_lock()
@@ -63,13 +64,13 @@ namespace boost
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
native_handle_type native_handle() const
{
return &m;
}
typedef unique_lock<mutex> scoped_lock;
typedef detail::try_lock_wrapper<mutex> scoped_try_lock;
typedef scoped_lock scoped_try_lock;
};
typedef mutex try_mutex;
@@ -95,7 +96,8 @@ namespace boost
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
int const destroy_res=pthread_mutex_destroy(&m);
BOOST_ASSERT(!destroy_res);
throw thread_resource_error();
}
is_locked=false;
@@ -103,9 +105,11 @@ namespace boost
}
~timed_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
int const res=pthread_mutex_destroy(&m);
BOOST_ASSERT(!res);
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
BOOST_VERIFY(!pthread_cond_destroy(&cond));
int const res2=pthread_cond_destroy(&cond);
BOOST_ASSERT(!res2);
#endif
}
@@ -114,20 +118,18 @@ namespace boost
{
return timed_lock(get_system_time()+relative_time);
}
bool timed_lock(boost::xtime const & absolute_time)
{
return timed_lock(system_time(absolute_time));
}
#ifdef BOOST_PTHREAD_HAS_TIMEDLOCK
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
int const res=pthread_mutex_lock(&m);
BOOST_ASSERT(!res);
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
int const res=pthread_mutex_unlock(&m);
BOOST_ASSERT(!res);
}
bool try_lock()
@@ -140,23 +142,17 @@ namespace boost
{
struct timespec const timeout=detail::get_timespec(abs_time);
int const res=pthread_mutex_timedlock(&m,&timeout);
BOOST_ASSERT(!res || res==ETIMEDOUT);
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
#else
void lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
while(is_locked)
{
BOOST_VERIFY(!pthread_cond_wait(&cond,&m));
int const cond_res=pthread_cond_wait(&cond,&m);
BOOST_ASSERT(!cond_res);
}
is_locked=true;
}
@@ -165,7 +161,8 @@ namespace boost
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
is_locked=false;
BOOST_VERIFY(!pthread_cond_signal(&cond));
int const res=pthread_cond_signal(&cond);
BOOST_ASSERT(!res);
}
bool try_lock()
@@ -198,13 +195,11 @@ namespace boost
#endif
typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -3,7 +3,7 @@
// once.hpp
//
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -13,78 +13,62 @@
#include <pthread.h>
#include <boost/assert.hpp>
#include "pthread_mutex_scoped_lock.hpp"
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#include <boost/cstdint.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace boost {
struct once_flag
{
boost::uintmax_t epoch;
pthread_mutex_t mutex;
unsigned flag;
};
#define BOOST_ONCE_INIT {PTHREAD_MUTEX_INITIALIZER,0}
namespace detail
{
BOOST_THREAD_DECL boost::uintmax_t& get_once_per_thread_epoch();
BOOST_THREAD_DECL extern boost::uintmax_t once_global_epoch;
BOOST_THREAD_DECL extern pthread_mutex_t once_epoch_mutex;
BOOST_THREAD_DECL extern pthread_cond_t once_epoch_cv;
struct pthread_mutex_scoped_lock
{
pthread_mutex_t * mutex;
explicit pthread_mutex_scoped_lock(pthread_mutex_t* mutex_):
mutex(mutex_)
{
int const res=pthread_mutex_lock(mutex);
BOOST_ASSERT(!res);
}
~pthread_mutex_scoped_lock()
{
int const res=pthread_mutex_unlock(mutex);
BOOST_ASSERT(!res);
}
};
}
#define BOOST_ONCE_INITIAL_FLAG_VALUE 0
#define BOOST_ONCE_INIT {BOOST_ONCE_INITIAL_FLAG_VALUE}
// Based on Mike Burrows fast_pthread_once algorithm as described in
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2444.html
template<typename Function>
void call_once(once_flag& flag,Function f)
{
static boost::uintmax_t const uninitialized_flag=BOOST_ONCE_INITIAL_FLAG_VALUE;
static boost::uintmax_t const being_initialized=uninitialized_flag+1;
boost::uintmax_t const epoch=flag.epoch;
boost::uintmax_t& this_thread_epoch=detail::get_once_per_thread_epoch();
if(epoch<this_thread_epoch)
{
pthread::pthread_mutex_scoped_lock lk(&detail::once_epoch_mutex);
long const function_complete_flag_value=0xc15730e2;
while(flag.epoch<=being_initialized)
#ifdef BOOST_PTHREAD_HAS_ATOMICS
if(::boost::detail::interlocked_read_acquire(&flag.flag)!=function_complete_flag_value)
{
#endif
detail::pthread_mutex_scoped_lock const lock(&flag.mutex);
if(flag.flag!=function_complete_flag_value)
{
if(flag.epoch==uninitialized_flag)
{
flag.epoch=being_initialized;
try
{
pthread::pthread_mutex_scoped_unlock relocker(&detail::once_epoch_mutex);
f();
}
catch(...)
{
flag.epoch=uninitialized_flag;
BOOST_VERIFY(!pthread_cond_broadcast(&detail::once_epoch_cv));
throw;
}
flag.epoch=--detail::once_global_epoch;
BOOST_VERIFY(!pthread_cond_broadcast(&detail::once_epoch_cv));
}
else
{
while(flag.epoch==being_initialized)
{
BOOST_VERIFY(!pthread_cond_wait(&detail::once_epoch_cv,&detail::once_epoch_mutex));
}
}
f();
#ifdef BOOST_PTHREAD_HAS_ATOMICS
::boost::detail::interlocked_write_release(&flag.flag,function_complete_flag_value);
#else
flag.flag=function_complete_flag_value;
#endif
}
this_thread_epoch=detail::once_global_epoch;
#ifdef BOOST_PTHREAD_HAS_ATOMICS
}
#endif
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,16 +1,8 @@
#ifndef BOOST_PTHREAD_MUTEX_SCOPED_LOCK_HPP
#define BOOST_PTHREAD_MUTEX_SCOPED_LOCK_HPP
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <pthread.h>
#include <boost/assert.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace pthread
@@ -22,33 +14,17 @@ namespace boost
explicit pthread_mutex_scoped_lock(pthread_mutex_t* m_):
m(m_)
{
BOOST_VERIFY(!pthread_mutex_lock(m));
int const res=pthread_mutex_lock(m);
BOOST_ASSERT(!res);
}
~pthread_mutex_scoped_lock()
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
}
};
class pthread_mutex_scoped_unlock
{
pthread_mutex_t* m;
public:
explicit pthread_mutex_scoped_unlock(pthread_mutex_t* m_):
m(m_)
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
}
~pthread_mutex_scoped_unlock()
{
BOOST_VERIFY(!pthread_mutex_lock(m));
int const res=pthread_mutex_unlock(m);
BOOST_ASSERT(!res);
}
};
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,6 +1,6 @@
#ifndef BOOST_THREAD_PTHREAD_RECURSIVE_MUTEX_HPP
#define BOOST_THREAD_PTHREAD_RECURSIVE_MUTEX_HPP
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@@ -11,9 +11,7 @@
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/assert.hpp>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <boost/date_time/posix_time/conversion.hpp>
#include <errno.h>
#include "timespec.hpp"
@@ -25,8 +23,6 @@
#endif
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class recursive_mutex:
@@ -55,21 +51,25 @@ namespace boost
{
throw thread_resource_error();
}
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
int const destroy_attr_res=pthread_mutexattr_destroy(&attr);
BOOST_ASSERT(!destroy_attr_res);
}
~recursive_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
int const res=pthread_mutex_destroy(&m);
BOOST_ASSERT(!res);
}
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
int const res=pthread_mutex_lock(&m);
BOOST_ASSERT(!res);
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
int const res=pthread_mutex_unlock(&m);
BOOST_ASSERT(!res);
}
bool try_lock()
@@ -78,15 +78,8 @@ namespace boost
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
typedef unique_lock<recursive_mutex> scoped_lock;
typedef detail::try_lock_wrapper<recursive_mutex> scoped_try_lock;
typedef scoped_lock scoped_try_lock;
};
typedef recursive_mutex recursive_try_mutex;
@@ -122,10 +115,12 @@ namespace boost
int const res=pthread_mutex_init(&m,&attr);
if(res)
{
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
int const destroy_attr_res=pthread_mutexattr_destroy(&attr);
BOOST_ASSERT(!destroy_attr_res);
throw thread_resource_error();
}
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
int const destroy_attr_res=pthread_mutexattr_destroy(&attr);
BOOST_ASSERT(!destroy_attr_res);
#else
int const res=pthread_mutex_init(&m,NULL);
if(res)
@@ -135,7 +130,8 @@ namespace boost
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
int const destroy_res=pthread_mutex_destroy(&m);
BOOST_ASSERT(!destroy_res);
throw thread_resource_error();
}
is_locked=false;
@@ -144,9 +140,11 @@ namespace boost
}
~recursive_timed_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
int const res=pthread_mutex_destroy(&m);
BOOST_ASSERT(!res);
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
BOOST_VERIFY(!pthread_cond_destroy(&cond));
int const res2=pthread_cond_destroy(&cond);
BOOST_ASSERT(!res2);
#endif
}
@@ -159,12 +157,14 @@ namespace boost
#ifdef BOOST_PTHREAD_HAS_TIMEDLOCK
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
int const res=pthread_mutex_lock(&m);
BOOST_ASSERT(!res);
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
int const res=pthread_mutex_unlock(&m);
BOOST_ASSERT(!res);
}
bool try_lock()
@@ -177,21 +177,14 @@ namespace boost
{
struct timespec const timeout=detail::get_timespec(abs_time);
int const res=pthread_mutex_timedlock(&m,&timeout);
BOOST_ASSERT(!res || res==ETIMEDOUT);
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
#else
void lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && pthread_equal(owner,pthread_self()))
if(is_locked && owner==pthread_self())
{
++count;
return;
@@ -199,7 +192,8 @@ namespace boost
while(is_locked)
{
BOOST_VERIFY(!pthread_cond_wait(&cond,&m));
int const cond_res=pthread_cond_wait(&cond,&m);
BOOST_ASSERT(!cond_res);
}
is_locked=true;
++count;
@@ -213,13 +207,14 @@ namespace boost
{
is_locked=false;
}
BOOST_VERIFY(!pthread_cond_signal(&cond));
int const res=pthread_cond_signal(&cond);
BOOST_ASSERT(!res);
}
bool try_lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && !pthread_equal(owner,pthread_self()))
if(is_locked && owner!=pthread_self())
{
return false;
}
@@ -233,7 +228,7 @@ namespace boost
{
struct timespec const timeout=detail::get_timespec(abs_time);
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && pthread_equal(owner,pthread_self()))
if(is_locked && owner==pthread_self())
{
++count;
return true;
@@ -255,12 +250,11 @@ namespace boost
#endif
typedef unique_lock<recursive_timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<recursive_timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,7 +1,7 @@
#ifndef BOOST_THREAD_PTHREAD_SHARED_MUTEX_HPP
#define BOOST_THREAD_PTHREAD_SHARED_MUTEX_HPP
// (C) Copyright 2006-8 Anthony Williams
// (C) Copyright 2006-7 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -10,10 +10,7 @@
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/config/abi_prefix.hpp>
#include <boost/thread/condition.hpp>
namespace boost
{
@@ -32,9 +29,9 @@ namespace boost
state_data state;
boost::mutex state_change;
boost::condition_variable shared_cond;
boost::condition_variable exclusive_cond;
boost::condition_variable upgrade_cond;
boost::condition shared_cond;
boost::condition exclusive_cond;
boost::condition upgrade_cond;
void release_waiters()
{
@@ -46,7 +43,7 @@ namespace boost
public:
shared_mutex()
{
state_data state_={0,0,0,0};
state_data state_={0};
state=state_;
}
@@ -56,19 +53,23 @@ namespace boost
void lock_shared()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
while(state.exclusive || state.exclusive_waiting_blocked)
while(true)
{
shared_cond.wait(lk);
if(!state.exclusive && !state.exclusive_waiting_blocked)
{
++state.shared_count;
return;
}
shared_cond.wait(lock);
}
++state.shared_count;
}
bool try_lock_shared()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
if(state.exclusive || state.exclusive_waiting_blocked)
{
@@ -83,29 +84,26 @@ namespace boost
bool timed_lock_shared(system_time const& timeout)
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
while(state.exclusive || state.exclusive_waiting_blocked)
while(true)
{
if(!shared_cond.timed_wait(lk,timeout))
if(!state.exclusive && !state.exclusive_waiting_blocked)
{
++state.shared_count;
return true;
}
if(!shared_cond.timed_wait(lock,timeout))
{
return false;
}
}
++state.shared_count;
return true;
}
template<typename TimeDuration>
bool timed_lock_shared(TimeDuration const & relative_time)
{
return timed_lock_shared(get_system_time()+relative_time);
}
void unlock_shared()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
bool const last_reader=!--state.shared_count;
if(last_reader)
@@ -126,49 +124,48 @@ namespace boost
void lock()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
while(state.shared_count || state.exclusive)
while(true)
{
state.exclusive_waiting_blocked=true;
exclusive_cond.wait(lk);
if(state.shared_count || state.exclusive)
{
state.exclusive_waiting_blocked=true;
}
else
{
state.exclusive=true;
return;
}
exclusive_cond.wait(lock);
}
state.exclusive=true;
}
bool timed_lock(system_time const& timeout)
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.shared_count || state.exclusive)
boost::mutex::scoped_lock lock(state_change);
while(true)
{
state.exclusive_waiting_blocked=true;
if(!exclusive_cond.timed_wait(lk,timeout))
if(state.shared_count || state.exclusive)
{
if(state.shared_count || state.exclusive)
{
state.exclusive_waiting_blocked=false;
exclusive_cond.notify_one();
return false;
}
break;
state.exclusive_waiting_blocked=true;
}
else
{
state.exclusive=true;
return true;
}
if(!exclusive_cond.timed_wait(lock,timeout))
{
return false;
}
}
state.exclusive=true;
return true;
}
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
}
bool try_lock()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
if(state.shared_count || state.exclusive)
{
@@ -184,7 +181,7 @@ namespace boost
void unlock()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
state.exclusive=false;
state.exclusive_waiting_blocked=false;
release_waiters();
@@ -192,45 +189,42 @@ namespace boost
void lock_upgrade()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
boost::mutex::scoped_lock lock(state_change);
while(true)
{
shared_cond.wait(lk);
if(!state.exclusive && !state.exclusive_waiting_blocked && !state.upgrade)
{
++state.shared_count;
state.upgrade=true;
return;
}
shared_cond.wait(lock);
}
++state.shared_count;
state.upgrade=true;
}
bool timed_lock_upgrade(system_time const& timeout)
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
boost::mutex::scoped_lock lock(state_change);
while(true)
{
if(!shared_cond.timed_wait(lk,timeout))
if(!state.exclusive && !state.exclusive_waiting_blocked && !state.upgrade)
{
if(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
{
return false;
}
break;
++state.shared_count;
state.upgrade=true;
return true;
}
if(!shared_cond.timed_wait(lock,timeout))
{
return false;
}
}
++state.shared_count;
state.upgrade=true;
return true;
}
template<typename TimeDuration>
bool timed_lock_upgrade(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
}
bool try_lock_upgrade()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
if(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
{
return false;
@@ -245,7 +239,7 @@ namespace boost
void unlock_upgrade()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
state.upgrade=false;
bool const last_reader=!--state.shared_count;
@@ -258,20 +252,23 @@ namespace boost
void unlock_upgrade_and_lock()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
--state.shared_count;
while(state.shared_count)
while(true)
{
upgrade_cond.wait(lk);
if(!state.shared_count)
{
state.upgrade=false;
state.exclusive=true;
break;
}
upgrade_cond.wait(lock);
}
state.upgrade=false;
state.exclusive=true;
}
void unlock_and_lock_upgrade()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
state.exclusive=false;
state.upgrade=true;
++state.shared_count;
@@ -281,7 +278,7 @@ namespace boost
void unlock_and_lock_shared()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
state.exclusive=false;
++state.shared_count;
state.exclusive_waiting_blocked=false;
@@ -290,7 +287,7 @@ namespace boost
void unlock_upgrade_and_lock_shared()
{
boost::mutex::scoped_lock lk(state_change);
boost::mutex::scoped_lock lock(state_change);
state.upgrade=false;
state.exclusive_waiting_blocked=false;
release_waiters();
@@ -298,6 +295,5 @@ namespace boost
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,118 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_THREAD_DATA_HPP
#define BOOST_THREAD_PTHREAD_THREAD_DATA_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007 Anthony Williams
#include <boost/thread/detail/config.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/optional.hpp>
#include <pthread.h>
#include "condition_variable_fwd.hpp"
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class thread;
namespace detail
{
struct thread_exit_callback_node;
struct tss_data_node;
struct thread_data_base;
typedef boost::shared_ptr<thread_data_base> thread_data_ptr;
struct BOOST_THREAD_DECL thread_data_base:
enable_shared_from_this<thread_data_base>
{
thread_data_ptr self;
pthread_t thread_handle;
boost::mutex data_mutex;
boost::condition_variable done_condition;
boost::mutex sleep_mutex;
boost::condition_variable sleep_condition;
bool done;
bool join_started;
bool joined;
boost::detail::thread_exit_callback_node* thread_exit_callbacks;
boost::detail::tss_data_node* tss_data;
bool interrupt_enabled;
bool interrupt_requested;
pthread_cond_t* current_cond;
thread_data_base():
done(false),join_started(false),joined(false),
thread_exit_callbacks(0),tss_data(0),
interrupt_enabled(true),
interrupt_requested(false),
current_cond(0)
{}
virtual ~thread_data_base();
typedef pthread_t native_handle_type;
virtual void run()=0;
};
BOOST_THREAD_DECL thread_data_base* get_current_thread_data();
class interruption_checker
{
thread_data_base* const thread_info;
void check_for_interruption()
{
if(thread_info->interrupt_requested)
{
thread_info->interrupt_requested=false;
throw thread_interrupted();
}
}
void operator=(interruption_checker&);
public:
explicit interruption_checker(pthread_cond_t* cond):
thread_info(detail::get_current_thread_data())
{
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> guard(thread_info->data_mutex);
check_for_interruption();
thread_info->current_cond=cond;
}
}
~interruption_checker()
{
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> guard(thread_info->data_mutex);
thread_info->current_cond=NULL;
check_for_interruption();
}
}
};
}
namespace this_thread
{
void BOOST_THREAD_DECL yield();
void BOOST_THREAD_DECL sleep(system_time const& abs_time);
template<typename TimeDuration>
inline void sleep(TimeDuration const& rel_time)
{
this_thread::sleep(get_system_time()+rel_time);
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,242 +0,0 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2008 Anthony Williams
#ifndef THREAD_HEAP_ALLOC_PTHREAD_HPP
#define THREAD_HEAP_ALLOC_PTHREAD_HPP
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
template<typename T>
inline T* heap_new()
{
return new T();
}
#ifdef BOOST_HAS_RVALUE_REFS
template<typename T,typename A1>
inline T* heap_new(A1&& a1)
{
return new T(static_cast<A1&&>(a1));
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1&& a1,A2&& a2)
{
return new T(static_cast<A1&&>(a1),static_cast<A2&&>(a2));
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1&& a1,A2&& a2,A3&& a3)
{
return new T(static_cast<A1&&>(a1),static_cast<A2&&>(a2),
static_cast<A3&&>(a3));
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1&& a1,A2&& a2,A3&& a3,A4&& a4)
{
return new T(static_cast<A1&&>(a1),static_cast<A2&&>(a2),
static_cast<A3&&>(a3),static_cast<A4&&>(a4));
}
#else
template<typename T,typename A1>
inline T* heap_new_impl(A1 a1)
{
return new T(a1);
}
template<typename T,typename A1,typename A2>
inline T* heap_new_impl(A1 a1,A2 a2)
{
return new T(a1,a2);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new_impl(A1 a1,A2 a2,A3 a3)
{
return new T(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new_impl(A1 a1,A2 a2,A3 a3,A4 a4)
{
return new T(a1,a2,a3,a4);
}
template<typename T,typename A1>
inline T* heap_new(A1 const& a1)
{
return heap_new_impl<T,A1 const&>(a1);
}
template<typename T,typename A1>
inline T* heap_new(A1& a1)
{
return heap_new_impl<T,A1&>(a1);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1 const& a1,A2 const& a2)
{
return heap_new_impl<T,A1 const&,A2 const&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1& a1,A2 const& a2)
{
return heap_new_impl<T,A1&,A2 const&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1 const& a1,A2& a2)
{
return heap_new_impl<T,A1 const&,A2&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1& a1,A2& a2)
{
return heap_new_impl<T,A1&,A2&>(a1,a2);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3)
{
return heap_new_impl<T,A1&,A2&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3)
{
return heap_new_impl<T,A1&,A2 const&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3)
{
return heap_new_impl<T,A1 const&,A2&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2& a2,A3& a3)
{
return heap_new_impl<T,A1&,A2&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2&,A3&,A4&>(a1,a2,a3,a4);
}
#endif
template<typename T>
inline void heap_delete(T* data)
{
delete data;
}
template<typename T>
struct do_heap_delete
{
void operator()(T* data) const
{
detail::heap_delete(data);
}
};
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,19 +1,8 @@
#ifndef BOOST_THREAD_PTHREAD_TIMESPEC_HPP
#define BOOST_THREAD_PTHREAD_TIMESPEC_HPP
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread_time.hpp>
#include <boost/date_time/posix_time/conversion.hpp>
#include <pthread.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
@@ -21,16 +10,14 @@ namespace boost
{
inline struct timespec get_timespec(boost::system_time const& abs_time)
{
struct timespec timeout={0,0};
struct timespec timeout={0};
boost::posix_time::time_duration const time_since_epoch=abs_time-boost::posix_time::from_time_t(0);
timeout.tv_sec=time_since_epoch.total_seconds();
timeout.tv_nsec=(long)(time_since_epoch.fractional_seconds()*(1000000000l/time_since_epoch.ticks_per_second()));
timeout.tv_nsec=time_since_epoch.fractional_seconds()*(1000000000/time_since_epoch.ticks_per_second());
return timeout;
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -10,12 +10,6 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/recursive_mutex.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/recursive_mutex.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#include BOOST_THREAD_PLATFORM(recursive_mutex.hpp)
#endif

View File

@@ -10,12 +10,6 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/shared_mutex.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/shared_mutex.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#include BOOST_THREAD_PLATFORM(shared_mutex.hpp)
#endif

View File

@@ -1,25 +1,88 @@
#ifndef BOOST_THREAD_THREAD_HPP
#define BOOST_THREAD_THREAD_HPP
// thread.hpp
// Copyright (C) 2001-2003
// William E. Kempf
//
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#ifndef BOOST_THREAD_WEK070601_HPP
#define BOOST_THREAD_WEK070601_HPP
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/thread_data.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/thread_data.hpp>
#else
#error "Boost threads unavailable on this platform"
#include <boost/thread/detail/config.hpp>
#include <boost/utility.hpp>
#include <boost/function.hpp>
#include <boost/thread/mutex.hpp>
#include <list>
#include <memory>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#elif defined(BOOST_HAS_MPTASKS)
# include <Multiprocessing.h>
#endif
#include <boost/thread/detail/thread.hpp>
namespace boost {
struct xtime;
// disable warnings about non dll import
// see: http://www.boost.org/more/separate_compilation.html#dlls
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4251 4231 4660 4275)
#endif
class BOOST_THREAD_DECL thread : private noncopyable
{
public:
thread();
explicit thread(const function0<void>& threadfunc);
~thread();
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;
void join();
static void sleep(const xtime& xt);
static void yield();
private:
#if defined(BOOST_HAS_WINTHREADS)
void* m_thread;
unsigned int m_id;
#elif defined(BOOST_HAS_PTHREADS)
private:
pthread_t m_thread;
#elif defined(BOOST_HAS_MPTASKS)
MPQueueID m_pJoinQueueID;
MPTaskID m_pTaskID;
#endif
bool m_joinable;
};
class BOOST_THREAD_DECL thread_group : private noncopyable
{
public:
thread_group();
~thread_group();
thread* create_thread(const function0<void>& threadfunc);
void add_thread(thread* thrd);
void remove_thread(thread* thrd);
void join_all();
int size() const;
private:
std::list<thread*> m_threads;
mutex m_mutex;
};
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 1 Jun 01 WEKEMPF Added boost::thread initial implementation.
// 3 Jul 01 WEKEMPF Redesigned boost::thread to be noncopyable.
#endif // BOOST_THREAD_WEK070601_HPP

View File

@@ -1,16 +1,8 @@
#ifndef BOOST_THREAD_TIME_HPP
#define BOOST_THREAD_TIME_HPP
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/date_time/microsec_time_clock.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
typedef boost::posix_time::ptime system_time;
@@ -45,6 +37,4 @@ namespace boost
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,111 +1,128 @@
#ifndef BOOST_THREAD_TSS_HPP
#define BOOST_THREAD_TSS_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/thread/detail/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread/detail/thread_heap_alloc.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
struct tss_cleanup_function
{
virtual ~tss_cleanup_function()
{}
virtual void operator()(void* data)=0;
};
BOOST_THREAD_DECL void set_tss_data(void const* key,boost::shared_ptr<tss_cleanup_function> func,void* tss_data,bool cleanup_existing);
BOOST_THREAD_DECL void* get_tss_data(void const* key);
}
template <typename T>
class thread_specific_ptr
{
private:
thread_specific_ptr(thread_specific_ptr&);
thread_specific_ptr& operator=(thread_specific_ptr&);
struct delete_data:
detail::tss_cleanup_function
{
void operator()(void* data)
{
delete static_cast<T*>(data);
}
};
struct run_custom_cleanup_function:
detail::tss_cleanup_function
{
void (*cleanup_function)(T*);
explicit run_custom_cleanup_function(void (*cleanup_function_)(T*)):
cleanup_function(cleanup_function_)
{}
void operator()(void* data)
{
cleanup_function(static_cast<T*>(data));
}
};
boost::shared_ptr<detail::tss_cleanup_function> cleanup;
public:
thread_specific_ptr():
cleanup(detail::heap_new<delete_data>(),detail::do_heap_delete<delete_data>())
{}
explicit thread_specific_ptr(void (*func_)(T*))
{
if(func_)
{
cleanup.reset(detail::heap_new<run_custom_cleanup_function>(func_),detail::do_heap_delete<run_custom_cleanup_function>());
}
}
~thread_specific_ptr()
{
reset();
}
T* get() const
{
return static_cast<T*>(detail::get_tss_data(this));
}
T* operator->() const
{
return get();
}
T& operator*() const
{
return *get();
}
T* release()
{
T* const temp=get();
detail::set_tss_data(this,boost::shared_ptr<detail::tss_cleanup_function>(),0,false);
return temp;
}
void reset(T* new_value=0)
{
T* const current_value=get();
if(current_value!=new_value)
{
detail::set_tss_data(this,cleanup,new_value,true);
}
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif
// Copyright (C) 2001-2003 William E. Kempf
// Copyright (C) 2006 Roland Schwarz
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_TSS_WEK070601_HPP
#define BOOST_TSS_WEK070601_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/utility.hpp>
#include <boost/function.hpp>
#include <boost/thread/exceptions.hpp>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#elif defined(BOOST_HAS_MPTASKS)
# include <Multiprocessing.h>
#endif
namespace boost {
// disable warnings about non dll import
// see: http://www.boost.org/more/separate_compilation.html#dlls
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4251 4231 4660 4275)
#endif
namespace detail {
class BOOST_THREAD_DECL tss : private noncopyable
{
public:
tss(boost::function1<void, void*>* pcleanup) {
if (pcleanup == 0) throw boost::thread_resource_error();
try
{
init(pcleanup);
}
catch (...)
{
delete pcleanup;
throw boost::thread_resource_error();
}
}
~tss();
void* get() const;
void set(void* value);
void cleanup(void* p);
private:
unsigned int m_slot; //This is a "pseudo-slot", not a native slot
void init(boost::function1<void, void*>* pcleanup);
};
#if defined(BOOST_HAS_MPTASKS)
void thread_cleanup();
#endif
template <typename T>
struct tss_adapter
{
template <typename F>
tss_adapter(const F& cleanup) : m_cleanup(cleanup) { }
void operator()(void* p) { m_cleanup(static_cast<T*>(p)); }
boost::function1<void, T*> m_cleanup;
};
} // namespace detail
template <typename T>
class thread_specific_ptr : private noncopyable
{
public:
thread_specific_ptr()
: m_tss(new boost::function1<void, void*>(
boost::detail::tss_adapter<T>(
&thread_specific_ptr<T>::cleanup)))
{
}
thread_specific_ptr(void (*clean)(T*))
: m_tss(new boost::function1<void, void*>(
boost::detail::tss_adapter<T>(clean)))
{
}
~thread_specific_ptr() { reset(); }
T* get() const { return static_cast<T*>(m_tss.get()); }
T* operator->() const { return get(); }
T& operator*() const { return *get(); }
T* release() { T* temp = get(); if (temp) m_tss.set(0); return temp; }
void reset(T* p=0)
{
T* cur = get();
if (cur == p) return;
m_tss.set(p);
if (cur) m_tss.cleanup(cur);
}
private:
static void cleanup(T* p) { delete p; }
detail::tss m_tss;
};
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
} // namespace boost
#endif //BOOST_TSS_WEK070601_HPP
// Change Log:
// 6 Jun 01
// WEKEMPF Initial version.
// 30 May 02 WEKEMPF
// Added interface to set specific cleanup handlers.
// Removed TLS slot limits from most implementations.
// 22 Mar 04 GlassfordM for WEKEMPF
// Fixed: thread_specific_ptr::reset() doesn't check error returned
// by tss::set(); tss::set() now throws if it fails.
// Fixed: calling thread_specific_ptr::reset() or
// thread_specific_ptr::release() causes double-delete: once on
// reset()/release() and once on ~thread_specific_ptr().

View File

@@ -3,7 +3,7 @@
// basic_recursive_mutex.hpp
//
// (C) Copyright 2006-8 Anthony Williams
// (C) Copyright 2006-7 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -12,8 +12,6 @@
#include "thread_primitives.hpp"
#include "basic_timed_mutex.hpp"
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
@@ -58,10 +56,9 @@ namespace boost
long const current_thread_id=win32::GetCurrentThreadId();
return try_recursive_lock(current_thread_id) || try_timed_lock(current_thread_id,target);
}
template<typename Duration>
bool timed_lock(Duration const& timeout)
long get_active_count()
{
return timed_lock(get_system_time()+timeout);
return mutex.get_active_count();
}
void unlock()
@@ -73,6 +70,11 @@ namespace boost
}
}
bool locked()
{
return mutex.locked();
}
private:
bool try_recursive_lock(long current_thread_id)
{
@@ -115,6 +117,4 @@ namespace boost
#define BOOST_BASIC_RECURSIVE_MUTEX_INITIALIZER {0}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -3,7 +3,7 @@
// basic_timed_mutex_win32.hpp
//
// (C) Copyright 2006-8 Anthony Williams
// (C) Copyright 2006 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -13,21 +13,15 @@
#include "thread_primitives.hpp"
#include "interlocked_read.hpp"
#include <boost/thread/thread_time.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/detail/interlocked.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
struct basic_timed_mutex
{
BOOST_STATIC_CONSTANT(unsigned char,lock_flag_bit=31);
BOOST_STATIC_CONSTANT(unsigned char,event_set_flag_bit=30);
BOOST_STATIC_CONSTANT(long,lock_flag_value=1<<lock_flag_bit);
BOOST_STATIC_CONSTANT(long,event_set_flag_value=1<<event_set_flag_bit);
BOOST_STATIC_CONSTANT(long,lock_flag_value=0x80000000);
long active_count;
void* event;
@@ -39,14 +33,7 @@ namespace boost
void destroy()
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4312)
#endif
void* const old_event=BOOST_INTERLOCKED_EXCHANGE_POINTER(&event,0);
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
if(old_event)
{
win32::CloseHandle(old_event);
@@ -56,55 +43,61 @@ namespace boost
bool try_lock()
{
return !win32::interlocked_bit_test_and_set(&active_count,lock_flag_bit);
long old_count=active_count&~lock_flag_value;
do
{
long const current_count=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,(old_count+1)|lock_flag_value,old_count);
if(current_count==old_count)
{
return true;
}
old_count=current_count;
}
while(!(old_count&lock_flag_value));
return false;
}
void lock()
{
BOOST_VERIFY(timed_lock(::boost::detail::get_system_time_sentinel()));
bool const success=timed_lock(::boost::detail::get_system_time_sentinel());
BOOST_ASSERT(success);
}
bool timed_lock(::boost::system_time const& wait_until)
{
if(!win32::interlocked_bit_test_and_set(&active_count,lock_flag_bit))
{
return true;
}
long old_count=active_count;
for(;;)
while(true)
{
long const new_count=(old_count&lock_flag_value)?(old_count+1):(old_count|lock_flag_value);
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,new_count,old_count);
if(current==old_count)
long const current_count=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,(old_count+1)|lock_flag_value,old_count);
if(current_count==old_count)
{
break;
}
old_count=current;
old_count=current_count;
}
if(old_count&lock_flag_value)
{
bool lock_acquired=false;
void* const sem=get_event();
++old_count; // we're waiting, too
do
{
old_count-=(lock_flag_value+1); // there will be one less active thread on this mutex when it gets unlocked
if(win32::WaitForSingleObject(sem,::boost::detail::get_milliseconds_until(wait_until))!=0)
{
BOOST_INTERLOCKED_DECREMENT(&active_count);
return false;
}
old_count&=~lock_flag_value;
old_count|=event_set_flag_value;
for(;;)
do
{
long const new_count=((old_count&lock_flag_value)?old_count:((old_count-1)|lock_flag_value))&~event_set_flag_value;
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,new_count,old_count);
if(current==old_count)
long const current_count=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,old_count|lock_flag_value,old_count);
if(current_count==old_count)
{
break;
}
old_count=current;
old_count=current_count;
}
while(!(old_count&lock_flag_value));
lock_acquired=!(old_count&lock_flag_value);
}
while(!lock_acquired);
@@ -112,30 +105,27 @@ namespace boost
return true;
}
template<typename Duration>
bool timed_lock(Duration const& timeout)
long get_active_count()
{
return timed_lock(get_system_time()+timeout);
}
bool timed_lock(boost::xtime const& timeout)
{
return timed_lock(system_time(timeout));
return ::boost::detail::interlocked_read_acquire(&active_count);
}
void unlock()
{
long const offset=lock_flag_value;
long const old_count=BOOST_INTERLOCKED_EXCHANGE_ADD(&active_count,lock_flag_value);
if(!(old_count&event_set_flag_value) && (old_count>offset))
long const offset=lock_flag_value+1;
long old_count=BOOST_INTERLOCKED_EXCHANGE_ADD(&active_count,(~offset)+1);
if(old_count>offset)
{
if(!win32::interlocked_bit_test_and_set(&active_count,event_set_flag_bit))
{
win32::SetEvent(get_event());
}
win32::SetEvent(get_event());
}
}
bool locked()
{
return get_active_count()>=lock_flag_value;
}
private:
void* get_event()
{
@@ -144,15 +134,7 @@ namespace boost
if(!current_event)
{
void* const new_event=win32::create_anonymous_event(win32::auto_reset_event,win32::event_initially_reset);
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4311)
#pragma warning(disable:4312)
#endif
void* const old_event=BOOST_INTERLOCKED_COMPARE_EXCHANGE_POINTER(&event,new_event,0);
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
if(old_event!=0)
{
win32::CloseHandle(new_event);
@@ -173,6 +155,4 @@ namespace boost
#define BOOST_BASIC_TIMED_MUTEX_INITIALIZER {0}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -3,7 +3,7 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007 Anthony Williams
#include <boost/thread/mutex.hpp>
#include "thread_primitives.hpp"
@@ -13,119 +13,75 @@
#include <boost/thread/thread.hpp>
#include <boost/thread/thread_time.hpp>
#include "interlocked_read.hpp"
#include <boost/thread/xtime.hpp>
#include <vector>
#include <boost/intrusive_ptr.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
class basic_cv_list_entry;
void intrusive_ptr_add_ref(basic_cv_list_entry * p);
void intrusive_ptr_release(basic_cv_list_entry * p);
class basic_cv_list_entry
{
private:
detail::win32::handle_manager semaphore;
detail::win32::handle_manager wake_sem;
long waiters;
bool notified;
long references;
basic_cv_list_entry(basic_cv_list_entry&);
void operator=(basic_cv_list_entry&);
public:
explicit basic_cv_list_entry(detail::win32::handle_manager const& wake_sem_):
semaphore(detail::win32::create_anonymous_semaphore(0,LONG_MAX)),
wake_sem(wake_sem_.duplicate()),
waiters(1),notified(false),references(0)
{}
static bool no_waiters(boost::intrusive_ptr<basic_cv_list_entry> const& entry)
{
return !detail::interlocked_read_acquire(&entry->waiters);
}
void add_waiter()
{
BOOST_INTERLOCKED_INCREMENT(&waiters);
}
void remove_waiter()
{
BOOST_INTERLOCKED_DECREMENT(&waiters);
}
void release(unsigned count_to_release)
{
notified=true;
detail::win32::ReleaseSemaphore(semaphore,count_to_release,0);
}
void release_waiters()
{
release(detail::interlocked_read_acquire(&waiters));
}
bool is_notified() const
{
return notified;
}
bool wait(timeout wait_until)
{
return this_thread::interruptible_wait(semaphore,wait_until);
}
bool woken()
{
unsigned long const woken_result=detail::win32::WaitForSingleObject(wake_sem,0);
BOOST_ASSERT((woken_result==detail::win32::timeout) || (woken_result==0));
return woken_result==0;
}
friend void intrusive_ptr_add_ref(basic_cv_list_entry * p);
friend void intrusive_ptr_release(basic_cv_list_entry * p);
};
inline void intrusive_ptr_add_ref(basic_cv_list_entry * p)
{
BOOST_INTERLOCKED_INCREMENT(&p->references);
}
inline void intrusive_ptr_release(basic_cv_list_entry * p)
{
if(!BOOST_INTERLOCKED_DECREMENT(&p->references))
{
delete p;
}
}
class basic_condition_variable
{
boost::mutex internal_mutex;
long total_count;
unsigned active_generation_count;
typedef basic_cv_list_entry list_entry;
typedef boost::intrusive_ptr<list_entry> entry_ptr;
typedef std::vector<entry_ptr> generation_list;
generation_list generations;
detail::win32::handle_manager wake_sem;
void wake_waiters(long count_to_wake)
struct list_entry
{
detail::interlocked_write_release(&total_count,total_count-count_to_wake);
detail::win32::ReleaseSemaphore(wake_sem,count_to_wake,0);
detail::win32::handle semaphore;
long count;
bool notified;
};
BOOST_STATIC_CONSTANT(unsigned,generation_count=3);
list_entry generations[generation_count];
detail::win32::handle wake_sem;
static bool no_waiters(list_entry const& entry)
{
return entry.count==0;
}
void shift_generations_down()
{
list_entry* const last_active_entry=std::remove_if(generations,generations+generation_count,no_waiters);
if(last_active_entry==generations+generation_count)
{
broadcast_entry(generations[generation_count-1],false);
}
else
{
active_generation_count=(last_active_entry-generations)+1;
}
std::copy_backward(generations,generations+active_generation_count-1,generations+active_generation_count);
generations[0]=list_entry();
}
void broadcast_entry(list_entry& entry,bool wake)
{
long const count_to_wake=entry.count;
detail::interlocked_write_release(&total_count,total_count-count_to_wake);
if(wake)
{
detail::win32::ReleaseSemaphore(wake_sem,count_to_wake,0);
}
detail::win32::ReleaseSemaphore(entry.semaphore,count_to_wake,0);
entry.count=0;
dispose_entry(entry);
}
void dispose_entry(list_entry& entry)
{
if(entry.semaphore)
{
unsigned long const close_result=detail::win32::CloseHandle(entry.semaphore);
BOOST_ASSERT(close_result);
entry.semaphore=0;
}
entry.notified=false;
}
template<typename lock_type>
struct relocker
{
@@ -148,123 +104,116 @@ namespace boost
}
}
private:
relocker(relocker&);
void operator=(relocker&);
};
entry_ptr get_wait_entry()
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!wake_sem)
{
wake_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
BOOST_ASSERT(wake_sem);
}
detail::interlocked_write_release(&total_count,total_count+1);
if(generations.empty() || generations.back()->is_notified())
{
entry_ptr new_entry(new list_entry(wake_sem));
generations.push_back(new_entry);
return new_entry;
}
else
{
generations.back()->add_waiter();
return generations.back();
}
}
struct entry_manager
{
entry_ptr const entry;
entry_manager(entry_ptr const& entry_):
entry(entry_)
{}
~entry_manager()
{
entry->remove_waiter();
}
list_entry* operator->()
{
return entry.get();
}
private:
void operator=(entry_manager&);
entry_manager(entry_manager&);
};
protected:
template<typename lock_type>
bool do_wait(lock_type& lock,timeout wait_until)
bool do_wait(lock_type& lock,::boost::system_time const& wait_until)
{
relocker<lock_type> locker(lock);
entry_manager entry(get_wait_entry());
locker.unlock();
detail::win32::handle_manager local_wake_sem;
detail::win32::handle_manager sem;
bool first_loop=true;
bool woken=false;
relocker<lock_type> locker(lock);
while(!woken)
{
if(!entry->wait(wait_until))
{
return false;
boost::mutex::scoped_lock internal_lock(internal_mutex);
detail::interlocked_write_release(&total_count,total_count+1);
if(first_loop)
{
locker.unlock();
if(!wake_sem)
{
wake_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
BOOST_ASSERT(wake_sem);
}
local_wake_sem=detail::win32::duplicate_handle(wake_sem);
if(generations[0].notified)
{
shift_generations_down();
}
else if(!active_generation_count)
{
active_generation_count=1;
}
first_loop=false;
}
if(!generations[0].semaphore)
{
generations[0].semaphore=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
BOOST_ASSERT(generations[0].semaphore);
}
++generations[0].count;
sem=detail::win32::duplicate_handle(generations[0].semaphore);
}
unsigned long const wait_result=detail::win32::WaitForSingleObject(sem,::boost::detail::get_milliseconds_until(wait_until));
if(wait_result==detail::win32::timeout)
{
break;
}
BOOST_ASSERT(!wait_result);
woken=entry->woken();
unsigned long const woken_result=detail::win32::WaitForSingleObject(local_wake_sem,0);
BOOST_ASSERT(woken_result==detail::win32::timeout || woken_result==0);
woken=(woken_result==0);
}
return woken;
}
template<typename lock_type,typename predicate_type>
bool do_wait(lock_type& m,timeout const& wait_until,predicate_type pred)
{
while (!pred())
{
if(!do_wait(m, wait_until))
return pred();
}
return true;
}
basic_condition_variable(const basic_condition_variable& other);
basic_condition_variable& operator=(const basic_condition_variable& other);
public:
basic_condition_variable():
total_count(0),active_generation_count(0),wake_sem(0)
{}
{
for(unsigned i=0;i<generation_count;++i)
{
generations[i]=list_entry();
}
}
~basic_condition_variable()
{}
{
for(unsigned i=0;i<generation_count;++i)
{
dispose_entry(generations[i]);
}
detail::win32::CloseHandle(wake_sem);
}
void notify_one()
{
if(detail::interlocked_read_acquire(&total_count))
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!total_count)
boost::mutex::scoped_lock internal_lock(internal_mutex);
detail::win32::ReleaseSemaphore(wake_sem,1,0);
for(unsigned generation=active_generation_count;generation!=0;--generation)
{
return;
list_entry& entry=generations[generation-1];
if(entry.count)
{
detail::interlocked_write_release(&total_count,total_count-1);
entry.notified=true;
detail::win32::ReleaseSemaphore(entry.semaphore,1,0);
if(!--entry.count)
{
dispose_entry(entry);
if(generation==active_generation_count)
{
--active_generation_count;
}
}
}
}
wake_waiters(1);
for(generation_list::iterator it=generations.begin(),
end=generations.end();
it!=end;++it)
{
(*it)->release(1);
}
generations.erase(std::remove_if(generations.begin(),generations.end(),&basic_cv_list_entry::no_waiters),generations.end());
}
}
@@ -272,20 +221,16 @@ namespace boost
{
if(detail::interlocked_read_acquire(&total_count))
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!total_count)
boost::mutex::scoped_lock internal_lock(internal_mutex);
for(unsigned generation=active_generation_count;generation!=0;--generation)
{
return;
list_entry& entry=generations[generation-1];
if(entry.count)
{
broadcast_entry(entry,true);
}
}
wake_waiters(total_count);
for(generation_list::iterator it=generations.begin(),
end=generations.end();
it!=end;++it)
{
(*it)->release_waiters();
}
generations.clear();
wake_sem=detail::win32::handle(0);
active_generation_count=0;
}
}
@@ -293,21 +238,12 @@ namespace boost
}
class condition_variable:
private detail::basic_condition_variable
public detail::basic_condition_variable
{
private:
condition_variable(condition_variable&);
void operator=(condition_variable&);
public:
condition_variable()
{}
using detail::basic_condition_variable::notify_one;
using detail::basic_condition_variable::notify_all;
void wait(unique_lock<mutex>& m)
{
do_wait(m,detail::timeout::sentinel());
do_wait(m,::boost::detail::get_system_time_sentinel());
}
template<typename predicate_type>
@@ -322,50 +258,26 @@ namespace boost
return do_wait(m,wait_until);
}
bool timed_wait(unique_lock<mutex>& m,boost::xtime const& wait_until)
{
return do_wait(m,system_time(wait_until));
}
template<typename duration_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration)
{
return do_wait(m,wait_duration.total_milliseconds());
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until,predicate_type pred)
{
return do_wait(m,wait_until,pred);
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::xtime const& wait_until,predicate_type pred)
{
return do_wait(m,system_time(wait_until),pred);
}
template<typename duration_type,typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration,predicate_type pred)
{
return do_wait(m,wait_duration.total_milliseconds(),pred);
while (!pred())
{
if(!timed_wait(m, wait_until))
return false;
}
return true;
}
};
class condition_variable_any:
private detail::basic_condition_variable
public detail::basic_condition_variable
{
private:
condition_variable_any(condition_variable_any&);
void operator=(condition_variable_any&);
public:
condition_variable_any()
{}
using detail::basic_condition_variable::notify_one;
using detail::basic_condition_variable::notify_all;
template<typename lock_type>
void wait(lock_type& m)
{
do_wait(m,detail::timeout::sentinel());
do_wait(m,::boost::detail::get_system_time_sentinel());
}
template<typename lock_type,typename predicate_type>
@@ -380,39 +292,18 @@ namespace boost
return do_wait(m,wait_until);
}
template<typename lock_type>
bool timed_wait(lock_type& m,boost::xtime const& wait_until)
{
return do_wait(m,system_time(wait_until));
}
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration)
{
return do_wait(m,wait_duration.total_milliseconds());
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::system_time const& wait_until,predicate_type pred)
{
return do_wait(m,wait_until,pred);
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::xtime const& wait_until,predicate_type pred)
{
return do_wait(m,system_time(wait_until),pred);
}
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
{
return do_wait(m,wait_duration.total_milliseconds(),pred);
while (!pred())
{
if(!timed_wait(m, wait_until))
return false;
}
return true;
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -3,16 +3,12 @@
// interlocked_read_win32.hpp
//
// (C) Copyright 2005-8 Anthony Williams
// (C) Copyright 2005-7 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/detail/interlocked.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_MSVC
extern "C" void _ReadWriteBarrier(void);
@@ -50,6 +46,8 @@ namespace boost
#else
#include <boost/detail/interlocked.hpp>
namespace boost
{
namespace detail
@@ -75,6 +73,5 @@ namespace boost
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -10,8 +10,6 @@
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
@@ -20,7 +18,7 @@ namespace boost
}
class mutex:
boost::noncopyable,
boost::noncopyable,
public ::boost::detail::underlying_mutex
{
public:
@@ -34,7 +32,7 @@ namespace boost
}
typedef unique_lock<mutex> scoped_lock;
typedef detail::try_lock_wrapper<mutex> scoped_try_lock;
typedef scoped_lock scoped_try_lock;
};
typedef mutex try_mutex;
@@ -55,11 +53,9 @@ namespace boost
}
typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -18,8 +18,6 @@
#include <boost/thread/win32/thread_primitives.hpp>
#include <boost/thread/win32/interlocked_read.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std
{
@@ -42,14 +40,14 @@ namespace boost
explicit win32_mutex_scoped_lock(void* mutex_handle_):
mutex_handle(mutex_handle_)
{
BOOST_VERIFY(!win32::WaitForSingleObject(mutex_handle,win32::infinite));
unsigned long const res=win32::WaitForSingleObject(mutex_handle,win32::infinite);
BOOST_ASSERT(!res);
}
~win32_mutex_scoped_lock()
{
BOOST_VERIFY(win32::ReleaseMutex(mutex_handle)!=0);
bool const success=win32::ReleaseMutex(mutex_handle)!=0;
BOOST_ASSERT(success);
}
private:
void operator=(win32_mutex_scoped_lock&);
};
#ifdef BOOST_NO_ANSI_APIS
@@ -98,9 +96,9 @@ namespace boost
detail::int_to_string(win32::GetCurrentProcessId(), mutex_name + once_mutex_name_fixed_length + sizeof(void*)*2);
#ifdef BOOST_NO_ANSI_APIS
return win32::CreateMutexW(0, 0, mutex_name);
return win32::CreateMutexW(NULL, 0, mutex_name);
#else
return win32::CreateMutexA(0, 0, mutex_name);
return win32::CreateMutexA(NULL, 0, mutex_name);
#endif
}
@@ -131,6 +129,4 @@ namespace boost
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -15,8 +15,6 @@
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class recursive_mutex:
@@ -34,7 +32,7 @@ namespace boost
}
typedef unique_lock<recursive_mutex> scoped_lock;
typedef detail::try_lock_wrapper<recursive_mutex> scoped_try_lock;
typedef scoped_lock scoped_try_lock;
};
typedef recursive_mutex recursive_try_mutex;
@@ -54,11 +52,10 @@ namespace boost
}
typedef unique_lock<recursive_timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<recursive_timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,7 +1,7 @@
#ifndef BOOST_THREAD_WIN32_SHARED_MUTEX_HPP
#define BOOST_THREAD_WIN32_SHARED_MUTEX_HPP
// (C) Copyright 2006-8 Anthony Williams
// (C) Copyright 2006-7 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -15,8 +15,6 @@
#include <boost/utility.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class shared_mutex:
@@ -25,12 +23,12 @@ namespace boost
private:
struct state_data
{
unsigned shared_count:11,
shared_waiting:11,
exclusive:1,
upgrade:1,
exclusive_waiting:7,
exclusive_waiting_blocked:1;
unsigned shared_count:11;
unsigned shared_waiting:11;
unsigned exclusive:1;
unsigned upgrade:1;
unsigned exclusive_waiting:7;
unsigned exclusive_waiting_blocked:1;
friend bool operator==(state_data const& lhs,state_data const& rhs)
{
@@ -50,21 +48,23 @@ namespace boost
}
state_data state;
detail::win32::handle semaphores[2];
detail::win32::handle &unlock_sem;
detail::win32::handle &exclusive_sem;
detail::win32::handle upgrade_sem;
void* semaphores[2];
void* &unlock_sem;
void* &exclusive_sem;
void* upgrade_sem;
void release_waiters(state_data old_state)
{
if(old_state.exclusive_waiting)
{
BOOST_VERIFY(detail::win32::ReleaseSemaphore(exclusive_sem,1,0)!=0);
bool const success=detail::win32::ReleaseSemaphore(exclusive_sem,1,NULL)!=0;
BOOST_ASSERT(success);
}
if(old_state.shared_waiting || old_state.exclusive_waiting)
{
BOOST_VERIFY(detail::win32::ReleaseSemaphore(unlock_sem,old_state.shared_waiting + (old_state.exclusive_waiting?1:0),0)!=0);
bool const success=detail::win32::ReleaseSemaphore(unlock_sem,old_state.shared_waiting + (old_state.exclusive_waiting?1:0),NULL)!=0;
BOOST_ASSERT(success);
}
}
@@ -91,7 +91,7 @@ namespace boost
bool try_lock_shared()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
if(!new_state.exclusive && !new_state.exclusive_waiting_blocked)
@@ -106,26 +106,22 @@ namespace boost
}
old_state=current_state;
}
while(true);
return !(old_state.exclusive| old_state.exclusive_waiting_blocked);
}
void lock_shared()
{
BOOST_VERIFY(timed_lock_shared(::boost::detail::get_system_time_sentinel()));
}
template<typename TimeDuration>
bool timed_lock_shared(TimeDuration const & relative_time)
{
return timed_lock_shared(get_system_time()+relative_time);
bool const success=timed_lock_shared(::boost::detail::get_system_time_sentinel());
BOOST_ASSERT(success);
}
bool timed_lock_shared(boost::system_time const& wait_until)
{
for(;;)
while(true)
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
if(new_state.exclusive || new_state.exclusive_waiting_blocked)
@@ -144,6 +140,7 @@ namespace boost
}
old_state=current_state;
}
while(true);
if(!(old_state.exclusive| old_state.exclusive_waiting_blocked))
{
@@ -153,7 +150,7 @@ namespace boost
unsigned long const res=detail::win32::WaitForSingleObject(unlock_sem,::boost::detail::get_milliseconds_until(wait_until));
if(res==detail::win32::timeout)
{
for(;;)
do
{
state_data new_state=old_state;
if(new_state.exclusive || new_state.exclusive_waiting_blocked)
@@ -175,6 +172,7 @@ namespace boost
}
old_state=current_state;
}
while(true);
if(!(old_state.exclusive| old_state.exclusive_waiting_blocked))
{
@@ -190,7 +188,7 @@ namespace boost
void unlock_shared()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
bool const last_reader=!--new_state.shared_count;
@@ -220,7 +218,8 @@ namespace boost
{
if(old_state.upgrade)
{
BOOST_VERIFY(detail::win32::ReleaseSemaphore(upgrade_sem,1,0)!=0);
bool const success=detail::win32::ReleaseSemaphore(upgrade_sem,1,NULL)!=0;
BOOST_ASSERT(success);
}
else
{
@@ -231,52 +230,22 @@ namespace boost
}
old_state=current_state;
}
while(true);
}
void lock()
{
BOOST_VERIFY(timed_lock(::boost::detail::get_system_time_sentinel()));
bool const success=timed_lock(::boost::detail::get_system_time_sentinel());
BOOST_ASSERT(success);
}
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
}
bool try_lock()
{
state_data old_state=state;
for(;;)
{
state_data new_state=old_state;
if(new_state.shared_count || new_state.exclusive)
{
return false;
}
else
{
new_state.exclusive=true;
}
state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state);
if(current_state==old_state)
{
break;
}
old_state=current_state;
}
return true;
}
bool timed_lock(boost::system_time const& wait_until)
{
for(;;)
while(true)
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
if(new_state.shared_count || new_state.exclusive)
@@ -296,6 +265,7 @@ namespace boost
}
old_state=current_state;
}
while(true);
if(!old_state.shared_count && !old_state.exclusive)
{
@@ -304,17 +274,14 @@ namespace boost
unsigned long const wait_res=detail::win32::WaitForMultipleObjects(2,semaphores,true,::boost::detail::get_milliseconds_until(wait_until));
if(wait_res==detail::win32::timeout)
{
for(;;)
do
{
state_data new_state=old_state;
if(new_state.shared_count || new_state.exclusive)
{
if(new_state.exclusive_waiting)
{
if(!--new_state.exclusive_waiting)
{
new_state.exclusive_waiting_blocked=false;
}
--new_state.exclusive_waiting;
}
}
else
@@ -329,6 +296,7 @@ namespace boost
}
old_state=current_state;
}
while(true);
if(!old_state.shared_count && !old_state.exclusive)
{
return true;
@@ -342,7 +310,7 @@ namespace boost
void unlock()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
new_state.exclusive=false;
@@ -360,15 +328,16 @@ namespace boost
}
old_state=current_state;
}
while(true);
release_waiters(old_state);
}
void lock_upgrade()
{
for(;;)
while(true)
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
if(new_state.exclusive || new_state.exclusive_waiting_blocked || new_state.upgrade)
@@ -388,46 +357,22 @@ namespace boost
}
old_state=current_state;
}
while(true);
if(!(old_state.exclusive|| old_state.exclusive_waiting_blocked|| old_state.upgrade))
{
return;
}
BOOST_VERIFY(!detail::win32::WaitForSingleObject(unlock_sem,detail::win32::infinite));
unsigned long const res=detail::win32::WaitForSingleObject(unlock_sem,detail::win32::infinite);
BOOST_ASSERT(res==0);
}
}
bool try_lock_upgrade()
{
state_data old_state=state;
for(;;)
{
state_data new_state=old_state;
if(new_state.exclusive || new_state.exclusive_waiting_blocked || new_state.upgrade)
{
return false;
}
else
{
++new_state.shared_count;
new_state.upgrade=true;
}
state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state);
if(current_state==old_state)
{
break;
}
old_state=current_state;
}
return true;
}
void unlock_upgrade()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
new_state.upgrade=false;
@@ -454,12 +399,13 @@ namespace boost
}
old_state=current_state;
}
while(true);
}
void unlock_upgrade_and_lock()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
bool const last_reader=!--new_state.shared_count;
@@ -475,18 +421,20 @@ namespace boost
{
if(!last_reader)
{
BOOST_VERIFY(!detail::win32::WaitForSingleObject(upgrade_sem,detail::win32::infinite));
unsigned long const res=detail::win32::WaitForSingleObject(upgrade_sem,detail::win32::infinite);
BOOST_ASSERT(res==0);
}
break;
}
old_state=current_state;
}
while(true);
}
void unlock_and_lock_upgrade()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
new_state.exclusive=false;
@@ -506,13 +454,14 @@ namespace boost
}
old_state=current_state;
}
while(true);
release_waiters(old_state);
}
void unlock_and_lock_shared()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
new_state.exclusive=false;
@@ -531,13 +480,14 @@ namespace boost
}
old_state=current_state;
}
while(true);
release_waiters(old_state);
}
void unlock_upgrade_and_lock_shared()
{
state_data old_state=state;
for(;;)
do
{
state_data new_state=old_state;
new_state.upgrade=false;
@@ -555,12 +505,12 @@ namespace boost
}
old_state=current_state;
}
while(true);
release_waiters(old_state);
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,178 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_THREAD_DATA_HPP
#define BOOST_THREAD_PTHREAD_THREAD_DATA_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2008 Anthony Williams
#include <boost/thread/detail/config.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/thread/thread_time.hpp>
#include "thread_primitives.hpp"
#include "thread_heap_alloc.hpp"
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
struct thread_exit_callback_node;
struct tss_data_node;
struct thread_data_base;
void intrusive_ptr_add_ref(thread_data_base * p);
void intrusive_ptr_release(thread_data_base * p);
struct thread_data_base
{
long count;
detail::win32::handle_manager thread_handle;
detail::win32::handle_manager interruption_handle;
boost::detail::thread_exit_callback_node* thread_exit_callbacks;
boost::detail::tss_data_node* tss_data;
bool interruption_enabled;
unsigned id;
thread_data_base():
count(0),thread_handle(detail::win32::invalid_handle_value),
interruption_handle(create_anonymous_event(detail::win32::manual_reset_event,detail::win32::event_initially_reset)),
thread_exit_callbacks(0),tss_data(0),
interruption_enabled(true),
id(0)
{}
virtual ~thread_data_base()
{}
friend void intrusive_ptr_add_ref(thread_data_base * p)
{
BOOST_INTERLOCKED_INCREMENT(&p->count);
}
friend void intrusive_ptr_release(thread_data_base * p)
{
if(!BOOST_INTERLOCKED_DECREMENT(&p->count))
{
detail::heap_delete(p);
}
}
void interrupt()
{
BOOST_VERIFY(detail::win32::SetEvent(interruption_handle)!=0);
}
typedef detail::win32::handle native_handle_type;
virtual void run()=0;
};
typedef boost::intrusive_ptr<detail::thread_data_base> thread_data_ptr;
struct timeout
{
unsigned long start;
uintmax_t milliseconds;
bool relative;
boost::system_time abs_time;
static unsigned long const max_non_infinite_wait=0xfffffffe;
timeout(uintmax_t milliseconds_):
start(win32::GetTickCount()),
milliseconds(milliseconds_),
relative(true),
abs_time(boost::get_system_time())
{}
timeout(boost::system_time const& abs_time_):
start(win32::GetTickCount()),
milliseconds(0),
relative(false),
abs_time(abs_time_)
{}
struct remaining_time
{
bool more;
unsigned long milliseconds;
remaining_time(uintmax_t remaining):
more(remaining>max_non_infinite_wait),
milliseconds(more?max_non_infinite_wait:(unsigned long)remaining)
{}
};
remaining_time remaining_milliseconds() const
{
if(is_sentinel())
{
return remaining_time(win32::infinite);
}
else if(relative)
{
unsigned long const now=win32::GetTickCount();
unsigned long const elapsed=now-start;
return remaining_time((elapsed<milliseconds)?(milliseconds-elapsed):0);
}
else
{
system_time const now=get_system_time();
if(abs_time<=now)
{
return remaining_time(0);
}
return remaining_time((abs_time-now).total_milliseconds()+1);
}
}
bool is_sentinel() const
{
return milliseconds==~uintmax_t(0);
}
static timeout sentinel()
{
return timeout(sentinel_type());
}
private:
struct sentinel_type
{};
explicit timeout(sentinel_type):
start(0),milliseconds(~uintmax_t(0)),relative(true)
{}
};
}
namespace this_thread
{
void BOOST_THREAD_DECL yield();
bool BOOST_THREAD_DECL interruptible_wait(detail::win32::handle handle_to_wait_for,detail::timeout target_time);
inline void interruptible_wait(unsigned long milliseconds)
{
interruptible_wait(detail::win32::invalid_handle_value,milliseconds);
}
inline void interruptible_wait(system_time const& abs_time)
{
interruptible_wait(detail::win32::invalid_handle_value,abs_time);
}
template<typename TimeDuration>
inline void sleep(TimeDuration const& rel_time)
{
interruptible_wait(static_cast<unsigned long>(rel_time.total_milliseconds()));
}
inline void sleep(system_time const& abs_time)
{
interruptible_wait(abs_time);
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,397 +0,0 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007 Anthony Williams
#ifndef THREAD_HEAP_ALLOC_HPP
#define THREAD_HEAP_ALLOC_HPP
#include <new>
#include "thread_primitives.hpp"
#include <stdexcept>
#include <boost/assert.hpp>
#if defined( BOOST_USE_WINDOWS_H )
# include <windows.h>
namespace boost
{
namespace detail
{
namespace win32
{
using ::GetProcessHeap;
using ::HeapAlloc;
using ::HeapFree;
}
}
}
#else
# ifdef HeapAlloc
# undef HeapAlloc
# endif
namespace boost
{
namespace detail
{
namespace win32
{
extern "C"
{
__declspec(dllimport) handle __stdcall GetProcessHeap();
__declspec(dllimport) void* __stdcall HeapAlloc(handle,unsigned long,ulong_ptr);
__declspec(dllimport) int __stdcall HeapFree(handle,unsigned long,void*);
}
}
}
}
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
inline BOOST_THREAD_DECL void* allocate_raw_heap_memory(unsigned size)
{
void* const heap_memory=detail::win32::HeapAlloc(detail::win32::GetProcessHeap(),0,size);
if(!heap_memory)
{
throw std::bad_alloc();
}
return heap_memory;
}
inline BOOST_THREAD_DECL void free_raw_heap_memory(void* heap_memory)
{
BOOST_VERIFY(detail::win32::HeapFree(detail::win32::GetProcessHeap(),0,heap_memory)!=0);
}
template<typename T>
inline T* heap_new()
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T();
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
#ifdef BOOST_HAS_RVALUE_REFS
template<typename T,typename A1>
inline T* heap_new(A1&& a1)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(static_cast<A1&&>(a1));
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1&& a1,A2&& a2)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(static_cast<A1&&>(a1),static_cast<A2&&>(a2));
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1&& a1,A2&& a2,A3&& a3)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(static_cast<A1&&>(a1),static_cast<A2&&>(a2),
static_cast<A3&&>(a3));
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1&& a1,A2&& a2,A3&& a3,A4&& a4)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(static_cast<A1&&>(a1),static_cast<A2&&>(a2),
static_cast<A3&&>(a3),static_cast<A4&&>(a4));
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
#else
template<typename T,typename A1>
inline T* heap_new_impl(A1 a1)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(a1);
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1,typename A2>
inline T* heap_new_impl(A1 a1,A2 a2)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(a1,a2);
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new_impl(A1 a1,A2 a2,A3 a3)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(a1,a2,a3);
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new_impl(A1 a1,A2 a2,A3 a3,A4 a4)
{
void* const heap_memory=allocate_raw_heap_memory(sizeof(T));
try
{
T* const data=new (heap_memory) T(a1,a2,a3,a4);
return data;
}
catch(...)
{
free_raw_heap_memory(heap_memory);
throw;
}
}
template<typename T,typename A1>
inline T* heap_new(A1 const& a1)
{
return heap_new_impl<T,A1 const&>(a1);
}
template<typename T,typename A1>
inline T* heap_new(A1& a1)
{
return heap_new_impl<T,A1&>(a1);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1 const& a1,A2 const& a2)
{
return heap_new_impl<T,A1 const&,A2 const&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1& a1,A2 const& a2)
{
return heap_new_impl<T,A1&,A2 const&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1 const& a1,A2& a2)
{
return heap_new_impl<T,A1 const&,A2&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1& a1,A2& a2)
{
return heap_new_impl<T,A1&,A2&>(a1,a2);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3)
{
return heap_new_impl<T,A1&,A2&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3)
{
return heap_new_impl<T,A1&,A2 const&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3)
{
return heap_new_impl<T,A1 const&,A2&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2& a2,A3& a3)
{
return heap_new_impl<T,A1&,A2&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2&,A3&,A4&>(a1,a2,a3,a4);
}
#endif
template<typename T>
inline void heap_delete(T* data)
{
data->~T();
free_raw_heap_memory(data);
}
template<typename T>
struct do_heap_delete
{
void operator()(T* data) const
{
detail::heap_delete(data);
}
};
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -3,8 +3,7 @@
// win32_thread_primitives.hpp
//
// (C) Copyright 2005-7 Anthony Williams
// (C) Copyright 2007 David Deakins
// (C) Copyright 2005-6 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -13,12 +12,9 @@
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/detail/interlocked.hpp>
#include <algorithm>
#if defined( BOOST_USE_WINDOWS_H )
# include <windows.h>
namespace boost
{
namespace detail
@@ -29,17 +25,10 @@ namespace boost
typedef HANDLE handle;
unsigned const infinite=INFINITE;
unsigned const timeout=WAIT_TIMEOUT;
handle const invalid_handle_value=INVALID_HANDLE_VALUE;
# ifdef BOOST_NO_ANSI_APIS
using ::CreateMutexW;
using ::CreateEventW;
using ::CreateSemaphoreW;
# else
using ::CreateMutexA;
using ::CreateEventA;
using ::CreateSemaphoreA;
# endif
using ::CloseHandle;
using ::ReleaseMutex;
using ::ReleaseSemaphore;
@@ -53,36 +42,11 @@ namespace boost
using ::GetCurrentProcess;
using ::DuplicateHandle;
using ::SleepEx;
using ::Sleep;
using ::QueueUserAPC;
using ::GetTickCount;
}
}
}
#elif defined( WIN32 ) || defined( _WIN32 ) || defined( __WIN32__ )
# ifdef UNDER_CE
# ifndef WINAPI
# ifndef _WIN32_WCE_EMULATION
# define WINAPI __cdecl // Note this doesn't match the desktop definition
# else
# define WINAPI __stdcall
# endif
# endif
# ifdef __cplusplus
extern "C" {
# endif
typedef int BOOL;
typedef unsigned long DWORD;
typedef void* HANDLE;
# include <kfuncs.h>
# ifdef __cplusplus
}
# endif
# endif
namespace boost
{
namespace detail
@@ -98,48 +62,28 @@ namespace boost
typedef void* handle;
unsigned const infinite=~0U;
unsigned const timeout=258U;
handle const invalid_handle_value=(handle)(-1);
extern "C"
{
struct _SECURITY_ATTRIBUTES;
# ifdef BOOST_NO_ANSI_APIS
__declspec(dllimport) void* __stdcall CreateMutexW(_SECURITY_ATTRIBUTES*,int,wchar_t const*);
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES*,long,long,wchar_t const*);
__declspec(dllimport) void* __stdcall CreateEventW(_SECURITY_ATTRIBUTES*,int,int,wchar_t const*);
# else
__declspec(dllimport) void* __stdcall CreateMutexA(_SECURITY_ATTRIBUTES*,int,char const*);
__declspec(dllimport) void* __stdcall CreateSemaphoreA(_SECURITY_ATTRIBUTES*,long,long,char const*);
__declspec(dllimport) void* __stdcall CreateEventA(_SECURITY_ATTRIBUTES*,int,int,char const*);
# endif
__declspec(dllimport) int __stdcall CloseHandle(void*);
__declspec(dllimport) int __stdcall ReleaseMutex(void*);
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void*,unsigned long);
__declspec(dllimport) unsigned long __stdcall WaitForMultipleObjects(unsigned long nCount,void* const * lpHandles,int bWaitAll,unsigned long dwMilliseconds);
__declspec(dllimport) int __stdcall ReleaseSemaphore(void*,long,long*);
__declspec(dllimport) int __stdcall DuplicateHandle(void*,void*,void*,void**,unsigned long,int,unsigned long);
__declspec(dllimport) unsigned long __stdcall SleepEx(unsigned long,int);
__declspec(dllimport) void __stdcall Sleep(unsigned long);
typedef void (__stdcall *queue_user_apc_callback_function)(ulong_ptr);
__declspec(dllimport) unsigned long __stdcall QueueUserAPC(queue_user_apc_callback_function,void*,ulong_ptr);
__declspec(dllimport) unsigned long __stdcall GetTickCount();
# ifndef UNDER_CE
__declspec(dllimport) unsigned long __stdcall GetCurrentProcessId();
__declspec(dllimport) unsigned long __stdcall GetCurrentThreadId();
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void*,unsigned long);
__declspec(dllimport) int __stdcall ReleaseSemaphore(void*,long,long*);
__declspec(dllimport) void* __stdcall GetCurrentThread();
__declspec(dllimport) void* __stdcall GetCurrentProcess();
__declspec(dllimport) int __stdcall DuplicateHandle(void*,void*,void*,void**,unsigned long,int,unsigned long);
__declspec(dllimport) unsigned long __stdcall SleepEx(unsigned long,int);
typedef void (__stdcall *queue_user_apc_callback_function)(ulong_ptr);
__declspec(dllimport) unsigned long __stdcall QueueUserAPC(queue_user_apc_callback_function,void*,ulong_ptr);
__declspec(dllimport) int __stdcall SetEvent(void*);
__declspec(dllimport) int __stdcall ResetEvent(void*);
# else
using ::GetCurrentProcessId;
using ::GetCurrentThreadId;
using ::GetCurrentThread;
using ::GetCurrentProcess;
using ::SetEvent;
using ::ResetEvent;
# endif
__declspec(dllimport) unsigned long __stdcall WaitForMultipleObjects(unsigned long nCount,void* const * lpHandles,int bWaitAll,unsigned long dwMilliseconds);
}
}
}
@@ -148,8 +92,6 @@ namespace boost
# error "Win32 functions not available"
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
@@ -170,11 +112,7 @@ namespace boost
inline handle create_anonymous_event(event_type type,initial_event_state state)
{
#if !defined(BOOST_NO_ANSI_APIS)
handle const res=win32::CreateEventA(0,type,state,0);
#else
handle const res=win32::CreateEventW(0,type,state,0);
#endif
if(!res)
{
throw thread_resource_error();
@@ -184,11 +122,7 @@ namespace boost
inline handle create_anonymous_semaphore(long initial_count,long max_count)
{
#if !defined(BOOST_NO_ANSI_APIS)
handle const res=CreateSemaphoreA(0,initial_count,max_count,0);
#else
handle const res=CreateSemaphoreW(0,initial_count,max_count,0);
#endif
handle const res=CreateSemaphoreA(NULL,initial_count,max_count,NULL);
if(!res)
{
throw thread_resource_error();
@@ -211,7 +145,8 @@ namespace boost
inline void release_semaphore(handle semaphore,long count)
{
BOOST_VERIFY(ReleaseSemaphore(semaphore,count,0)!=0);
bool const success=ReleaseSemaphore(semaphore,count,0)!=0;
BOOST_ASSERT(success);
}
class handle_manager
@@ -223,9 +158,10 @@ namespace boost
void cleanup()
{
if(handle_to_manage && handle_to_manage!=invalid_handle_value)
if(handle_to_manage)
{
BOOST_VERIFY(CloseHandle(handle_to_manage));
unsigned long result=CloseHandle(handle_to_manage);
BOOST_ASSERT(result);
}
}
@@ -249,16 +185,6 @@ namespace boost
return handle_to_manage;
}
handle duplicate() const
{
return duplicate_handle(handle_to_manage);
}
void swap(handle_manager& other)
{
std::swap(handle_to_manage,other.handle_to_manage);
}
handle release()
{
handle const res=handle_to_manage;
@@ -281,118 +207,5 @@ namespace boost
}
}
#if defined(BOOST_MSVC) && (_MSC_VER>=1400) && !defined(UNDER_CE)
namespace boost
{
namespace detail
{
namespace win32
{
#if _MSC_VER==1400
extern "C" unsigned char _interlockedbittestandset(long *a,long b);
extern "C" unsigned char _interlockedbittestandreset(long *a,long b);
#else
extern "C" unsigned char _interlockedbittestandset(volatile long *a,long b);
extern "C" unsigned char _interlockedbittestandreset(volatile long *a,long b);
#endif
#pragma intrinsic(_interlockedbittestandset)
#pragma intrinsic(_interlockedbittestandreset)
inline bool interlocked_bit_test_and_set(long* x,long bit)
{
return _interlockedbittestandset(x,bit)!=0;
}
inline bool interlocked_bit_test_and_reset(long* x,long bit)
{
return _interlockedbittestandreset(x,bit)!=0;
}
}
}
}
#define BOOST_THREAD_BTS_DEFINED
#elif (defined(BOOST_MSVC) || defined(BOOST_INTEL_WIN)) && defined(_M_IX86)
namespace boost
{
namespace detail
{
namespace win32
{
inline bool interlocked_bit_test_and_set(long* x,long bit)
{
__asm {
mov eax,bit;
mov edx,x;
lock bts [edx],eax;
setc al;
};
}
inline bool interlocked_bit_test_and_reset(long* x,long bit)
{
__asm {
mov eax,bit;
mov edx,x;
lock btr [edx],eax;
setc al;
};
}
}
}
}
#define BOOST_THREAD_BTS_DEFINED
#endif
#ifndef BOOST_THREAD_BTS_DEFINED
namespace boost
{
namespace detail
{
namespace win32
{
inline bool interlocked_bit_test_and_set(long* x,long bit)
{
long const value=1<<bit;
long old=*x;
do
{
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(x,old|value,old);
if(current==old)
{
break;
}
old=current;
}
while(true);
return (old&value)!=0;
}
inline bool interlocked_bit_test_and_reset(long* x,long bit)
{
long const value=1<<bit;
long old=*x;
do
{
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(x,old&~value,old);
if(current==old)
{
break;
}
old=current;
}
while(true);
return (old&value)!=0;
}
}
}
}
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,6 +1,6 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -14,8 +14,6 @@
#include <boost/thread/thread_time.hpp>
#include <boost/date_time/posix_time/conversion.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost {
enum xtime_clock_types
@@ -56,26 +54,7 @@ struct xtime
};
inline xtime get_xtime(boost::system_time const& abs_time)
{
xtime res;
boost::posix_time::time_duration const time_since_epoch=abs_time-boost::posix_time::from_time_t(0);
res.sec=static_cast<xtime::xtime_sec_t>(time_since_epoch.total_seconds());
res.nsec=static_cast<xtime::xtime_nsec_t>(time_since_epoch.fractional_seconds()*(1000000000/time_since_epoch.ticks_per_second()));
return res;
}
inline int xtime_get(struct xtime* xtp, int clock_type)
{
if (clock_type == TIME_UTC)
{
*xtp=get_xtime(get_system_time());
return clock_type;
}
return 0;
}
int BOOST_THREAD_DECL xtime_get(struct xtime* xtp, int clock_type);
inline int xtime_cmp(const xtime& xt1, const xtime& xt2)
{
@@ -85,8 +64,16 @@ inline int xtime_cmp(const xtime& xt1, const xtime& xt2)
return (xt1.sec > xt2.sec) ? 1 : -1;
}
inline xtime get_xtime(boost::system_time const& abs_time)
{
xtime res={0};
boost::posix_time::time_duration const time_since_epoch=abs_time-boost::posix_time::from_time_t(0);
res.sec=static_cast<xtime::xtime_sec_t>(time_since_epoch.total_seconds());
res.nsec=static_cast<xtime::xtime_nsec_t>(time_since_epoch.fractional_seconds()*(1000000000/time_since_epoch.ticks_per_second()));
return res;
}
} // namespace boost
#include <boost/config/abi_suffix.hpp>
#endif //BOOST_XTIME_WEK070601_HPP

View File

@@ -1,6 +1,6 @@
<!-- Copyright (c) 2002-2003 William E. Kempf.
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<html>

View File

@@ -1,42 +0,0 @@
// Copyright (C) 2002-2003
// David Moore, William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/barrier.hpp>
#include <string> // see http://article.gmane.org/gmane.comp.lib.boost.devel/106981
namespace boost {
barrier::barrier(unsigned int count)
: m_threshold(count), m_count(count), m_generation(0)
{
if (count == 0)
throw std::invalid_argument("count cannot be zero.");
}
barrier::~barrier()
{
}
bool barrier::wait()
{
boost::mutex::scoped_lock lock(m_mutex);
unsigned int gen = m_generation;
if (--m_count == 0)
{
m_generation++;
m_count = m_threshold;
m_cond.notify_all();
return true;
}
while (gen == m_generation)
m_cond.wait(lock);
return false;
}
} // namespace boost

View File

@@ -1,705 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/limits.hpp>
#include <cassert>
#include "timeconv.inl"
#if defined(BOOST_HAS_WINTHREADS)
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#elif defined(BOOST_HAS_PTHREADS)
# include <errno.h>
#elif defined(BOOST_HAS_MPTASKS)
# include <MacErrors.h>
# include "mac/init.hpp"
# include "mac/safe.hpp"
#endif
// The following include can be removed after the bug on QNX
// has been tracked down. I need this only for debugging
//#if !defined(NDEBUG) && defined(BOOST_HAS_PTHREADS)
#include <iostream>
//#endif
namespace boost {
namespace detail {
#if defined(BOOST_HAS_WINTHREADS)
condition_impl::condition_impl()
: m_gone(0), m_blocked(0), m_waiting(0)
{
m_gate = reinterpret_cast<void*>(CreateSemaphore(0, 1, 1, 0));
m_queue = reinterpret_cast<void*>(
CreateSemaphore(0, 0, (std::numeric_limits<long>::max)(), 0));
m_mutex = reinterpret_cast<void*>(CreateMutex(0, 0, 0));
if (!m_gate || !m_queue || !m_mutex)
{
int res = 0;
if (m_gate)
{
res = CloseHandle(reinterpret_cast<HANDLE>(m_gate));
assert(res);
}
if (m_queue)
{
res = CloseHandle(reinterpret_cast<HANDLE>(m_queue));
assert(res);
}
if (m_mutex)
{
res = CloseHandle(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
}
throw thread_resource_error();
}
}
condition_impl::~condition_impl()
{
int res = 0;
res = CloseHandle(reinterpret_cast<HANDLE>(m_gate));
assert(res);
res = CloseHandle(reinterpret_cast<HANDLE>(m_queue));
assert(res);
res = CloseHandle(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
}
void condition_impl::notify_one()
{
unsigned signals = 0;
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
return;
}
++m_waiting;
--m_blocked;
signals = 1;
}
else
{
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = 1;
--m_blocked;
}
else
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (signals)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_queue), signals, 0);
assert(res);
}
}
void condition_impl::notify_all()
{
unsigned signals = 0;
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
return;
}
m_waiting += (signals = m_blocked);
m_blocked = 0;
}
else
{
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = m_blocked;
m_blocked = 0;
}
else
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (signals)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_queue), signals, 0);
assert(res);
}
}
void condition_impl::enter_wait()
{
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
++m_blocked;
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
void condition_impl::do_wait()
{
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue), INFINITE);
assert(res == WAIT_OBJECT_0);
unsigned was_waiting=0;
unsigned was_gone=0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1,
0); // open m_gate
assert(res);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
m_blocked -= m_gone;
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
m_gone = 0;
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue),
INFINITE);
assert(res == WAIT_OBJECT_0);
}
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
}
bool condition_impl::do_timed_wait(const xtime& xt)
{
bool ret = false;
unsigned int res = 0;
for (;;)
{
int milliseconds;
to_duration(xt, milliseconds);
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue),
milliseconds);
assert(res != WAIT_FAILED && res != WAIT_ABANDONED);
ret = (res == WAIT_OBJECT_0);
if (res == WAIT_TIMEOUT)
{
xtime cur;
xtime_get(&cur, TIME_UTC);
if (xtime_cmp(xt, cur) > 0)
continue;
}
break;
}
unsigned was_waiting=0;
unsigned was_gone=0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (!ret) // timeout
{
if (m_blocked != 0)
--m_blocked;
else
++m_gone; // count spurious wakeups
}
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1,
0); // open m_gate
assert(res);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
m_blocked -= m_gone;
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
m_gone = 0;
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue),
INFINITE);
assert(res == WAIT_OBJECT_0);
}
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
return ret;
}
#elif defined(BOOST_HAS_PTHREADS)
condition_impl::condition_impl()
{
int res = 0;
res = pthread_cond_init(&m_condition, 0);
if (res != 0)
throw thread_resource_error();
res = pthread_mutex_init(&m_mutex, 0);
if (res != 0)
throw thread_resource_error();
}
condition_impl::~condition_impl()
{
int res = 0;
res = pthread_cond_destroy(&m_condition);
assert(res == 0);
res = pthread_mutex_destroy(&m_mutex);
assert(res == 0);
}
void condition_impl::notify_one()
{
int res = 0;
res = pthread_mutex_lock(&m_mutex);
assert(res == 0);
res = pthread_cond_signal(&m_condition);
assert(res == 0);
res = pthread_mutex_unlock(&m_mutex);
assert(res == 0);
}
void condition_impl::notify_all()
{
int res = 0;
res = pthread_mutex_lock(&m_mutex);
assert(res == 0);
res = pthread_cond_broadcast(&m_condition);
assert(res == 0);
res = pthread_mutex_unlock(&m_mutex);
assert(res == 0);
}
void condition_impl::do_wait(pthread_mutex_t* pmutex)
{
int res = 0;
res = pthread_cond_wait(&m_condition, pmutex);
assert(res == 0);
}
bool condition_impl::do_timed_wait(const xtime& xt, pthread_mutex_t* pmutex)
{
timespec ts;
to_timespec(xt, ts);
int res = 0;
res = pthread_cond_timedwait(&m_condition, pmutex, &ts);
// Test code for QNX debugging, to get information during regressions
#ifndef NDEBUG
if (res == EINVAL) {
boost::xtime now;
boost::xtime_get(&now, boost::TIME_UTC);
std::cerr << "now: " << now.sec << " " << now.nsec << std::endl;
std::cerr << "time: " << time(0) << std::endl;
std::cerr << "xtime: " << xt.sec << " " << xt.nsec << std::endl;
std::cerr << "ts: " << ts.tv_sec << " " << ts.tv_nsec << std::endl;
std::cerr << "pmutex: " << pmutex << std::endl;
std::cerr << "condition: " << &m_condition << std::endl;
assert(res != EINVAL);
}
#endif
assert(res == 0 || res == ETIMEDOUT);
return res != ETIMEDOUT;
}
#elif defined(BOOST_HAS_MPTASKS)
using threads::mac::detail::safe_enter_critical_region;
using threads::mac::detail::safe_wait_on_semaphore;
condition_impl::condition_impl()
: m_gone(0), m_blocked(0), m_waiting(0)
{
threads::mac::detail::thread_init();
OSStatus lStatus = noErr;
lStatus = MPCreateSemaphore(1, 1, &m_gate);
if(lStatus == noErr)
lStatus = MPCreateSemaphore(ULONG_MAX, 0, &m_queue);
if(lStatus != noErr || !m_gate || !m_queue)
{
if (m_gate)
{
lStatus = MPDeleteSemaphore(m_gate);
assert(lStatus == noErr);
}
if (m_queue)
{
lStatus = MPDeleteSemaphore(m_queue);
assert(lStatus == noErr);
}
throw thread_resource_error();
}
}
condition_impl::~condition_impl()
{
OSStatus lStatus = noErr;
lStatus = MPDeleteSemaphore(m_gate);
assert(lStatus == noErr);
lStatus = MPDeleteSemaphore(m_queue);
assert(lStatus == noErr);
}
void condition_impl::notify_one()
{
unsigned signals = 0;
OSStatus lStatus = noErr;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
return;
}
++m_waiting;
--m_blocked;
}
else
{
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = 1;
--m_blocked;
}
else
{
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
while (signals)
{
lStatus = MPSignalSemaphore(m_queue);
assert(lStatus == noErr);
--signals;
}
}
}
void condition_impl::notify_all()
{
unsigned signals = 0;
OSStatus lStatus = noErr;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
return;
}
m_waiting += (signals = m_blocked);
m_blocked = 0;
}
else
{
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = m_blocked;
m_blocked = 0;
}
else
{
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
while (signals)
{
lStatus = MPSignalSemaphore(m_queue);
assert(lStatus == noErr);
--signals;
}
}
}
void condition_impl::enter_wait()
{
OSStatus lStatus = noErr;
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
++m_blocked;
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
void condition_impl::do_wait()
{
OSStatus lStatus = noErr;
lStatus = safe_wait_on_semaphore(m_queue, kDurationForever);
assert(lStatus == noErr);
unsigned was_waiting=0;
unsigned was_gone=0;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
lStatus = MPSignalSemaphore(m_gate); // open m_gate
assert(lStatus == noErr);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
m_blocked -= m_gone;
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
m_gone = 0;
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
lStatus = safe_wait_on_semaphore(m_queue, kDurationForever);
assert(lStatus == noErr);
}
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
}
bool condition_impl::do_timed_wait(const xtime& xt)
{
int milliseconds;
to_duration(xt, milliseconds);
OSStatus lStatus = noErr;
lStatus = safe_wait_on_semaphore(m_queue, milliseconds);
assert(lStatus == noErr || lStatus == kMPTimeoutErr);
bool ret = (lStatus == noErr);
unsigned was_waiting=0;
unsigned was_gone=0;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (!ret) // timeout
{
if (m_blocked != 0)
--m_blocked;
else
++m_gone; // count spurious wakeups
}
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
lStatus = MPSignalSemaphore(m_gate); // open m_gate
assert(lStatus == noErr);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
m_blocked -= m_gone;
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
m_gone = 0;
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
lStatus = safe_wait_on_semaphore(m_queue, kDurationForever);
assert(lStatus == noErr);
}
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
return ret;
}
#endif
} // namespace detail
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs.
// 3 Jan 03 WEKEMPF Modified for DLL implementation.

View File

@@ -1,124 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/exceptions.hpp>
#include <cstring>
#include <string>
namespace boost {
thread_exception::thread_exception()
: m_sys_err(0)
{
}
thread_exception::thread_exception(int sys_err_code)
: m_sys_err(sys_err_code)
{
}
thread_exception::~thread_exception() throw()
{
}
int thread_exception::native_error() const
{
return m_sys_err;
}
lock_error::lock_error()
{
}
lock_error::lock_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
lock_error::~lock_error() throw()
{
}
const char* lock_error::what() const throw()
{
return "boost::lock_error";
}
thread_resource_error::thread_resource_error()
{
}
thread_resource_error::thread_resource_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
thread_resource_error::~thread_resource_error() throw()
{
}
const char* thread_resource_error::what() const throw()
{
return "boost::thread_resource_error";
}
unsupported_thread_option::unsupported_thread_option()
{
}
unsupported_thread_option::unsupported_thread_option(int sys_err_code)
: thread_exception(sys_err_code)
{
}
unsupported_thread_option::~unsupported_thread_option() throw()
{
}
const char* unsupported_thread_option::what() const throw()
{
return "boost::unsupported_thread_option";
}
invalid_thread_argument::invalid_thread_argument()
{
}
invalid_thread_argument::invalid_thread_argument(int sys_err_code)
: thread_exception(sys_err_code)
{
}
invalid_thread_argument::~invalid_thread_argument() throw()
{
}
const char* invalid_thread_argument::what() const throw()
{
return "boost::invalid_thread_argument";
}
thread_permission_error::thread_permission_error()
{
}
thread_permission_error::thread_permission_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
thread_permission_error::~thread_permission_error() throw()
{
}
const char* thread_permission_error::what() const throw()
{
return "boost::thread_permission_error";
}
} // namespace boost

View File

@@ -1,51 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define __STDC_CONSTANT_MACROS
#include <boost/thread/once.hpp>
#include <boost/assert.hpp>
#include <pthread.h>
#include <stdlib.h>
namespace boost
{
namespace detail
{
BOOST_THREAD_DECL boost::uintmax_t once_global_epoch=UINTMAX_C(~0);
BOOST_THREAD_DECL pthread_mutex_t once_epoch_mutex=PTHREAD_MUTEX_INITIALIZER;
BOOST_THREAD_DECL pthread_cond_t once_epoch_cv = PTHREAD_COND_INITIALIZER;
namespace
{
pthread_key_t epoch_tss_key;
pthread_once_t epoch_tss_key_flag=PTHREAD_ONCE_INIT;
extern "C" void delete_epoch_tss_data(void* data)
{
free(data);
}
extern "C" void create_epoch_tss_key()
{
BOOST_VERIFY(!pthread_key_create(&epoch_tss_key,delete_epoch_tss_data));
}
}
boost::uintmax_t& get_once_per_thread_epoch()
{
BOOST_VERIFY(!pthread_once(&epoch_tss_key_flag,create_epoch_tss_key));
void* data=pthread_getspecific(epoch_tss_key);
if(!data)
{
data=malloc(sizeof(boost::uintmax_t));
BOOST_VERIFY(!pthread_setspecific(epoch_tss_key,data));
*static_cast<boost::uintmax_t*>(data)=UINTMAX_C(~0);
}
return *static_cast<boost::uintmax_t*>(data);
}
}
}

View File

@@ -1,676 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/tss.hpp>
#ifdef __linux__
#include <sys/sysinfo.h>
#elif defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/types.h>
#include <sys/sysctl.h>
#elif defined BOOST_HAS_UNISTD_H
#include <unistd.h>
#endif
#include "timeconv.inl"
namespace boost
{
namespace detail
{
thread_data_base::~thread_data_base()
{}
struct thread_exit_callback_node
{
boost::detail::thread_exit_function_base* func;
thread_exit_callback_node* next;
thread_exit_callback_node(boost::detail::thread_exit_function_base* func_,
thread_exit_callback_node* next_):
func(func_),next(next_)
{}
};
struct tss_data_node
{
void const* key;
boost::shared_ptr<boost::detail::tss_cleanup_function> func;
void* value;
tss_data_node* next;
tss_data_node(void const* key_,boost::shared_ptr<boost::detail::tss_cleanup_function> func_,void* value_,
tss_data_node* next_):
key(key_),func(func_),value(value_),next(next_)
{}
};
namespace
{
boost::once_flag current_thread_tls_init_flag=BOOST_ONCE_INIT;
pthread_key_t current_thread_tls_key;
extern "C"
{
void tls_destructor(void* data)
{
boost::detail::thread_data_base* thread_info=static_cast<boost::detail::thread_data_base*>(data);
if(thread_info)
{
while(thread_info->tss_data || thread_info->thread_exit_callbacks)
{
while(thread_info->thread_exit_callbacks)
{
detail::thread_exit_callback_node* const current_node=thread_info->thread_exit_callbacks;
thread_info->thread_exit_callbacks=current_node->next;
if(current_node->func)
{
(*current_node->func)();
delete current_node->func;
}
delete current_node;
}
while(thread_info->tss_data)
{
detail::tss_data_node* const current_node=thread_info->tss_data;
thread_info->tss_data=current_node->next;
if(current_node->func)
{
(*current_node->func)(current_node->value);
}
delete current_node;
}
}
thread_info->self.reset();
}
}
}
void create_current_thread_tls_key()
{
BOOST_VERIFY(!pthread_key_create(&current_thread_tls_key,&tls_destructor));
}
}
boost::detail::thread_data_base* get_current_thread_data()
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
return (boost::detail::thread_data_base*)pthread_getspecific(current_thread_tls_key);
}
void set_current_thread_data(detail::thread_data_base* new_data)
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
BOOST_VERIFY(!pthread_setspecific(current_thread_tls_key,new_data));
}
}
namespace
{
extern "C"
{
void* thread_proxy(void* param)
{
boost::detail::thread_data_ptr thread_info = static_cast<boost::detail::thread_data_base*>(param)->self;
thread_info->self.reset();
detail::set_current_thread_data(thread_info.get());
try
{
thread_info->run();
}
catch(thread_interrupted const&)
{
}
catch(...)
{
std::terminate();
}
detail::tls_destructor(thread_info.get());
detail::set_current_thread_data(0);
boost::lock_guard<boost::mutex> lock(thread_info->data_mutex);
thread_info->done=true;
thread_info->done_condition.notify_all();
return 0;
}
}
struct externally_launched_thread:
detail::thread_data_base
{
externally_launched_thread()
{
interrupt_enabled=false;
}
void run()
{}
private:
externally_launched_thread(externally_launched_thread&);
void operator=(externally_launched_thread&);
};
detail::thread_data_base* make_external_thread_data()
{
detail::thread_data_base* const me(new externally_launched_thread());
me->self.reset(me);
set_current_thread_data(me);
return me;
}
detail::thread_data_base* get_or_make_current_thread_data()
{
detail::thread_data_base* current_thread_data(detail::get_current_thread_data());
if(!current_thread_data)
{
current_thread_data=make_external_thread_data();
}
return current_thread_data;
}
}
thread::thread()
{}
void thread::start_thread()
{
thread_info->self=thread_info;
int const res = pthread_create(&thread_info->thread_handle, 0, &thread_proxy, thread_info.get());
if (res != 0)
{
thread_info->self.reset();
throw thread_resource_error();
}
}
thread::~thread()
{
detach();
}
detail::thread_data_ptr thread::get_thread_info() const
{
lock_guard<mutex> l(thread_info_mutex);
return thread_info;
}
void thread::join()
{
detail::thread_data_ptr const local_thread_info=get_thread_info();
if(local_thread_info)
{
bool do_join=false;
{
unique_lock<mutex> lock(local_thread_info->data_mutex);
while(!local_thread_info->done)
{
local_thread_info->done_condition.wait(lock);
}
do_join=!local_thread_info->join_started;
if(do_join)
{
local_thread_info->join_started=true;
}
else
{
while(!local_thread_info->joined)
{
local_thread_info->done_condition.wait(lock);
}
}
}
if(do_join)
{
void* result=0;
BOOST_VERIFY(!pthread_join(local_thread_info->thread_handle,&result));
lock_guard<mutex> lock(local_thread_info->data_mutex);
local_thread_info->joined=true;
local_thread_info->done_condition.notify_all();
}
lock_guard<mutex> l1(thread_info_mutex);
if(thread_info==local_thread_info)
{
thread_info.reset();
}
}
}
bool thread::timed_join(system_time const& wait_until)
{
detail::thread_data_ptr const local_thread_info=get_thread_info();
if(local_thread_info)
{
bool do_join=false;
{
unique_lock<mutex> lock(local_thread_info->data_mutex);
while(!local_thread_info->done)
{
if(!local_thread_info->done_condition.timed_wait(lock,wait_until))
{
return false;
}
}
do_join=!local_thread_info->join_started;
if(do_join)
{
local_thread_info->join_started=true;
}
else
{
while(!local_thread_info->joined)
{
local_thread_info->done_condition.wait(lock);
}
}
}
if(do_join)
{
void* result=0;
BOOST_VERIFY(!pthread_join(local_thread_info->thread_handle,&result));
lock_guard<mutex> lock(local_thread_info->data_mutex);
local_thread_info->joined=true;
local_thread_info->done_condition.notify_all();
}
lock_guard<mutex> l1(thread_info_mutex);
if(thread_info==local_thread_info)
{
thread_info.reset();
}
}
return true;
}
bool thread::joinable() const
{
return get_thread_info();
}
void thread::detach()
{
detail::thread_data_ptr local_thread_info;
{
lock_guard<mutex> l1(thread_info_mutex);
thread_info.swap(local_thread_info);
}
if(local_thread_info)
{
lock_guard<mutex> lock(local_thread_info->data_mutex);
if(!local_thread_info->join_started)
{
BOOST_VERIFY(!pthread_detach(local_thread_info->thread_handle));
local_thread_info->join_started=true;
local_thread_info->joined=true;
}
}
}
namespace this_thread
{
void sleep(const system_time& st)
{
detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(thread_info)
{
unique_lock<mutex> lk(thread_info->sleep_mutex);
while(thread_info->sleep_condition.timed_wait(lk,st));
}
else
{
xtime const xt=get_xtime(st);
for (int foo=0; foo < 5; ++foo)
{
# if defined(BOOST_HAS_PTHREAD_DELAY_NP)
timespec ts;
to_timespec_duration(xt, ts);
BOOST_VERIFY(!pthread_delay_np(&ts));
# elif defined(BOOST_HAS_NANOSLEEP)
timespec ts;
to_timespec_duration(xt, ts);
// nanosleep takes a timespec that is an offset, not
// an absolute time.
nanosleep(&ts, 0);
# else
mutex mx;
mutex::scoped_lock lock(mx);
condition cond;
cond.timed_wait(lock, xt);
# endif
xtime cur;
xtime_get(&cur, TIME_UTC);
if (xtime_cmp(xt, cur) <= 0)
return;
}
}
}
void yield()
{
# if defined(BOOST_HAS_SCHED_YIELD)
BOOST_VERIFY(!sched_yield());
# elif defined(BOOST_HAS_PTHREAD_YIELD)
BOOST_VERIFY(!pthread_yield());
# else
xtime xt;
xtime_get(&xt, TIME_UTC);
sleep(xt);
# endif
}
}
unsigned thread::hardware_concurrency()
{
#if defined(PTW32_VERSION) || defined(__hpux)
return pthread_num_processors_np();
#elif defined(__linux__)
return get_nprocs();
#elif defined(__APPLE__) || defined(__FreeBSD__)
int count;
size_t size=sizeof(count);
return sysctlbyname("hw.ncpu",&count,&size,NULL,0)?0:count;
#elif defined(BOOST_HAS_UNISTD_H) && defined(_SC_NPROCESSORS_ONLN)
int const count=sysconf(_SC_NPROCESSORS_ONLN);
return (count>0)?count:0;
#else
return 0;
#endif
}
thread::id thread::get_id() const
{
detail::thread_data_ptr const local_thread_info=get_thread_info();
if(local_thread_info)
{
return id(local_thread_info);
}
else
{
return id();
}
}
void thread::interrupt()
{
detail::thread_data_ptr const local_thread_info=get_thread_info();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
local_thread_info->interrupt_requested=true;
if(local_thread_info->current_cond)
{
BOOST_VERIFY(!pthread_cond_broadcast(local_thread_info->current_cond));
}
}
}
bool thread::interruption_requested() const
{
detail::thread_data_ptr const local_thread_info=get_thread_info();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
return local_thread_info->interrupt_requested;
}
else
{
return false;
}
}
thread::native_handle_type thread::native_handle()
{
detail::thread_data_ptr const local_thread_info=get_thread_info();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
return local_thread_info->thread_handle;
}
else
{
return pthread_t();
}
}
namespace this_thread
{
thread::id get_id()
{
boost::detail::thread_data_base* const thread_info=get_or_make_current_thread_data();
return thread::id(thread_info?thread_info->shared_from_this():detail::thread_data_ptr());
}
void interruption_point()
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> lg(thread_info->data_mutex);
if(thread_info->interrupt_requested)
{
thread_info->interrupt_requested=false;
throw thread_interrupted();
}
}
}
bool interruption_enabled()
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
return thread_info && thread_info->interrupt_enabled;
}
bool interruption_requested()
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(!thread_info)
{
return false;
}
else
{
lock_guard<mutex> lg(thread_info->data_mutex);
return thread_info->interrupt_requested;
}
}
disable_interruption::disable_interruption():
interruption_was_enabled(interruption_enabled())
{
if(interruption_was_enabled)
{
detail::get_current_thread_data()->interrupt_enabled=false;
}
}
disable_interruption::~disable_interruption()
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interrupt_enabled=interruption_was_enabled;
}
}
restore_interruption::restore_interruption(disable_interruption& d)
{
if(d.interruption_was_enabled)
{
detail::get_current_thread_data()->interrupt_enabled=true;
}
}
restore_interruption::~restore_interruption()
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interrupt_enabled=false;
}
}
}
namespace detail
{
void add_thread_exit_function(thread_exit_function_base* func)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
thread_exit_callback_node* const new_node=
new thread_exit_callback_node(func,current_thread_data->thread_exit_callbacks);
current_thread_data->thread_exit_callbacks=new_node;
}
tss_data_node* find_tss_data(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
detail::tss_data_node* current_node=current_thread_data->tss_data;
while(current_node)
{
if(current_node->key==key)
{
return current_node;
}
current_node=current_node->next;
}
}
return NULL;
}
void* get_tss_data(void const* key)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
return current_node->value;
}
return NULL;
}
void set_tss_data(void const* key,boost::shared_ptr<tss_cleanup_function> func,void* tss_data,bool cleanup_existing)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
if(cleanup_existing && current_node->func)
{
(*current_node->func)(current_node->value);
}
current_node->func=func;
current_node->value=tss_data;
}
else
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
tss_data_node* const new_node=new tss_data_node(key,func,tss_data,current_thread_data->tss_data);
current_thread_data->tss_data=new_node;
}
}
}
// thread_group::thread_group()
// {
// }
// thread_group::~thread_group()
// {
// // We shouldn't have to scoped_lock here, since referencing this object
// // from another thread while we're deleting it in the current thread is
// // going to lead to undefined behavior any way.
// for (std::list<thread*>::iterator it = m_threads.begin();
// it != m_threads.end(); ++it)
// {
// delete (*it);
// }
// }
// thread* thread_group::create_thread(const function0<void>& threadfunc)
// {
// // No scoped_lock required here since the only "shared data" that's
// // modified here occurs inside add_thread which does scoped_lock.
// std::auto_ptr<thread> thrd(new thread(threadfunc));
// add_thread(thrd.get());
// return thrd.release();
// }
// void thread_group::add_thread(thread* thrd)
// {
// mutex::scoped_lock scoped_lock(m_mutex);
// // For now we'll simply ignore requests to add a thread object multiple
// // times. Should we consider this an error and either throw or return an
// // error value?
// std::list<thread*>::iterator it = std::find(m_threads.begin(),
// m_threads.end(), thrd);
// BOOST_ASSERT(it == m_threads.end());
// if (it == m_threads.end())
// m_threads.push_back(thrd);
// }
// void thread_group::remove_thread(thread* thrd)
// {
// mutex::scoped_lock scoped_lock(m_mutex);
// // For now we'll simply ignore requests to remove a thread object that's
// // not in the group. Should we consider this an error and either throw or
// // return an error value?
// std::list<thread*>::iterator it = std::find(m_threads.begin(),
// m_threads.end(), thrd);
// BOOST_ASSERT(it != m_threads.end());
// if (it != m_threads.end())
// m_threads.erase(it);
// }
// void thread_group::join_all()
// {
// mutex::scoped_lock scoped_lock(m_mutex);
// for (std::list<thread*>::iterator it = m_threads.begin();
// it != m_threads.end(); ++it)
// {
// (*it)->join();
// }
// }
// void thread_group::interrupt_all()
// {
// boost::lock_guard<mutex> guard(m_mutex);
// for(std::list<thread*>::iterator it=m_threads.begin(),end=m_threads.end();
// it!=end;
// ++it)
// {
// (*it)->interrupt();
// }
// }
// size_t thread_group::size() const
// {
// return m_threads.size();
// }
}

View File

@@ -1,130 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// boostinspect:nounnamed
namespace {
const int MILLISECONDS_PER_SECOND = 1000;
const int NANOSECONDS_PER_SECOND = 1000000000;
const int NANOSECONDS_PER_MILLISECOND = 1000000;
const int MICROSECONDS_PER_SECOND = 1000000;
const int NANOSECONDS_PER_MICROSECOND = 1000;
inline void to_time(int milliseconds, boost::xtime& xt)
{
int res = 0;
res = boost::xtime_get(&xt, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
xt.sec += (milliseconds / MILLISECONDS_PER_SECOND);
xt.nsec += ((milliseconds % MILLISECONDS_PER_SECOND) *
NANOSECONDS_PER_MILLISECOND);
if (xt.nsec >= NANOSECONDS_PER_SECOND)
{
++xt.sec;
xt.nsec -= NANOSECONDS_PER_SECOND;
}
}
#if defined(BOOST_HAS_PTHREADS)
inline void to_timespec(const boost::xtime& xt, timespec& ts)
{
ts.tv_sec = static_cast<int>(xt.sec);
ts.tv_nsec = static_cast<int>(xt.nsec);
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
inline void to_time(int milliseconds, timespec& ts)
{
boost::xtime xt;
to_time(milliseconds, xt);
to_timespec(xt, ts);
}
inline void to_timespec_duration(const boost::xtime& xt, timespec& ts)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
if (boost::xtime_cmp(xt, cur) <= 0)
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
else
{
ts.tv_sec = xt.sec - cur.sec;
ts.tv_nsec = xt.nsec - cur.nsec;
if( ts.tv_nsec < 0 )
{
ts.tv_sec -= 1;
ts.tv_nsec += NANOSECONDS_PER_SECOND;
}
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
}
#endif
inline void to_duration(boost::xtime xt, int& milliseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
if (boost::xtime_cmp(xt, cur) <= 0)
milliseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
milliseconds = (int)((xt.sec - cur.sec) * MILLISECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MILLISECOND/2)) /
NANOSECONDS_PER_MILLISECOND);
}
}
inline void to_microduration(boost::xtime xt, int& microseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
if (boost::xtime_cmp(xt, cur) <= 0)
microseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
microseconds = (int)((xt.sec - cur.sec) * MICROSECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MICROSECOND/2)) /
NANOSECONDS_PER_MICROSECOND);
}
}
}
// Change Log:
// 1 Jun 01 Initial creation.

View File

@@ -1,12 +1,11 @@
// (C) Copyright Michael Glassford 2004.
// (C) Copyright 2007 Anthony Williams
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_HAS_WINTHREADS) && (defined(BOOST_THREAD_BUILD_LIB) || defined(BOOST_THREAD_TEST) || defined(UNDER_CE)) && (!defined(_MSC_VER) || defined(UNDER_CE))
#if defined(BOOST_HAS_WINTHREADS) && (defined(BOOST_THREAD_BUILD_LIB) || defined(BOOST_THREAD_TEST)) && !defined(_MSC_VER)
/*
This file is a "null" implementation of tss cleanup; it's

View File

@@ -1,124 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/exceptions.hpp>
#include <cstring>
#include <string>
namespace boost {
thread_exception::thread_exception()
: m_sys_err(0)
{
}
thread_exception::thread_exception(int sys_err_code)
: m_sys_err(sys_err_code)
{
}
thread_exception::~thread_exception() throw()
{
}
int thread_exception::native_error() const
{
return m_sys_err;
}
lock_error::lock_error()
{
}
lock_error::lock_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
lock_error::~lock_error() throw()
{
}
const char* lock_error::what() const throw()
{
return "boost::lock_error";
}
thread_resource_error::thread_resource_error()
{
}
thread_resource_error::thread_resource_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
thread_resource_error::~thread_resource_error() throw()
{
}
const char* thread_resource_error::what() const throw()
{
return "boost::thread_resource_error";
}
unsupported_thread_option::unsupported_thread_option()
{
}
unsupported_thread_option::unsupported_thread_option(int sys_err_code)
: thread_exception(sys_err_code)
{
}
unsupported_thread_option::~unsupported_thread_option() throw()
{
}
const char* unsupported_thread_option::what() const throw()
{
return "boost::unsupported_thread_option";
}
invalid_thread_argument::invalid_thread_argument()
{
}
invalid_thread_argument::invalid_thread_argument(int sys_err_code)
: thread_exception(sys_err_code)
{
}
invalid_thread_argument::~invalid_thread_argument() throw()
{
}
const char* invalid_thread_argument::what() const throw()
{
return "boost::invalid_thread_argument";
}
thread_permission_error::thread_permission_error()
{
}
thread_permission_error::thread_permission_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
thread_permission_error::~thread_permission_error() throw()
{
}
const char* thread_permission_error::what() const throw()
{
return "boost::thread_permission_error";
}
} // namespace boost

View File

@@ -1,595 +0,0 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007 Anthony Williams
// (C) Copyright 2007 David Deakins
#define _WIN32_WINNT 0x400
#define WINVER 0x400
#include <boost/thread/thread.hpp>
#include <algorithm>
#include <windows.h>
#ifndef UNDER_CE
#include <process.h>
#endif
#include <stdio.h>
#include <boost/thread/once.hpp>
#include <boost/thread/tss.hpp>
#include <boost/assert.hpp>
#include <boost/thread/detail/tss_hooks.hpp>
#include <boost/date_time/posix_time/conversion.hpp>
namespace boost
{
namespace
{
boost::once_flag current_thread_tls_init_flag=BOOST_ONCE_INIT;
DWORD current_thread_tls_key=0;
void create_current_thread_tls_key()
{
tss_cleanup_implemented(); // if anyone uses TSS, we need the cleanup linked in
current_thread_tls_key=TlsAlloc();
BOOST_ASSERT(current_thread_tls_key!=TLS_OUT_OF_INDEXES);
}
void cleanup_tls_key()
{
if(current_thread_tls_key)
{
TlsFree(current_thread_tls_key);
current_thread_tls_key=0;
}
}
detail::thread_data_base* get_current_thread_data()
{
if(!current_thread_tls_key)
{
return 0;
}
return (detail::thread_data_base*)TlsGetValue(current_thread_tls_key);
}
void set_current_thread_data(detail::thread_data_base* new_data)
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
BOOST_VERIFY(TlsSetValue(current_thread_tls_key,new_data));
}
#ifdef BOOST_NO_THREADEX
// Windows CE doesn't define _beginthreadex
struct ThreadProxyData
{
typedef unsigned (__stdcall* func)(void*);
func start_address_;
void* arglist_;
ThreadProxyData(func start_address,void* arglist) : start_address_(start_address), arglist_(arglist) {}
};
DWORD WINAPI ThreadProxy(LPVOID args)
{
ThreadProxyData* data=reinterpret_cast<ThreadProxyData*>(args);
DWORD ret=data->start_address_(data->arglist_);
delete data;
return ret;
}
typedef void* uintptr_t;
inline uintptr_t const _beginthreadex(void* security, unsigned stack_size, unsigned (__stdcall* start_address)(void*),
void* arglist, unsigned initflag, unsigned* thrdaddr)
{
DWORD threadID;
HANDLE hthread=CreateThread(static_cast<LPSECURITY_ATTRIBUTES>(security),stack_size,ThreadProxy,
new ThreadProxyData(start_address,arglist),initflag,&threadID);
if (hthread!=0)
*thrdaddr=threadID;
return reinterpret_cast<uintptr_t const>(hthread);
}
#endif
}
namespace detail
{
struct thread_exit_callback_node
{
boost::detail::thread_exit_function_base* func;
thread_exit_callback_node* next;
thread_exit_callback_node(boost::detail::thread_exit_function_base* func_,
thread_exit_callback_node* next_):
func(func_),next(next_)
{}
};
struct tss_data_node
{
void const* key;
boost::shared_ptr<boost::detail::tss_cleanup_function> func;
void* value;
tss_data_node* next;
tss_data_node(void const* key_,boost::shared_ptr<boost::detail::tss_cleanup_function> func_,void* value_,
tss_data_node* next_):
key(key_),func(func_),value(value_),next(next_)
{}
};
}
namespace
{
void run_thread_exit_callbacks()
{
detail::thread_data_ptr current_thread_data(get_current_thread_data(),false);
if(current_thread_data)
{
while(current_thread_data->tss_data || current_thread_data->thread_exit_callbacks)
{
while(current_thread_data->thread_exit_callbacks)
{
detail::thread_exit_callback_node* const current_node=current_thread_data->thread_exit_callbacks;
current_thread_data->thread_exit_callbacks=current_node->next;
if(current_node->func)
{
(*current_node->func)();
boost::detail::heap_delete(current_node->func);
}
boost::detail::heap_delete(current_node);
}
while(current_thread_data->tss_data)
{
detail::tss_data_node* const current_node=current_thread_data->tss_data;
current_thread_data->tss_data=current_node->next;
if(current_node->func)
{
(*current_node->func)(current_node->value);
}
boost::detail::heap_delete(current_node);
}
}
set_current_thread_data(0);
}
}
unsigned __stdcall thread_start_function(void* param)
{
detail::thread_data_base* const thread_info(reinterpret_cast<detail::thread_data_base*>(param));
set_current_thread_data(thread_info);
try
{
thread_info->run();
}
catch(thread_interrupted const&)
{
}
catch(...)
{
std::terminate();
}
run_thread_exit_callbacks();
return 0;
}
}
thread::thread()
{}
void thread::start_thread()
{
uintptr_t const new_thread=_beginthreadex(0,0,&thread_start_function,thread_info.get(),CREATE_SUSPENDED,&thread_info->id);
if(!new_thread)
{
throw thread_resource_error();
}
intrusive_ptr_add_ref(thread_info.get());
thread_info->thread_handle=(detail::win32::handle)(new_thread);
ResumeThread(thread_info->thread_handle);
}
thread::thread(detail::thread_data_ptr data):
thread_info(data)
{}
namespace
{
struct externally_launched_thread:
detail::thread_data_base
{
externally_launched_thread()
{
++count;
interruption_enabled=false;
}
void run()
{}
private:
externally_launched_thread(externally_launched_thread&);
void operator=(externally_launched_thread&);
};
void make_external_thread_data()
{
externally_launched_thread* me=detail::heap_new<externally_launched_thread>();
set_current_thread_data(me);
}
detail::thread_data_base* get_or_make_current_thread_data()
{
detail::thread_data_base* current_thread_data(get_current_thread_data());
if(!current_thread_data)
{
make_external_thread_data();
current_thread_data=get_current_thread_data();
}
return current_thread_data;
}
}
thread::~thread()
{
detach();
}
thread::id thread::get_id() const
{
return thread::id(get_thread_info());
}
bool thread::joinable() const
{
return get_thread_info();
}
void thread::join()
{
detail::thread_data_ptr local_thread_info=get_thread_info();
if(local_thread_info)
{
this_thread::interruptible_wait(local_thread_info->thread_handle,detail::timeout::sentinel());
release_handle();
}
}
bool thread::timed_join(boost::system_time const& wait_until)
{
detail::thread_data_ptr local_thread_info=get_thread_info();
if(local_thread_info)
{
if(!this_thread::interruptible_wait(local_thread_info->thread_handle,get_milliseconds_until(wait_until)))
{
return false;
}
release_handle();
}
return true;
}
void thread::detach()
{
release_handle();
}
void thread::release_handle()
{
lock_guard<mutex> l1(thread_info_mutex);
thread_info=0;
}
void thread::interrupt()
{
detail::thread_data_ptr local_thread_info=get_thread_info();
if(local_thread_info)
{
local_thread_info->interrupt();
}
}
bool thread::interruption_requested() const
{
detail::thread_data_ptr local_thread_info=get_thread_info();
return local_thread_info.get() && (detail::win32::WaitForSingleObject(local_thread_info->interruption_handle,0)==0);
}
unsigned thread::hardware_concurrency()
{
SYSTEM_INFO info={0};
GetSystemInfo(&info);
return info.dwNumberOfProcessors;
}
thread::native_handle_type thread::native_handle()
{
detail::thread_data_ptr local_thread_info=get_thread_info();
return local_thread_info?(detail::win32::handle)local_thread_info->thread_handle:detail::win32::invalid_handle_value;
}
detail::thread_data_ptr thread::get_thread_info() const
{
boost::mutex::scoped_lock l(thread_info_mutex);
return thread_info;
}
namespace this_thread
{
namespace
{
LARGE_INTEGER get_due_time(detail::timeout const& target_time)
{
LARGE_INTEGER due_time={0};
if(target_time.relative)
{
unsigned long const elapsed_milliseconds=GetTickCount()-target_time.start;
LONGLONG const remaining_milliseconds=(target_time.milliseconds-elapsed_milliseconds);
LONGLONG const hundred_nanoseconds_in_one_millisecond=10000;
if(remaining_milliseconds>0)
{
due_time.QuadPart=-(remaining_milliseconds*hundred_nanoseconds_in_one_millisecond);
}
}
else
{
SYSTEMTIME target_system_time={0};
target_system_time.wYear=target_time.abs_time.date().year();
target_system_time.wMonth=target_time.abs_time.date().month();
target_system_time.wDay=target_time.abs_time.date().day();
target_system_time.wHour=(WORD)target_time.abs_time.time_of_day().hours();
target_system_time.wMinute=(WORD)target_time.abs_time.time_of_day().minutes();
target_system_time.wSecond=(WORD)target_time.abs_time.time_of_day().seconds();
if(!SystemTimeToFileTime(&target_system_time,((FILETIME*)&due_time)))
{
due_time.QuadPart=0;
}
else
{
long const hundred_nanoseconds_in_one_second=10000000;
due_time.QuadPart+=target_time.abs_time.time_of_day().fractional_seconds()*(hundred_nanoseconds_in_one_second/target_time.abs_time.time_of_day().ticks_per_second());
}
}
return due_time;
}
}
bool interruptible_wait(detail::win32::handle handle_to_wait_for,detail::timeout target_time)
{
detail::win32::handle handles[3]={0};
unsigned handle_count=0;
unsigned wait_handle_index=~0U;
unsigned interruption_index=~0U;
unsigned timeout_index=~0U;
if(handle_to_wait_for!=detail::win32::invalid_handle_value)
{
wait_handle_index=handle_count;
handles[handle_count++]=handle_to_wait_for;
}
if(get_current_thread_data() && get_current_thread_data()->interruption_enabled)
{
interruption_index=handle_count;
handles[handle_count++]=get_current_thread_data()->interruption_handle;
}
detail::win32::handle_manager timer_handle;
#ifndef UNDER_CE
unsigned const min_timer_wait_period=20;
if(!target_time.is_sentinel())
{
detail::timeout::remaining_time const time_left=target_time.remaining_milliseconds();
if(time_left.milliseconds > min_timer_wait_period)
{
// for a long-enough timeout, use a waitable timer (which tracks clock changes)
timer_handle=CreateWaitableTimer(NULL,false,NULL);
if(timer_handle!=0)
{
LARGE_INTEGER due_time=get_due_time(target_time);
bool const set_time_succeeded=SetWaitableTimer(timer_handle,&due_time,0,0,0,false)!=0;
if(set_time_succeeded)
{
timeout_index=handle_count;
handles[handle_count++]=timer_handle;
}
}
}
else if(!target_time.relative)
{
// convert short absolute-time timeouts into relative ones, so we don't race against clock changes
target_time=detail::timeout(time_left.milliseconds);
}
}
#endif
bool const using_timer=timeout_index!=~0u;
detail::timeout::remaining_time time_left(0);
do
{
if(!using_timer)
{
time_left=target_time.remaining_milliseconds();
}
if(handle_count)
{
unsigned long const notified_index=detail::win32::WaitForMultipleObjects(handle_count,handles,false,using_timer?INFINITE:time_left.milliseconds);
if(notified_index<handle_count)
{
if(notified_index==wait_handle_index)
{
return true;
}
else if(notified_index==interruption_index)
{
detail::win32::ResetEvent(get_current_thread_data()->interruption_handle);
throw thread_interrupted();
}
else if(notified_index==timeout_index)
{
return false;
}
}
}
else
{
detail::win32::Sleep(time_left.milliseconds);
}
if(target_time.relative)
{
target_time.milliseconds-=detail::timeout::max_non_infinite_wait;
}
}
while(time_left.more);
return false;
}
thread::id get_id()
{
return thread::id(get_or_make_current_thread_data());
}
void interruption_point()
{
if(interruption_enabled() && interruption_requested())
{
detail::win32::ResetEvent(get_current_thread_data()->interruption_handle);
throw thread_interrupted();
}
}
bool interruption_enabled()
{
return get_current_thread_data() && get_current_thread_data()->interruption_enabled;
}
bool interruption_requested()
{
return get_current_thread_data() && (detail::win32::WaitForSingleObject(get_current_thread_data()->interruption_handle,0)==0);
}
void yield()
{
detail::win32::Sleep(0);
}
disable_interruption::disable_interruption():
interruption_was_enabled(interruption_enabled())
{
if(interruption_was_enabled)
{
get_current_thread_data()->interruption_enabled=false;
}
}
disable_interruption::~disable_interruption()
{
if(get_current_thread_data())
{
get_current_thread_data()->interruption_enabled=interruption_was_enabled;
}
}
restore_interruption::restore_interruption(disable_interruption& d)
{
if(d.interruption_was_enabled)
{
get_current_thread_data()->interruption_enabled=true;
}
}
restore_interruption::~restore_interruption()
{
if(get_current_thread_data())
{
get_current_thread_data()->interruption_enabled=false;
}
}
}
namespace detail
{
void add_thread_exit_function(thread_exit_function_base* func)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
thread_exit_callback_node* const new_node=
heap_new<thread_exit_callback_node>(func,
current_thread_data->thread_exit_callbacks);
current_thread_data->thread_exit_callbacks=new_node;
}
tss_data_node* find_tss_data(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
detail::tss_data_node* current_node=current_thread_data->tss_data;
while(current_node)
{
if(current_node->key==key)
{
return current_node;
}
current_node=current_node->next;
}
}
return NULL;
}
void* get_tss_data(void const* key)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
return current_node->value;
}
return NULL;
}
void set_tss_data(void const* key,boost::shared_ptr<tss_cleanup_function> func,void* tss_data,bool cleanup_existing)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
if(cleanup_existing && current_node->func.get())
{
(*current_node->func)(current_node->value);
}
current_node->func=func;
current_node->value=tss_data;
}
else
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
tss_data_node* const new_node=heap_new<tss_data_node>(key,func,tss_data,current_thread_data->tss_data);
current_thread_data->tss_data=new_node;
}
}
}
}
extern "C" BOOST_THREAD_DECL void on_process_enter()
{}
extern "C" BOOST_THREAD_DECL void on_thread_enter()
{}
extern "C" BOOST_THREAD_DECL void on_process_exit()
{
boost::cleanup_tls_key();
}
extern "C" BOOST_THREAD_DECL void on_thread_exit()
{
boost::run_thread_exit_callbacks();
}

View File

@@ -1,130 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// boostinspect:nounnamed
namespace {
const int MILLISECONDS_PER_SECOND = 1000;
const int NANOSECONDS_PER_SECOND = 1000000000;
const int NANOSECONDS_PER_MILLISECOND = 1000000;
const int MICROSECONDS_PER_SECOND = 1000000;
const int NANOSECONDS_PER_MICROSECOND = 1000;
inline void to_time(int milliseconds, boost::xtime& xt)
{
int res = 0;
res = boost::xtime_get(&xt, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
xt.sec += (milliseconds / MILLISECONDS_PER_SECOND);
xt.nsec += ((milliseconds % MILLISECONDS_PER_SECOND) *
NANOSECONDS_PER_MILLISECOND);
if (xt.nsec >= NANOSECONDS_PER_SECOND)
{
++xt.sec;
xt.nsec -= NANOSECONDS_PER_SECOND;
}
}
#if defined(BOOST_HAS_PTHREADS)
inline void to_timespec(const boost::xtime& xt, timespec& ts)
{
ts.tv_sec = static_cast<int>(xt.sec);
ts.tv_nsec = static_cast<int>(xt.nsec);
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
inline void to_time(int milliseconds, timespec& ts)
{
boost::xtime xt;
to_time(milliseconds, xt);
to_timespec(xt, ts);
}
inline void to_timespec_duration(const boost::xtime& xt, timespec& ts)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
if (boost::xtime_cmp(xt, cur) <= 0)
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
else
{
ts.tv_sec = xt.sec - cur.sec;
ts.tv_nsec = xt.nsec - cur.nsec;
if( ts.tv_nsec < 0 )
{
ts.tv_sec -= 1;
ts.tv_nsec += NANOSECONDS_PER_SECOND;
}
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
}
#endif
inline void to_duration(boost::xtime xt, int& milliseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
if (boost::xtime_cmp(xt, cur) <= 0)
milliseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
milliseconds = (int)((xt.sec - cur.sec) * MILLISECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MILLISECOND/2)) /
NANOSECONDS_PER_MILLISECOND);
}
}
inline void to_microduration(boost::xtime xt, int& microseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC);
assert(res == boost::TIME_UTC);
if (boost::xtime_cmp(xt, cur) <= 0)
microseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
microseconds = (int)((xt.sec - cur.sec) * MICROSECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MICROSECOND/2)) /
NANOSECONDS_PER_MICROSECOND);
}
}
}
// Change Log:
// 1 Jun 01 Initial creation.

View File

@@ -1,72 +0,0 @@
// (C) Copyright Michael Glassford 2004.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_DLL)
#include <boost/thread/detail/tss_hooks.hpp>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#if defined(__BORLANDC__)
extern "C" BOOL WINAPI DllEntryPoint(HINSTANCE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#elif defined(_WIN32_WCE)
extern "C" BOOL WINAPI DllMain(HANDLE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#else
extern "C" BOOL WINAPI DllMain(HINSTANCE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#endif
{
switch(dwReason)
{
case DLL_PROCESS_ATTACH:
{
on_process_enter();
on_thread_enter();
break;
}
case DLL_THREAD_ATTACH:
{
on_thread_enter();
break;
}
case DLL_THREAD_DETACH:
{
on_thread_exit();
break;
}
case DLL_PROCESS_DETACH:
{
on_thread_exit();
on_process_exit();
break;
}
}
return TRUE;
}
extern "C" void tss_cleanup_implemented(void)
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
#endif //defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_DLL)

View File

@@ -1,287 +0,0 @@
// $Id$
// (C) Copyright Aaron W. LaFramboise, Roland Schwarz, Michael Glassford 2004.
// (C) Copyright 2007 Roland Schwarz
// (C) Copyright 2007 Anthony Williams
// (C) Copyright 2007 David Deakins
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_LIB)
#if defined(__MINGW32__) && !defined(_WIN64)
#include <boost/thread/detail/tss_hooks.hpp>
#include <windows.h>
#include <cstdlib>
extern "C" void tss_cleanup_implemented(void) {}
namespace {
void NTAPI on_tls_callback(void* h, DWORD dwReason, PVOID pv)
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
{
on_thread_exit();
break;
}
}
}
void on_after_ctors(void)
{
on_process_enter();
}
void on_before_dtors(void)
{
on_thread_exit();
}
void on_after_dtors(void)
{
on_process_exit();
}
}
extern "C" {
void (* after_ctors )(void) __attribute__((section(".ctors"))) = on_after_ctors;
void (* before_dtors)(void) __attribute__((section(".dtors"))) = on_before_dtors;
void (* after_dtors )(void) __attribute__((section(".dtors.zzz"))) = on_after_dtors;
ULONG __tls_index__ = 0;
char __tls_end__ __attribute__((section(".tls$zzz"))) = 0;
char __tls_start__ __attribute__((section(".tls"))) = 0;
PIMAGE_TLS_CALLBACK __crt_xl_start__ __attribute__ ((section(".CRT$XLA"))) = 0;
PIMAGE_TLS_CALLBACK __crt_xl_tls_callback__ __attribute__ ((section(".CRT$XLB"))) = on_tls_callback;
PIMAGE_TLS_CALLBACK __crt_xl_end__ __attribute__ ((section(".CRT$XLZ"))) = 0;
}
extern "C" const IMAGE_TLS_DIRECTORY32 _tls_used __attribute__ ((section(".rdata$T"))) =
{
(DWORD) &__tls_start__,
(DWORD) &__tls_end__,
(DWORD) &__tls_index__,
(DWORD) (&__crt_xl_start__+1),
(DWORD) 0,
(DWORD) 0
};
#elif defined(_MSC_VER) && !defined(UNDER_CE)
#include <boost/thread/detail/tss_hooks.hpp>
#include <stdlib.h>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
//Definitions required by implementation
#if (_MSC_VER < 1300) // 1300 == VC++ 7.0
typedef void (__cdecl *_PVFV)(void);
#define INIRETSUCCESS
#define PVAPI void
#else
typedef int (__cdecl *_PVFV)(void);
#define INIRETSUCCESS 0
#define PVAPI int
#endif
typedef void (NTAPI* _TLSCB)(HINSTANCE, DWORD, PVOID);
//Symbols for connection to the runtime environment
extern "C"
{
extern DWORD _tls_used; //the tls directory (located in .rdata segment)
extern _TLSCB __xl_a[], __xl_z[]; //tls initializers */
}
namespace
{
//Forward declarations
static PVAPI on_tls_prepare(void);
static PVAPI on_process_init(void);
static PVAPI on_process_term(void);
static void NTAPI on_tls_callback(HINSTANCE, DWORD, PVOID);
//The .CRT$Xxx information is taken from Codeguru:
//http://www.codeguru.com/Cpp/misc/misc/threadsprocesses/article.php/c6945__2/
#if (_MSC_VER >= 1400)
#pragma section(".CRT$XIU",long,read)
#pragma section(".CRT$XCU",long,read)
#pragma section(".CRT$XTU",long,read)
#pragma section(".CRT$XLC",long,read)
__declspec(allocate(".CRT$XLC")) _TLSCB __xl_ca=on_tls_callback;
__declspec(allocate(".CRT$XIU"))_PVFV p_tls_prepare = on_tls_prepare;
__declspec(allocate(".CRT$XCU"))_PVFV p_process_init = on_process_init;
__declspec(allocate(".CRT$XTU"))_PVFV p_process_term = on_process_term;
#else
#if (_MSC_VER >= 1300) // 1300 == VC++ 7.0
# pragma data_seg(push, old_seg)
#endif
//Callback to run tls glue code first.
//I don't think it is necessary to run it
//at .CRT$XIB level, since we are only
//interested in thread detachement. But
//this could be changed easily if required.
#pragma data_seg(".CRT$XIU")
static _PVFV p_tls_prepare = on_tls_prepare;
#pragma data_seg()
//Callback after all global ctors.
#pragma data_seg(".CRT$XCU")
static _PVFV p_process_init = on_process_init;
#pragma data_seg()
//Callback for tls notifications.
#pragma data_seg(".CRT$XLB")
_TLSCB p_thread_callback = on_tls_callback;
#pragma data_seg()
//Callback for termination.
#pragma data_seg(".CRT$XTU")
static _PVFV p_process_term = on_process_term;
#pragma data_seg()
#if (_MSC_VER >= 1300) // 1300 == VC++ 7.0
# pragma data_seg(pop, old_seg)
#endif
#endif
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4189)
#endif
PVAPI on_tls_prepare(void)
{
//The following line has an important side effect:
//if the TLS directory is not already there, it will
//be created by the linker. In other words, it forces a tls
//directory to be generated by the linker even when static tls
//(i.e. __declspec(thread)) is not used.
//The volatile should prevent the optimizer
//from removing the reference.
DWORD volatile dw = _tls_used;
#if (_MSC_VER < 1300) // 1300 == VC++ 7.0
_TLSCB* pfbegin = __xl_a;
_TLSCB* pfend = __xl_z;
_TLSCB* pfdst = pfbegin;
//pfdst = (_TLSCB*)_tls_used.AddressOfCallBacks;
//The following loop will merge the address pointers
//into a contiguous area, since the tlssup code seems
//to require this (at least on MSVC 6)
while (pfbegin < pfend)
{
if (*pfbegin != 0)
{
*pfdst = *pfbegin;
++pfdst;
}
++pfbegin;
}
*pfdst = 0;
#endif
return INIRETSUCCESS;
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
PVAPI on_process_init(void)
{
//Schedule on_thread_exit() to be called for the main
//thread before destructors of global objects have been
//called.
//It will not be run when 'quick' exiting the
//library; however, this is the standard behaviour
//for destructors of global objects, so that
//shouldn't be a problem.
atexit(on_thread_exit);
//Call Boost process entry callback here
on_process_enter();
return INIRETSUCCESS;
}
PVAPI on_process_term(void)
{
on_process_exit();
return INIRETSUCCESS;
}
void NTAPI on_tls_callback(HINSTANCE /*h*/, DWORD dwReason, PVOID /*pv*/)
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
on_thread_exit();
break;
}
}
BOOL WINAPI dll_callback(HANDLE, DWORD dwReason, LPVOID)
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
on_thread_exit();
break;
case DLL_PROCESS_DETACH:
on_process_exit();
break;
}
return true;
}
} //namespace
extern "C"
{
extern BOOL (WINAPI * const _pRawDllMain)(HANDLE, DWORD, LPVOID)=&dll_callback;
}
extern "C" void tss_cleanup_implemented(void)
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
#endif //defined(_MSC_VER) && !defined(UNDER_CE)
#endif //defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_LIB)

View File

@@ -1,5 +1,4 @@
# (C) Copyright William E. Kempf 2001.
# (C) Copyright 2007 Anthony Williams.
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#
@@ -22,40 +21,26 @@ project
: requirements <library>/boost/test//boost_unit_test_framework/<link>static
<threading>multi
;
rule thread-run ( sources )
{
return
[ run $(sources) ../build//boost_thread ]
[ run $(sources) ../src/tss_null.cpp ../build//boost_thread/<link>static
: : : : $(sources[1]:B)_lib ]
;
[ run $(sources) ../build//boost_thread ]
[ run $(sources) ../src/tss_null.cpp ../build//boost_thread/<link>static
: : : : $(sources[1]:B)_lib ]
;
}
{
test-suite "threads"
: [ thread-run test_thread.cpp ]
[ thread-run test_thread_id.cpp ]
[ thread-run test_hardware_concurrency.cpp ]
[ thread-run test_thread_move.cpp ]
[ thread-run test_thread_launching.cpp ]
[ thread-run test_thread_mf.cpp ]
[ thread-run test_move_function.cpp ]
[ thread-run test_mutex.cpp ]
[ thread-run test_condition_notify_one.cpp ]
[ thread-run test_condition_timed_wait_times_out.cpp ]
[ thread-run test_condition_notify_all.cpp ]
[ thread-run test_condition.cpp ]
[ thread-run test_tss.cpp ]
[ thread-run test_once.cpp ]
[ thread-run test_xtime.cpp ]
[ thread-run test_barrier.cpp ]
[ thread-run test_barrier.cpp ]
[ thread-run test_shared_mutex.cpp ]
[ thread-run test_shared_mutex_part_2.cpp ]
[ thread-run test_shared_mutex_timed_locks.cpp ]
[ thread-run test_lock_concept.cpp ]
[ thread-run test_generic_locks.cpp ]
[ compile-fail no_implicit_move_from_lvalue_thread.cpp ]
[ compile-fail no_implicit_assign_from_lvalue_thread.cpp ]
;
}

View File

@@ -1,97 +0,0 @@
#ifndef CONDITION_TEST_COMMON_HPP
#define CONDITION_TEST_COMMON_HPP
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread_time.hpp>
unsigned const timeout_seconds=5;
struct wait_for_flag
{
boost::mutex mutex;
boost::condition_variable cond_var;
bool flag;
unsigned woken;
wait_for_flag():
flag(false),woken(0)
{}
struct check_flag
{
bool const& flag;
check_flag(bool const& flag_):
flag(flag_)
{}
bool operator()() const
{
return flag;
}
private:
void operator=(check_flag&);
};
void wait_without_predicate()
{
boost::mutex::scoped_lock lock(mutex);
while(!flag)
{
cond_var.wait(lock);
}
++woken;
}
void wait_with_predicate()
{
boost::mutex::scoped_lock lock(mutex);
cond_var.wait(lock,check_flag(flag));
if(flag)
{
++woken;
}
}
void timed_wait_without_predicate()
{
boost::system_time const timeout=boost::get_system_time()+boost::posix_time::seconds(timeout_seconds);
boost::mutex::scoped_lock lock(mutex);
while(!flag)
{
if(!cond_var.timed_wait(lock,timeout))
{
return;
}
}
++woken;
}
void timed_wait_with_predicate()
{
boost::system_time const timeout=boost::get_system_time()+boost::posix_time::seconds(timeout_seconds);
boost::mutex::scoped_lock lock(mutex);
if(cond_var.timed_wait(lock,timeout,check_flag(flag)) && flag)
{
++woken;
}
}
void relative_timed_wait_with_predicate()
{
boost::mutex::scoped_lock lock(mutex);
if(cond_var.timed_wait(lock,boost::posix_time::seconds(timeout_seconds),check_flag(flag)) && flag)
{
++woken;
}
}
};
#endif

View File

@@ -1,15 +0,0 @@
// Copyright (C) 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
void do_nothing()
{}
void test()
{
boost::thread t1(do_nothing);
boost::thread t2;
t2=t1;
}

View File

@@ -1,14 +0,0 @@
// Copyright (C) 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
void do_nothing()
{}
void test()
{
boost::thread t1(do_nothing);
boost::thread t2(t1);
}

View File

@@ -1,132 +0,0 @@
#ifndef SHARED_MUTEX_LOCKING_THREAD_HPP
#define SHARED_MUTEX_LOCKING_THREAD_HPP
// (C) Copyright 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/shared_mutex.hpp>
template<typename lock_type>
class locking_thread
{
boost::shared_mutex& rw_mutex;
unsigned& unblocked_count;
boost::condition_variable& unblocked_condition;
unsigned& simultaneous_running_count;
unsigned& max_simultaneous_running;
boost::mutex& unblocked_count_mutex;
boost::mutex& finish_mutex;
public:
locking_thread(boost::shared_mutex& rw_mutex_,
unsigned& unblocked_count_,
boost::mutex& unblocked_count_mutex_,
boost::condition_variable& unblocked_condition_,
boost::mutex& finish_mutex_,
unsigned& simultaneous_running_count_,
unsigned& max_simultaneous_running_):
rw_mutex(rw_mutex_),
unblocked_count(unblocked_count_),
unblocked_condition(unblocked_condition_),
simultaneous_running_count(simultaneous_running_count_),
max_simultaneous_running(max_simultaneous_running_),
unblocked_count_mutex(unblocked_count_mutex_),
finish_mutex(finish_mutex_)
{}
void operator()()
{
// acquire lock
lock_type lock(rw_mutex);
// increment count to show we're unblocked
{
boost::mutex::scoped_lock ublock(unblocked_count_mutex);
++unblocked_count;
unblocked_condition.notify_one();
++simultaneous_running_count;
if(simultaneous_running_count>max_simultaneous_running)
{
max_simultaneous_running=simultaneous_running_count;
}
}
// wait to finish
boost::mutex::scoped_lock finish_lock(finish_mutex);
{
boost::mutex::scoped_lock ublock(unblocked_count_mutex);
--simultaneous_running_count;
}
}
private:
void operator=(locking_thread&);
};
class simple_writing_thread
{
boost::shared_mutex& rwm;
boost::mutex& finish_mutex;
boost::mutex& unblocked_mutex;
unsigned& unblocked_count;
void operator=(simple_writing_thread&);
public:
simple_writing_thread(boost::shared_mutex& rwm_,
boost::mutex& finish_mutex_,
boost::mutex& unblocked_mutex_,
unsigned& unblocked_count_):
rwm(rwm_),finish_mutex(finish_mutex_),
unblocked_mutex(unblocked_mutex_),unblocked_count(unblocked_count_)
{}
void operator()()
{
boost::unique_lock<boost::shared_mutex> lk(rwm);
{
boost::mutex::scoped_lock ulk(unblocked_mutex);
++unblocked_count;
}
boost::mutex::scoped_lock flk(finish_mutex);
}
};
class simple_reading_thread
{
boost::shared_mutex& rwm;
boost::mutex& finish_mutex;
boost::mutex& unblocked_mutex;
unsigned& unblocked_count;
void operator=(simple_reading_thread&);
public:
simple_reading_thread(boost::shared_mutex& rwm_,
boost::mutex& finish_mutex_,
boost::mutex& unblocked_mutex_,
unsigned& unblocked_count_):
rwm(rwm_),finish_mutex(finish_mutex_),
unblocked_mutex(unblocked_mutex_),unblocked_count(unblocked_count_)
{}
void operator()()
{
boost::shared_lock<boost::shared_mutex> lk(rwm);
{
boost::mutex::scoped_lock ulk(unblocked_mutex);
++unblocked_count;
}
boost::mutex::scoped_lock flk(finish_mutex);
}
};
#endif

View File

@@ -10,7 +10,6 @@
#include <boost/thread/barrier.hpp>
#include <boost/test/unit_test.hpp>
#include <vector>
namespace {
@@ -39,20 +38,12 @@ void test_barrier()
boost::thread_group g;
global_parameter = 0;
try
{
for (int i = 0; i < N_THREADS; ++i)
g.create_thread(&barrier_thread);
g.join_all();
}
catch(...)
{
g.interrupt_all();
g.join_all();
throw;
}
BOOST_CHECK_EQUAL(global_parameter,5);
for (int i = 0; i < N_THREADS; ++i)
g.create_thread(&barrier_thread);
g.join_all();
BOOST_CHECK(global_parameter == 5);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])

View File

@@ -1,6 +1,5 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -20,7 +19,7 @@ struct condition_test_data
condition_test_data() : notified(0), awoken(0) { }
boost::mutex mutex;
boost::condition_variable condition;
boost::condition condition;
int notified;
int awoken;
};
@@ -43,9 +42,6 @@ struct cond_predicate
int& _var;
int _val;
private:
void operator=(cond_predicate&);
};
void condition_test_waits(condition_test_data* data)
@@ -86,15 +82,56 @@ void condition_test_waits(condition_test_data* data)
BOOST_CHECK_EQUAL(data->notified, 4);
data->awoken++;
data->condition.notify_one();
}
// Test predicate timed_wait with relative timeout
cond_predicate pred_rel(data->notified, 5);
BOOST_CHECK(data->condition.timed_wait(lock, boost::posix_time::seconds(10), pred_rel));
BOOST_CHECK(lock ? true : false);
BOOST_CHECK(pred_rel());
BOOST_CHECK_EQUAL(data->notified, 5);
data->awoken++;
data->condition.notify_one();
void do_test_condition_notify_one()
{
condition_test_data data;
boost::thread thread(bind(&condition_test_thread, &data));
{
boost::mutex::scoped_lock lock(data.mutex);
BOOST_CHECK(lock ? true : false);
data.notified++;
data.condition.notify_one();
}
thread.join();
BOOST_CHECK_EQUAL(data.awoken, 1);
}
void test_condition_notify_one()
{
timed_test(&do_test_condition_notify_one, 2, execution_monitor::use_mutex);
}
void do_test_condition_notify_all()
{
const int NUMTHREADS = 5;
boost::thread_group threads;
condition_test_data data;
for (int i = 0; i < NUMTHREADS; ++i)
threads.create_thread(bind(&condition_test_thread, &data));
{
boost::mutex::scoped_lock lock(data.mutex);
BOOST_CHECK(lock ? true : false);
data.notified++;
data.condition.notify_all();
}
threads.join_all();
BOOST_CHECK_EQUAL(data.awoken, NUMTHREADS);
}
void test_condition_notify_all()
{
// We should have already tested notify_one here, so
// a timed test with the default execution_monitor::use_condition
// should be OK, and gives the fastest performance
timed_test(&do_test_condition_notify_all, 3);
}
void do_test_condition_waits()
@@ -138,19 +175,10 @@ void do_test_condition_waits()
data.condition.wait(lock);
BOOST_CHECK(lock ? true : false);
BOOST_CHECK_EQUAL(data.awoken, 4);
boost::thread::sleep(delay(1));
data.notified++;
data.condition.notify_one();
while (data.awoken != 5)
data.condition.wait(lock);
BOOST_CHECK(lock ? true : false);
BOOST_CHECK_EQUAL(data.awoken, 5);
}
thread.join();
BOOST_CHECK_EQUAL(data.awoken, 5);
BOOST_CHECK_EQUAL(data.awoken, 4);
}
void test_condition_waits()
@@ -161,30 +189,14 @@ void test_condition_waits()
timed_test(&do_test_condition_waits, 12);
}
void do_test_condition_wait_is_a_interruption_point()
{
condition_test_data data;
boost::thread thread(bind(&condition_test_thread, &data));
thread.interrupt();
thread.join();
BOOST_CHECK_EQUAL(data.awoken,0);
}
void test_condition_wait_is_a_interruption_point()
{
timed_test(&do_test_condition_wait_is_a_interruption_point, 1);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: condition test suite");
test->add(BOOST_TEST_CASE(&test_condition_notify_one));
test->add(BOOST_TEST_CASE(&test_condition_notify_all));
test->add(BOOST_TEST_CASE(&test_condition_waits));
test->add(BOOST_TEST_CASE(&test_condition_wait_is_a_interruption_point));
return test;
}

View File

@@ -1,222 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include <libs/thread/test/util.inl>
#include "condition_test_common.hpp"
unsigned const number_of_test_threads=5;
void do_test_condition_notify_all_wakes_from_wait()
{
wait_for_flag data;
boost::thread_group group;
try
{
for(unsigned i=0;i<number_of_test_threads;++i)
{
group.create_thread(bind(&wait_for_flag::wait_without_predicate, data));
}
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_all();
}
group.join_all();
BOOST_CHECK_EQUAL(data.woken,number_of_test_threads);
}
catch(...)
{
group.join_all();
throw;
}
}
void do_test_condition_notify_all_wakes_from_wait_with_predicate()
{
wait_for_flag data;
boost::thread_group group;
try
{
for(unsigned i=0;i<number_of_test_threads;++i)
{
group.create_thread(bind(&wait_for_flag::wait_with_predicate, data));
}
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_all();
}
group.join_all();
BOOST_CHECK_EQUAL(data.woken,number_of_test_threads);
}
catch(...)
{
group.join_all();
throw;
}
}
void do_test_condition_notify_all_wakes_from_timed_wait()
{
wait_for_flag data;
boost::thread_group group;
try
{
for(unsigned i=0;i<number_of_test_threads;++i)
{
group.create_thread(bind(&wait_for_flag::timed_wait_without_predicate, data));
}
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_all();
}
group.join_all();
BOOST_CHECK_EQUAL(data.woken,number_of_test_threads);
}
catch(...)
{
group.join_all();
throw;
}
}
void do_test_condition_notify_all_wakes_from_timed_wait_with_predicate()
{
wait_for_flag data;
boost::thread_group group;
try
{
for(unsigned i=0;i<number_of_test_threads;++i)
{
group.create_thread(bind(&wait_for_flag::timed_wait_with_predicate, data));
}
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_all();
}
group.join_all();
BOOST_CHECK_EQUAL(data.woken,number_of_test_threads);
}
catch(...)
{
group.join_all();
throw;
}
}
void do_test_condition_notify_all_wakes_from_relative_timed_wait_with_predicate()
{
wait_for_flag data;
boost::thread_group group;
try
{
for(unsigned i=0;i<number_of_test_threads;++i)
{
group.create_thread(bind(&wait_for_flag::relative_timed_wait_with_predicate, data));
}
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_all();
}
group.join_all();
BOOST_CHECK_EQUAL(data.woken,number_of_test_threads);
}
catch(...)
{
group.join_all();
throw;
}
}
namespace
{
boost::mutex multiple_wake_mutex;
boost::condition_variable multiple_wake_cond;
unsigned multiple_wake_count=0;
void wait_for_condvar_and_increase_count()
{
boost::mutex::scoped_lock lk(multiple_wake_mutex);
multiple_wake_cond.wait(lk);
++multiple_wake_count;
}
}
void do_test_notify_all_following_notify_one_wakes_all_threads()
{
boost::thread thread1(wait_for_condvar_and_increase_count);
boost::thread thread2(wait_for_condvar_and_increase_count);
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
multiple_wake_cond.notify_one();
boost::thread thread3(wait_for_condvar_and_increase_count);
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
multiple_wake_cond.notify_one();
multiple_wake_cond.notify_all();
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
{
boost::mutex::scoped_lock lk(multiple_wake_mutex);
BOOST_CHECK(multiple_wake_count==3);
}
thread1.join();
thread2.join();
thread3.join();
}
void test_condition_notify_all()
{
timed_test(&do_test_condition_notify_all_wakes_from_wait, timeout_seconds);
timed_test(&do_test_condition_notify_all_wakes_from_wait_with_predicate, timeout_seconds);
timed_test(&do_test_condition_notify_all_wakes_from_timed_wait, timeout_seconds);
timed_test(&do_test_condition_notify_all_wakes_from_timed_wait_with_predicate, timeout_seconds);
timed_test(&do_test_condition_notify_all_wakes_from_relative_timed_wait_with_predicate, timeout_seconds);
timed_test(&do_test_notify_all_following_notify_one_wakes_all_threads, timeout_seconds);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: condition test suite");
test->add(BOOST_TEST_CASE(&test_condition_notify_all));
return test;
}

View File

@@ -1,155 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include <libs/thread/test/util.inl>
#include "condition_test_common.hpp"
void do_test_condition_notify_one_wakes_from_wait()
{
wait_for_flag data;
boost::thread thread(bind(&wait_for_flag::wait_without_predicate, data));
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_one();
}
thread.join();
BOOST_CHECK(data.woken);
}
void do_test_condition_notify_one_wakes_from_wait_with_predicate()
{
wait_for_flag data;
boost::thread thread(bind(&wait_for_flag::wait_with_predicate, data));
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_one();
}
thread.join();
BOOST_CHECK(data.woken);
}
void do_test_condition_notify_one_wakes_from_timed_wait()
{
wait_for_flag data;
boost::thread thread(bind(&wait_for_flag::timed_wait_without_predicate, data));
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_one();
}
thread.join();
BOOST_CHECK(data.woken);
}
void do_test_condition_notify_one_wakes_from_timed_wait_with_predicate()
{
wait_for_flag data;
boost::thread thread(bind(&wait_for_flag::timed_wait_with_predicate, data));
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_one();
}
thread.join();
BOOST_CHECK(data.woken);
}
void do_test_condition_notify_one_wakes_from_relative_timed_wait_with_predicate()
{
wait_for_flag data;
boost::thread thread(bind(&wait_for_flag::relative_timed_wait_with_predicate, data));
{
boost::mutex::scoped_lock lock(data.mutex);
data.flag=true;
data.cond_var.notify_one();
}
thread.join();
BOOST_CHECK(data.woken);
}
namespace
{
boost::mutex multiple_wake_mutex;
boost::condition_variable multiple_wake_cond;
unsigned multiple_wake_count=0;
void wait_for_condvar_and_increase_count()
{
boost::mutex::scoped_lock lk(multiple_wake_mutex);
multiple_wake_cond.wait(lk);
++multiple_wake_count;
}
}
void do_test_multiple_notify_one_calls_wakes_multiple_threads()
{
boost::thread thread1(wait_for_condvar_and_increase_count);
boost::thread thread2(wait_for_condvar_and_increase_count);
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
multiple_wake_cond.notify_one();
boost::thread thread3(wait_for_condvar_and_increase_count);
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
multiple_wake_cond.notify_one();
multiple_wake_cond.notify_one();
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
{
boost::mutex::scoped_lock lk(multiple_wake_mutex);
BOOST_CHECK(multiple_wake_count==3);
}
thread1.join();
thread2.join();
thread3.join();
}
void test_condition_notify_one()
{
timed_test(&do_test_condition_notify_one_wakes_from_wait, timeout_seconds, execution_monitor::use_mutex);
timed_test(&do_test_condition_notify_one_wakes_from_wait_with_predicate, timeout_seconds, execution_monitor::use_mutex);
timed_test(&do_test_condition_notify_one_wakes_from_timed_wait, timeout_seconds, execution_monitor::use_mutex);
timed_test(&do_test_condition_notify_one_wakes_from_timed_wait_with_predicate, timeout_seconds, execution_monitor::use_mutex);
timed_test(&do_test_condition_notify_one_wakes_from_relative_timed_wait_with_predicate, timeout_seconds, execution_monitor::use_mutex);
timed_test(&do_test_multiple_notify_one_calls_wakes_multiple_threads, timeout_seconds, execution_monitor::use_mutex);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: condition test suite");
test->add(BOOST_TEST_CASE(&test_condition_notify_one));
return test;
}

View File

@@ -1,173 +0,0 @@
// Copyright (C) 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include "util.inl"
bool fake_predicate()
{
return false;
}
unsigned const timeout_seconds=2;
unsigned const timeout_grace=1;
boost::posix_time::milliseconds const timeout_resolution(100);
void do_test_timed_wait_times_out()
{
boost::condition_variable cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+delay;
while(cond.timed_wait(lock,timeout));
boost::system_time const end=boost::get_system_time();
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_timed_wait_with_predicate_times_out()
{
boost::condition_variable cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+delay;
bool const res=cond.timed_wait(lock,timeout,fake_predicate);
boost::system_time const end=boost::get_system_time();
BOOST_CHECK(!res);
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_relative_timed_wait_with_predicate_times_out()
{
boost::condition_variable cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
bool const res=cond.timed_wait(lock,delay,fake_predicate);
boost::system_time const end=boost::get_system_time();
BOOST_CHECK(!res);
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_timed_wait_relative_times_out()
{
boost::condition_variable cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
while(cond.timed_wait(lock,delay));
boost::system_time const end=boost::get_system_time();
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_cv_any_timed_wait_times_out()
{
boost::condition_variable_any cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+delay;
while(cond.timed_wait(lock,timeout));
boost::system_time const end=boost::get_system_time();
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_cv_any_timed_wait_with_predicate_times_out()
{
boost::condition_variable_any cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+delay;
bool const res=cond.timed_wait(lock,timeout,fake_predicate);
boost::system_time const end=boost::get_system_time();
BOOST_CHECK(!res);
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_cv_any_relative_timed_wait_with_predicate_times_out()
{
boost::condition_variable_any cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
bool const res=cond.timed_wait(lock,delay,fake_predicate);
boost::system_time const end=boost::get_system_time();
BOOST_CHECK(!res);
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void do_test_cv_any_timed_wait_relative_times_out()
{
boost::condition_variable_any cond;
boost::mutex m;
boost::posix_time::seconds const delay(timeout_seconds);
boost::mutex::scoped_lock lock(m);
boost::system_time const start=boost::get_system_time();
while(cond.timed_wait(lock,delay));
boost::system_time const end=boost::get_system_time();
BOOST_CHECK((delay-timeout_resolution)<=(end-start));
}
void test_timed_wait_times_out()
{
timed_test(&do_test_timed_wait_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_timed_wait_with_predicate_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_relative_timed_wait_with_predicate_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_timed_wait_relative_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_cv_any_timed_wait_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_cv_any_timed_wait_with_predicate_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_cv_any_relative_timed_wait_with_predicate_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
timed_test(&do_test_cv_any_timed_wait_relative_times_out, timeout_seconds+timeout_grace, execution_monitor::use_mutex);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: condition test suite");
test->add(BOOST_TEST_CASE(&test_timed_wait_times_out));
return test;
}

View File

@@ -1,523 +0,0 @@
// (C) Copyright 2008 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/test/unit_test.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/condition_variable.hpp>
void test_lock_two_uncontended()
{
boost::mutex m1,m2;
boost::mutex::scoped_lock l1(m1,boost::defer_lock),
l2(m2,boost::defer_lock);
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
boost::lock(l1,l2);
BOOST_CHECK(l1.owns_lock());
BOOST_CHECK(l2.owns_lock());
}
struct wait_data
{
boost::mutex m;
bool flag;
boost::condition_variable cond;
wait_data():
flag(false)
{}
void wait()
{
boost::mutex::scoped_lock l(m);
while(!flag)
{
cond.wait(l);
}
}
template<typename Duration>
bool timed_wait(Duration d)
{
boost::system_time const target=boost::get_system_time()+d;
boost::mutex::scoped_lock l(m);
while(!flag)
{
if(!cond.timed_wait(l,target))
{
return flag;
}
}
return true;
}
void signal()
{
boost::mutex::scoped_lock l(m);
flag=true;
cond.notify_all();
}
};
void lock_mutexes_slowly(boost::mutex* m1,boost::mutex* m2,wait_data* locked,wait_data* quit)
{
boost::lock_guard<boost::mutex> l1(*m1);
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
boost::lock_guard<boost::mutex> l2(*m2);
locked->signal();
quit->wait();
}
void lock_pair(boost::mutex* m1,boost::mutex* m2)
{
boost::lock(*m1,*m2);
boost::mutex::scoped_lock l1(*m1,boost::adopt_lock),
l2(*m2,boost::adopt_lock);
}
void test_lock_two_other_thread_locks_in_order()
{
boost::mutex m1,m2;
wait_data locked;
wait_data release;
boost::thread t(lock_mutexes_slowly,&m1,&m2,&locked,&release);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
boost::thread t2(lock_pair,&m1,&m2);
BOOST_CHECK(locked.timed_wait(boost::posix_time::seconds(1)));
release.signal();
BOOST_CHECK(t2.timed_join(boost::posix_time::seconds(1)));
t.join();
}
void test_lock_two_other_thread_locks_in_opposite_order()
{
boost::mutex m1,m2;
wait_data locked;
wait_data release;
boost::thread t(lock_mutexes_slowly,&m1,&m2,&locked,&release);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
boost::thread t2(lock_pair,&m2,&m1);
BOOST_CHECK(locked.timed_wait(boost::posix_time::seconds(1)));
release.signal();
BOOST_CHECK(t2.timed_join(boost::posix_time::seconds(1)));
t.join();
}
void test_lock_five_uncontended()
{
boost::mutex m1,m2,m3,m4,m5;
boost::mutex::scoped_lock l1(m1,boost::defer_lock),
l2(m2,boost::defer_lock),
l3(m3,boost::defer_lock),
l4(m4,boost::defer_lock),
l5(m5,boost::defer_lock);
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
BOOST_CHECK(!l3.owns_lock());
BOOST_CHECK(!l4.owns_lock());
BOOST_CHECK(!l5.owns_lock());
boost::lock(l1,l2,l3,l4,l5);
BOOST_CHECK(l1.owns_lock());
BOOST_CHECK(l2.owns_lock());
BOOST_CHECK(l3.owns_lock());
BOOST_CHECK(l4.owns_lock());
BOOST_CHECK(l5.owns_lock());
}
void lock_five_mutexes_slowly(boost::mutex* m1,boost::mutex* m2,boost::mutex* m3,boost::mutex* m4,boost::mutex* m5,
wait_data* locked,wait_data* quit)
{
boost::lock_guard<boost::mutex> l1(*m1);
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
boost::lock_guard<boost::mutex> l2(*m2);
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
boost::lock_guard<boost::mutex> l3(*m3);
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
boost::lock_guard<boost::mutex> l4(*m4);
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
boost::lock_guard<boost::mutex> l5(*m5);
locked->signal();
quit->wait();
}
void lock_five(boost::mutex* m1,boost::mutex* m2,boost::mutex* m3,boost::mutex* m4,boost::mutex* m5)
{
boost::lock(*m1,*m2,*m3,*m4,*m5);
m1->unlock();
m2->unlock();
m3->unlock();
m4->unlock();
m5->unlock();
}
void test_lock_five_other_thread_locks_in_order()
{
boost::mutex m1,m2,m3,m4,m5;
wait_data locked;
wait_data release;
boost::thread t(lock_five_mutexes_slowly,&m1,&m2,&m3,&m4,&m5,&locked,&release);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
boost::thread t2(lock_five,&m1,&m2,&m3,&m4,&m5);
BOOST_CHECK(locked.timed_wait(boost::posix_time::seconds(3)));
release.signal();
BOOST_CHECK(t2.timed_join(boost::posix_time::seconds(3)));
t.join();
}
void test_lock_five_other_thread_locks_in_different_order()
{
boost::mutex m1,m2,m3,m4,m5;
wait_data locked;
wait_data release;
boost::thread t(lock_five_mutexes_slowly,&m1,&m2,&m3,&m4,&m5,&locked,&release);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
boost::thread t2(lock_five,&m5,&m1,&m4,&m2,&m3);
BOOST_CHECK(locked.timed_wait(boost::posix_time::seconds(3)));
release.signal();
BOOST_CHECK(t2.timed_join(boost::posix_time::seconds(3)));
t.join();
}
void lock_n(boost::mutex* mutexes,unsigned count)
{
boost::lock(mutexes,mutexes+count);
for(unsigned i=0;i<count;++i)
{
mutexes[i].unlock();
}
}
void test_lock_ten_other_thread_locks_in_different_order()
{
unsigned const num_mutexes=10;
boost::mutex mutexes[num_mutexes];
wait_data locked;
wait_data release;
boost::thread t(lock_five_mutexes_slowly,&mutexes[6],&mutexes[3],&mutexes[8],&mutexes[0],&mutexes[2],&locked,&release);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
boost::thread t2(lock_n,mutexes,num_mutexes);
BOOST_CHECK(locked.timed_wait(boost::posix_time::seconds(3)));
release.signal();
BOOST_CHECK(t2.timed_join(boost::posix_time::seconds(3)));
t.join();
}
struct dummy_mutex
{
bool is_locked;
dummy_mutex():
is_locked(false)
{}
void lock()
{
is_locked=true;
}
bool try_lock()
{
if(is_locked)
{
return false;
}
is_locked=true;
return true;
}
void unlock()
{
is_locked=false;
}
};
namespace boost
{
template<>
struct is_mutex_type<dummy_mutex>
{
BOOST_STATIC_CONSTANT(bool, value = true);
};
}
void test_lock_five_in_range()
{
unsigned const num_mutexes=5;
dummy_mutex mutexes[num_mutexes];
boost::lock(mutexes,mutexes+num_mutexes);
for(unsigned i=0;i<num_mutexes;++i)
{
BOOST_CHECK(mutexes[i].is_locked);
}
}
void test_lock_ten_in_range()
{
unsigned const num_mutexes=10;
dummy_mutex mutexes[num_mutexes];
boost::lock(mutexes,mutexes+num_mutexes);
for(unsigned i=0;i<num_mutexes;++i)
{
BOOST_CHECK(mutexes[i].is_locked);
}
}
void test_try_lock_two_uncontended()
{
dummy_mutex m1,m2;
int const res=boost::try_lock(m1,m2);
BOOST_CHECK(res==-1);
BOOST_CHECK(m1.is_locked);
BOOST_CHECK(m2.is_locked);
}
void test_try_lock_two_first_locked()
{
dummy_mutex m1,m2;
m1.lock();
boost::unique_lock<dummy_mutex> l1(m1,boost::defer_lock),
l2(m2,boost::defer_lock);
int const res=boost::try_lock(l1,l2);
BOOST_CHECK(res==0);
BOOST_CHECK(m1.is_locked);
BOOST_CHECK(!m2.is_locked);
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
}
void test_try_lock_two_second_locked()
{
dummy_mutex m1,m2;
m2.lock();
boost::unique_lock<dummy_mutex> l1(m1,boost::defer_lock),
l2(m2,boost::defer_lock);
int const res=boost::try_lock(l1,l2);
BOOST_CHECK(res==1);
BOOST_CHECK(!m1.is_locked);
BOOST_CHECK(m2.is_locked);
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
}
void test_try_lock_three()
{
int const num_mutexes=3;
for(int i=-1;i<num_mutexes;++i)
{
dummy_mutex mutexes[num_mutexes];
if(i>=0)
{
mutexes[i].lock();
}
boost::unique_lock<dummy_mutex> l1(mutexes[0],boost::defer_lock),
l2(mutexes[1],boost::defer_lock),
l3(mutexes[2],boost::defer_lock);
int const res=boost::try_lock(l1,l2,l3);
BOOST_CHECK(res==i);
for(int j=0;j<num_mutexes;++j)
{
if((i==j) || (i==-1))
{
BOOST_CHECK(mutexes[j].is_locked);
}
else
{
BOOST_CHECK(!mutexes[j].is_locked);
}
}
if(i==-1)
{
BOOST_CHECK(l1.owns_lock());
BOOST_CHECK(l2.owns_lock());
BOOST_CHECK(l3.owns_lock());
}
else
{
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
BOOST_CHECK(!l3.owns_lock());
}
}
}
void test_try_lock_four()
{
int const num_mutexes=4;
for(int i=-1;i<num_mutexes;++i)
{
dummy_mutex mutexes[num_mutexes];
if(i>=0)
{
mutexes[i].lock();
}
boost::unique_lock<dummy_mutex> l1(mutexes[0],boost::defer_lock),
l2(mutexes[1],boost::defer_lock),
l3(mutexes[2],boost::defer_lock),
l4(mutexes[3],boost::defer_lock);
int const res=boost::try_lock(l1,l2,l3,l4);
BOOST_CHECK(res==i);
for(int j=0;j<num_mutexes;++j)
{
if((i==j) || (i==-1))
{
BOOST_CHECK(mutexes[j].is_locked);
}
else
{
BOOST_CHECK(!mutexes[j].is_locked);
}
}
if(i==-1)
{
BOOST_CHECK(l1.owns_lock());
BOOST_CHECK(l2.owns_lock());
BOOST_CHECK(l3.owns_lock());
BOOST_CHECK(l4.owns_lock());
}
else
{
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
BOOST_CHECK(!l3.owns_lock());
BOOST_CHECK(!l4.owns_lock());
}
}
}
void test_try_lock_five()
{
int const num_mutexes=5;
for(int i=-1;i<num_mutexes;++i)
{
dummy_mutex mutexes[num_mutexes];
if(i>=0)
{
mutexes[i].lock();
}
boost::unique_lock<dummy_mutex> l1(mutexes[0],boost::defer_lock),
l2(mutexes[1],boost::defer_lock),
l3(mutexes[2],boost::defer_lock),
l4(mutexes[3],boost::defer_lock),
l5(mutexes[4],boost::defer_lock);
int const res=boost::try_lock(l1,l2,l3,l4,l5);
BOOST_CHECK(res==i);
for(int j=0;j<num_mutexes;++j)
{
if((i==j) || (i==-1))
{
BOOST_CHECK(mutexes[j].is_locked);
}
else
{
BOOST_CHECK(!mutexes[j].is_locked);
}
}
if(i==-1)
{
BOOST_CHECK(l1.owns_lock());
BOOST_CHECK(l2.owns_lock());
BOOST_CHECK(l3.owns_lock());
BOOST_CHECK(l4.owns_lock());
BOOST_CHECK(l5.owns_lock());
}
else
{
BOOST_CHECK(!l1.owns_lock());
BOOST_CHECK(!l2.owns_lock());
BOOST_CHECK(!l3.owns_lock());
BOOST_CHECK(!l4.owns_lock());
BOOST_CHECK(!l5.owns_lock());
}
}
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: generic locks test suite");
test->add(BOOST_TEST_CASE(&test_lock_two_uncontended));
test->add(BOOST_TEST_CASE(&test_lock_two_other_thread_locks_in_order));
test->add(BOOST_TEST_CASE(&test_lock_two_other_thread_locks_in_opposite_order));
test->add(BOOST_TEST_CASE(&test_lock_five_uncontended));
test->add(BOOST_TEST_CASE(&test_lock_five_other_thread_locks_in_order));
test->add(BOOST_TEST_CASE(&test_lock_five_other_thread_locks_in_different_order));
test->add(BOOST_TEST_CASE(&test_lock_five_in_range));
test->add(BOOST_TEST_CASE(&test_lock_ten_in_range));
test->add(BOOST_TEST_CASE(&test_lock_ten_other_thread_locks_in_different_order));
test->add(BOOST_TEST_CASE(&test_try_lock_two_uncontended));
test->add(BOOST_TEST_CASE(&test_try_lock_two_first_locked));
test->add(BOOST_TEST_CASE(&test_try_lock_two_second_locked));
test->add(BOOST_TEST_CASE(&test_try_lock_three));
test->add(BOOST_TEST_CASE(&test_try_lock_four));
test->add(BOOST_TEST_CASE(&test_try_lock_five));
return test;
}

View File

@@ -1,21 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/thread/mutex.hpp>
void test_hardware_concurrency_is_non_zero()
{
BOOST_CHECK(boost::thread::hardware_concurrency()!=0);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: hardware concurrency test suite");
test->add(BOOST_TEST_CASE(test_hardware_concurrency_is_non_zero));
return test;
}

View File

@@ -1,4 +1,4 @@
// (C) Copyright 2006-8 Anthony Williams
// (C) Copyright 2006-7 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@@ -7,10 +7,7 @@
#include <boost/test/test_case_template.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/condition_variable.hpp>
template<typename Mutex,typename Lock>
struct test_initially_locked
@@ -25,180 +22,6 @@ struct test_initially_locked
}
};
template<typename Mutex,typename Lock>
struct test_initially_unlocked_if_other_thread_has_lock
{
Mutex m;
boost::mutex done_mutex;
bool done;
bool locked;
boost::condition_variable done_cond;
test_initially_unlocked_if_other_thread_has_lock():
done(false),locked(false)
{}
void locking_thread()
{
Lock lock(m);
boost::lock_guard<boost::mutex> lk(done_mutex);
locked=lock.owns_lock();
done=true;
done_cond.notify_one();
}
bool is_done() const
{
return done;
}
void operator()()
{
Lock lock(m);
typedef test_initially_unlocked_if_other_thread_has_lock<Mutex,Lock> this_type;
boost::thread t(&this_type::locking_thread,this);
try
{
{
boost::mutex::scoped_lock lk(done_mutex);
BOOST_CHECK(done_cond.timed_wait(lk,boost::posix_time::seconds(2),
boost::bind(&this_type::is_done,this)));
BOOST_CHECK(!locked);
}
lock.unlock();
t.join();
}
catch(...)
{
lock.unlock();
t.join();
throw;
}
}
};
template<typename Mutex,typename Lock>
struct test_initially_unlocked_with_try_lock_if_other_thread_has_unique_lock
{
Mutex m;
boost::mutex done_mutex;
bool done;
bool locked;
boost::condition_variable done_cond;
test_initially_unlocked_with_try_lock_if_other_thread_has_unique_lock():
done(false),locked(false)
{}
void locking_thread()
{
Lock lock(m,boost::try_to_lock);
boost::lock_guard<boost::mutex> lk(done_mutex);
locked=lock.owns_lock();
done=true;
done_cond.notify_one();
}
bool is_done() const
{
return done;
}
void operator()()
{
boost::unique_lock<Mutex> lock(m);
typedef test_initially_unlocked_with_try_lock_if_other_thread_has_unique_lock<Mutex,Lock> this_type;
boost::thread t(&this_type::locking_thread,this);
try
{
{
boost::mutex::scoped_lock lk(done_mutex);
BOOST_CHECK(done_cond.timed_wait(lk,boost::posix_time::seconds(2),
boost::bind(&this_type::is_done,this)));
BOOST_CHECK(!locked);
}
lock.unlock();
t.join();
}
catch(...)
{
lock.unlock();
t.join();
throw;
}
}
};
template<typename Mutex,typename Lock>
struct test_initially_locked_if_other_thread_has_shared_lock
{
Mutex m;
boost::mutex done_mutex;
bool done;
bool locked;
boost::condition_variable done_cond;
test_initially_locked_if_other_thread_has_shared_lock():
done(false),locked(false)
{}
void locking_thread()
{
Lock lock(m);
boost::lock_guard<boost::mutex> lk(done_mutex);
locked=lock.owns_lock();
done=true;
done_cond.notify_one();
}
bool is_done() const
{
return done;
}
void operator()()
{
boost::shared_lock<Mutex> lock(m);
typedef test_initially_locked_if_other_thread_has_shared_lock<Mutex,Lock> this_type;
boost::thread t(&this_type::locking_thread,this);
try
{
{
boost::mutex::scoped_lock lk(done_mutex);
BOOST_CHECK(done_cond.timed_wait(lk,boost::posix_time::seconds(2),
boost::bind(&this_type::is_done,this)));
BOOST_CHECK(locked);
}
lock.unlock();
t.join();
}
catch(...)
{
lock.unlock();
t.join();
throw;
}
}
};
template<typename Mutex,typename Lock>
struct test_initially_unlocked_with_defer_lock_parameter
{
@@ -266,64 +89,6 @@ struct test_locked_after_try_lock_called
}
};
template<typename Mutex,typename Lock>
struct test_unlocked_after_try_lock_if_other_thread_has_lock
{
Mutex m;
boost::mutex done_mutex;
bool done;
bool locked;
boost::condition_variable done_cond;
test_unlocked_after_try_lock_if_other_thread_has_lock():
done(false),locked(false)
{}
void locking_thread()
{
Lock lock(m,boost::defer_lock);
boost::lock_guard<boost::mutex> lk(done_mutex);
locked=lock.owns_lock();
done=true;
done_cond.notify_one();
}
bool is_done() const
{
return done;
}
void operator()()
{
Lock lock(m);
typedef test_unlocked_after_try_lock_if_other_thread_has_lock<Mutex,Lock> this_type;
boost::thread t(&this_type::locking_thread,this);
try
{
{
boost::mutex::scoped_lock lk(done_mutex);
BOOST_CHECK(done_cond.timed_wait(lk,boost::posix_time::seconds(2),
boost::bind(&this_type::is_done,this)));
BOOST_CHECK(!locked);
}
lock.unlock();
t.join();
}
catch(...)
{
lock.unlock();
t.join();
throw;
}
}
};
template<typename Mutex,typename Lock>
struct test_throws_if_lock_called_when_already_locked
{
@@ -360,53 +125,11 @@ struct test_throws_if_unlock_called_when_already_unlocked
BOOST_CHECK_THROW( lock.unlock(), boost::lock_error );
}
};
template<typename Lock>
struct test_default_constructed_has_no_mutex_and_unlocked
BOOST_TEST_CASE_TEMPLATE_FUNCTION(test_scoped_lock_concept,Mutex)
{
void operator()() const
{
Lock l;
BOOST_CHECK(!l.mutex());
BOOST_CHECK(!l.owns_lock());
};
};
template<typename Mutex,typename Lock>
struct test_locks_can_be_swapped
{
void operator()() const
{
Mutex m1;
Mutex m2;
Mutex m3;
Lock l1(m1);
Lock l2(m2);
BOOST_CHECK_EQUAL(l1.mutex(),&m1);
BOOST_CHECK_EQUAL(l2.mutex(),&m2);
l1.swap(l2);
BOOST_CHECK_EQUAL(l1.mutex(),&m2);
BOOST_CHECK_EQUAL(l2.mutex(),&m1);
swap(l1,l2);
BOOST_CHECK_EQUAL(l1.mutex(),&m1);
BOOST_CHECK_EQUAL(l2.mutex(),&m2);
l1.swap(Lock(m3));
BOOST_CHECK_EQUAL(l1.mutex(),&m3);
}
};
template<typename Mutex,typename Lock>
void test_lock_is_scoped_lock_concept_for_mutex()
{
test_default_constructed_has_no_mutex_and_unlocked<Lock>()();
typedef typename Mutex::scoped_lock Lock;
test_initially_locked<Mutex,Lock>()();
test_initially_unlocked_with_defer_lock_parameter<Mutex,Lock>()();
test_initially_locked_with_adopt_lock_parameter<Mutex,Lock>()();
@@ -414,117 +137,13 @@ void test_lock_is_scoped_lock_concept_for_mutex()
test_locked_after_lock_called<Mutex,Lock>()();
test_throws_if_lock_called_when_already_locked<Mutex,Lock>()();
test_throws_if_unlock_called_when_already_unlocked<Mutex,Lock>()();
test_locks_can_be_swapped<Mutex,Lock>()();
test_locked_after_try_lock_called<Mutex,Lock>()();
test_throws_if_try_lock_called_when_already_locked<Mutex,Lock>()();
test_unlocked_after_try_lock_if_other_thread_has_lock<Mutex,Lock>()();
}
BOOST_TEST_CASE_TEMPLATE_FUNCTION(test_scoped_lock_concept,Mutex)
{
typedef typename Mutex::scoped_lock Lock;
test_lock_is_scoped_lock_concept_for_mutex<Mutex,Lock>();
}
BOOST_TEST_CASE_TEMPLATE_FUNCTION(test_unique_lock_is_scoped_lock,Mutex)
{
typedef boost::unique_lock<Mutex> Lock;
test_lock_is_scoped_lock_concept_for_mutex<Mutex,Lock>();
}
BOOST_TEST_CASE_TEMPLATE_FUNCTION(test_scoped_try_lock_concept,Mutex)
{
typedef typename Mutex::scoped_try_lock Lock;
test_default_constructed_has_no_mutex_and_unlocked<Lock>()();
test_initially_locked<Mutex,Lock>()();
test_initially_unlocked_if_other_thread_has_lock<Mutex,Lock>()();
test_initially_unlocked_with_defer_lock_parameter<Mutex,Lock>()();
test_initially_locked_with_adopt_lock_parameter<Mutex,Lock>()();
test_unlocked_after_unlock_called<Mutex,Lock>()();
test_locked_after_lock_called<Mutex,Lock>()();
test_locked_after_try_lock_called<Mutex,Lock>()();
test_unlocked_after_try_lock_if_other_thread_has_lock<Mutex,Lock>()();
test_throws_if_lock_called_when_already_locked<Mutex,Lock>()();
test_throws_if_try_lock_called_when_already_locked<Mutex,Lock>()();
test_throws_if_unlock_called_when_already_unlocked<Mutex,Lock>()();
test_locks_can_be_swapped<Mutex,Lock>()();
}
struct dummy_shared_mutex
{
bool locked;
bool shared_locked;
bool shared_unlocked;
bool shared_timed_locked_relative;
bool shared_timed_locked_absolute;
bool timed_locked_relative;
bool timed_locked_absolute;
dummy_shared_mutex():
locked(false),shared_locked(false),shared_unlocked(false),
shared_timed_locked_relative(false),
shared_timed_locked_absolute(false),
timed_locked_relative(false),
timed_locked_absolute(false)
{}
void lock()
{
locked=true;
}
void lock_shared()
{
shared_locked=true;
}
void unlock()
{}
void unlock_shared()
{
shared_unlocked=true;
}
bool timed_lock_shared(boost::system_time)
{
shared_timed_locked_absolute=true;
return false;
}
template<typename Duration>
bool timed_lock_shared(Duration)
{
shared_timed_locked_relative=true;
return false;
}
bool timed_lock(boost::system_time)
{
timed_locked_absolute=true;
return false;
}
template<typename Duration>
bool timed_lock(Duration)
{
timed_locked_relative=true;
return false;
}
};
void test_shared_lock()
{
typedef boost::shared_mutex Mutex;
typedef boost::shared_lock<Mutex> Lock;
test_default_constructed_has_no_mutex_and_unlocked<Lock>()();
test_initially_locked<Mutex,Lock>()();
test_initially_unlocked_with_try_lock_if_other_thread_has_unique_lock<Mutex,Lock>()();
test_initially_locked_if_other_thread_has_shared_lock<Mutex,Lock>()();
test_initially_unlocked_with_defer_lock_parameter<Mutex,Lock>()();
test_initially_locked_with_adopt_lock_parameter<Mutex,Lock>()();
test_unlocked_after_unlock_called<Mutex,Lock>()();
@@ -533,17 +152,6 @@ void test_shared_lock()
test_throws_if_lock_called_when_already_locked<Mutex,Lock>()();
test_throws_if_try_lock_called_when_already_locked<Mutex,Lock>()();
test_throws_if_unlock_called_when_already_unlocked<Mutex,Lock>()();
test_locks_can_be_swapped<Mutex,Lock>()();
dummy_shared_mutex dummy;
boost::shared_lock<dummy_shared_mutex> lk(dummy);
BOOST_CHECK(dummy.shared_locked);
lk.unlock();
BOOST_CHECK(dummy.shared_unlocked);
lk.timed_lock(boost::posix_time::milliseconds(5));
BOOST_CHECK(dummy.shared_timed_locked_relative);
lk.timed_lock(boost::get_system_time());
BOOST_CHECK(dummy.shared_timed_locked_absolute);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
@@ -552,20 +160,14 @@ boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
BOOST_TEST_SUITE("Boost.Threads: lock concept test suite");
typedef boost::mpl::vector<boost::mutex,boost::try_mutex,boost::timed_mutex,
boost::recursive_mutex,boost::recursive_try_mutex,boost::recursive_timed_mutex> mutex_types_with_scoped_lock;
boost::recursive_mutex,boost::recursive_try_mutex,boost::recursive_timed_mutex> mutex_types;
test->add(BOOST_TEST_CASE_TEMPLATE(test_scoped_lock_concept,mutex_types_with_scoped_lock));
test->add(BOOST_TEST_CASE_TEMPLATE(test_scoped_lock_concept,mutex_types));
typedef boost::mpl::vector<boost::try_mutex,boost::timed_mutex,
boost::recursive_try_mutex,boost::recursive_timed_mutex> mutex_types_with_scoped_try_lock;
boost::recursive_try_mutex,boost::recursive_timed_mutex> try_mutex_types;
test->add(BOOST_TEST_CASE_TEMPLATE(test_scoped_try_lock_concept,mutex_types_with_scoped_try_lock));
typedef boost::mpl::vector<boost::mutex,boost::try_mutex,boost::timed_mutex,
boost::recursive_mutex,boost::recursive_try_mutex,boost::recursive_timed_mutex,boost::shared_mutex> all_mutex_types;
test->add(BOOST_TEST_CASE_TEMPLATE(test_unique_lock_is_scoped_lock,all_mutex_types));
test->add(BOOST_TEST_CASE(&test_shared_lock));
test->add(BOOST_TEST_CASE_TEMPLATE(test_scoped_try_lock_concept,try_mutex_types));
return test;
}

View File

@@ -1,124 +0,0 @@
// Copyright (C) 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/shared_ptr.hpp>
void do_nothing()
{}
void test_thread_move_from_lvalue_on_construction()
{
boost::thread src(do_nothing);
boost::thread::id src_id=src.get_id();
boost::thread dest(boost::move(src));
boost::thread::id dest_id=dest.get_id();
BOOST_CHECK(src_id==dest_id);
BOOST_CHECK(src.get_id()==boost::thread::id());
dest.join();
}
void test_thread_move_from_lvalue_on_assignment()
{
boost::thread src(do_nothing);
boost::thread::id src_id=src.get_id();
boost::thread dest;
dest=boost::move(src);
boost::thread::id dest_id=dest.get_id();
BOOST_CHECK(src_id==dest_id);
BOOST_CHECK(src.get_id()==boost::thread::id());
dest.join();
}
boost::thread start_thread()
{
return boost::thread(do_nothing);
}
void test_thread_move_from_rvalue_on_construction()
{
boost::thread x(start_thread());
BOOST_CHECK(x.get_id()!=boost::thread::id());
x.join();
}
void test_thread_move_from_rvalue_using_explicit_move()
{
boost::thread x(boost::move(start_thread()));
BOOST_CHECK(x.get_id()!=boost::thread::id());
x.join();
}
void test_unique_lock_move_from_lvalue_on_construction()
{
boost::mutex m;
boost::unique_lock<boost::mutex> l(m);
BOOST_CHECK(l.owns_lock());
BOOST_CHECK(l.mutex()==&m);
boost::unique_lock<boost::mutex> l2(boost::move(l));
BOOST_CHECK(!l.owns_lock());
BOOST_CHECK(!l.mutex());
BOOST_CHECK(l2.owns_lock());
BOOST_CHECK(l2.mutex()==&m);
}
boost::unique_lock<boost::mutex> get_lock(boost::mutex& m)
{
return boost::unique_lock<boost::mutex>(m);
}
void test_unique_lock_move_from_rvalue_on_construction()
{
boost::mutex m;
boost::unique_lock<boost::mutex> l(get_lock(m));
BOOST_CHECK(l.owns_lock());
BOOST_CHECK(l.mutex()==&m);
}
namespace user_test_ns
{
template<typename T>
T move(T& t)
{
return t.move();
}
bool move_called=false;
struct nc:
public boost::shared_ptr<int>
{
nc move()
{
move_called=true;
return nc();
}
};
}
void test_move_for_user_defined_type_unaffected()
{
user_test_ns::nc src;
user_test_ns::nc dest=move(src);
BOOST_CHECK(user_test_ns::move_called);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: thread move test suite");
test->add(BOOST_TEST_CASE(test_thread_move_from_lvalue_on_construction));
test->add(BOOST_TEST_CASE(test_thread_move_from_rvalue_on_construction));
test->add(BOOST_TEST_CASE(test_thread_move_from_rvalue_using_explicit_move));
test->add(BOOST_TEST_CASE(test_thread_move_from_lvalue_on_assignment));
test->add(BOOST_TEST_CASE(test_unique_lock_move_from_lvalue_on_construction));
test->add(BOOST_TEST_CASE(test_unique_lock_move_from_rvalue_on_construction));
test->add(BOOST_TEST_CASE(test_move_for_user_defined_type_unaffected));
return test;
}

View File

@@ -7,7 +7,6 @@
#include <boost/thread/detail/config.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/condition.hpp>
@@ -97,101 +96,14 @@ struct test_trylock
}
};
template<typename Mutex>
struct test_lock_times_out_if_other_thread_has_lock
{
typedef boost::unique_lock<Mutex> Lock;
Mutex m;
boost::mutex done_mutex;
bool done;
bool locked;
boost::condition_variable done_cond;
test_lock_times_out_if_other_thread_has_lock():
done(false),locked(false)
{}
void locking_thread()
{
Lock lock(m,boost::defer_lock);
lock.timed_lock(boost::posix_time::milliseconds(50));
boost::lock_guard<boost::mutex> lk(done_mutex);
locked=lock.owns_lock();
done=true;
done_cond.notify_one();
}
void locking_thread_through_constructor()
{
Lock lock(m,boost::posix_time::milliseconds(50));
boost::lock_guard<boost::mutex> lk(done_mutex);
locked=lock.owns_lock();
done=true;
done_cond.notify_one();
}
bool is_done() const
{
return done;
}
typedef test_lock_times_out_if_other_thread_has_lock<Mutex> this_type;
void do_test(void (this_type::*test_func)())
{
Lock lock(m);
locked=false;
done=false;
boost::thread t(test_func,this);
try
{
{
boost::mutex::scoped_lock lk(done_mutex);
BOOST_CHECK(done_cond.timed_wait(lk,boost::posix_time::seconds(2),
boost::bind(&this_type::is_done,this)));
BOOST_CHECK(!locked);
}
lock.unlock();
t.join();
}
catch(...)
{
lock.unlock();
t.join();
throw;
}
}
void operator()()
{
do_test(&this_type::locking_thread);
do_test(&this_type::locking_thread_through_constructor);
}
};
template <typename M>
struct test_timedlock
{
typedef M mutex_type;
typedef typename M::scoped_timed_lock timed_lock_type;
static bool fake_predicate()
{
return false;
}
void operator()()
{
test_lock_times_out_if_other_thread_has_lock<mutex_type>()();
mutex_type mutex;
boost::condition condition;
@@ -211,17 +123,14 @@ struct test_timedlock
BOOST_CHECK(lock ? true : false);
// Construct and initialize an xtime for a fast time out.
boost::system_time timeout = boost::get_system_time()+boost::posix_time::milliseconds(100);
boost::xtime xt = delay(0, 100);
// Test the lock and the mutex with condition variables.
// No one is going to notify this condition variable. We expect to
// time out.
BOOST_CHECK(!condition.timed_wait(lock, timeout, fake_predicate));
BOOST_CHECK(!condition.timed_wait(lock, xt));
BOOST_CHECK(lock ? true : false);
boost::system_time now=boost::get_system_time();
boost::posix_time::milliseconds const timeout_resolution(20);
BOOST_CHECK((timeout-timeout_resolution)<now);
BOOST_CHECK(in_range(xt));
// Test the lock, unlock and timedlock methods.
lock.unlock();
@@ -233,17 +142,6 @@ struct test_timedlock
boost::system_time target = boost::get_system_time()+boost::posix_time::milliseconds(100);
BOOST_CHECK(lock.timed_lock(target));
BOOST_CHECK(lock ? true : false);
lock.unlock();
BOOST_CHECK(!lock);
BOOST_CHECK(mutex.timed_lock(boost::posix_time::milliseconds(100)));
mutex.unlock();
BOOST_CHECK(lock.timed_lock(boost::posix_time::milliseconds(100)));
BOOST_CHECK(lock ? true : false);
lock.unlock();
BOOST_CHECK(!lock);
}
};
@@ -261,7 +159,6 @@ struct test_recursive_lock
}
};
void do_test_mutex()
{
test_lock<boost::mutex>()();

View File

@@ -19,7 +19,6 @@ void initialize_variable()
++var_to_init;
}
void call_once_thread()
{
unsigned const loop_count=100;
@@ -39,24 +38,14 @@ void call_once_thread()
void test_call_once()
{
unsigned const num_threads=20;
unsigned const num_threads=100;
boost::thread_group group;
try
for(unsigned i=0;i<num_threads;++i)
{
for(unsigned i=0;i<num_threads;++i)
{
group.create_thread(&call_once_thread);
}
group.join_all();
group.create_thread(&call_once_thread);
}
catch(...)
{
group.interrupt_all();
group.join_all();
throw;
}
group.join_all();
BOOST_CHECK_EQUAL(var_to_init,1);
}
@@ -96,24 +85,14 @@ void call_once_with_functor()
void test_call_once_arbitrary_functor()
{
unsigned const num_threads=20;
unsigned const num_threads=100;
boost::thread_group group;
try
for(unsigned i=0;i<num_threads;++i)
{
for(unsigned i=0;i<num_threads;++i)
{
group.create_thread(&call_once_with_functor);
}
group.join_all();
group.create_thread(&call_once_with_functor);
}
catch(...)
{
group.interrupt_all();
group.join_all();
throw;
}
group.join_all();
BOOST_CHECK_EQUAL(var_to_init_with_functor,1);
}
@@ -155,26 +134,16 @@ void call_once_with_exception()
void test_call_once_retried_on_exception()
{
unsigned const num_threads=20;
unsigned const num_threads=100;
boost::thread_group group;
try
for(unsigned i=0;i<num_threads;++i)
{
for(unsigned i=0;i<num_threads;++i)
{
group.create_thread(&call_once_with_exception);
}
group.join_all();
group.create_thread(&call_once_with_exception);
}
catch(...)
{
group.interrupt_all();
group.join_all();
throw;
}
BOOST_CHECK_EQUAL(throw_before_third_pass::pass_counter,3u);
BOOST_CHECK_EQUAL(exception_counter,2u);
group.join_all();
BOOST_CHECK_EQUAL(throw_before_third_pass::pass_counter,3);
BOOST_CHECK_EQUAL(exception_counter,2);
}

View File

@@ -5,9 +5,10 @@
#include <boost/test/unit_test.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/xtime.hpp>
#include "util.inl"
#include "shared_mutex_locking_thread.hpp"
#define CHECK_LOCKED_VALUE_EQUAL(mutex_name,value,expected_value) \
{ \
@@ -15,9 +16,64 @@
BOOST_CHECK_EQUAL(value,expected_value); \
}
namespace
{
template<typename lock_type>
class locking_thread
{
boost::shared_mutex& rw_mutex;
unsigned& unblocked_count;
unsigned& simultaneous_running_count;
unsigned& max_simultaneous_running;
boost::mutex& unblocked_count_mutex;
boost::mutex& finish_mutex;
public:
locking_thread(boost::shared_mutex& rw_mutex_,
unsigned& unblocked_count_,
boost::mutex& unblocked_count_mutex_,
boost::mutex& finish_mutex_,
unsigned& simultaneous_running_count_,
unsigned& max_simultaneous_running_):
rw_mutex(rw_mutex_),
unblocked_count(unblocked_count_),
unblocked_count_mutex(unblocked_count_mutex_),
finish_mutex(finish_mutex_),
simultaneous_running_count(simultaneous_running_count_),
max_simultaneous_running(max_simultaneous_running_)
{}
void operator()()
{
// acquire lock
lock_type lock(rw_mutex);
// increment count to show we're unblocked
{
boost::mutex::scoped_lock ublock(unblocked_count_mutex);
++unblocked_count;
++simultaneous_running_count;
if(simultaneous_running_count>max_simultaneous_running)
{
max_simultaneous_running=simultaneous_running_count;
}
}
// wait to finish
boost::mutex::scoped_lock finish_lock(finish_mutex);
{
boost::mutex::scoped_lock ublock(unblocked_count_mutex);
--simultaneous_running_count;
}
}
};
}
void test_multiple_readers()
{
unsigned const number_of_threads=10;
unsigned const number_of_threads=100;
boost::thread_group pool;
@@ -26,45 +82,28 @@ void test_multiple_readers()
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
try
for(unsigned i=0;i<number_of_threads;++i)
{
for(unsigned i=0;i<number_of_threads;++i)
{
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
{
boost::mutex::scoped_lock lk(unblocked_count_mutex);
while(unblocked_count<number_of_threads)
{
unblocked_condition.wait(lk);
}
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,number_of_threads);
finish_lock.unlock();
pool.join_all();
}
catch(...)
{
pool.interrupt_all();
pool.join_all();
throw;
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,number_of_threads);
finish_lock.unlock();
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,number_of_threads);
}
void test_only_one_writer_permitted()
{
unsigned const number_of_threads=10;
unsigned const number_of_threads=100;
boost::thread_group pool;
@@ -73,35 +112,24 @@ void test_only_one_writer_permitted()
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
try
for(unsigned i=0;i<number_of_threads;++i)
{
for(unsigned i=0;i<number_of_threads;++i)
{
pool.create_thread(locking_thread<boost::unique_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(2));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
finish_lock.unlock();
pool.join_all();
}
catch(...)
{
pool.interrupt_all();
pool.join_all();
throw;
pool.create_thread(locking_thread<boost::unique_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
finish_lock.unlock();
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,number_of_threads);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,1u);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,1);
}
void test_reader_blocks_writer()
@@ -113,41 +141,22 @@ void test_reader_blocks_writer()
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
try
{
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
{
boost::mutex::scoped_lock lk(unblocked_count_mutex);
while(unblocked_count<1)
{
unblocked_condition.wait(lk);
}
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
pool.create_thread(locking_thread<boost::unique_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
pool.create_thread(locking_thread<boost::unique_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
finish_lock.unlock();
finish_lock.unlock();
pool.join_all();
}
catch(...)
{
pool.interrupt_all();
pool.join_all();
throw;
}
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,2U);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,1u);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,1);
}
void test_unlocking_writer_unblocks_all_readers()
@@ -160,44 +169,25 @@ void test_unlocking_writer_unblocks_all_readers()
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
unsigned const reader_count=10;
unsigned const reader_count=100;
try
for(unsigned i=0;i<reader_count;++i)
{
for(unsigned i=0;i<reader_count;++i)
{
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,0U);
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,0U);
write_lock.unlock();
write_lock.unlock();
{
boost::mutex::scoped_lock lk(unblocked_count_mutex);
while(unblocked_count<reader_count)
{
unblocked_condition.wait(lk);
}
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count);
finish_lock.unlock();
pool.join_all();
}
catch(...)
{
pool.interrupt_all();
pool.join_all();
throw;
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count);
finish_lock.unlock();
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,reader_count);
}
@@ -212,64 +202,243 @@ void test_unlocking_last_reader_only_unblocks_one_writer()
unsigned simultaneous_running_writers=0;
unsigned max_simultaneous_writers=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_reading_mutex;
boost::mutex::scoped_lock finish_reading_lock(finish_reading_mutex);
boost::mutex finish_writing_mutex;
boost::mutex::scoped_lock finish_writing_lock(finish_writing_mutex);
unsigned const reader_count=10;
unsigned const writer_count=10;
unsigned const reader_count=100;
unsigned const writer_count=100;
try
for(unsigned i=0;i<reader_count;++i)
{
for(unsigned i=0;i<reader_count;++i)
{
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_reading_mutex,simultaneous_running_readers,max_simultaneous_readers));
}
boost::thread::sleep(delay(1));
for(unsigned i=0;i<writer_count;++i)
{
pool.create_thread(locking_thread<boost::unique_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_writing_mutex,simultaneous_running_writers,max_simultaneous_writers));
}
{
boost::mutex::scoped_lock lk(unblocked_count_mutex);
while(unblocked_count<reader_count)
{
unblocked_condition.wait(lk);
}
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count);
finish_reading_lock.unlock();
{
boost::mutex::scoped_lock lk(unblocked_count_mutex);
while(unblocked_count<(reader_count+1))
{
unblocked_condition.wait(lk);
}
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+1);
finish_writing_lock.unlock();
pool.join_all();
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_reading_mutex,simultaneous_running_readers,max_simultaneous_readers));
}
catch(...)
for(unsigned i=0;i<writer_count;++i)
{
pool.interrupt_all();
pool.join_all();
throw;
pool.create_thread(locking_thread<boost::unique_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_writing_mutex,simultaneous_running_writers,max_simultaneous_writers));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count);
finish_reading_lock.unlock();
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+1);
finish_writing_lock.unlock();
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+writer_count);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_readers,reader_count);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_writers,1u);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_writers,1);
}
void test_only_one_upgrade_lock_permitted()
{
unsigned const number_of_threads=100;
boost::thread_group pool;
boost::shared_mutex rw_mutex;
unsigned unblocked_count=0;
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
for(unsigned i=0;i<number_of_threads;++i)
{
pool.create_thread(locking_thread<boost::upgrade_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
finish_lock.unlock();
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,number_of_threads);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,1);
}
void test_can_lock_upgrade_if_currently_locked_shared()
{
boost::thread_group pool;
boost::shared_mutex rw_mutex;
unsigned unblocked_count=0;
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
unsigned const reader_count=100;
for(unsigned i=0;i<reader_count;++i)
{
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
pool.create_thread(locking_thread<boost::upgrade_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,finish_mutex,simultaneous_running_count,max_simultaneous_running));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+1);
finish_lock.unlock();
pool.join_all();
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+1);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,reader_count+1);
}
namespace
{
class simple_writing_thread
{
boost::shared_mutex& rwm;
boost::mutex& finish_mutex;
boost::mutex& unblocked_mutex;
unsigned& unblocked_count;
public:
simple_writing_thread(boost::shared_mutex& rwm_,
boost::mutex& finish_mutex_,
boost::mutex& unblocked_mutex_,
unsigned& unblocked_count_):
rwm(rwm_),finish_mutex(finish_mutex_),
unblocked_mutex(unblocked_mutex_),unblocked_count(unblocked_count_)
{}
void operator()()
{
boost::unique_lock<boost::shared_mutex> lk(rwm);
{
boost::mutex::scoped_lock ulk(unblocked_mutex);
++unblocked_count;
}
boost::mutex::scoped_lock flk(finish_mutex);
}
};
}
void test_if_other_thread_has_write_lock_try_lock_shared_returns_false()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_writing_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1);
bool const try_succeeded=rw_mutex.try_lock_shared();
BOOST_CHECK(!try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
writer.join();
}
void test_if_no_thread_has_lock_try_lock_shared_returns_true()
{
boost::shared_mutex rw_mutex;
bool const try_succeeded=rw_mutex.try_lock_shared();
BOOST_CHECK(try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_shared();
}
}
namespace
{
class simple_reading_thread
{
boost::shared_mutex& rwm;
boost::mutex& finish_mutex;
boost::mutex& unblocked_mutex;
unsigned& unblocked_count;
public:
simple_reading_thread(boost::shared_mutex& rwm_,
boost::mutex& finish_mutex_,
boost::mutex& unblocked_mutex_,
unsigned& unblocked_count_):
rwm(rwm_),finish_mutex(finish_mutex_),
unblocked_mutex(unblocked_mutex_),unblocked_count(unblocked_count_)
{}
void operator()()
{
boost::shared_lock<boost::shared_mutex> lk(rwm);
{
boost::mutex::scoped_lock ulk(unblocked_mutex);
++unblocked_count;
}
boost::mutex::scoped_lock flk(finish_mutex);
}
};
}
void test_if_other_thread_has_shared_lock_try_lock_shared_returns_true()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_reading_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1);
bool const try_succeeded=rw_mutex.try_lock_shared();
BOOST_CHECK(try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
writer.join();
}
void test_timed_lock_shared_times_out_if_write_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_writing_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(100);
bool const timed_lock_succeeded=rw_mutex.timed_lock_shared(timeout);
BOOST_CHECK(timeout<=boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
writer.join();
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
@@ -280,6 +449,12 @@ boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
test->add(BOOST_TEST_CASE(&test_reader_blocks_writer));
test->add(BOOST_TEST_CASE(&test_unlocking_writer_unblocks_all_readers));
test->add(BOOST_TEST_CASE(&test_unlocking_last_reader_only_unblocks_one_writer));
test->add(BOOST_TEST_CASE(&test_only_one_upgrade_lock_permitted));
test->add(BOOST_TEST_CASE(&test_can_lock_upgrade_if_currently_locked_shared));
test->add(BOOST_TEST_CASE(&test_if_other_thread_has_write_lock_try_lock_shared_returns_false));
test->add(BOOST_TEST_CASE(&test_if_no_thread_has_lock_try_lock_shared_returns_true));
test->add(BOOST_TEST_CASE(&test_if_other_thread_has_shared_lock_try_lock_shared_returns_true));
test->add(BOOST_TEST_CASE(&test_timed_lock_shared_times_out_if_write_lock_held));
return test;
}

View File

@@ -1,290 +0,0 @@
// (C) Copyright 2006-7 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/test/unit_test.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include "util.inl"
#include "shared_mutex_locking_thread.hpp"
#define CHECK_LOCKED_VALUE_EQUAL(mutex_name,value,expected_value) \
{ \
boost::mutex::scoped_lock lock(mutex_name); \
BOOST_CHECK_EQUAL(value,expected_value); \
}
class simple_upgrade_thread
{
boost::shared_mutex& rwm;
boost::mutex& finish_mutex;
boost::mutex& unblocked_mutex;
unsigned& unblocked_count;
void operator=(simple_upgrade_thread&);
public:
simple_upgrade_thread(boost::shared_mutex& rwm_,
boost::mutex& finish_mutex_,
boost::mutex& unblocked_mutex_,
unsigned& unblocked_count_):
rwm(rwm_),finish_mutex(finish_mutex_),
unblocked_mutex(unblocked_mutex_),unblocked_count(unblocked_count_)
{}
void operator()()
{
boost::upgrade_lock<boost::shared_mutex> lk(rwm);
{
boost::mutex::scoped_lock ulk(unblocked_mutex);
++unblocked_count;
}
boost::mutex::scoped_lock flk(finish_mutex);
}
};
void test_only_one_upgrade_lock_permitted()
{
unsigned const number_of_threads=10;
boost::thread_group pool;
boost::shared_mutex rw_mutex;
unsigned unblocked_count=0;
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
try
{
for(unsigned i=0;i<number_of_threads;++i)
{
pool.create_thread(locking_thread<boost::upgrade_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,1U);
finish_lock.unlock();
pool.join_all();
}
catch(...)
{
pool.interrupt_all();
pool.join_all();
throw;
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,number_of_threads);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,1u);
}
void test_can_lock_upgrade_if_currently_locked_shared()
{
boost::thread_group pool;
boost::shared_mutex rw_mutex;
unsigned unblocked_count=0;
unsigned simultaneous_running_count=0;
unsigned max_simultaneous_running=0;
boost::mutex unblocked_count_mutex;
boost::condition_variable unblocked_condition;
boost::mutex finish_mutex;
boost::mutex::scoped_lock finish_lock(finish_mutex);
unsigned const reader_count=10;
try
{
for(unsigned i=0;i<reader_count;++i)
{
pool.create_thread(locking_thread<boost::shared_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
}
boost::thread::sleep(delay(1));
pool.create_thread(locking_thread<boost::upgrade_lock<boost::shared_mutex> >(rw_mutex,unblocked_count,unblocked_count_mutex,unblocked_condition,
finish_mutex,simultaneous_running_count,max_simultaneous_running));
{
boost::mutex::scoped_lock lk(unblocked_count_mutex);
while(unblocked_count<(reader_count+1))
{
unblocked_condition.wait(lk);
}
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+1);
finish_lock.unlock();
pool.join_all();
}
catch(...)
{
pool.interrupt_all();
pool.join_all();
throw;
}
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,unblocked_count,reader_count+1);
CHECK_LOCKED_VALUE_EQUAL(unblocked_count_mutex,max_simultaneous_running,reader_count+1);
}
void test_if_other_thread_has_write_lock_try_lock_shared_returns_false()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_writing_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::this_thread::sleep(boost::posix_time::seconds(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
bool const try_succeeded=rw_mutex.try_lock_shared();
BOOST_CHECK(!try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
writer.join();
}
void test_if_other_thread_has_write_lock_try_lock_upgrade_returns_false()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_writing_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::this_thread::sleep(boost::posix_time::seconds(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
bool const try_succeeded=rw_mutex.try_lock_upgrade();
BOOST_CHECK(!try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_upgrade();
}
finish_lock.unlock();
writer.join();
}
void test_if_no_thread_has_lock_try_lock_shared_returns_true()
{
boost::shared_mutex rw_mutex;
bool const try_succeeded=rw_mutex.try_lock_shared();
BOOST_CHECK(try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_shared();
}
}
void test_if_no_thread_has_lock_try_lock_upgrade_returns_true()
{
boost::shared_mutex rw_mutex;
bool const try_succeeded=rw_mutex.try_lock_upgrade();
BOOST_CHECK(try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_upgrade();
}
}
void test_if_other_thread_has_shared_lock_try_lock_shared_returns_true()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_reading_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
bool const try_succeeded=rw_mutex.try_lock_shared();
BOOST_CHECK(try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
writer.join();
}
void test_if_other_thread_has_shared_lock_try_lock_upgrade_returns_true()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_reading_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
bool const try_succeeded=rw_mutex.try_lock_upgrade();
BOOST_CHECK(try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_upgrade();
}
finish_lock.unlock();
writer.join();
}
void test_if_other_thread_has_upgrade_lock_try_lock_upgrade_returns_false()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_upgrade_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::this_thread::sleep(boost::posix_time::seconds(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
bool const try_succeeded=rw_mutex.try_lock_upgrade();
BOOST_CHECK(!try_succeeded);
if(try_succeeded)
{
rw_mutex.unlock_upgrade();
}
finish_lock.unlock();
writer.join();
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: shared_mutex test suite");
test->add(BOOST_TEST_CASE(&test_only_one_upgrade_lock_permitted));
test->add(BOOST_TEST_CASE(&test_can_lock_upgrade_if_currently_locked_shared));
test->add(BOOST_TEST_CASE(&test_if_other_thread_has_write_lock_try_lock_shared_returns_false));
test->add(BOOST_TEST_CASE(&test_if_no_thread_has_lock_try_lock_shared_returns_true));
test->add(BOOST_TEST_CASE(&test_if_other_thread_has_shared_lock_try_lock_shared_returns_true));
return test;
}

View File

@@ -1,268 +0,0 @@
// (C) Copyright 2006-7 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/test/unit_test.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include "util.inl"
#include "shared_mutex_locking_thread.hpp"
#define CHECK_LOCKED_VALUE_EQUAL(mutex_name,value,expected_value) \
{ \
boost::mutex::scoped_lock lock(mutex_name); \
BOOST_CHECK_EQUAL(value,expected_value); \
}
void test_timed_lock_shared_times_out_if_write_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_writing_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
boost::posix_time::milliseconds const timeout_resolution(50);
bool timed_lock_succeeded=rw_mutex.timed_lock_shared(timeout);
BOOST_CHECK((timeout-timeout_resolution)<boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
boost::posix_time::milliseconds const wait_duration(500);
boost::system_time const timeout2=boost::get_system_time()+wait_duration;
timed_lock_succeeded=rw_mutex.timed_lock_shared(wait_duration);
BOOST_CHECK((timeout2-timeout_resolution)<boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
writer.join();
}
void test_timed_lock_shared_succeeds_if_no_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
boost::posix_time::milliseconds const timeout_resolution(50);
bool timed_lock_succeeded=rw_mutex.timed_lock_shared(timeout);
BOOST_CHECK(boost::get_system_time()<timeout);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
boost::posix_time::milliseconds const wait_duration(500);
boost::system_time const timeout2=boost::get_system_time()+wait_duration;
timed_lock_succeeded=rw_mutex.timed_lock_shared(wait_duration);
BOOST_CHECK(boost::get_system_time()<timeout2);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
}
void test_timed_lock_shared_succeeds_if_read_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread reader(simple_reading_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
boost::posix_time::milliseconds const timeout_resolution(50);
bool timed_lock_succeeded=rw_mutex.timed_lock_shared(timeout);
BOOST_CHECK(boost::get_system_time()<timeout);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
boost::posix_time::milliseconds const wait_duration(500);
boost::system_time const timeout2=boost::get_system_time()+wait_duration;
timed_lock_succeeded=rw_mutex.timed_lock_shared(wait_duration);
BOOST_CHECK(boost::get_system_time()<timeout2);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
reader.join();
}
void test_timed_lock_times_out_if_write_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread writer(simple_writing_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
boost::posix_time::milliseconds const timeout_resolution(50);
bool timed_lock_succeeded=rw_mutex.timed_lock(timeout);
BOOST_CHECK((timeout-timeout_resolution)<boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
boost::posix_time::milliseconds const wait_duration(500);
boost::system_time const timeout2=boost::get_system_time()+wait_duration;
timed_lock_succeeded=rw_mutex.timed_lock(wait_duration);
BOOST_CHECK((timeout2-timeout_resolution)<boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
finish_lock.unlock();
writer.join();
}
void test_timed_lock_succeeds_if_no_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
boost::posix_time::milliseconds const timeout_resolution(50);
bool timed_lock_succeeded=rw_mutex.timed_lock(timeout);
BOOST_CHECK(boost::get_system_time()<timeout);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
boost::posix_time::milliseconds const wait_duration(500);
boost::system_time const timeout2=boost::get_system_time()+wait_duration;
timed_lock_succeeded=rw_mutex.timed_lock(wait_duration);
BOOST_CHECK(boost::get_system_time()<timeout2);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
}
void test_timed_lock_times_out_if_read_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread reader(simple_reading_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::thread::sleep(delay(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
boost::posix_time::milliseconds const timeout_resolution(50);
bool timed_lock_succeeded=rw_mutex.timed_lock(timeout);
BOOST_CHECK((timeout-timeout_resolution)<boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
boost::posix_time::milliseconds const wait_duration(500);
boost::system_time const timeout2=boost::get_system_time()+wait_duration;
timed_lock_succeeded=rw_mutex.timed_lock(wait_duration);
BOOST_CHECK((timeout2-timeout_resolution)<boost::get_system_time());
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
finish_lock.unlock();
reader.join();
}
void test_timed_lock_times_out_but_read_lock_succeeds_if_read_lock_held()
{
boost::shared_mutex rw_mutex;
boost::mutex finish_mutex;
boost::mutex unblocked_mutex;
unsigned unblocked_count=0;
boost::mutex::scoped_lock finish_lock(finish_mutex);
boost::thread reader(simple_reading_thread(rw_mutex,finish_mutex,unblocked_mutex,unblocked_count));
boost::this_thread::sleep(boost::posix_time::seconds(1));
CHECK_LOCKED_VALUE_EQUAL(unblocked_mutex,unblocked_count,1u);
boost::system_time const start=boost::get_system_time();
boost::system_time const timeout=start+boost::posix_time::milliseconds(500);
bool timed_lock_succeeded=rw_mutex.timed_lock(timeout);
BOOST_CHECK(!timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock();
}
boost::posix_time::milliseconds const wait_duration(500);
timed_lock_succeeded=rw_mutex.timed_lock_shared(wait_duration);
BOOST_CHECK(timed_lock_succeeded);
if(timed_lock_succeeded)
{
rw_mutex.unlock_shared();
}
finish_lock.unlock();
reader.join();
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: shared_mutex test suite");
test->add(BOOST_TEST_CASE(&test_timed_lock_shared_times_out_if_write_lock_held));
test->add(BOOST_TEST_CASE(&test_timed_lock_shared_succeeds_if_no_lock_held));
test->add(BOOST_TEST_CASE(&test_timed_lock_shared_succeeds_if_read_lock_held));
test->add(BOOST_TEST_CASE(&test_timed_lock_times_out_if_write_lock_held));
test->add(BOOST_TEST_CASE(&test_timed_lock_times_out_if_read_lock_held));
test->add(BOOST_TEST_CASE(&test_timed_lock_succeeds_if_no_lock_held));
test->add(BOOST_TEST_CASE(&test_timed_lock_times_out_but_read_lock_succeeds_if_read_lock_held));
return test;
}

View File

@@ -1,6 +1,5 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -9,9 +8,6 @@
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/bind.hpp>
#include <boost/ref.hpp>
#include <boost/utility.hpp>
#include <boost/test/unit_test.hpp>
@@ -25,16 +21,12 @@ void simple_thread()
test_value = 999;
}
void comparison_thread(boost::thread::id parent)
void comparison_thread(boost::thread* parent)
{
boost::thread::id const my_id=boost::this_thread::get_id();
BOOST_CHECK(my_id != parent);
boost::thread::id const my_id2=boost::this_thread::get_id();
BOOST_CHECK(my_id == my_id2);
boost::thread::id const no_thread_id=boost::thread::id();
BOOST_CHECK(my_id != no_thread_id);
boost::thread thrd;
BOOST_CHECK(thrd != *parent);
boost::thread thrd2;
BOOST_CHECK(thrd == thrd2);
}
void test_sleep()
@@ -60,162 +52,18 @@ void test_creation()
timed_test(&do_test_creation, 1);
}
void do_test_id_comparison()
void do_test_comparison()
{
boost::thread::id const self=boost::this_thread::get_id();
boost::thread thrd(boost::bind(&comparison_thread, self));
boost::thread self;
boost::thread thrd(bind(&comparison_thread, &self));
thrd.join();
}
void test_id_comparison()
void test_comparison()
{
timed_test(&do_test_id_comparison, 1);
timed_test(&do_test_comparison, 1);
}
void interruption_point_thread(boost::mutex* m,bool* failed)
{
boost::mutex::scoped_lock lk(*m);
boost::this_thread::interruption_point();
*failed=true;
}
void do_test_thread_interrupts_at_interruption_point()
{
boost::mutex m;
bool failed=false;
boost::mutex::scoped_lock lk(m);
boost::thread thrd(boost::bind(&interruption_point_thread,&m,&failed));
thrd.interrupt();
lk.unlock();
thrd.join();
BOOST_CHECK(!failed);
}
void test_thread_interrupts_at_interruption_point()
{
timed_test(&do_test_thread_interrupts_at_interruption_point, 1);
}
void disabled_interruption_point_thread(boost::mutex* m,bool* failed)
{
boost::mutex::scoped_lock lk(*m);
boost::this_thread::disable_interruption dc;
boost::this_thread::interruption_point();
*failed=false;
}
void do_test_thread_no_interrupt_if_interrupts_disabled_at_interruption_point()
{
boost::mutex m;
bool failed=true;
boost::mutex::scoped_lock lk(m);
boost::thread thrd(boost::bind(&disabled_interruption_point_thread,&m,&failed));
thrd.interrupt();
lk.unlock();
thrd.join();
BOOST_CHECK(!failed);
}
void test_thread_no_interrupt_if_interrupts_disabled_at_interruption_point()
{
timed_test(&do_test_thread_no_interrupt_if_interrupts_disabled_at_interruption_point, 1);
}
struct non_copyable_functor:
boost::noncopyable
{
unsigned value;
non_copyable_functor():
value(0)
{}
void operator()()
{
value=999;
}
};
void do_test_creation_through_reference_wrapper()
{
non_copyable_functor f;
boost::thread thrd(boost::ref(f));
thrd.join();
BOOST_CHECK_EQUAL(f.value, 999u);
}
void test_creation_through_reference_wrapper()
{
timed_test(&do_test_creation_through_reference_wrapper, 1);
}
struct long_running_thread
{
boost::condition_variable cond;
boost::mutex mut;
bool done;
long_running_thread():
done(false)
{}
void operator()()
{
boost::mutex::scoped_lock lk(mut);
while(!done)
{
cond.wait(lk);
}
}
};
void do_test_timed_join()
{
long_running_thread f;
boost::thread thrd(boost::ref(f));
BOOST_CHECK(thrd.joinable());
boost::system_time xt=delay(3);
bool const joined=thrd.timed_join(xt);
BOOST_CHECK(in_range(boost::get_xtime(xt), 2));
BOOST_CHECK(!joined);
BOOST_CHECK(thrd.joinable());
{
boost::mutex::scoped_lock lk(f.mut);
f.done=true;
f.cond.notify_one();
}
xt=delay(3);
bool const joined2=thrd.timed_join(xt);
boost::system_time const now=boost::get_system_time();
BOOST_CHECK(xt>now);
BOOST_CHECK(joined2);
BOOST_CHECK(!thrd.joinable());
}
void test_timed_join()
{
timed_test(&do_test_timed_join, 10);
}
void test_swap()
{
boost::thread t(simple_thread);
boost::thread t2(simple_thread);
boost::thread::id id1=t.get_id();
boost::thread::id id2=t2.get_id();
t.swap(t2);
BOOST_CHECK(t.get_id()==id2);
BOOST_CHECK(t2.get_id()==id1);
swap(t,t2);
BOOST_CHECK(t.get_id()==id1);
BOOST_CHECK(t2.get_id()==id2);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
@@ -223,12 +71,7 @@ boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
test->add(BOOST_TEST_CASE(test_sleep));
test->add(BOOST_TEST_CASE(test_creation));
test->add(BOOST_TEST_CASE(test_id_comparison));
test->add(BOOST_TEST_CASE(test_thread_interrupts_at_interruption_point));
test->add(BOOST_TEST_CASE(test_thread_no_interrupt_if_interrupts_disabled_at_interruption_point));
test->add(BOOST_TEST_CASE(test_creation_through_reference_wrapper));
test->add(BOOST_TEST_CASE(test_timed_join));
test->add(BOOST_TEST_CASE(test_swap));
test->add(BOOST_TEST_CASE(test_comparison));
return test;
}

View File

@@ -1,149 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/bind.hpp>
void do_nothing()
{}
void test_thread_id_for_default_constructed_thread_is_default_constructed_id()
{
boost::thread t;
BOOST_CHECK(t.get_id()==boost::thread::id());
}
void test_thread_id_for_running_thread_is_not_default_constructed_id()
{
boost::thread t(do_nothing);
BOOST_CHECK(t.get_id()!=boost::thread::id());
t.join();
}
void test_different_threads_have_different_ids()
{
boost::thread t(do_nothing);
boost::thread t2(do_nothing);
BOOST_CHECK(t.get_id()!=t2.get_id());
t.join();
t2.join();
}
void test_thread_ids_have_a_total_order()
{
boost::thread t(do_nothing);
boost::thread t2(do_nothing);
boost::thread t3(do_nothing);
BOOST_CHECK(t.get_id()!=t2.get_id());
BOOST_CHECK(t.get_id()!=t3.get_id());
BOOST_CHECK(t2.get_id()!=t3.get_id());
BOOST_CHECK((t.get_id()<t2.get_id()) != (t2.get_id()<t.get_id()));
BOOST_CHECK((t.get_id()<t3.get_id()) != (t3.get_id()<t.get_id()));
BOOST_CHECK((t2.get_id()<t3.get_id()) != (t3.get_id()<t2.get_id()));
BOOST_CHECK((t.get_id()>t2.get_id()) != (t2.get_id()>t.get_id()));
BOOST_CHECK((t.get_id()>t3.get_id()) != (t3.get_id()>t.get_id()));
BOOST_CHECK((t2.get_id()>t3.get_id()) != (t3.get_id()>t2.get_id()));
BOOST_CHECK((t.get_id()<t2.get_id()) == (t2.get_id()>t.get_id()));
BOOST_CHECK((t2.get_id()<t.get_id()) == (t.get_id()>t2.get_id()));
BOOST_CHECK((t.get_id()<t3.get_id()) == (t3.get_id()>t.get_id()));
BOOST_CHECK((t3.get_id()<t.get_id()) == (t.get_id()>t3.get_id()));
BOOST_CHECK((t2.get_id()<t3.get_id()) == (t3.get_id()>t2.get_id()));
BOOST_CHECK((t3.get_id()<t2.get_id()) == (t2.get_id()>t3.get_id()));
BOOST_CHECK((t.get_id()<t2.get_id()) == (t2.get_id()>=t.get_id()));
BOOST_CHECK((t2.get_id()<t.get_id()) == (t.get_id()>=t2.get_id()));
BOOST_CHECK((t.get_id()<t3.get_id()) == (t3.get_id()>=t.get_id()));
BOOST_CHECK((t3.get_id()<t.get_id()) == (t.get_id()>=t3.get_id()));
BOOST_CHECK((t2.get_id()<t3.get_id()) == (t3.get_id()>=t2.get_id()));
BOOST_CHECK((t3.get_id()<t2.get_id()) == (t2.get_id()>=t3.get_id()));
BOOST_CHECK((t.get_id()<=t2.get_id()) == (t2.get_id()>t.get_id()));
BOOST_CHECK((t2.get_id()<=t.get_id()) == (t.get_id()>t2.get_id()));
BOOST_CHECK((t.get_id()<=t3.get_id()) == (t3.get_id()>t.get_id()));
BOOST_CHECK((t3.get_id()<=t.get_id()) == (t.get_id()>t3.get_id()));
BOOST_CHECK((t2.get_id()<=t3.get_id()) == (t3.get_id()>t2.get_id()));
BOOST_CHECK((t3.get_id()<=t2.get_id()) == (t2.get_id()>t3.get_id()));
if((t.get_id()<t2.get_id()) && (t2.get_id()<t3.get_id()))
{
BOOST_CHECK(t.get_id()<t3.get_id());
}
else if((t.get_id()<t3.get_id()) && (t3.get_id()<t2.get_id()))
{
BOOST_CHECK(t.get_id()<t2.get_id());
}
else if((t2.get_id()<t3.get_id()) && (t3.get_id()<t.get_id()))
{
BOOST_CHECK(t2.get_id()<t.get_id());
}
else if((t2.get_id()<t.get_id()) && (t.get_id()<t3.get_id()))
{
BOOST_CHECK(t2.get_id()<t3.get_id());
}
else if((t3.get_id()<t.get_id()) && (t.get_id()<t2.get_id()))
{
BOOST_CHECK(t3.get_id()<t2.get_id());
}
else if((t3.get_id()<t2.get_id()) && (t2.get_id()<t.get_id()))
{
BOOST_CHECK(t3.get_id()<t.get_id());
}
else
{
BOOST_CHECK(false);
}
boost::thread::id default_id;
BOOST_CHECK(default_id < t.get_id());
BOOST_CHECK(default_id < t2.get_id());
BOOST_CHECK(default_id < t3.get_id());
BOOST_CHECK(default_id <= t.get_id());
BOOST_CHECK(default_id <= t2.get_id());
BOOST_CHECK(default_id <= t3.get_id());
BOOST_CHECK(!(default_id > t.get_id()));
BOOST_CHECK(!(default_id > t2.get_id()));
BOOST_CHECK(!(default_id > t3.get_id()));
BOOST_CHECK(!(default_id >= t.get_id()));
BOOST_CHECK(!(default_id >= t2.get_id()));
BOOST_CHECK(!(default_id >= t3.get_id()));
t.join();
t2.join();
t3.join();
}
void get_thread_id(boost::thread::id* id)
{
*id=boost::this_thread::get_id();
}
void test_thread_id_of_running_thread_returned_by_this_thread_get_id()
{
boost::thread::id id;
boost::thread t(boost::bind(get_thread_id,&id));
boost::thread::id t_id=t.get_id();
t.join();
BOOST_CHECK(id==t_id);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: thread move test suite");
test->add(BOOST_TEST_CASE(test_thread_id_for_default_constructed_thread_is_default_constructed_id));
test->add(BOOST_TEST_CASE(test_thread_id_for_running_thread_is_not_default_constructed_id));
test->add(BOOST_TEST_CASE(test_different_threads_have_different_ids));
test->add(BOOST_TEST_CASE(test_thread_ids_have_a_total_order));
test->add(BOOST_TEST_CASE(test_thread_id_of_running_thread_returned_by_this_thread_get_id));
return test;
}

View File

@@ -1,226 +0,0 @@
// Copyright (C) 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/ref.hpp>
#include <boost/utility.hpp>
#include <string>
#include <vector>
bool normal_function_called=false;
void normal_function()
{
normal_function_called=true;
}
void test_thread_function_no_arguments()
{
boost::thread function(normal_function);
function.join();
BOOST_CHECK(normal_function_called);
}
int nfoa_res=0;
void normal_function_one_arg(int i)
{
nfoa_res=i;
}
void test_thread_function_one_argument()
{
boost::thread function(normal_function_one_arg,42);
function.join();
BOOST_CHECK_EQUAL(42,nfoa_res);
}
struct callable_no_args
{
static bool called;
void operator()() const
{
called=true;
}
};
bool callable_no_args::called=false;
void test_thread_callable_object_no_arguments()
{
callable_no_args func;
boost::thread callable(func);
callable.join();
BOOST_CHECK(callable_no_args::called);
}
struct callable_noncopyable_no_args:
boost::noncopyable
{
static bool called;
void operator()() const
{
called=true;
}
};
bool callable_noncopyable_no_args::called=false;
void test_thread_callable_object_ref_no_arguments()
{
callable_noncopyable_no_args func;
boost::thread callable(boost::ref(func));
callable.join();
BOOST_CHECK(callable_noncopyable_no_args::called);
}
struct callable_one_arg
{
static bool called;
static int called_arg;
void operator()(int arg) const
{
called=true;
called_arg=arg;
}
};
bool callable_one_arg::called=false;
int callable_one_arg::called_arg=0;
void test_thread_callable_object_one_argument()
{
callable_one_arg func;
boost::thread callable(func,42);
callable.join();
BOOST_CHECK(callable_one_arg::called);
BOOST_CHECK_EQUAL(callable_one_arg::called_arg,42);
}
struct callable_multiple_arg
{
static bool called_two;
static int called_two_arg1;
static double called_two_arg2;
static bool called_three;
static std::string called_three_arg1;
static std::vector<int> called_three_arg2;
static int called_three_arg3;
void operator()(int arg1,double arg2) const
{
called_two=true;
called_two_arg1=arg1;
called_two_arg2=arg2;
}
void operator()(std::string const& arg1,std::vector<int> const& arg2,int arg3) const
{
called_three=true;
called_three_arg1=arg1;
called_three_arg2=arg2;
called_three_arg3=arg3;
}
};
bool callable_multiple_arg::called_two=false;
bool callable_multiple_arg::called_three=false;
int callable_multiple_arg::called_two_arg1;
double callable_multiple_arg::called_two_arg2;
std::string callable_multiple_arg::called_three_arg1;
std::vector<int> callable_multiple_arg::called_three_arg2;
int callable_multiple_arg::called_three_arg3;
void test_thread_callable_object_multiple_arguments()
{
std::vector<int> x;
for(unsigned i=0;i<7;++i)
{
x.push_back(i*i);
}
callable_multiple_arg func;
boost::thread callable3(func,"hello",x,1.2);
callable3.join();
BOOST_CHECK(callable_multiple_arg::called_three);
BOOST_CHECK_EQUAL(callable_multiple_arg::called_three_arg1,"hello");
BOOST_CHECK_EQUAL(callable_multiple_arg::called_three_arg2.size(),x.size());
for(unsigned j=0;j<x.size();++j)
{
BOOST_CHECK_EQUAL(callable_multiple_arg::called_three_arg2.at(j),x[j]);
}
BOOST_CHECK_EQUAL(callable_multiple_arg::called_three_arg3,1);
double const dbl=1.234;
boost::thread callable2(func,19,dbl);
callable2.join();
BOOST_CHECK(callable_multiple_arg::called_two);
BOOST_CHECK_EQUAL(callable_multiple_arg::called_two_arg1,19);
BOOST_CHECK_EQUAL(callable_multiple_arg::called_two_arg2,dbl);
}
struct X
{
bool function_called;
int arg_value;
X():
function_called(false),
arg_value(0)
{}
void f0()
{
function_called=true;
}
void f1(int i)
{
arg_value=i;
}
};
void test_thread_member_function_no_arguments()
{
X x;
boost::thread function(&X::f0,&x);
function.join();
BOOST_CHECK(x.function_called);
}
void test_thread_member_function_one_argument()
{
X x;
boost::thread function(&X::f1,&x,42);
function.join();
BOOST_CHECK_EQUAL(42,x.arg_value);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: thread launching test suite");
test->add(BOOST_TEST_CASE(test_thread_function_no_arguments));
test->add(BOOST_TEST_CASE(test_thread_function_one_argument));
test->add(BOOST_TEST_CASE(test_thread_callable_object_no_arguments));
test->add(BOOST_TEST_CASE(test_thread_callable_object_ref_no_arguments));
test->add(BOOST_TEST_CASE(test_thread_callable_object_one_argument));
test->add(BOOST_TEST_CASE(test_thread_callable_object_multiple_arguments));
test->add(BOOST_TEST_CASE(test_thread_member_function_no_arguments));
test->add(BOOST_TEST_CASE(test_thread_member_function_one_argument));
return test;
}

View File

@@ -1,134 +0,0 @@
//
// Copyright (C) 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/thread/thread.hpp>
#include <boost/detail/lightweight_test.hpp>
struct X
{
mutable unsigned int hash;
X(): hash(0) {}
int f0() { f1(17); return 0; }
int g0() const { g1(17); return 0; }
int f1(int a1) { hash = (hash * 17041 + a1) % 32768; return 0; }
int g1(int a1) const { hash = (hash * 17041 + a1 * 2) % 32768; return 0; }
int f2(int a1, int a2) { f1(a1); f1(a2); return 0; }
int g2(int a1, int a2) const { g1(a1); g1(a2); return 0; }
int f3(int a1, int a2, int a3) { f2(a1, a2); f1(a3); return 0; }
int g3(int a1, int a2, int a3) const { g2(a1, a2); g1(a3); return 0; }
int f4(int a1, int a2, int a3, int a4) { f3(a1, a2, a3); f1(a4); return 0; }
int g4(int a1, int a2, int a3, int a4) const { g3(a1, a2, a3); g1(a4); return 0; }
int f5(int a1, int a2, int a3, int a4, int a5) { f4(a1, a2, a3, a4); f1(a5); return 0; }
int g5(int a1, int a2, int a3, int a4, int a5) const { g4(a1, a2, a3, a4); g1(a5); return 0; }
int f6(int a1, int a2, int a3, int a4, int a5, int a6) { f5(a1, a2, a3, a4, a5); f1(a6); return 0; }
int g6(int a1, int a2, int a3, int a4, int a5, int a6) const { g5(a1, a2, a3, a4, a5); g1(a6); return 0; }
int f7(int a1, int a2, int a3, int a4, int a5, int a6, int a7) { f6(a1, a2, a3, a4, a5, a6); f1(a7); return 0; }
int g7(int a1, int a2, int a3, int a4, int a5, int a6, int a7) const { g6(a1, a2, a3, a4, a5, a6); g1(a7); return 0; }
int f8(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8) { f7(a1, a2, a3, a4, a5, a6, a7); f1(a8); return 0; }
int g8(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8) const { g7(a1, a2, a3, a4, a5, a6, a7); g1(a8); return 0; }
};
int main()
{
X x;
// 0
boost::thread( &X::f0, &x ).join();
boost::thread( &X::f0, boost::ref(x) ).join();
boost::thread( &X::g0, &x ).join();
boost::thread( &X::g0, x ).join();
boost::thread( &X::g0, boost::ref(x) ).join();
// 1
boost::thread( &X::f1, &x, 1 ).join();
boost::thread( &X::f1, boost::ref(x), 1 ).join();
boost::thread( &X::g1, &x, 1 ).join();
boost::thread( &X::g1, x, 1 ).join();
boost::thread( &X::g1, boost::ref(x), 1 ).join();
// 2
boost::thread( &X::f2, &x, 1, 2 ).join();
boost::thread( &X::f2, boost::ref(x), 1, 2 ).join();
boost::thread( &X::g2, &x, 1, 2 ).join();
boost::thread( &X::g2, x, 1, 2 ).join();
boost::thread( &X::g2, boost::ref(x), 1, 2 ).join();
// 3
boost::thread( &X::f3, &x, 1, 2, 3 ).join();
boost::thread( &X::f3, boost::ref(x), 1, 2, 3 ).join();
boost::thread( &X::g3, &x, 1, 2, 3 ).join();
boost::thread( &X::g3, x, 1, 2, 3 ).join();
boost::thread( &X::g3, boost::ref(x), 1, 2, 3 ).join();
// 4
boost::thread( &X::f4, &x, 1, 2, 3, 4 ).join();
boost::thread( &X::f4, boost::ref(x), 1, 2, 3, 4 ).join();
boost::thread( &X::g4, &x, 1, 2, 3, 4 ).join();
boost::thread( &X::g4, x, 1, 2, 3, 4 ).join();
boost::thread( &X::g4, boost::ref(x), 1, 2, 3, 4 ).join();
// 5
boost::thread( &X::f5, &x, 1, 2, 3, 4, 5 ).join();
boost::thread( &X::f5, boost::ref(x), 1, 2, 3, 4, 5 ).join();
boost::thread( &X::g5, &x, 1, 2, 3, 4, 5 ).join();
boost::thread( &X::g5, x, 1, 2, 3, 4, 5 ).join();
boost::thread( &X::g5, boost::ref(x), 1, 2, 3, 4, 5 ).join();
// 6
boost::thread( &X::f6, &x, 1, 2, 3, 4, 5, 6 ).join();
boost::thread( &X::f6, boost::ref(x), 1, 2, 3, 4, 5, 6 ).join();
boost::thread( &X::g6, &x, 1, 2, 3, 4, 5, 6 ).join();
boost::thread( &X::g6, x, 1, 2, 3, 4, 5, 6 ).join();
boost::thread( &X::g6, boost::ref(x), 1, 2, 3, 4, 5, 6 ).join();
// 7
boost::thread( &X::f7, &x, 1, 2, 3, 4, 5, 6, 7).join();
boost::thread( &X::f7, boost::ref(x), 1, 2, 3, 4, 5, 6, 7).join();
boost::thread( &X::g7, &x, 1, 2, 3, 4, 5, 6, 7).join();
boost::thread( &X::g7, x, 1, 2, 3, 4, 5, 6, 7).join();
boost::thread( &X::g7, boost::ref(x), 1, 2, 3, 4, 5, 6, 7).join();
// 8
boost::thread( &X::f8, &x, 1, 2, 3, 4, 5, 6, 7, 8 ).join();
boost::thread( &X::f8, boost::ref(x), 1, 2, 3, 4, 5, 6, 7, 8 ).join();
boost::thread( &X::g8, &x, 1, 2, 3, 4, 5, 6, 7, 8 ).join();
boost::thread( &X::g8, x, 1, 2, 3, 4, 5, 6, 7, 8 ).join();
boost::thread( &X::g8, boost::ref(x), 1, 2, 3, 4, 5, 6, 7, 8 ).join();
BOOST_TEST( x.hash == 23558 );
return boost::report_errors();
}

View File

@@ -1,72 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/test/unit_test.hpp>
void do_nothing(boost::thread::id* my_id)
{
*my_id=boost::this_thread::get_id();
}
void test_move_on_construction()
{
boost::thread::id the_id;
boost::thread x=boost::thread(do_nothing,&the_id);
boost::thread::id x_id=x.get_id();
x.join();
BOOST_CHECK_EQUAL(the_id,x_id);
}
boost::thread make_thread(boost::thread::id* the_id)
{
return boost::thread(do_nothing,the_id);
}
void test_move_from_function_return()
{
boost::thread::id the_id;
boost::thread x=make_thread(&the_id);
boost::thread::id x_id=x.get_id();
x.join();
BOOST_CHECK_EQUAL(the_id,x_id);
}
boost::thread make_thread_return_lvalue(boost::thread::id* the_id)
{
boost::thread t(do_nothing,the_id);
return boost::move(t);
}
void test_move_from_function_return_lvalue()
{
boost::thread::id the_id;
boost::thread x=make_thread_return_lvalue(&the_id);
boost::thread::id x_id=x.get_id();
x.join();
BOOST_CHECK_EQUAL(the_id,x_id);
}
void test_move_assign()
{
boost::thread::id the_id;
boost::thread x(do_nothing,&the_id);
boost::thread y;
y=boost::move(x);
boost::thread::id y_id=y.get_id();
y.join();
BOOST_CHECK_EQUAL(the_id,y_id);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: thread move test suite");
test->add(BOOST_TEST_CASE(test_move_on_construction));
test->add(BOOST_TEST_CASE(test_move_from_function_return));
test->add(BOOST_TEST_CASE(test_move_from_function_return_lvalue));
test->add(BOOST_TEST_CASE(test_move_assign));
return test;
}

View File

@@ -1,6 +1,5 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -63,10 +62,10 @@ void test_tss_thread()
}
}
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#if defined(BOOST_HAS_WINTHREADS)
typedef HANDLE native_thread_t;
DWORD WINAPI test_tss_thread_native(LPVOID /*lpParameter*/)
DWORD WINAPI test_tss_thread_native(LPVOID lpParameter)
{
test_tss_thread();
return 0;
@@ -74,7 +73,7 @@ void test_tss_thread()
native_thread_t create_native_thread(void)
{
native_thread_t const res=CreateThread(
return CreateThread(
0, //security attributes (0 = not inheritable)
0, //stack size (0 = default)
&test_tss_thread_native, //function to execute
@@ -82,8 +81,6 @@ void test_tss_thread()
0, //creation flags (0 = run immediately)
0 //thread id (0 = thread id not returned)
);
BOOST_CHECK(res!=0);
return res;
}
void join_native_thread(native_thread_t thread)
@@ -94,33 +91,6 @@ void test_tss_thread()
res = CloseHandle(thread);
BOOST_CHECK(SUCCEEDED(res));
}
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
typedef pthread_t native_thread_t;
extern "C"
{
void* test_tss_thread_native(void* lpParameter)
{
test_tss_thread();
return 0;
}
}
native_thread_t create_native_thread()
{
native_thread_t thread_handle;
int const res = pthread_create(&thread_handle, 0, &test_tss_thread_native, 0);
BOOST_CHECK(!res);
return thread_handle;
}
void join_native_thread(native_thread_t thread)
{
void* result=0;
int const res=pthread_join(thread,&result);
BOOST_CHECK(!res);
}
#endif
void do_test_tss()
@@ -130,19 +100,9 @@ void do_test_tss()
const int NUMTHREADS=5;
boost::thread_group threads;
try
{
for (int i=0; i<NUMTHREADS; ++i)
threads.create_thread(&test_tss_thread);
threads.join_all();
}
catch(...)
{
threads.interrupt_all();
threads.join_all();
throw;
}
for (int i=0; i<NUMTHREADS; ++i)
threads.create_thread(&test_tss_thread);
threads.join_all();
std::cout
<< "tss_instances = " << tss_instances
@@ -153,33 +113,44 @@ void do_test_tss()
BOOST_CHECK_EQUAL(tss_instances, 0);
BOOST_CHECK_EQUAL(tss_total, 5);
tss_instances = 0;
tss_total = 0;
#if defined(BOOST_HAS_WINTHREADS)
tss_instances = 0;
tss_total = 0;
native_thread_t thread1 = create_native_thread();
native_thread_t thread2 = create_native_thread();
native_thread_t thread3 = create_native_thread();
native_thread_t thread4 = create_native_thread();
native_thread_t thread5 = create_native_thread();
native_thread_t thread1 = create_native_thread();
BOOST_CHECK(thread1 != 0);
join_native_thread(thread5);
join_native_thread(thread4);
join_native_thread(thread3);
join_native_thread(thread2);
join_native_thread(thread1);
native_thread_t thread2 = create_native_thread();
BOOST_CHECK(thread2 != 0);
std::cout
<< "tss_instances = " << tss_instances
<< "; tss_total = " << tss_total
<< "\n";
std::cout.flush();
native_thread_t thread3 = create_native_thread();
BOOST_CHECK(thread3 != 0);
// The following is not really an error. TSS cleanup support still is available for boost threads.
// Also this usually will be triggered only when bound to the static version of thread lib.
// 2006-10-02 Roland Schwarz
//BOOST_CHECK_EQUAL(tss_instances, 0);
BOOST_CHECK_MESSAGE(tss_instances == 0, "Support of automatic tss cleanup for native threading API not available");
BOOST_CHECK_EQUAL(tss_total, 5);
native_thread_t thread4 = create_native_thread();
BOOST_CHECK(thread3 != 0);
native_thread_t thread5 = create_native_thread();
BOOST_CHECK(thread3 != 0);
join_native_thread(thread5);
join_native_thread(thread4);
join_native_thread(thread3);
join_native_thread(thread2);
join_native_thread(thread1);
std::cout
<< "tss_instances = " << tss_instances
<< "; tss_total = " << tss_total
<< "\n";
std::cout.flush();
// The following is not really an error. TSS cleanup support still is available for boost threads.
// Also this usually will be triggered only when bound to the static version of thread lib.
// 2006-10-02 Roland Schwarz
//BOOST_CHECK_EQUAL(tss_instances, 0);
BOOST_CHECK_MESSAGE(tss_instances == 0, "Support of automatic tss cleanup for native threading API not available");
BOOST_CHECK_EQUAL(tss_total, 5);
#endif
}
void test_tss()
@@ -187,138 +158,12 @@ void test_tss()
timed_test(&do_test_tss, 2);
}
bool tss_cleanup_called=false;
struct Dummy
{};
void tss_custom_cleanup(Dummy* d)
{
delete d;
tss_cleanup_called=true;
}
boost::thread_specific_ptr<Dummy> tss_with_cleanup(tss_custom_cleanup);
void tss_thread_with_custom_cleanup()
{
tss_with_cleanup.reset(new Dummy);
}
void do_test_tss_with_custom_cleanup()
{
boost::thread t(tss_thread_with_custom_cleanup);
try
{
t.join();
}
catch(...)
{
t.interrupt();
t.join();
throw;
}
BOOST_CHECK(tss_cleanup_called);
}
void test_tss_with_custom_cleanup()
{
timed_test(&do_test_tss_with_custom_cleanup, 2);
}
Dummy* tss_object=new Dummy;
void tss_thread_with_custom_cleanup_and_release()
{
tss_with_cleanup.reset(tss_object);
tss_with_cleanup.release();
}
void do_test_tss_does_no_cleanup_after_release()
{
tss_cleanup_called=false;
boost::thread t(tss_thread_with_custom_cleanup_and_release);
try
{
t.join();
}
catch(...)
{
t.interrupt();
t.join();
throw;
}
BOOST_CHECK(!tss_cleanup_called);
if(!tss_cleanup_called)
{
delete tss_object;
}
}
struct dummy_class_tracks_deletions
{
static unsigned deletions;
~dummy_class_tracks_deletions()
{
++deletions;
}
};
unsigned dummy_class_tracks_deletions::deletions=0;
boost::thread_specific_ptr<dummy_class_tracks_deletions> tss_with_null_cleanup(NULL);
void tss_thread_with_null_cleanup(dummy_class_tracks_deletions* delete_tracker)
{
tss_with_null_cleanup.reset(delete_tracker);
}
void do_test_tss_does_no_cleanup_with_null_cleanup_function()
{
dummy_class_tracks_deletions* delete_tracker=new dummy_class_tracks_deletions;
boost::thread t(tss_thread_with_null_cleanup,delete_tracker);
try
{
t.join();
}
catch(...)
{
t.interrupt();
t.join();
throw;
}
BOOST_CHECK(!dummy_class_tracks_deletions::deletions);
if(!dummy_class_tracks_deletions::deletions)
{
delete delete_tracker;
}
}
void test_tss_does_no_cleanup_after_release()
{
timed_test(&do_test_tss_does_no_cleanup_after_release, 2);
}
void test_tss_does_no_cleanup_with_null_cleanup_function()
{
timed_test(&do_test_tss_does_no_cleanup_with_null_cleanup_function, 2);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
BOOST_TEST_SUITE("Boost.Threads: tss test suite");
test->add(BOOST_TEST_CASE(test_tss));
test->add(BOOST_TEST_CASE(test_tss_with_custom_cleanup));
test->add(BOOST_TEST_CASE(test_tss_does_no_cleanup_after_release));
test->add(BOOST_TEST_CASE(test_tss_does_no_cleanup_with_null_cleanup_function));
return test;
}

View File

@@ -1,6 +1,5 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -10,8 +9,6 @@
#include <boost/thread/xtime.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
void test_xtime_cmp()
{
@@ -56,45 +53,6 @@ void test_xtime_get()
}
}
void test_xtime_mutex_backwards_compatibility()
{
boost::timed_mutex m;
BOOST_CHECK(m.timed_lock(boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10))));
m.unlock();
boost::timed_mutex::scoped_timed_lock lk(m,boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10)));
BOOST_CHECK(lk.owns_lock());
if(lk.owns_lock())
{
lk.unlock();
}
BOOST_CHECK(lk.timed_lock(boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10))));
if(lk.owns_lock())
{
lk.unlock();
}
}
bool predicate()
{
return false;
}
void test_xtime_condvar_backwards_compatibility()
{
boost::condition_variable cond;
boost::condition_variable_any cond_any;
boost::mutex m;
boost::mutex::scoped_lock lk(m);
cond.timed_wait(lk,boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10)));
cond.timed_wait(lk,boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10)),predicate);
cond_any.timed_wait(lk,boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10)));
cond_any.timed_wait(lk,boost::get_xtime(boost::get_system_time()+boost::posix_time::milliseconds(10)),predicate);
}
boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
{
boost::unit_test_framework::test_suite* test =
@@ -102,8 +60,6 @@ boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[])
test->add(BOOST_TEST_CASE(&test_xtime_cmp));
test->add(BOOST_TEST_CASE(&test_xtime_get));
test->add(BOOST_TEST_CASE(&test_xtime_mutex_backwards_compatibility));
test->add(BOOST_TEST_CASE(&test_xtime_condvar_backwards_compatibility));
return test;
}

View File

@@ -1,183 +1,159 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(UTIL_INL_WEK01242003)
#define UTIL_INL_WEK01242003
#include <boost/thread/xtime.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#ifndef DEFAULT_EXECUTION_MONITOR_TYPE
# define DEFAULT_EXECUTION_MONITOR_TYPE execution_monitor::use_condition
#endif
// boostinspect:nounnamed
namespace
{
inline boost::xtime delay(int secs, int msecs=0, int nsecs=0)
{
const int MILLISECONDS_PER_SECOND = 1000;
const int NANOSECONDS_PER_SECOND = 1000000000;
const int NANOSECONDS_PER_MILLISECOND = 1000000;
boost::xtime xt;
if (boost::TIME_UTC != boost::xtime_get (&xt, boost::TIME_UTC))
BOOST_ERROR ("boost::xtime_get != boost::TIME_UTC");
nsecs += xt.nsec;
msecs += nsecs / NANOSECONDS_PER_MILLISECOND;
secs += msecs / MILLISECONDS_PER_SECOND;
nsecs += (msecs % MILLISECONDS_PER_SECOND) * NANOSECONDS_PER_MILLISECOND;
xt.nsec = nsecs % NANOSECONDS_PER_SECOND;
xt.sec += secs + (nsecs / NANOSECONDS_PER_SECOND);
return xt;
}
inline bool in_range(const boost::xtime& xt, int secs=1)
{
boost::xtime min = delay(-secs);
boost::xtime max = delay(0);
return (boost::xtime_cmp(xt, min) >= 0) &&
(boost::xtime_cmp(xt, max) <= 0);
}
class execution_monitor
{
public:
enum wait_type { use_sleep_only, use_mutex, use_condition };
execution_monitor(wait_type type, int secs)
: done(false), type(type), secs(secs) { }
void start()
{
if (type != use_sleep_only) {
boost::mutex::scoped_lock lock(mutex); done = false;
} else {
done = false;
}
}
void finish()
{
if (type != use_sleep_only) {
boost::mutex::scoped_lock lock(mutex);
done = true;
if (type == use_condition)
cond.notify_one();
} else {
done = true;
}
}
bool wait()
{
boost::xtime xt = delay(secs);
if (type != use_condition)
boost::thread::sleep(xt);
if (type != use_sleep_only) {
boost::mutex::scoped_lock lock(mutex);
while (type == use_condition && !done) {
if (!cond.timed_wait(lock, xt))
break;
}
return done;
}
return done;
}
private:
boost::mutex mutex;
boost::condition cond;
bool done;
wait_type type;
int secs;
};
template <typename F>
class indirect_adapter
{
public:
indirect_adapter(F func, execution_monitor& monitor)
: func(func), monitor(monitor) { }
void operator()() const
{
try
{
boost::thread thrd(func);
thrd.join();
}
catch (...)
{
monitor.finish();
throw;
}
monitor.finish();
}
private:
F func;
execution_monitor& monitor;
void operator=(indirect_adapter&);
};
template <typename F>
void timed_test(F func, int secs,
execution_monitor::wait_type type=DEFAULT_EXECUTION_MONITOR_TYPE)
{
execution_monitor monitor(type, secs);
indirect_adapter<F> ifunc(func, monitor);
monitor.start();
boost::thread thrd(ifunc);
BOOST_REQUIRE_MESSAGE(monitor.wait(),
"Timed test didn't complete in time, possible deadlock.");
}
template <typename F, typename T>
class thread_binder
{
public:
thread_binder(const F& func, const T& param)
: func(func), param(param) { }
void operator()() const { func(param); }
private:
F func;
T param;
};
template <typename F, typename T>
thread_binder<F, T> bind(const F& func, const T& param)
{
return thread_binder<F, T>(func, param);
}
template <typename R, typename T>
class thread_member_binder
{
public:
thread_member_binder(R (T::*func)(), T& param)
: func(func), param(param) { }
void operator()() const { (param.*func)(); }
private:
void operator=(thread_member_binder&);
R (T::*func)();
T& param;
};
template <typename R, typename T>
thread_member_binder<R, T> bind(R (T::*func)(), T& param)
{
return thread_member_binder<R, T>(func, param);
}
} // namespace
#endif
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(UTIL_INL_WEK01242003)
#define UTIL_INL_WEK01242003
#include <boost/thread/xtime.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#ifndef DEFAULT_EXECUTION_MONITOR_TYPE
# define DEFAULT_EXECUTION_MONITOR_TYPE execution_monitor::use_condition
#endif
// boostinspect:nounnamed
namespace
{
inline boost::xtime delay(int secs, int msecs=0, int nsecs=0)
{
const int MILLISECONDS_PER_SECOND = 1000;
const int NANOSECONDS_PER_SECOND = 1000000000;
const int NANOSECONDS_PER_MILLISECOND = 1000000;
boost::xtime xt;
if (boost::TIME_UTC != boost::xtime_get (&xt, boost::TIME_UTC))
BOOST_ERROR ("boost::xtime_get != boost::TIME_UTC");
nsecs += xt.nsec;
msecs += nsecs / NANOSECONDS_PER_MILLISECOND;
secs += msecs / MILLISECONDS_PER_SECOND;
nsecs += (msecs % MILLISECONDS_PER_SECOND) * NANOSECONDS_PER_MILLISECOND;
xt.nsec = nsecs % NANOSECONDS_PER_SECOND;
xt.sec += secs + (nsecs / NANOSECONDS_PER_SECOND);
return xt;
}
inline bool in_range(const boost::xtime& xt, int secs=1)
{
boost::xtime min = delay(-secs);
boost::xtime max = delay(0);
return (boost::xtime_cmp(xt, min) >= 0) &&
(boost::xtime_cmp(xt, max) <= 0);
}
class execution_monitor
{
public:
enum wait_type { use_sleep_only, use_mutex, use_condition };
execution_monitor(wait_type type, int secs)
: done(false), type(type), secs(secs) { }
void start()
{
if (type != use_sleep_only) {
boost::mutex::scoped_lock lock(mutex); done = false;
} else {
done = false;
}
}
void finish()
{
if (type != use_sleep_only) {
boost::mutex::scoped_lock lock(mutex);
done = true;
if (type == use_condition)
cond.notify_one();
} else {
done = true;
}
}
bool wait()
{
boost::xtime xt = delay(secs);
if (type != use_condition)
boost::thread::sleep(xt);
if (type != use_sleep_only) {
boost::mutex::scoped_lock lock(mutex);
while (type == use_condition && !done) {
if (!cond.timed_wait(lock, xt))
break;
}
return done;
}
return done;
}
private:
boost::mutex mutex;
boost::condition cond;
bool done;
wait_type type;
int secs;
};
template <typename F>
class indirect_adapter
{
public:
indirect_adapter(F func, execution_monitor& monitor)
: func(func), monitor(monitor) { }
void operator()() const
{
try
{
boost::thread thrd(func);
thrd.join();
}
catch (...)
{
monitor.finish();
throw;
}
monitor.finish();
}
private:
F func;
execution_monitor& monitor;
};
template <typename F>
void timed_test(F func, int secs,
execution_monitor::wait_type type=DEFAULT_EXECUTION_MONITOR_TYPE)
{
execution_monitor monitor(type, secs);
indirect_adapter<F> ifunc(func, monitor);
monitor.start();
boost::thread thrd(ifunc);
BOOST_REQUIRE_MESSAGE(monitor.wait(),
"Timed test didn't complete in time, possible deadlock.");
}
template <typename F, typename T>
class thread_binder
{
public:
thread_binder(const F& func, const T& param)
: func(func), param(param) { }
void operator()() const { func(param); }
private:
F func;
T param;
};
template <typename F, typename T>
thread_binder<F, T> bind(const F& func, const T& param)
{
return thread_binder<F, T>(func, param);
}
} // namespace
#endif