2
0
mirror of https://github.com/boostorg/thread.git synced 2026-02-03 09:42:16 +00:00

Compare commits

..

21 Commits

Author SHA1 Message Date
Beman Dawes
e38c03c9a8 Release 1.46.0
[SVN r69125]
2011-02-21 18:42:22 +00:00
Hartmut Kaiser
7c9116af2e Spirit: merge from trunk
[SVN r68078]
2011-01-13 02:11:19 +00:00
Anthony Williams
70584af9c0 Merged fix for issue #4736 from trunk
[SVN r66588]
2010-11-15 10:13:12 +00:00
Anthony Williams
381554f8bc Merged fix for issue #4736 from trunk
[SVN r66482]
2010-11-10 11:24:52 +00:00
Anthony Williams
4dc1cb1ba1 Merged Boost.Thread from trunk
[SVN r66259]
2010-10-29 23:27:00 +00:00
Vladimir Prus
506019dd62 Remove debug print
[SVN r66171]
2010-10-25 07:52:02 +00:00
Vladimir Prus
e30be60bc4 Merge r64010, wherein jam has been moved.
[SVN r65233]
2010-09-04 11:02:21 +00:00
Andrey Semashev
7bfafec128 Fixed compilation with MSVC and, probably, other compilers.
[SVN r64999]
2010-08-25 16:41:08 +00:00
Anthony Williams
e12d2bc486 Marged changes to Boost.Thread from trunk
[SVN r63915]
2010-07-12 07:47:39 +00:00
Anthony Williams
a37d2a1364 Merged boost.thread changes over from trunk
[SVN r63789]
2010-07-09 19:13:09 +00:00
Daniel James
cc662c102c Merge documentation fixes.
* Use `doc/src/*.css` instead of `doc/html/*.css`.
* Remove wiki and people directories.
* Some documentation fixes.
* Left out `minimal.css` changes and boostbook changes because of clashes.


[SVN r63347]
2010-06-26 12:30:09 +00:00
Anthony Williams
65d2898ff0 Merged changes to boost.thread over from trunk
[SVN r60991]
2010-04-01 15:04:15 +00:00
Anthony Williams
9087fd904d Merged documentation changes to boost.thread (re at_thread_exit) from trunk
[SVN r57381]
2009-11-04 21:48:18 +00:00
Anthony Williams
66ac6942b6 Merged boost.thread changes from trunk
[SVN r57243]
2009-10-30 09:50:13 +00:00
Anthony Williams
20980fe54d Merged thread changes from trunk
[SVN r56992]
2009-10-19 09:18:13 +00:00
Troy D. Straszheim
fb54acfe69 rm cmake from the release branch before it goes out broken. Policy dictates that you never commit to release, you commit to trunk and merge to release.
[SVN r56941]
2009-10-17 01:10:45 +00:00
Troy D. Straszheim
0e69edd066 Add basic copyright/license to keep cmake out of the inspection report
[SVN r55095]
2009-07-22 21:51:01 +00:00
John Maddock
9255a035f4 Merge PDF build changes from Trunk.
[SVN r51417]
2009-02-23 18:39:32 +00:00
Troy D. Straszheim
fbdc23f482 merge of cmake build files from trunk per beman
[SVN r50756]
2009-01-24 18:57:20 +00:00
Anthony Williams
8ab0d5acdd Merged change from trunk removing catch(...) clauses
[SVN r50524]
2009-01-09 11:06:53 +00:00
Daniel James
5af323102a Merge [46445] - add line ending properties. Ref #2441.
[SVN r49577]
2008-11-03 22:29:39 +00:00
132 changed files with 5728 additions and 13734 deletions

View File

@@ -1,2 +0,0 @@
bin*
*.pdb

View File

@@ -43,6 +43,7 @@ project boost/thread
<link>shared:<define>BOOST_THREAD_BUILD_DLL=1
-<tag>@$(BOOST_JAMROOT_MODULE)%$(BOOST_JAMROOT_MODULE).tag
<tag>@$(__name__).tag
<toolset>gcc:<cxxflags>-Wno-long-long
: default-build <threading>multi
;
@@ -180,7 +181,6 @@ rule requirements ( properties * )
alias thread_sources
: ## win32 sources ##
win32/thread.cpp
win32/exceptions.cpp
win32/tss_dll.cpp
win32/tss_pe.cpp
: ## requirements ##
@@ -190,7 +190,6 @@ alias thread_sources
alias thread_sources
: ## pthread sources ##
pthread/thread.cpp
pthread/exceptions.cpp
pthread/once.cpp
: ## requirements ##
<threadapi>pthread

View File

@@ -26,30 +26,6 @@ boostbook standalone
<xsl:param>generate.section.toc.level=10
# Path for links to Boost:
<xsl:param>boost.root=../../../..
# Path for libraries index:
<xsl:param>boost.libraries=../../../../libs/libraries.htm
# Use the main Boost stylesheet:
<xsl:param>html.stylesheet=../../../../doc/html/boostbook.css
# PDF Options:
# TOC Generation: this is needed for FOP-0.9 and later:
#<xsl:param>fop1.extensions=1
# Or enable this if you're using XEP:
<xsl:param>xep.extensions=1
# TOC generation: this is needed for FOP 0.2, but must not be set to zero for FOP-0.9!
<xsl:param>fop.extensions=0
# No indent on body text:
<xsl:param>body.start.indent=0pt
# Margin size:
<xsl:param>page.margin.inner=0.5in
# Margin size:
<xsl:param>page.margin.outer=0.5in
# Yes, we want graphics for admonishments:
<xsl:param>admon.graphics=1
# Set this one for PDF generation *only*:
# default pnd graphics are awful in PDF form,
# better use SVG's instead:
<format>pdf:<xsl:param>admon.graphics.extension=".svg"
<format>pdf:<xsl:param>admon.graphics.path=$(boost-images)/
;

View File

@@ -1,73 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.acknowledgements"
last-revision="$Date$">
<title>Acknowledgements</title>
<para>William E. Kempf was the architect, designer, and implementor of
&Boost.Thread;.</para>
<para>Mac OS Carbon implementation written by Mac Murrett.</para>
<para>Dave Moore provided initial submissions and further comments on the
<code>barrier</code>
,
<code>thread_pool</code>
,
<code>read_write_mutex</code>
,
<code>read_write_try_mutex</code>
and
<code>read_write_timed_mutex</code>
classes.</para>
<para>Important contributions were also made by Jeremy Siek (lots of input
on the design and on the implementation), Alexander Terekhov (lots of input
on the Win32 implementation, especially in regards to boost::condition, as
well as a lot of explanation of POSIX behavior), Greg Colvin (lots of input
on the design), Paul Mclachlan, Thomas Matelich and Iain Hanson (for help
in trying to get the build to work on other platforms), and Kevin S. Van
Horn (for several updates/corrections to the documentation).</para>
<para>Mike Glassford finished changes to &Boost.Thread; that were begun
by William Kempf and moved them into the main CVS branch.
He also addressed a number of issues that were brought up on the Boost
developer's mailing list and provided some additions and changes to the
read_write_mutex and related classes.</para>
<para>The documentation was written by William E. Kempf. Beman Dawes
provided additional documentation material and editing.
Mike Glassford finished William Kempf's conversion of the documentation to
BoostBook format and added a number of new sections.</para>
<para>Discussions on the boost.org mailing list were essential in the
development of &Boost.Thread;
. As of August 1, 2001, participants included Alan Griffiths, Albrecht
Fritzsche, Aleksey Gurtovoy, Alexander Terekhov, Andrew Green, Andy Sawyer,
Asger Alstrup Nielsen, Beman Dawes, Bill Klein, Bill Rutiser, Bill Wade,
Branko &egrave;ibej, Brent Verner, Craig Henderson, Csaba Szepesvari,
Dale Peakall, Damian Dixon, Dan Nuffer, Darryl Green, Daryle Walker, David
Abrahams, David Allan Finch, Dejan Jelovic, Dietmar Kuehl, Douglas Gregor,
Duncan Harris, Ed Brey, Eric Swanson, Eugene Karpachov, Fabrice Truillot,
Frank Gerlach, Gary Powell, Gernot Neppert, Geurt Vos, Ghazi Ramadan, Greg
Colvin, Gregory Seidman, HYS, Iain Hanson, Ian Bruntlett, J Panzer, Jeff
Garland, Jeff Paquette, Jens Maurer, Jeremy Siek, Jesse Jones, Joe Gottman,
John (EBo) David, John Bandela, John Maddock, John Max Skaller, John
Panzer, Jon Jagger , Karl Nelson, Kevlin Henney, KG Chandrasekhar, Levente
Farkas, Lie-Quan Lee, Lois Goldthwaite, Luis Pedro Coelho, Marc Girod, Mark
A. Borgerding, Mark Rodgers, Marshall Clow, Matthew Austern, Matthew Hurd,
Michael D. Crawford, Michael H. Cox , Mike Haller, Miki Jovanovic, Nathan
Myers, Paul Moore, Pavel Cisler, Peter Dimov, Petr Kocmid, Philip Nash,
Rainer Deyke, Reid Sweatman, Ross Smith, Scott McCaskill, Shalom Reich,
Steve Cleary, Steven Kirk, Thomas Holenstein, Thomas Matelich, Trevor
Perrin, Valentin Bonnard, Vesa Karvonen, Wayne Miller, and William
Kempf.</para>
<para>
As of February 2006 Anthony Williams and Roland Schwarz took over maintainance
and further development of the library after it has been in an orphaned state
for a rather long period of time.
</para>
<para>Apologies for anyone inadvertently missed.</para>
</section>

View File

@@ -1,82 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/barrier.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="barrier">
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<purpose>
<para>An object of class <classname>barrier</classname> is a synchronization
primitive used to cause a set of threads to wait until they each perform a
certain function or each reach a particular point in their execution.</para>
</purpose>
<description>
<para>When a barrier is created, it is initialized with a thread count N.
The first N-1 calls to <code>wait()</code> will all cause their threads to be blocked.
The Nth call to <code>wait()</code> will allow all of the waiting threads, including
the Nth thread, to be placed in a ready state. The Nth call will also "reset"
the barrier such that, if an additional N+1th call is made to <code>wait()</code>,
it will be as though this were the first call to <code>wait()</code>; in other
words, the N+1th to 2N-1th calls to <code>wait()</code> will cause their
threads to be blocked, and the 2Nth call to <code>wait()</code> will allow all of
the waiting threads, including the 2Nth thread, to be placed in a ready state
and reset the barrier. This functionality allows the same set of N threads to re-use
a barrier object to synchronize their execution at multiple points during their
execution.</para>
<para>See <xref linkend="thread.glossary"/> for definitions of thread
states <link linkend="thread.glossary.thread-state">blocked</link>
and <link linkend="thread.glossary.thread-state">ready</link>.
Note that "waiting" is a synonym for blocked.</para>
</description>
<constructor>
<parameter name="count">
<paramtype>size_t</paramtype>
</parameter>
<effects><simpara>Constructs a <classname>barrier</classname> object that
will cause <code>count</code> threads to block on a call to <code>wait()</code>.
</simpara></effects>
</constructor>
<destructor>
<effects><simpara>Destroys <code>*this</code>. If threads are still executing
their <code>wait()</code> operations, the behavior for these threads is undefined.
</simpara></effects>
</destructor>
<method-group name="waiting">
<method name="wait">
<type>bool</type>
<effects><simpara>Wait until N threads call <code>wait()</code>, where
N equals the <code>count</code> provided to the constructor for the
barrier object.</simpara>
<simpara><emphasis role="bold">Note</emphasis> that if the barrier is
destroyed before <code>wait()</code> can return, the behavior is
undefined.</simpara></effects>
<returns>Exactly one of the N threads will receive a return value
of <code>true</code>, the others will receive a value of <code>false</code>.
Precisely which thread receives the return value of <code>true</code> will
be implementation-defined. Applications can use this value to designate one
thread as a leader that will take a certain action, and the other threads
emerging from the barrier can wait for that action to take place.</returns>
</method>
</method-group>
</class>
</namespace>
</header>

View File

@@ -1,234 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<bibliography id="thread.bibliography"
last-revision="$Date$">
<title>Bibliography</title>
<biblioentry id="thread.bib.AndrewsSchneider83">
<abbrev id="thread.bib.AndrewsSchneider83.abbrev">AndrewsSchnieder83</abbrev>
<biblioset relation="journal">
<title>ACM Computing Surveys</title>
<volumenum>Vol. 15</volumenum>
<issuenum>No. 1</issuenum>
<date>March, 1983</date>
</biblioset>
<biblioset relation="article">
<authorgroup>
<author>
<firstname>Gregory</firstname>
<othername>R.</othername>
<surname>Andrews</surname>
</author>
<author>
<firstname>Fred</firstname>
<othername>B.</othername>
<surname>Schneider</surname>
</author>
</authorgroup>
<title>
<ulink
url="http://www.acm.org/pubs/citations/journals/surveys/1983-15-1/p3-andrews/"
>Concepts and Notations for Concurrent Programming</ulink>
</title>
</biblioset>
<para>Good general background reading. Includes descriptions of Path
Expressions, Message Passing, and Remote Procedure Call in addition to the
basics</para>
</biblioentry>
<biblioentry id="thread.bib.Boost">
<abbrev id="thread.bib.Boost.abbrev">Boost</abbrev>
<bibliomisc>The <emphasis>Boost</emphasis> world wide web site.
<ulink url="http:/www.boost.org">http://www.boost.org</ulink></bibliomisc>
<para>&Boost.Thread; is one of many Boost libraries. The Boost web
site includes a great deal of documentation and general information which
applies to all Boost libraries. Current copies of the libraries including
documentation and test programs may be downloaded from the web
site.</para>
</biblioentry>
<biblioentry id="thread.bib.Hansen73">
<abbrev id="thread.bib.Hansen73.abbrev">Hansen73</abbrev>
<biblioset relation="journal">
<title>ACM Computing Surveys</title>
<volumenum>Vol. 5</volumenum>
<issuenum>No. 4</issuenum>
<date>December, 1973</date>
</biblioset>
<biblioset relation="article">
<author>0-201-63392-2
<firstname>Per Brinch</firstname>
<lastname>Hansen</lastname>
</author>
<title>
<ulink
url="http://www.acm.org/pubs/articles/journals/surveys/1973-5-4/p223-hansen/"
>Concurrent Programming Concepts</ulink>
</title>
</biblioset>
<para>"This paper describes the evolution of language features for
multiprogramming from event queues and semaphores to critical regions and
monitors." Includes analysis of why events are considered error-prone. Also
noteworthy because of an introductory quotation from Christopher Alexander;
Brinch Hansen was years ahead of others in recognizing pattern concepts
applied to software, too.</para>
</biblioentry>
<biblioentry id="thread.bib.Butenhof97">
<abbrev id="thread.bib.Butenhof97.abbrev">Butenhof97</abbrev>
<title>
<ulink url="http://cseng.aw.com/book/0,3828,0201633922,00.html"
>Programming with POSIX Threads </ulink>
</title>
<author>
<firstname>David</firstname>
<othername>R.</othername>
<surname>Butenhof</surname>
</author>
<publisher>Addison-Wesley</publisher>
<copyright><year>1997</year></copyright>
<isbn>ISNB: 0-201-63392-2</isbn>
<para>This is a very readable explanation of threads and how to use
them. Many of the insights given apply to all multithreaded programming, not
just POSIX Threads</para>
</biblioentry>
<biblioentry id="thread.bib.Hoare74">
<abbrev id="thread.bib.Hoare74.abbrev">Hoare74</abbrev>
<biblioset relation="journal">
<title>Communications of the ACM</title>
<volumenum>Vol. 17</volumenum>
<issuenum>No. 10</issuenum>
<date>October, 1974</date>
</biblioset>
<biblioset relation="article">
<title>
<ulink url=" http://www.acm.org/classics/feb96/"
>Monitors: An Operating System Structuring Concept</ulink>
</title>
<author>
<firstname>C.A.R.</firstname>
<surname>Hoare</surname>
</author>
<pagenums>549-557</pagenums>
</biblioset>
<para>Hoare and Brinch Hansen's work on Monitors is the basis for reliable
multithreading patterns. This is one of the most often referenced papers in
all of computer science, and with good reason.</para>
</biblioentry>
<biblioentry id="thread.bib.ISO98">
<abbrev id="thread.bib.ISO98.abbrev">ISO98</abbrev>
<title>
<ulink url="http://www.ansi.org">Programming Language C++</ulink>
</title>
<orgname>ISO/IEC</orgname>
<releaseinfo>14882:1998(E)</releaseinfo>
<para>This is the official C++ Standards document. Available from the ANSI
(American National Standards Institute) Electronic Standards Store.</para>
</biblioentry>
<biblioentry id="thread.bib.McDowellHelmbold89">
<abbrev id="thread.bib.McDowellHelmbold89.abbrev">McDowellHelmbold89</abbrev>
<biblioset relation="journal">
<title>Communications of the ACM</title>
<volumenum>Vol. 21</volumenum>
<issuenum>No. 2</issuenum>
<date>December, 1989</date>
</biblioset>
<biblioset>
<author>
<firstname>Charles</firstname>
<othername>E.</othername>
<surname>McDowell</surname>
</author>
<author>
<firstname>David</firstname>
<othername>P.</othername>
<surname>Helmbold</surname>
</author>
<title>
<ulink
url="http://www.acm.org/pubs/citations/journals/surveys/1989-21-4/p593-mcdowell/"
>Debugging Concurrent Programs</ulink>
</title>
</biblioset>
<para>Identifies many of the unique failure modes and debugging difficulties
associated with concurrent programs.</para>
</biblioentry>
<biblioentry id="thread.bib.SchmidtPyarali">
<abbrev id="thread.bib.SchmidtPyarali.abbrev">SchmidtPyarali</abbrev>
<title>
<ulink url="http://www.cs.wustl.edu/~schmidt/win32-cv-1.html8"
>Strategies for Implementing POSIX Condition Variables on Win32</ulink>
</title>
<authorgroup>
<author>
<firstname>Douglas</firstname>
<othername>C.</othername>
<surname>Schmidt</surname>
</author>
<author>
<firstname>Irfan</firstname>
<surname>Pyarali</surname>
</author>
</authorgroup>
<orgname>Department of Computer Science, Washington University, St. Louis,
Missouri</orgname>
<para>Rationale for understanding &Boost.Thread; condition
variables. Note that Alexander Terekhov found some bugs in the
implementation given in this article, so pthreads-win32 and &Boost.Thread;
are even more complicated yet.</para>
</biblioentry>
<biblioentry id="thread.bib.SchmidtStalRohnertBuschmann">
<abbrev
id="thread.bib.SchmidtStalRohnertBuschmann.abbrev">SchmidtStalRohnertBuschmann</abbrev>
<title>
<ulink
url="http://www.wiley.com/Corporate/Website/Objects/Products/0,9049,104671,00.html"
>Pattern-Oriented Architecture Volume 2</ulink>
</title>
<subtitle>Patterns for Concurrent and Networked Objects</subtitle>
<titleabbrev>POSA2</titleabbrev>
<authorgroup>
<author>
<firstname>Douglas</firstname>
<othername>C.</othername>
<surname>Schmidt</surname>
</author>
<author>
<firstname>Michael</firstname>
<lastname>Stal</lastname>
</author>
<author>
<firstname>Hans</firstname>
<surname>Rohnert</surname>
</author>
<author>
<firstname>Frank</firstname>
<surname>Buschmann</surname>
</author>
</authorgroup>
<publisher>Wiley</publisher>
<copyright><year>2000</year></copyright>
<para>This is a very good explanation of how to apply several patterns
useful for concurrent programming. Among the patterns documented is the
Monitor Pattern mentioned frequently in the &Boost.Thread;
documentation.</para>
</biblioentry>
<biblioentry id="thread.bib.Stroustrup">
<abbrev id="thread.bib.Stroustrup.abbrev">Stroustrup</abbrev>
<title>
<ulink url="http://cseng.aw.com/book/0,3828,0201700735,00.html"
>The C++ Programming Language</ulink>
</title>
<edition>Special Edition</edition>
<publisher>Addison-Wesley</publisher>
<copyright><year>2000</year></copyright>
<isbn>ISBN: 0-201-70073-5</isbn>
<para>The first book a C++ programmer should own. Note that the 3rd edition
(and subsequent editions like the Special Edition) has been rewritten to
cover the ISO standard language and library.</para>
</biblioentry>
</bibliography>

View File

@@ -1,137 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Copyright (c) 2007 Roland Schwarz
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.build" last-revision="$Date$">
<title>Build</title>
<para>
How you build the &Boost.Thread; libraries, and how you build your own applications
that use those libraries, are some of the most frequently asked questions. Build
processes are difficult to deal with in a portable manner. That's one reason
why &Boost.Thread; makes use of &Boost.Build;.
In general you should refer to the documentation for &Boost.Build;.
This document will only supply you with some simple usage examples for how to
use <emphasis>bjam</emphasis> to build and test &Boost.Thread;. In addition, this document
will try to explain the build requirements so that users may create their own
build processes (for instance, create an IDE specific project), both for building
and testing &Boost.Thread;, as well as for building their own projects using
&Boost.Thread;.
</para>
<section id="thread.build.building">
<title>Building the &Boost.Thread; Libraries</title>
<para>
Building the &Boost.Thread; Library depends on how you intend to use it. You have several options:
<itemizedlist>
<listitem>
Using as a <link linkend="thread.build.precompiled">precompiled</link> library, possibly
with auto-linking, or for use from within an IDE.
</listitem>
<listitem>
Use from a <link linkend="thread.build.bjam">&Boost.Build;</link> project.
</listitem>
<listitem>
Using in <link linkend="thread.build.source">source</link> form.
</listitem>
</itemizedlist>
</para>
<section id="thread.build.precompiled">
<title>Precompiled</title>
<para>
Using the &Boost.Thread; library in precompiled form is the way to go if you want to
install the library to a standard place, from where your linker is able to resolve code
in binary form. You also will want this option if compile time is a concern. Multiple
variants are available, for different toolsets and build variants (debug/release).
The library files are named <emphasis>{lead}boost_thread{build-specific-tags}.{extension}</emphasis>,
where the build-specific-tags indicate the toolset used to build the library, whether it's
a debug or release build, what version of &Boost; was used, etc.; and the lead and extension
are the appropriate extensions for a dynamic link library or static library for the platform
for which &Boost.Thread; is being built.
For instance, a debug build of the dynamic library built for Win32 with VC++ 7.1 using Boost 1.34 would
be named <emphasis>boost_thread-vc71-mt-gd-1_34.dll</emphasis>.
More information on this should be available from the &Boost.Build; documentation.
</para>
<para>
Building should be possible with the default configuration. If you are running into problems,
it might be wise to adjust your local settings of &Boost.Build; though. Typically you will
need to get your user-config.jam file to reflect your environment, i.e. used toolsets. Please
refer to the &Boost.Build; documentation to learn how to do this.
</para>
<para>
To create the libraries you need to open a command shell and change to the
<emphasis>boost_root</emphasis> directory. From there you give the command
<programlisting>bjam --toolset=<emphasis>mytoolset</emphasis> stage --with-thread</programlisting>
Replace <emphasis>mytoolset</emphasis> with the name of your toolset, e.g. msvc-7.1 .
This will compile and put the libraries into the <emphasis>stage</emphasis> directory which is just below the
<emphasis>boost_root</emphasis> directory. &Boost.Build; by default will generate static and
dynamic variants for debug and release.
</para>
<note>
Invoking the above command without the --with-thread switch &Boost.Build; will build all of
the Boost distribution, including &Boost.Thread;.
</note>
<para>
The next step is to copy your libraries to a place where your linker is able to pick them up.
It is also quite possible to leave them in the stage directory and instruct your IDE to take them
from there.
</para>
<para>
In your IDE you then need to add <emphasis>boost_root</emphasis>/boost to the paths where the compiler
expects to find files to be included. For toolsets that support <emphasis>auto-linking</emphasis>
it is not necessary to explicitly specify the name of the library to link against, it is sufficient
to specify the path of the stage directory. Typically this is true on Windows. For gcc you need
to specify the exact library name (including all the tags). Please don't forget that threading
support must be turned on to be able to use the library. You should be able now to build your
project from the IDE.
</para>
</section>
<section id="thread.build.bjam">
<title>&Boost.Build; Project</title>
<para>
If you have decided to use &Boost.Build; as a build environment for your application, you simply
need to add a single line to your <emphasis>Jamroot</emphasis> file:
<programlisting>use-project /boost : {path-to-boost-root} ;</programlisting>
where <emphasis>{path-to-boost-root}</emphasis> needs to be replaced with the location of
your copy of the boost tree.
Later when you specify a component that needs to link against &Boost.Thread; you specify this
as e.g.:
<programlisting>exe myapp : {myappsources} /boost//thread ;</programlisting>
and you are done.
</para>
</section>
<section id="thread.build.source">
<title>Source Form</title>
<para>
Of course it is also possible to use the &Boost.Thread; library in source form.
First you need to specify the <emphasis>boost_root</emphasis>/boost directory as
a path where your compiler expects to find files to include. It is not easy
to isolate the &Boost.Thread; include files from the rest of the boost
library though. You would also need to isolate every include file that the thread
library depends on. Next you need to copy the files from
<emphasis>boost_root</emphasis>/libs/thread/src to your project and instruct your
build system to compile them together with your project. Please look into the
<emphasis>Jamfile</emphasis> in <emphasis>boost_root</emphasis>/libs/thread/build
to find out which compiler options and defines you will need to get a clean compile.
Using the boost library in this way is the least recommended, and should only be
considered if avoiding dependency on &Boost.Build; is a requirement. Even if so
it might be a better option to use the library in it's precompiled form.
Precompiled downloads are available from the boost consulting web site, or as
part of most linux distributions.
</para>
</section>
</section>
<section id="thread.build.testing">
<title>Testing the &Boost.Thread; Libraries</title>
<para>
To test the &Boost.Thread; libraries using &Boost.Build;, simply change to the
directory <emphasis>boost_root</emphasis>/libs/thread/test and execute the command:
<programlisting>bjam --toolset=<emphasis>mytoolset</emphasis> test</programlisting>
</para>
</section>
</section>

View File

@@ -5,7 +5,11 @@
http://www.boost.org/LICENSE_1_0.txt).
]
[section:changes Changes since boost 1.35]
[section:changes Changes since boost 1.40]
The 1.41.0 release of Boost adds futures to the thread library. There are also a few minor changes.
[heading Changes since boost 1.35]
The 1.36.0 release of Boost includes a few new features in the thread library:

File diff suppressed because it is too large Load Diff

View File

@@ -1,196 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/condition.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="condition">
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<purpose>
<para>An object of class <classname>condition</classname> is a
synchronization primitive used to cause a thread to wait until a
particular shared-data condition (or time) is met.</para>
</purpose>
<description>
<para>A <classname>condition</classname> object is always used in
conjunction with a <link linkend="thread.concepts.mutexes">mutex</link>
object (an object whose type is a model of a <link
linkend="thread.concepts.Mutex">Mutex</link> or one of its
refinements). The mutex object must be locked prior to waiting on the
condition, which is verified by passing a lock object (an object whose
type is a model of <link linkend="thread.concepts.Lock">Lock</link> or
one of its refinements) to the <classname>condition</classname> object's
wait functions. Upon blocking on the <classname>condition</classname>
object, the thread unlocks the mutex object. When the thread returns
from a call to one of the <classname>condition</classname> object's wait
functions the mutex object is again locked. The tricky unlock/lock
sequence is performed automatically by the
<classname>condition</classname> object's wait functions.</para>
<para>The <classname>condition</classname> type is often used to
implement the Monitor Object and other important patterns (see
&cite.SchmidtStalRohnertBuschmann; and &cite.Hoare74;). Monitors are one
of the most important patterns for creating reliable multithreaded
programs.</para>
<para>See <xref linkend="thread.glossary"/> for definitions of <link
linkend="thread.glossary.thread-state">thread states</link>
blocked and ready. Note that "waiting" is a synonym for blocked.</para>
</description>
<constructor>
<effects><simpara>Constructs a <classname>condition</classname>
object.</simpara></effects>
</constructor>
<destructor>
<effects><simpara>Destroys <code>*this</code>.</simpara></effects>
</destructor>
<method-group name="notification">
<method name="notify_one">
<type>void</type>
<effects><simpara>If there is a thread waiting on <code>*this</code>,
change that thread's state to ready. Otherwise there is no
effect.</simpara></effects>
<notes><simpara>If more than one thread is waiting on <code>*this</code>,
it is unspecified which is made ready. After returning to a ready
state the notified thread must still acquire the mutex again (which
occurs within the call to one of the <classname>condition</classname>
object's wait functions.)</simpara></notes>
</method>
<method name="notify_all">
<type>void</type>
<effects><simpara>Change the state of all threads waiting on
<code>*this</code> to ready. If there are no waiting threads,
<code>notify_all()</code> has no effect.</simpara></effects>
</method>
</method-group>
<method-group name="waiting">
<method name="wait">
<template>
<template-type-parameter name="ScopedLock"/>
</template>
<type>void</type>
<parameter name="lock">
<paramtype>ScopedLock&amp;</paramtype>
</parameter>
<requires><simpara><code>ScopedLock</code> meets the <link
linkend="thread.concepts.ScopedLock">ScopedLock</link>
requirements.</simpara></requires>
<effects><simpara>Releases the lock on the <link
linkend="thread.concepts.mutexes">mutex object</link>
associated with <code>lock</code>, blocks the current thread of execution
until readied by a call to <code>this->notify_one()</code>
or<code> this->notify_all()</code>, and then reacquires the
lock.</simpara></effects>
<throws><simpara><classname>lock_error</classname> if
<code>!lock.locked()</code></simpara></throws>
</method>
<method name="wait">
<template>
<template-type-parameter name="ScopedLock"/>
<template-type-parameter name="Pred"/>
</template>
<type>void</type>
<parameter name="lock">
<paramtype>ScopedLock&amp;</paramtype>
</parameter>
<parameter name="pred">
<paramtype>Pred</paramtype>
</parameter>
<requires><simpara><code>ScopedLock</code> meets the <link
linkend="thread.concepts.ScopedLock">ScopedLock</link>
requirements and the return from <code>pred()</code> is
convertible to <code>bool</code>.</simpara></requires>
<effects><simpara>As if: <code>while (!pred())
wait(lock)</code></simpara></effects>
<throws><simpara><classname>lock_error</classname> if
<code>!lock.locked()</code></simpara></throws>
</method>
<method name="timed_wait">
<template>
<template-type-parameter name="ScopedLock"/>
</template>
<type>bool</type>
<parameter name="lock">
<paramtype>ScopedLock&amp;</paramtype>
</parameter>
<parameter name="xt">
<paramtype>const <classname>boost::xtime</classname>&amp;</paramtype>
</parameter>
<requires><simpara><code>ScopedLock</code> meets the <link
linkend="thread.concepts.ScopedLock">ScopedLock</link>
requirements.</simpara></requires>
<effects><simpara>Releases the lock on the <link
linkend="thread.concepts.mutexes">mutex object</link>
associated with <code>lock</code>, blocks the current thread of execution
until readied by a call to <code>this->notify_one()</code>
or<code> this->notify_all()</code>, or until time <code>xt</code>
is reached, and then reacquires the lock.</simpara></effects>
<returns><simpara><code>false</code> if time <code>xt</code> is reached,
otherwise <code>true</code>.</simpara></returns>
<throws><simpara><classname>lock_error</classname> if
<code>!lock.locked()</code></simpara></throws>
</method>
<method name="timed_wait">
<template>
<template-type-parameter name="ScopedLock"/>
<template-type-parameter name="Pred"/>
</template>
<type>bool</type>
<parameter name="lock">
<paramtype>ScopedLock&amp;</paramtype>
</parameter>
<parameter name="xt">
<paramtype>const <classname>boost::xtime</classname>&amp;</paramtype>
</parameter>
<parameter name="pred">
<paramtype>Pred</paramtype>
</parameter>
<requires><simpara><code>ScopedLock</code> meets the <link
linkend="thread.concepts.ScopedLock">ScopedLock</link>
requirements and the return from <code>pred()</code> is
convertible to <code>bool</code>.</simpara></requires>
<effects><simpara>As if: <code>while (!pred()) { if (!timed_wait(lock,
xt)) return false; } return true;</code></simpara></effects>
<returns><simpara><code>false</code> if <code>xt</code> is reached,
otherwise <code>true</code>.</simpara></returns>
<throws><simpara><classname>lock_error</classname> if
<code>!lock.locked()</code></simpara></throws>
</method>
</method-group>
</class>
</namespace>
</header>

View File

@@ -1,96 +0,0 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.configuration" last-revision="$Date$">
<title>Configuration</title>
<para>&Boost.Thread; uses several configuration macros in &lt;boost/config.hpp&gt;,
as well as configuration macros meant to be supplied by the application. These
macros are documented here.
</para>
<section id="thread.configuration.public">
<title>Library Defined Public Macros</title>
<para>
These macros are defined by &Boost.Thread; but are expected to be used
by application code.
</para>
<informaltable>
<tgroup cols="2">
<thead>
<row>
<entry>Macro</entry>
<entry>Meaning</entry>
</row>
</thead>
<tbody>
<row>
<entry>BOOST_HAS_THREADS</entry>
<entry>
Indicates that threading support is available. This means both that there
is a platform specific implementation for &Boost.Thread; and that
threading support has been enabled in a platform specific manner. For instance,
on the Win32 platform there&#39;s an implementation for &Boost.Thread;
but unless the program is compiled against one of the multithreading runtimes
(often determined by the compiler predefining the macro _MT) the BOOST_HAS_THREADS
macro remains undefined.
</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
<section id="thread.configuration.implementation">
<title>Library Defined Implementation Macros</title>
<para>
These macros are defined by &Boost.Thread; and are implementation details
of interest only to implementors.
</para>
<informaltable>
<tgroup cols="2">
<thead>
<row>
<entry>Macro</entry>
<entry>Meaning</entry>
</row>
</thead>
<tbody>
<row>
<entry>BOOST_HAS_WINTHREADS</entry>
<entry>
Indicates that the platform has the Microsoft Win32 threading libraries,
and that they should be used to implement &Boost.Thread;.
</entry>
</row>
<row>
<entry>BOOST_HAS_PTHREADS</entry>
<entry>
Indicates that the platform has the POSIX pthreads libraries, and that
they should be used to implement &Boost.Thread;.
</entry>
</row>
<row>
<entry>BOOST_HAS_FTIME</entry>
<entry>
Indicates that the implementation should use GetSystemTimeAsFileTime()
and the FILETIME type to calculate the current time. This is an implementation
detail used by boost::detail::getcurtime().
</entry>
</row>
<row>
<entry>BOOST_HAS_GETTTIMEOFDAY</entry>
<entry>
Indicates that the implementation should use gettimeofday() to calculate
the current time. This is an implementation detail used by boost::detail::getcurtime().
</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
</section>

View File

@@ -1,159 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.design" last-revision="$Date$">
<title>Design</title>
<para>With client/server and three-tier architectures becoming common place
in today's world, it's becoming increasingly important for programs to be
able to handle parallel processing. Modern day operating systems usually
provide some support for this through native thread APIs. Unfortunately,
writing portable code that makes use of parallel processing in C++ is made
very difficult by a lack of a standard interface for these native APIs.
Further, these APIs are almost universally C APIs and fail to take
advantage of C++'s strengths, or to address concepts unique to C++, such as
exceptions.</para>
<para>The &Boost.Thread; library is an attempt to define a portable interface
for writing parallel processes in C++.</para>
<section id="thread.design.goals">
<title>Goals</title>
<para>The &Boost.Thread; library has several goals that should help to set
it apart from other solutions. These goals are listed in order of precedence
with full descriptions below.
<variablelist>
<varlistentry>
<term>Portability</term>
<listitem>
<para>&Boost.Thread; was designed to be highly portable. The goal is
for the interface to be easily implemented on any platform that
supports threads, and possibly even on platforms without native thread
support.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Safety</term>
<listitem>
<para>&Boost.Thread; was designed to be as safe as possible. Writing
<link linkend="thread.glossary.thread-safe">thread-safe</link>
code is very difficult and successful libraries must strive to
insulate the programmer from dangerous constructs as much as
possible. This is accomplished in several ways:
<itemizedlist>
<listitem>
<para>C++ language features are used to make correct usage easy
(if possible) and error-prone usage impossible or at least more
difficult. For example, see the <link
linkend="thread.concepts.Mutex">Mutex</link> and <link
linkend="thread.concepts.Lock">Lock</link> designs, and note
how they interact.</para>
</listitem>
<listitem>
<para>Certain traditional concurrent programming features are
considered so error-prone that they are not provided at all. For
example, see <xref linkend="thread.rationale.events" />.</para>
</listitem>
<listitem>
<para>Dangerous features, or features which may be misused, are
identified as such in the documentation to make users aware of
potential pitfalls.</para>
</listitem>
</itemizedlist></para>
</listitem>
</varlistentry>
<varlistentry>
<term>Flexibility</term>
<listitem>
<para>&Boost.Thread; was designed to be flexible. This goal is often
at odds with <emphasis>safety</emphasis>. When functionality might be
compromised by the desire to keep the interface safe, &Boost.Thread;
has been designed to provide the functionality, but to make it's use
prohibitive for general use. In other words, the interfaces have been
designed such that it's usually obvious when something is unsafe, and
the documentation is written to explain why.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Efficiency</term>
<listitem>
<para>&Boost.Thread; was designed to be as efficient as
possible. When building a library on top of another library there is
always a danger that the result will be so much slower than the
"native" API that programmers are inclined to ignore the higher level
API. &Boost.Thread; was designed to minimize the chances of this
occurring. The interfaces have been crafted to allow an implementation
the greatest chance of being as efficient as possible. This goal is
often at odds with the goal for <emphasis>safety</emphasis>. Every
effort was made to ensure efficient implementations, but when in
conflict <emphasis>safety</emphasis> has always taken
precedence.</para>
</listitem>
</varlistentry>
</variablelist></para>
</section>
<section>
<title>Iterative Phases</title>
<para>Another goal of &Boost.Thread; was to take a dynamic, iterative
approach in its development. The computing industry is still exploring the
concepts of parallel programming. Most thread libraries supply only simple
primitive concepts for thread synchronization. These concepts are very
simple, but it is very difficult to use them safely or to provide formal
proofs for constructs built on top of them. There has been a lot of research
into other concepts, such as in "Communicating Sequential Processes."
&Boost.Thread; was designed in iterative steps, with each step providing
the building blocks necessary for the next step and giving the researcher
the tools necessary to explore new concepts in a portable manner.</para>
<para>Given the goal of following a dynamic, iterative approach
&Boost.Thread; shall go through several growth cycles. Each phase in its
development shall be roughly documented here.</para>
</section>
<section>
<title>Phase 1, Synchronization Primitives</title>
<para>Boost is all about providing high quality libraries with
implementations for many platforms. Unfortunately, there's a big problem
faced by developers wishing to supply such high quality libraries, namely
thread-safety. The C++ standard doesn't address threads at all, but real
world programs often make use of native threading support. A portable
library that doesn't address the issue of thread-safety is therefore not
much help to a programmer who wants to use the library in his multithreaded
application. So there's a very great need for portable primitives that will
allow the library developer to create <link
linkend="thread.glossary.thread-safe">thread-safe</link>
implementations. This need far out weighs the need for portable methods to
create and manage threads.</para>
<para>Because of this need, the first phase of &Boost.Thread; focuses
solely on providing portable primitive concepts for thread
synchronization. Types provided in this phase include the
<classname>boost::mutex</classname>,
<classname>boost::try_mutex</classname>,
<classname>boost::timed_mutex</classname>,
<classname>boost::recursive_mutex</classname>,
<classname>boost::recursive_try_mutex</classname>,
<classname>boost::recursive_timed_mutex</classname>, and
<classname>boost::lock_error</classname>. These are considered the "core"
synchronization primitives, though there are others that will be added in
later phases.</para>
</section>
<section id="thread.design.phase2">
<title>Phase 2, Thread Management and Thread Specific Storage</title>
<para>This phase addresses the creation and management of threads and
provides a mechanism for thread specific storage (data associated with a
thread instance). Thread management is a tricky issue in C++, so this
phase addresses only the basic needs of multithreaded program. Later
phases are likely to add additional functionality in this area. This
phase of &Boost.Thread; adds the <classname>boost::thread</classname> and
<classname>boost::thread_specific_ptr</classname> types. With these
additions the &Boost.Thread; library can be considered minimal but
complete.</para>
</section>
<section>
<title>The Next Phase</title>
<para>The next phase will address more advanced synchronization concepts,
such as read/write mutexes and barriers.</para>
</section>
</section>

View File

@@ -1,31 +0,0 @@
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<!ENTITY Boost "<emphasis role='bold'>Boost</emphasis>">
<!ENTITY Boost.Thread "<emphasis role='bold'>Boost.Thread</emphasis>">
<!ENTITY Boost.Build "<emphasis role='bold'>Boost.Build</emphasis>">
<!ENTITY cite.AndrewsSchneider83 "<citation><xref
linkend='thread.bib.AndrewsSchneider83'
endterm='thread.bib.AndrewsSchneider83.abbrev'/></citation>">
<!ENTITY cite.Boost "<citation><xref linkend='thread.bib.Boost'
endterm='thread.bib.Boost.abbrev'/></citation>">
<!ENTITY cite.Hansen73 "<citation><xref linkend='thread.bib.Hansen73'
endterm='thread.bib.Hansen73.abbrev'/></citation>">
<!ENTITY cite.Butenhof97 "<citation><xref linkend='thread.bib.Butenhof97'
endterm='thread.bib.Butenhof97.abbrev'/></citation>">
<!ENTITY cite.Hoare74 "<citation><xref linkend='thread.bib.Hoare74'
endterm='thread.bib.Hoare74.abbrev'/></citation>">
<!ENTITY cite.ISO98 "<citation><xref linkend='thread.bib.ISO98'
endterm='thread.bib.ISO98.abbrev'/></citation>">
<!ENTITY cite.McDowellHelmbold89 "<citation><xref
linkend='thread.bib.McDowellHelmbold89'
endterm='thread.bib.McDowellHelmbold89.abbrev'/></citation>">
<!ENTITY cite.SchmidtPyarali "<citation><xref
linkend='thread.bib.SchmidtPyarali'
endterm='thread.bib.SchmidtPyarali.abbrev'/></citation>">
<!ENTITY cite.SchmidtStalRohnertBuschmann "<citation><xref
linkend='thread.bib.SchmidtStalRohnertBuschmann'
endterm='thread.bib.SchmidtStalRohnertBuschmann.abbrev'/></citation>">
<!ENTITY cite.Stroustrup "<citation><xref linkend='thread.bib.Stroustrup'
endterm='thread.bib.Stroustrup.abbrev'/></citation>">

View File

@@ -1,62 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/exceptions.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="lock_error">
<purpose>
<simpara>The lock_error class defines an exception type thrown
to indicate a locking related error has been detected.</simpara>
</purpose>
<description>
<simpara>Examples of errors indicated by a lock_error exception
include a lock operation which can be determined to result in a
deadlock, or unlock operations attempted by a thread that does
not own the lock.</simpara>
</description>
<inherit access="public">
<type><classname>std::logical_error</classname></type>
</inherit>
<constructor>
<effects><simpara>Constructs a <code>lock_error</code> object.
</simpara></effects>
</constructor>
</class>
<class name="thread_resource_error">
<purpose>
<simpara>The <classname>thread_resource_error</classname> class
defines an exception type that is thrown by constructors in the
&Boost.Thread; library when thread-related resources can not be
acquired.</simpara>
</purpose>
<description>
<simpara><classname>thread_resource_error</classname> is used
only when thread-related resources cannot be acquired; memory
allocation failures are indicated by
<classname>std::bad_alloc</classname>.</simpara>
</description>
<inherit access="public">
<type><classname>std::runtime_error</classname></type>
</inherit>
<constructor>
<effects><simpara>Constructs a <code>thread_resource_error</code>
object.</simpara></effects>
</constructor>
</class>
</namespace>
</header>

View File

@@ -1,235 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.faq" last-revision="$Date$">
<title>Frequently Asked Questions</title>
<qandaset>
<qandaentry>
<question>
<para>Are lock objects <link
linkend="thread.glossary.thread-safe">thread safe</link>?</para>
</question>
<answer>
<para><emphasis role="bold">No!</emphasis> Lock objects are not meant to
be shared between threads. They are meant to be short-lived objects
created on automatic storage within a code block. Any other usage is
just likely to lead to errors and won't really be of actual benefit anyway.
Share <link linkend="thread.concepts.mutexes">Mutexes</link>, not
Locks. For more information see the <link
linkend="thread.rationale.locks">rationale</link> behind the
design for lock objects.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why was &Boost.Thread; modeled after (specific library
name)?</para>
</question>
<answer>
<para>It wasn't. &Boost.Thread; was designed from scratch. Extensive
design discussions involved numerous people representing a wide range of
experience across many platforms. To ensure portability, the initial
implements were done in parallel using POSIX Threads and the Win32
threading API. But the &Boost.Thread; design is very much in the spirit
of C++, and thus doesn't model such C based APIs.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why wasn't &Boost.Thread; modeled after (specific library
name)?</para>
</question>
<answer>
<para>Existing C++ libraries either seemed dangerous (often failing to
take advantage of prior art to reduce errors) or had excessive
dependencies on library components unrelated to threading. Existing C
libraries couldn't meet our C++ requirements, and were also missing
certain features. For instance, the WIN32 thread API lacks condition
variables, even though these are critical for the important Monitor
pattern &cite.SchmidtStalRohnertBuschmann;.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why do <link linkend="thread.concepts.mutexes">Mutexes</link>
have noncopyable semantics?</para>
</question>
<answer>
<para>To ensure that <link
linkend="thread.glossary.deadlock">deadlocks</link> don't occur. The
only logical form of copy would be to use some sort of shallow copy
semantics in which multiple mutex objects could refer to the same mutex
state. This means that if ObjA has a mutex object as part of its state
and ObjB is copy constructed from it, then when ObjB::foo() locks the
mutex it has effectively locked ObjA as well. This behavior can result
in deadlock. Other copy semantics result in similar problems (if you
think you can prove this to be wrong then supply us with an alternative
and we'll reconsider).</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How can you prevent <link
linkend="thread.glossary.deadlock">deadlock</link> from occurring when
a thread must lock multiple mutexes?</para>
</question>
<answer>
<para>Always lock them in the same order. One easy way of doing this is
to use each mutex's address to determine the order in which they are
locked. A future &Boost.Thread; concept may wrap this pattern up in a
reusable class.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Don't noncopyable <link
linkend="thread.concepts.mutexes">Mutex</link> semantics mean that a
class with a mutex member will be noncopyable as well?</para>
</question>
<answer>
<para>No, but what it does mean is that the compiler can't generate a
copy constructor and assignment operator, so they will have to be coded
explicitly. This is a <emphasis role="bold">good thing</emphasis>,
however, since the compiler generated operations would not be <link
linkend="thread.glossary.thread-safe">thread-safe</link>. The following
is a simple example of a class with copyable semantics and internal
synchronization through a mutex member.</para>
<programlisting>
class counter
{
public:
// Doesn't need synchronization since there can be no references to *this
// until after it's constructed!
explicit counter(int initial_value)
: m_value(initial_value)
{
}
// We only need to synchronize other for the same reason we don't have to
// synchronize on construction!
counter(const counter&amp; other)
{
boost::mutex::scoped_lock scoped_lock(other.m_mutex);
m_value = other.m_value;
}
// For assignment we need to synchronize both objects!
const counter&amp; operator=(const counter&amp; other)
{
if (this == &amp;other)
return *this;
boost::mutex::scoped_lock lock1(&amp;m_mutex &lt; &amp;other.m_mutex ? m_mutex : other.m_mutex);
boost::mutex::scoped_lock lock2(&amp;m_mutex &gt; &amp;other.m_mutex ? m_mutex : other.m_mutex);
m_value = other.m_value;
return *this;
}
int value() const
{
boost::mutex::scoped_lock scoped_lock(m_mutex);
return m_value;
}
int increment()
{
boost::mutex::scoped_lock scoped_lock(m_mutex);
return ++m_value;
}
private:
mutable boost::mutex m_mutex;
int m_value;
};
</programlisting>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How can you lock a <link
linkend="thread.concepts.mutexes">Mutex</link> member in a const member
function, in order to implement the Monitor Pattern?</para>
</question>
<answer>
<para>The Monitor Pattern &cite.SchmidtStalRohnertBuschmann; mutex
should simply be declared as mutable. See the example code above. The
internal state of mutex types could have been made mutable, with all
lock calls made via const functions, but this does a poor job of
documenting the actual semantics (and in fact would be incorrect since
the logical state of a locked mutex clearly differs from the logical
state of an unlocked mutex). Declaring a mutex member as mutable clearly
documents the intended semantics.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why supply <classname>boost::condition</classname> variables rather than
event variables?</para>
</question>
<answer>
<para>Condition variables result in user code much less prone to <link
linkend="thread.glossary.race-condition">race conditions</link> than
event variables. See <xref linkend="thread.rationale.events" />
for analysis. Also see &cite.Hoare74; and &cite.SchmidtStalRohnertBuschmann;.
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why isn't thread cancellation or termination provided?</para>
</question>
<answer>
<para>There's a valid need for thread termination, so at some point
&Boost.Thread; probably will include it, but only after we can find a
truly safe (and portable) mechanism for this concept.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Is it safe for threads to share automatic storage duration (stack)
objects via pointers or references?</para>
</question>
<answer>
<para>Only if you can guarantee that the lifetime of the stack object
will not end while other threads might still access the object. Thus the
safest practice is to avoid sharing stack objects, particularly in
designs where threads are created and destroyed dynamically. Restrict
sharing of stack objects to simple designs with very clear and
unchanging function and thread lifetimes. (Suggested by Darryl
Green).</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why has class semaphore disappeared?</para>
</question>
<answer>
<para>Semaphore was removed as too error prone. The same effect can be
achieved with greater safety by the combination of a mutex and a
condition variable.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why doesn't the thread's ctor take at least a void* to pass any
information along with the function? All other threading libs support
that and it makes Boost.Threads inferiour. </para>
</question>
<answer>
<para>There is no need, because Boost.Threads are superiour! First
thing is that its ctor doesn't take a function but a functor. That
means that you can pass an object with an overloaded operator() and
include additional data as members in that object. Beware though that
this object is copied, use boost::ref to prevent that. Secondly, even
a boost::function&lt;void (void)&gt; can carry parameters, you only have to
use boost::bind() to create it from any function and bind its
parameters.</para>
<para>That is also why Boost.Threads are superiour, because they
don't require you to pass a type-unsafe void pointer. Rather, you can
use the flexible Boost.Functions to create a thread entry out of
anything that can be called.</para>
</answer>
</qandaentry>
</qandaset>
</section>

968
doc/future_ref.qbk Normal file
View File

@@ -0,0 +1,968 @@
[/
(C) Copyright 2008-9 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:reference Futures Reference]
[section:future_state `state` enum]
namespace future_state
{
enum state {uninitialized, waiting, ready};
}
[endsect]
[section:unique_future `unique_future` class template]
template <typename R>
class unique_future
{
unique_future(unique_future & rhs);// = delete;
unique_future& operator=(unique_future& rhs);// = delete;
public:
typedef future_state::state state;
unique_future();
~unique_future();
// move support
unique_future(unique_future && other);
unique_future& operator=(unique_future && other);
void swap(unique_future& other);
// retrieving the value
R&& get();
// functions to check state
state get_state() const;
bool is_ready() const;
bool has_exception() const;
bool has_value() const;
// waiting for the result to be ready
void wait() const;
template<typename Duration>
bool timed_wait(Duration const& rel_time) const;
bool timed_wait_until(boost::system_time const& abs_time) const;
};
[section:default_constructor Default Constructor]
unique_future();
[variablelist
[[Effects:] [Constructs an uninitialized future.]]
[[Postconditions:] [[unique_future_is_ready_link `this->is_ready`] returns `false`. [unique_future_get_state_link
`this->get_state()`] returns __uninitialized__.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:destructor Destructor]
~unique_future();
[variablelist
[[Effects:] [Destroys `*this`.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:move_constructor Move Constructor]
unique_future(unique_future && other);
[variablelist
[[Effects:] [Constructs a new future, and transfers ownership of the asynchronous result associated with `other` to `*this`.]]
[[Postconditions:] [[unique_future_get_state_link `this->get_state()`] returns the value of `other->get_state()` prior to the
call. `other->get_state()` returns __uninitialized__. If `other` was associated with an asynchronous result, that result is now
associated with `*this`. `other` is not associated with any asynchronous result.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:move_assignment Move Assignment Operator]
unique_future& operator=(unique_future && other);
[variablelist
[[Effects:] [Transfers ownership of the asynchronous result associated with `other` to `*this`.]]
[[Postconditions:] [[unique_future_get_state_link `this->get_state()`] returns the value of `other->get_state()` prior to the
call. `other->get_state()` returns __uninitialized__. If `other` was associated with an asynchronous result, that result is now
associated with `*this`. `other` is not associated with any asynchronous result. If `*this` was associated with an asynchronous
result prior to the call, that result no longer has an associated __unique_future__ instance.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:swap Member function `swap()`]
void swap(unique_future & other);
[variablelist
[[Effects:] [Swaps ownership of the asynchronous results associated with `other` and `*this`.]]
[[Postconditions:] [[unique_future_get_state_link `this->get_state()`] returns the value of `other->get_state()` prior to the
call. `other->get_state()` returns the value of `this->get_state()` prior to the call. If `other` was associated with an
asynchronous result, that result is now associated with `*this`, otherwise `*this` has no associated result. If `*this` was
associated with an asynchronous result, that result is now associated with `other`, otherwise `other` has no associated result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get Member function `get()`]
R&& get();
R& unique_future<R&>::get();
void unique_future<void>::get();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready as-if by a call to
__unique_future_wait__, and retrieves the result (whether that is a value or an exception).]]
[[Returns:] [If the result type `R` is a reference, returns the stored reference. If `R` is `void`, there is no return
value. Otherwise, returns an rvalue-reference to the value stored in the asynchronous result.]]
[[Postconditions:] [[unique_future_is_ready_link `this->is_ready()`] returns `true`. [unique_future_get_state_link
`this->get_state()`] returns __ready__.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception stored in the
asynchronous result in place of a value.]]
[[Notes:] [`get()` is an ['interruption point].]]
]
[endsect]
[section:wait Member function `wait()`]
void wait();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready. If the result is not ready on
entry, and the result has a ['wait callback] set, that callback is invoked prior to waiting.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [[unique_future_is_ready_link `this->is_ready()`] returns `true`. [unique_future_get_state_link
`this->get_state()`] returns __ready__.]]
[[Notes:] [`wait()` is an ['interruption point].]]
]
[endsect]
[section:timed_wait_duration Member function `timed_wait()`]
template<typename Duration>
bool timed_wait(Duration const& wait_duration);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time specified by
`wait_duration` has elapsed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is
invoked prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
elapsed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [unique_future_is_ready_link `this->is_ready()`] returns `true` and
[unique_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point]. `Duration` must be a type that meets the Boost.DateTime time duration requirements.]]
]
[endsect]
[section:timed_wait_absolute Member function `timed_wait()`]
bool timed_wait(boost::system_time const& wait_timeout);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time point specified by
`wait_timeout` has passed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is invoked
prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
passed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [unique_future_is_ready_link `this->is_ready()`] returns `true` and
[unique_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point].]]
]
[endsect]
[section:is_ready Member function `is_ready()`]
bool is_ready();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready for retrieval, `false`
otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_value Member function `has_value()`]
bool has_value();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with a value rather than an exception.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored value, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_exception Member function `has_exception()`]
bool has_exception();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with an exception rather than a value.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored exception, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_state Member function `get_state()`]
future_state::state get_state();
[variablelist
[[Effects:] [Determine the state of the asynchronous result associated with `*this`, if any.]]
[[Returns:] [__uninitialized__ if `*this` is not associated with an asynchronous result. __ready__ if the asynchronous result
associated with `*this` is ready for retrieval, __waiting__ otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:shared_future `shared_future` class template]
template <typename R>
class shared_future
{
public:
typedef future_state::state state;
shared_future();
~shared_future();
// copy support
shared_future(shared_future const& other);
shared_future& operator=(shared_future const& other);
// move support
shared_future(shared_future && other);
shared_future(unique_future<R> && other);
shared_future& operator=(shared_future && other);
shared_future& operator=(unique_future<R> && other);
void swap(shared_future& other);
// retrieving the value
R get();
// functions to check state, and wait for ready
state get_state() const;
bool is_ready() const;
bool has_exception() const;
bool has_value() const;
// waiting for the result to be ready
void wait() const;
template<typename Duration>
bool timed_wait(Duration const& rel_time) const;
bool timed_wait_until(boost::system_time const& abs_time) const;
};
[section:default_constructor Default Constructor]
shared_future();
[variablelist
[[Effects:] [Constructs an uninitialized future.]]
[[Postconditions:] [[shared_future_is_ready_link `this->is_ready`] returns `false`. [shared_future_get_state_link
`this->get_state()`] returns __uninitialized__.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get Member function `get()`]
const R& get();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready as-if by a call to
__shared_future_wait__, and returns a `const` reference to the result.]]
[[Returns:] [If the result type `R` is a reference, returns the stored reference. If `R` is `void`, there is no return
value. Otherwise, returns a `const` reference to the value stored in the asynchronous result.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the
result associated with `*this` is not ready at the point of the call, and the current thread is interrupted.]]
[[Notes:] [`get()` is an ['interruption point].]]
]
[endsect]
[section:wait Member function `wait()`]
void wait();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready. If the result is not ready on
entry, and the result has a ['wait callback] set, that callback is invoked prior to waiting.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [[shared_future_is_ready_link `this->is_ready()`] returns `true`. [shared_future_get_state_link
`this->get_state()`] returns __ready__.]]
[[Notes:] [`wait()` is an ['interruption point].]]
]
[endsect]
[section:timed_wait_duration Member function `timed_wait()`]
template<typename Duration>
bool timed_wait(Duration const& wait_duration);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time specified by
`wait_duration` has elapsed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is
invoked prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
elapsed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [shared_future_is_ready_link `this->is_ready()`] returns `true` and
[shared_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point]. `Duration` must be a type that meets the Boost.DateTime time duration requirements.]]
]
[endsect]
[section:timed_wait_absolute Member function `timed_wait()`]
bool timed_wait(boost::system_time const& wait_timeout);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time point specified by
`wait_timeout` has passed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is invoked
prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
passed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [shared_future_is_ready_link `this->is_ready()`] returns `true` and
[shared_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point].]]
]
[endsect]
[section:is_ready Member function `is_ready()`]
bool is_ready();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready for retrieval, `false`
otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_value Member function `has_value()`]
bool has_value();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with a value rather than an exception.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored value, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_exception Member function `has_exception()`]
bool has_exception();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with an exception rather than a value.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored exception, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_state Member function `get_state()`]
future_state::state get_state();
[variablelist
[[Effects:] [Determine the state of the asynchronous result associated with `*this`, if any.]]
[[Returns:] [__uninitialized__ if `*this` is not associated with an asynchronous result. __ready__ if the asynchronous result
associated with `*this` is ready for retrieval, __waiting__ otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:promise `promise` class template]
template <typename R>
class promise
{
promise(promise & rhs);// = delete;
promise & operator=(promise & rhs);// = delete;
public:
// template <class Allocator> explicit promise(Allocator a);
promise();
~promise();
// Move support
promise(promise && rhs);
promise & operator=(promise&& rhs);
void swap(promise& other);
// Result retrieval
unique_future<R> get_future();
// Set the value
void set_value(R& r);
void set_value(R&& r);
void set_exception(boost::exception_ptr e);
template<typename F>
void set_wait_callback(F f);
};
[section:default_constructor Default Constructor]
promise();
[variablelist
[[Effects:] [Constructs a new __promise__ with no associated result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:move_constructor Move Constructor]
promise(promise && other);
[variablelist
[[Effects:] [Constructs a new __promise__, and transfers ownership of the result associated with `other` to `*this`, leaving `other`
with no associated result.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:move_assignment Move Assignment Operator]
promise& operator=(promise && other);
[variablelist
[[Effects:] [Transfers ownership of the result associated with `other` to `*this`, leaving `other` with no associated result. If there
was already a result associated with `*this`, and that result was not ['ready], sets any futures associated with that result to
['ready] with a __broken_promise__ exception as the result. ]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:destructor Destructor]
~promise();
[variablelist
[[Effects:] [Destroys `*this`. If there was a result associated with `*this`, and that result is not ['ready], sets any futures
associated with that task to ['ready] with a __broken_promise__ exception as the result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_future Member Function `get_future()`]
unique_future<R> get_future();
[variablelist
[[Effects:] [If `*this` was not associated with a result, allocate storage for a new asynchronous result and associate it with
`*this`. Returns a __unique_future__ associated with the result associated with `*this`. ]]
[[Throws:] [__future_already_retrieved__ if the future associated with the task has already been retrieved. `std::bad_alloc` if any
memory necessary could not be allocated.]]
]
[endsect]
[section:set_value Member Function `set_value()`]
void set_value(R&& r);
void set_value(const R& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();
[variablelist
[[Effects:] [If `*this` was not associated with a result, allocate storage for a new asynchronous result and associate it with
`*this`. Store the value `r` in the asynchronous result associated with `*this`. Any threads blocked waiting for the asynchronous
result are woken.]]
[[Postconditions:] [All futures waiting on the asynchronous result are ['ready] and __unique_future_has_value__ or
__shared_future_has_value__ for those futures shall return `true`.]]
[[Throws:] [__promise_already_satisfied__ if the result associated with `*this` is already ['ready]. `std::bad_alloc` if the memory
required for storage of the result cannot be allocated. Any exception thrown by the copy or move-constructor of `R`.]]
]
[endsect]
[section:set_exception Member Function `set_exception()`]
void set_exception(boost::exception_ptr e);
[variablelist
[[Effects:] [If `*this` was not associated with a result, allocate storage for a new asynchronous result and associate it with
`*this`. Store the exception `e` in the asynchronous result associated with `*this`. Any threads blocked waiting for the asynchronous
result are woken.]]
[[Postconditions:] [All futures waiting on the asynchronous result are ['ready] and __unique_future_has_exception__ or
__shared_future_has_exception__ for those futures shall return `true`.]]
[[Throws:] [__promise_already_satisfied__ if the result associated with `*this` is already ['ready]. `std::bad_alloc` if the memory
required for storage of the result cannot be allocated.]]
]
[endsect]
[section:set_wait_callback Member Function `set_wait_callback()`]
template<typename F>
void set_wait_callback(F f);
[variablelist
[[Preconditions:] [The expression `f(t)` where `t` is a lvalue of type __packaged_task__ shall be well-formed. Invoking a copy of
`f` shall have the same effect as invoking `f`]]
[[Effects:] [Store a copy of `f` with the asynchronous result associated with `*this` as a ['wait callback]. This will replace any
existing wait callback store alongside that result. If a thread subsequently calls one of the wait functions on a __unique_future__
or __shared_future__ associated with this result, and the result is not ['ready], `f(*this)` shall be invoked.]]
[[Throws:] [`std::bad_alloc` if memory cannot be allocated for the required storage.]]
]
[endsect]
[endsect]
[section:packaged_task `packaged_task` class template]
template<typename R>
class packaged_task
{
packaged_task(packaged_task&);// = delete;
packaged_task& operator=(packaged_task&);// = delete;
public:
// construction and destruction
template <class F>
explicit packaged_task(F const& f);
explicit packaged_task(R(*f)());
template <class F>
explicit packaged_task(F&& f);
// template <class F, class Allocator>
// explicit packaged_task(F const& f, Allocator a);
// template <class F, class Allocator>
// explicit packaged_task(F&& f, Allocator a);
~packaged_task()
{}
// move support
packaged_task(packaged_task&& other);
packaged_task& operator=(packaged_task&& other);
void swap(packaged_task& other);
// result retrieval
unique_future<R> get_future();
// execution
void operator()();
template<typename F>
void set_wait_callback(F f);
};
[section:task_constructor Task Constructor]
template<typename F>
packaged_task(F const &f);
packaged_task(R(*f)());
template<typename F>
packaged_task(F&&f);
[variablelist
[[Preconditions:] [`f()` is a valid expression with a return type convertible to `R`. Invoking a copy of `f` shall behave the same
as invoking `f`.]]
[[Effects:] [Constructs a new __packaged_task__ with a copy of `f` stored as the associated task.]]
[[Throws:] [Any exceptions thrown by the copy (or move) constructor of `f`. `std::bad_alloc` if memory for the internal data
structures could not be allocated.]]
]
[endsect]
[section:move_constructor Move Constructor]
packaged_task(packaged_task && other);
[variablelist
[[Effects:] [Constructs a new __packaged_task__, and transfers ownership of the task associated with `other` to `*this`, leaving `other`
with no associated task.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:move_assignment Move Assignment Operator]
packaged_task& operator=(packaged_task && other);
[variablelist
[[Effects:] [Transfers ownership of the task associated with `other` to `*this`, leaving `other` with no associated task. If there
was already a task associated with `*this`, and that task has not been invoked, sets any futures associated with that task to
['ready] with a __broken_promise__ exception as the result. ]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:destructor Destructor]
~packaged_task();
[variablelist
[[Effects:] [Destroys `*this`. If there was a task associated with `*this`, and that task has not been invoked, sets any futures
associated with that task to ['ready] with a __broken_promise__ exception as the result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_future Member Function `get_future()`]
unique_future<R> get_future();
[variablelist
[[Effects:] [Returns a __unique_future__ associated with the result of the task associated with `*this`. ]]
[[Throws:] [__task_moved__ if ownership of the task associated with `*this` has been moved to another instance of
__packaged_task__. __future_already_retrieved__ if the future associated with the task has already been retrieved.]]
]
[endsect]
[section:call_operator Member Function `operator()()`]
void operator()();
[variablelist
[[Effects:] [Invoke the task associated with `*this` and store the result in the corresponding future. If the task returns normally,
the return value is stored as the asynchronous result, otherwise the exception thrown is stored. Any threads blocked waiting for the
asynchronous result associated with this task are woken.]]
[[Postconditions:] [All futures waiting on the asynchronous result are ['ready]]]
[[Throws:] [__task_moved__ if ownership of the task associated with `*this` has been moved to another instance of
__packaged_task__. __task_already_started__ if the task has already been invoked.]]
]
[endsect]
[section:set_wait_callback Member Function `set_wait_callback()`]
template<typename F>
void set_wait_callback(F f);
[variablelist
[[Preconditions:] [The expression `f(t)` where `t` is a lvalue of type __packaged_task__ shall be well-formed. Invoking a copy of
`f` shall have the same effect as invoking `f`]]
[[Effects:] [Store a copy of `f` with the task associated with `*this` as a ['wait callback]. This will replace any existing wait
callback store alongside that task. If a thread subsequently calls one of the wait functions on a __unique_future__ or
__shared_future__ associated with this task, and the result of the task is not ['ready], `f(*this)` shall be invoked.]]
[[Throws:] [__task_moved__ if ownership of the task associated with `*this` has been moved to another instance of
__packaged_task__.]]
]
[endsect]
[endsect]
[section:wait_for_any Non-member function `wait_for_any()`]
template<typename Iterator>
Iterator wait_for_any(Iterator begin,Iterator end);
template<typename F1,typename F2>
unsigned wait_for_any(F1& f1,F2& f2);
template<typename F1,typename F2,typename F3>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3);
template<typename F1,typename F2,typename F3,typename F4>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4);
template<typename F1,typename F2,typename F3,typename F4,typename F5>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5);
[variablelist
[[Preconditions:] [The types `Fn` shall be specializations of
__unique_future__ or __shared_future__, and `Iterator` shall be a
forward iterator with a `value_type` which is a specialization of
__unique_future__ or __shared_future__.]]
[[Effects:] [Waits until at least one of the specified futures is ['ready].]]
[[Returns:] [The range-based overload returns an `Iterator` identifying the first future in the range that was detected as
['ready]. The remaining overloads return the zero-based index of the first future that was detected as ['ready] (first parameter =>
0, second parameter => 1, etc.).]]
[[Throws:] [__thread_interrupted__ if the current thread is interrupted. Any exception thrown by the ['wait callback] associated
with any of the futures being waited for. `std::bad_alloc` if memory could not be allocated for the internal wait structures.]]
[[Notes:] [`wait_for_any()` is an ['interruption point].]]
]
[endsect]
[section:wait_for_all Non-member function `wait_for_all()`]
template<typename Iterator>
void wait_for_all(Iterator begin,Iterator end);
template<typename F1,typename F2>
void wait_for_all(F1& f1,F2& f2);
template<typename F1,typename F2,typename F3>
void wait_for_all(F1& f1,F2& f2,F3& f3);
template<typename F1,typename F2,typename F3,typename F4>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4);
template<typename F1,typename F2,typename F3,typename F4,typename F5>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5);
[variablelist
[[Preconditions:] [The types `Fn` shall be specializations of
__unique_future__ or __shared_future__, and `Iterator` shall be a
forward iterator with a `value_type` which is a specialization of
__unique_future__ or __shared_future__.]]
[[Effects:] [Waits until all of the specified futures are ['ready].]]
[[Throws:] [Any exceptions thrown by a call to `wait()` on the specified futures.]]
[[Notes:] [`wait_for_all()` is an ['interruption point].]]
]
[endsect]
[endsect]

187
doc/futures.qbk Executable file
View File

@@ -0,0 +1,187 @@
[/
(C) Copyright 2008-9 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:futures Futures]
[template future_state_link[link_text] [link thread.synchronization.futures.reference.future_state [link_text]]]
[def __uninitialized__ [future_state_link `boost::future_state::uninitialized`]]
[def __ready__ [future_state_link `boost::future_state::ready`]]
[def __waiting__ [future_state_link `boost::future_state::waiting`]]
[def __future_uninitialized__ `boost::future_uninitialized`]
[def __broken_promise__ `boost::broken_promise`]
[def __future_already_retrieved__ `boost::future_already_retrieved`]
[def __task_moved__ `boost::task_moved`]
[def __task_already_started__ `boost::task_already_started`]
[def __promise_already_satisfied__ `boost::promise_already_satisfied`]
[def __thread_interrupted__ `boost::thread_interrupted`]
[template unique_future_link[link_text] [link thread.synchronization.futures.reference.unique_future [link_text]]]
[def __unique_future__ [unique_future_link `boost::unique_future`]]
[template unique_future_get_link[link_text] [link thread.synchronization.futures.reference.unique_future.get [link_text]]]
[def __unique_future_get__ [unique_future_get_link `boost::unique_future<R>::get()`]]
[template unique_future_wait_link[link_text] [link thread.synchronization.futures.reference.unique_future.wait [link_text]]]
[def __unique_future_wait__ [unique_future_wait_link `boost::unique_future<R>::wait()`]]
[template unique_future_is_ready_link[link_text] [link thread.synchronization.futures.reference.unique_future.is_ready [link_text]]]
[def __unique_future_is_ready__ [unique_future_is_ready_link `boost::unique_future<R>::is_ready()`]]
[template unique_future_has_value_link[link_text] [link thread.synchronization.futures.reference.unique_future.has_value [link_text]]]
[def __unique_future_has_value__ [unique_future_has_value_link `boost::unique_future<R>::has_value()`]]
[template unique_future_has_exception_link[link_text] [link thread.synchronization.futures.reference.unique_future.has_exception [link_text]]]
[def __unique_future_has_exception__ [unique_future_has_exception_link `boost::unique_future<R>::has_exception()`]]
[template unique_future_get_state_link[link_text] [link thread.synchronization.futures.reference.unique_future.get_state [link_text]]]
[def __unique_future_get_state__ [unique_future_get_state_link `boost::unique_future<R>::get_state()`]]
[template shared_future_link[link_text] [link thread.synchronization.futures.reference.shared_future [link_text]]]
[def __shared_future__ [shared_future_link `boost::shared_future`]]
[template shared_future_get_link[link_text] [link thread.synchronization.futures.reference.shared_future.get [link_text]]]
[def __shared_future_get__ [shared_future_get_link `boost::shared_future<R>::get()`]]
[template shared_future_wait_link[link_text] [link thread.synchronization.futures.reference.shared_future.wait [link_text]]]
[def __shared_future_wait__ [shared_future_wait_link `boost::shared_future<R>::wait()`]]
[template shared_future_is_ready_link[link_text] [link thread.synchronization.futures.reference.shared_future.is_ready [link_text]]]
[def __shared_future_is_ready__ [shared_future_is_ready_link `boost::shared_future<R>::is_ready()`]]
[template shared_future_has_value_link[link_text] [link thread.synchronization.futures.reference.shared_future.has_value [link_text]]]
[def __shared_future_has_value__ [shared_future_has_value_link `boost::shared_future<R>::has_value()`]]
[template shared_future_has_exception_link[link_text] [link thread.synchronization.futures.reference.shared_future.has_exception [link_text]]]
[def __shared_future_has_exception__ [shared_future_has_exception_link `boost::shared_future<R>::has_exception()`]]
[template shared_future_get_state_link[link_text] [link thread.synchronization.futures.reference.shared_future.get_state [link_text]]]
[def __shared_future_get_state__ [shared_future_get_state_link `boost::shared_future<R>::get_state()`]]
[template promise_link[link_text] [link thread.synchronization.futures.reference.promise [link_text]]]
[def __promise__ [promise_link `boost::promise`]]
[template packaged_task_link[link_text] [link thread.synchronization.futures.reference.packaged_task [link_text]]]
[def __packaged_task__ [packaged_task_link `boost::packaged_task`]]
[template wait_for_any_link[link_text] [link thread.synchronization.futures.reference.wait_for_any [link_text]]]
[def __wait_for_any__ [wait_for_any_link `boost::wait_for_any()`]]
[template wait_for_all_link[link_text] [link thread.synchronization.futures.reference.wait_for_all [link_text]]]
[def __wait_for_all__ [wait_for_all_link `boost::wait_for_all()`]]
[section:overview Overview]
The futures library provides a means of handling synchronous future values, whether those values are generated by another thread, or
on a single thread in response to external stimuli, or on-demand.
This is done through the provision of four class templates: __unique_future__ and __shared_future__ which are used to retrieve the
asynchronous results, and __promise__ and __packaged_task__ which are used to generate the asynchronous results.
An instance of __unique_future__ holds the one and only reference to a result. Ownership can be transferred between instances using
the move constructor or move-assignment operator, but at most one instance holds a reference to a given asynchronous result. When
the result is ready, it is returned from __unique_future_get__ by rvalue-reference to allow the result to be moved or copied as
appropriate for the type.
On the other hand, many instances of __shared_future__ may reference the same result. Instances can be freely copied and assigned,
and __shared_future_get__ returns a `const` reference so that multiple calls to __shared_future_get__ are safe. You can move an
instance of __unique_future__ into an instance of __shared_future__, thus transferring ownership of the associated asynchronous
result, but not vice-versa.
You can wait for futures either individually or with one of the __wait_for_any__ and __wait_for_all__ functions.
[endsect]
[section:creating Creating asynchronous values]
You can set the value in a future with either a __promise__ or a __packaged_task__. A __packaged_task__ is a callable object that
wraps a function or callable object. When the packaged task is invoked, it invokes the contained function in turn, and populates a
future with the return value. This is an answer to the perennial question: "how do I return a value from a thread?": package the
function you wish to run as a __packaged_task__ and pass the packaged task to the thread constructor. The future retrieved from the
packaged task can then be used to obtain the return value. If the function throws an exception, that is stored in the future in
place of the return value.
int calculate_the_answer_to_life_the_universe_and_everything()
{
return 42;
}
boost::packaged_task<int> pt(calculate_the_answer_to_life_the_universe_and_everything);
boost::unique_future<int> fi=pt.get_future();
boost::thread task(boost::move(pt)); // launch task on a thread
fi.wait(); // wait for it to finish
assert(fi.is_ready());
assert(fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert(fi.get()==42);
A __promise__ is a bit more low level: it just provides explicit functions to store a value or an exception in the associated
future. A promise can therefore be used where the value may come from more than one possible source, or where a single operation may
produce multiple values.
boost::promise<int> pi;
boost::unique_future<int> fi;
fi=pi.get_future();
pi.set_value(42);
assert(fi.is_ready());
assert(fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert(fi.get()==42);
[endsect]
[section:lazy_futures Wait Callbacks and Lazy Futures]
Both __promise__ and __packaged_task__ support ['wait callbacks] that are invoked when a thread blocks in a call to `wait()` or
`timed_wait()` on a future that is waiting for the result from the __promise__ or __packaged_task__, in the thread that is doing the
waiting. These can be set using the `set_wait_callback()` member function on the __promise__ or __packaged_task__ in question.
This allows ['lazy futures] where the result is not actually computed until it is needed by some thread. In the example below, the
call to `f.get()` invokes the callback `invoke_lazy_task`, which runs the task to set the value. If you remove the call to
`f.get()`, the task is not ever run.
int calculate_the_answer_to_life_the_universe_and_everything()
{
return 42;
}
void invoke_lazy_task(boost::packaged_task<int>& task)
{
try
{
task();
}
catch(boost::task_already_started&)
{}
}
int main()
{
boost::packaged_task<int> task(calculate_the_answer_to_life_the_universe_and_everything);
task.set_wait_callback(invoke_lazy_task);
boost::unique_future<int> f(task.get_future());
assert(f.get()==42);
}
[endsect]
[include future_ref.qbk]
[endsect]

View File

@@ -1,304 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<glossary id="thread.glossary" last-revision="$Date$">
<title>Glossary</title>
<para>Definitions are given in terms of the C++ Standard
&cite.ISO98;. References to the standard are in the form [1.2.3/4], which
represents the section number, with the paragraph number following the
"/".</para>
<para>Because the definitions are written in something akin to "standardese",
they can be difficult to understand. The intent isn't to confuse, but rather
to clarify the additional requirements &Boost.Thread; places on a C++
implementation as defined by the C++ Standard.</para>
<glossentry id="thread.glossary.thread">
<glossterm>Thread</glossterm>
<glossdef>
<para>Thread is short for "thread of execution". A thread of execution is
an execution environment [1.9/7] within the execution environment of a C++
program [1.9]. The main() function [3.6.1] of the program is the initial
function of the initial thread. A program in a multithreading environment
always has an initial thread even if the program explicitly creates no
additional threads.</para>
<para>Unless otherwise specified, each thread shares all aspects of its
execution environment with other threads in the program. Shared aspects of
the execution environment include, but are not limited to, the
following:</para>
<itemizedlist>
<listitem><para>Static storage duration (static, extern) objects
[3.7.1].</para></listitem>
<listitem><para>Dynamic storage duration (heap) objects [3.7.3]. Thus
each memory allocation will return a unique addresses, regardless of the
thread making the allocation request.</para></listitem>
<listitem><para>Automatic storage duration (stack) objects [3.7.2]
accessed via pointer or reference from another thread.</para></listitem>
<listitem><para>Resources provided by the operating system. For example,
files.</para></listitem>
<listitem><para>The program itself. In other words, each thread is
executing some function of the same program, not a totally different
program.</para></listitem>
</itemizedlist>
<para>Each thread has its own:</para>
<itemizedlist>
<listitem><para>Registers and current execution sequence (program
counter) [1.9/5].</para></listitem>
<listitem><para>Automatic storage duration (stack) objects
[3.7.2].</para></listitem>
</itemizedlist>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.thread-safe">
<glossterm>Thread-safe</glossterm>
<glossdef>
<para>A program is thread-safe if it has no <link
linkend="thread.glossary.race-condition">race conditions</link>, does
not <link linkend="thread.glossary.deadlock">deadlock</link>, and has
no <link linkend="thread.glossary.priority-failure">priority
failures</link>.</para>
<para>Note that thread-safety does not necessarily imply efficiency, and
than while some thread-safety violations can be determined statically at
compile time, many thread-safety errors can only only be detected at
runtime.</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.thread-state">
<glossterm>Thread State</glossterm>
<glossdef>
<para>During the lifetime of a thread, it shall be in one of the following
states:</para>
<table>
<title>Thread States</title>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>State</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>Ready</entry>
<entry>Ready to run, but waiting for a processor.</entry>
</row>
<row>
<entry>Running</entry>
<entry>Currently executing on a processor. Zero or more threads
may be running at any time, with a maximum equal to the number of
processors.</entry>
</row>
<row>
<entry>Blocked</entry>
<entry>Waiting for some resource other than a processor which is
not currently available, or for the completion of calls to library
functions [1.9/6]. The term "waiting" is synonymous with
"blocked"</entry>
</row>
<row>
<entry>Terminated</entry>
<entry>Finished execution but not yet detached or joined.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Thread state transitions shall occur only as specified:</para>
<table>
<title>Thread States Transitions</title>
<tgroup cols="3" align="left">
<thead>
<row>
<entry>From</entry>
<entry>To</entry>
<entry>Cause</entry>
</row>
</thead>
<tbody>
<row>
<entry>[none]</entry>
<entry>Ready</entry>
<entry><para>Thread is created by a call to a library function.
In the case of the initial thread, creation is implicit and
occurs during the startup of the main() function [3.6.1].</para></entry>
</row>
<row>
<entry>Ready</entry>
<entry>Running</entry>
<entry><para>Processor becomes available.</para></entry>
</row>
<row>
<entry>Running</entry>
<entry>Ready</entry>
<entry>Thread preempted.</entry>
</row>
<row>
<entry>Running</entry>
<entry>Blocked</entry>
<entry>Thread calls a library function which waits for a resource or
for the completion of I/O.</entry>
</row>
<row>
<entry>Running</entry>
<entry>Terminated</entry>
<entry>Thread returns from its initial function, calls a thread
termination library function, or is canceled by some other thread
calling a thread termination library function.</entry>
</row>
<row>
<entry>Blocked</entry>
<entry>Ready</entry>
<entry>The resource being waited for becomes available, or the
blocking library function completes.</entry>
</row>
<row>
<entry>Terminated</entry>
<entry>[none]</entry>
<entry>Thread is detached or joined by some other thread calling the
appropriate library function, or by program termination
[3.6.3].</entry>
</row>
</tbody>
</tgroup>
</table>
<para>[Note: if a suspend() function is added to the threading library,
additional transitions to the blocked state will have to be added to the
above table.]</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.race-condition">
<glossterm>Race Condition</glossterm>
<glossdef>
<para>A race condition is what occurs when multiple threads read from and write
to the same memory without proper synchronization, resulting in an incorrect
value being read or written. The result of a race condition may be a bit
pattern which isn't even a valid value for the data type. A race condition
results in undefined behavior [1.3.12].</para>
<para>Race conditions can be prevented by serializing memory access using
the tools provided by &Boost.Thread;.</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.deadlock">
<glossterm>Deadlock</glossterm>
<glossdef>
<para>Deadlock is an execution state where for some set of threads, each
thread in the set is blocked waiting for some action by one of the other
threads in the set. Since each is waiting on the others, none will ever
become ready again.</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.starvation">
<glossterm>Starvation</glossterm>
<glossdef>
<para>The condition in which a thread is not making sufficient progress in
its work during a given time interval.</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.priority-failure">
<glossterm>Priority Failure</glossterm>
<glossdef>
<para>A priority failure (such as priority inversion or infinite overtaking)
occurs when threads are executed in such a sequence that required work is not
performed in time to be useful.</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.undefined-behavior">
<glossterm>Undefined Behavior</glossterm>
<glossdef>
<para>The result of certain operations in &Boost.Thread; is undefined;
this means that those operations can invoke almost any behavior when
they are executed.</para>
<para>An operation whose behavior is undefined can work "correctly"
in some implementations (i.e., do what the programmer thought it
would do), while in other implementations it may exhibit almost
any "incorrect" behavior--such as returning an invalid value,
throwing an exception, generating an access violation, or terminating
the process.</para>
<para>Executing a statement whose behavior is undefined is a
programming error.</para>
</glossdef>
</glossentry>
<glossentry id="thread.glossary.memory-visibility">
<glossterm>Memory Visibility</glossterm>
<glossdef>
<para>An address [1.7] shall always point to the same memory byte,
regardless of the thread or processor dereferencing the address.</para>
<para>An object [1.8, 1.9] is accessible from multiple threads if it is of
static storage duration (static, extern) [3.7.1], or if a pointer or
reference to it is explicitly or implicitly dereferenced in multiple
threads.</para>
<para>For an object accessible from multiple threads, the value of the
object accessed from one thread may be indeterminate or different from the
value accessed from another thread, except under the conditions specified in
the following table. For the same row of the table, the value of an object
accessible at the indicated sequence point in thread A will be determinate
and the same if accessed at or after the indicated sequence point in thread
B, provided the object is not otherwise modified. In the table, the
"sequence point at a call" is the sequence point after the evaluation of all
function arguments [1.9/17], while the "sequence point after a call" is the
sequence point after the copying of the returned value... [1.9/17].</para>
<table>
<title>Memory Visibility</title>
<tgroup cols="2">
<thead>
<row>
<entry>Thread A</entry>
<entry>Thread B</entry>
</row>
</thead>
<tbody>
<row>
<entry>The sequence point at a call to a library thread-creation
function.</entry>
<entry>The first sequence point of the initial function in the new
thread created by the Thread A call.</entry>
</row>
<row>
<entry>The sequence point at a call to a library function which
locks a mutex, directly or by waiting for a condition
variable.</entry>
<entry>The sequence point after a call to a library function which
unlocks the same mutex.</entry>
</row>
<row>
<entry>The last sequence point before thread termination.</entry>
<entry>The sequence point after a call to a library function which
joins the terminated thread.</entry>
</row>
<row>
<entry>The sequence point at a call to a library function which
signals or broadcasts a condition variable.</entry>
<entry>The sequence point after the call to the library function
which was waiting on that same condition variable or signal.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>The architecture of the execution environment and the observable
behavior of the abstract machine [1.9] shall be the same on all
processors.</para>
<para>The latitude granted by the C++ standard for an implementation to
alter the definition of observable behavior of the abstract machine to
include additional library I/O functions [1.9/6] is extended to include
threading library functions.</para>
<para>When an exception is thrown and there is no matching exception handler
in the same thread, behavior is undefined. The preferred behavior is the
same as when there is no matching exception handler in a program
[15.3/9]. That is, terminate() is called, and it is implementation-defined
whether or not the stack is unwound.</para>
</glossdef>
</glossentry>
<section>
<title>Acknowledgements</title>
<para>This document was originally written by Beman Dawes, and then much
improved by the incorporation of comments from William Kempf, who now
maintains the contents.</para>
<para>The visibility rules are based on &cite.Butenhof97;.</para>
</section>
</glossary>

View File

@@ -1,38 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.implementation_notes" last-revision="$Date$">
<title>Implementation Notes</title>
<section id="thread.implementation_notes.win32">
<title>Win32</title>
<para>
In the current Win32 implementation, creating a boost::thread object
during dll initialization will result in deadlock because the thread
class constructor causes the current thread to wait on the thread that
is being created until it signals that it has finished its initialization,
and, as stated in the
<ulink url="http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dllmain.asp">MSDN Library, "DllMain" article, "Remarks" section</ulink>,
"Because DLL notifications are serialized, entry-point functions should not
attempt to communicate with other threads or processes. Deadlocks may occur as a result."
(Also see <ulink url="http://www.microsoft.com/msj/archive/S220.aspx">"Under the Hood", January 1996</ulink>
for a more detailed discussion of this issue).
</para>
<para>
The following non-exhaustive list details some of the situations that
should be avoided until this issue can be addressed:
<itemizedlist>
<listitem>Creating a boost::thread object in DllMain() or in any function called by it.</listitem>
<listitem>Creating a boost::thread object in the constructor of a global static object or in any function called by one.</listitem>
<listitem>Creating a boost::thread object in MFC's CWinApp::InitInstance() function or in any function called by it.</listitem>
<listitem>Creating a boost::thread object in the function pointed to by MFC's _pRawDllMain function pointer or in any function called by it.</listitem>
</itemizedlist>
</para>
</section>
</section>

View File

@@ -1,309 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/mutex.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="mutex">
<purpose>
<para>The <classname>mutex</classname> class is a model of the
<link linkend="thread.concepts.Mutex">Mutex</link> concept.</para>
</purpose>
<description>
<para>The <classname>mutex</classname> class is a model of the
<link linkend="thread.concepts.Mutex">Mutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>try_mutex</classname> and <classname>timed_mutex</classname>.</para>
<para>For <link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking mechanics, see <classname>recursive_mutex</classname>,
<classname>recursive_try_mutex</classname>, and <classname>recursive_timed_mutex</classname>.
</para>
<para>The <classname>mutex</classname> class supplies the following typedef,
which <link linkend="thread.concepts.lock-models">models</link>
the specified locking strategy:
<informaltable>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
<para>The <classname>mutex</classname> class uses an
<link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking strategy, so attempts to recursively lock a <classname>mutex</classname>
object or attempts to unlock one by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.
This strategy allows implementations to be as efficient as possible
on any given platform. It is, however, recommended that
implementations include debugging support to detect misuse when
<code>NDEBUG</code> is not defined.</para>
<para>Like all
<link linkend="thread.concepts.mutex-models">mutex models</link>
in &Boost.Thread;, <classname>mutex</classname> leaves the
<link linkend="thread.concepts.sheduling-policies">scheduling policy</link>
as <link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
Programmers should make no assumptions about the order in which
waiting threads acquire a lock.</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<effects>Constructs a <classname>mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
<class name="try_mutex">
<purpose>
<para>The <classname>try_mutex</classname> class is a model of the
<link linkend="thread.concepts.TryMutex">TryMutex</link> concept.</para>
</purpose>
<description>
<para>The <classname>try_mutex</classname> class is a model of the
<link linkend="thread.concepts.TryMutex">TryMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>mutex</classname> and <classname>timed_mutex</classname>.</para>
<para>For <link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking mechanics, see <classname>recursive_mutex</classname>,
<classname>recursive_try_mutex</classname>, and <classname>recursive_timed_mutex</classname>.
</para>
<para>The <classname>try_mutex</classname> class supplies the following typedefs,
which <link linkend="thread.concepts.lock-models">model</link>
the specified locking strategies:
<informaltable>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
<para>The <classname>try_mutex</classname> class uses an
<link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking strategy, so attempts to recursively lock a <classname>try_mutex</classname>
object or attempts to unlock one by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.
This strategy allows implementations to be as efficient as possible
on any given platform. It is, however, recommended that
implementations include debugging support to detect misuse when
<code>NDEBUG</code> is not defined.</para>
<para>Like all
<link linkend="thread.concepts.mutex-models">mutex models</link>
in &Boost.Thread;, <classname>try_mutex</classname> leaves the
<link linkend="thread.concepts.sheduling-policies">scheduling policy</link>
as <link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
Programmers should make no assumptions about the order in which
waiting threads acquire a lock.</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<effects>Constructs a <classname>try_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>try_mutex</classname> object.
</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
<class name="timed_mutex">
<purpose>
<para>The <classname>timed_mutex</classname> class is a model of the
<link linkend="thread.concepts.TimedMutex">TimedMutex</link> concept.</para>
</purpose>
<description>
<para>The <classname>timed_mutex</classname> class is a model of the
<link linkend="thread.concepts.TimedMutex">TimedMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>mutex</classname> and <classname>try_mutex</classname>.</para>
<para>For <link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking mechanics, see <classname>recursive_mutex</classname>,
<classname>recursive_try_mutex</classname>, and <classname>recursive_timed_mutex</classname>.
</para>
<para>The <classname>timed_mutex</classname> class supplies the following typedefs,
which <link linkend="thread.concepts.lock-models">model</link>
the specified locking strategies:
<informaltable>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
<row>
<entry>scoped_timed_lock</entry>
<entry><link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
<para>The <classname>timed_mutex</classname> class uses an
<link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking strategy, so attempts to recursively lock a <classname>timed_mutex</classname>
object or attempts to unlock one by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.
This strategy allows implementations to be as efficient as possible
on any given platform. It is, however, recommended that
implementations include debugging support to detect misuse when
<code>NDEBUG</code> is not defined.</para>
<para>Like all
<link linkend="thread.concepts.mutex-models">mutex models</link>
in &Boost.Thread;, <classname>timed_mutex</classname> leaves the
<link linkend="thread.concepts.sheduling-policies">scheduling policy</link>
as <link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
Programmers should make no assumptions about the order in which
waiting threads acquire a lock.</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_timed_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<effects>Constructs a <classname>timed_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>timed_mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
</namespace>
</header>

View File

@@ -1,88 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/once.hpp"
last-revision="$Date$">
<macro name="BOOST_ONCE_INIT">
<purpose>The <functionname>call_once</functionname> function and
<code>once_flag</code> type (statically initialized to
<macroname>BOOST_ONCE_INIT</macroname>) can be used to run a
routine exactly once. This can be used to initialize data in a
<link linkend="thread.glossary.thread-safe">thread-safe</link>
manner.</purpose>
<description>The implementation-defined macro
<macroname>BOOST_ONCE_INIT</macroname> is a constant value used to
initialize <code>once_flag</code> instances to indicate that the
logically associated routine has not been run yet. See
<functionname>call_once</functionname> for more details.</description>
</macro>
<namespace name="boost">
<typedef name="once_flag">
<purpose>The <functionname>call_once</functionname> function and
<code>once_flag</code> type (statically initialized to
<macroname>BOOST_ONCE_INIT</macroname>) can be used to run a
routine exactly once. This can be used to initialize data in a
<link linkend="thread.glossary.thread-safe">thread-safe</link>
manner.</purpose>
<description>The implementation-defined type <code>once_flag</code>
is used as a flag to insure a routine is called only once.
Instances of this type should be statically initialized to
<macroname>BOOST_ONCE_INIT</macroname>. See
<functionname>call_once</functionname> for more details.
</description>
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<function name="call_once">
<purpose>The <functionname>call_once</functionname> function and
<code>once_flag</code> type (statically initialized to
<macroname>BOOST_ONCE_INIT</macroname>) can be used to run a
routine exactly once. This can be used to initialize data in a
<link linkend="thread.glossary.thread-safe">thread-safe</link>
manner.</purpose>
<description>
<para>Example usage is as follows:</para>
<para>
<programlisting>//Example usage:
boost::once_flag once = BOOST_ONCE_INIT;
void init()
{
//...
}
void thread_proc()
{
boost::call_once(once, &amp;init);
}</programlisting>
</para></description>
<parameter name="flag">
<paramtype>once_flag&amp;</paramtype>
</parameter>
<parameter name="func">
<paramtype>Function func</paramtype>
</parameter>
<effects>As if (in an atomic fashion):
<code>if (flag == BOOST_ONCE_INIT) func();</code>. If <code>func()</code> throws an exception, it shall be as if this
thread never invoked <code>call_once</code></effects>
<postconditions><code>flag != BOOST_ONCE_INIT</code> unless <code>func()</code> throws an exception.
</postconditions>
</function>
</namespace>
</header>

View File

@@ -45,6 +45,15 @@ all subsequent `call_once` invocations on the same `once_flag` object. ]]
[[Throws:] [`thread_resource_error` when the effects cannot be achieved. or any exception propagated from `func`.]]
[[Note:] [The function passed to `call_once` must not also call
`call_once` passing the same `once_flag` object. This may cause
deadlock, or invoking the passed function a second time. The
alternative is to allow the second call to return immediately, but
that assumes the code knows it has been called recursively, and can
proceed even though the call to `call_once` didn't actually call the
function, in which case it could also avoid calling `call_once`
recursively.]]
]
void call_once(void (*func)(),once_flag& flag);

View File

@@ -1,206 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.overview" last-revision="$Date$">
<title>Overview</title>
<section id="thread.introduction">
<title>Introduction</title>
<para>&Boost.Thread; allows C++ programs to execute as multiple,
asynchronous, independent threads-of-execution. Each thread has its own
machine state including program instruction counter and registers. Programs
which execute as multiple threads are called multithreaded programs to
distinguish them from traditional single-threaded programs. The <link
linkend="thread.glossary">glossary</link> gives a more complete description
of the multithreading execution environment.</para>
<para>Multithreading provides several advantages:
<itemizedlist>
<listitem>
<para>Programs which would otherwise block waiting for some external
event can continue to respond if the blocking operation is placed in a
separate thread. Multithreading is usually an absolute requirement for
these programs.</para>
</listitem>
<listitem>
<para>Well-designed multithreaded programs may execute faster than
single-threaded programs, particularly on multiprocessor hardware.
Note, however, that poorly-designed multithreaded programs are often
slower than single-threaded programs.</para>
</listitem>
<listitem>
<para>Some program designs may be easier to formulate using a
multithreaded approach. After all, the real world is
asynchronous!</para>
</listitem>
</itemizedlist></para>
</section>
<section>
<title>Dangers</title>
<section>
<title>General considerations</title>
<para>Beyond the errors which can occur in single-threaded programs,
multithreaded programs are subject to additional errors:
<itemizedlist>
<listitem>
<para><link linkend="thread.glossary.race-condition">Race
conditions</link></para>
</listitem>
<listitem>
<para><link linkend="thread.glossary.deadlock">Deadlock</link>
(sometimes called "deadly embrace")</para>
</listitem>
<listitem>
<para><link linkend="thread.glossary.priority-failure">Priority
failures</link> (priority inversion, infinite overtaking, starvation,
etc.)</para>
</listitem>
</itemizedlist></para>
<para>Every multithreaded program must be designed carefully to avoid these
errors. These aren't rare or exotic failures - they are virtually guaranteed
to occur unless multithreaded code is designed to avoid them. Priority
failures are somewhat less common, but are nonetheless serious.</para>
<para>The <link linkend="thread.design">&Boost.Thread; design</link>
attempts to minimize these errors, but they will still occur unless the
programmer proactively designs to avoid them.</para>
<note>Please also see <xref linkend="thread.implementation_notes"/>
for additional, implementation-specific considerations.</note>
</section>
<section>
<title>Testing and debugging considerations</title>
<para>Multithreaded programs are non-deterministic. In other words, the
same program with the same input data may follow different execution
paths each time it is invoked. That can make testing and debugging a
nightmare:
<itemizedlist>
<listitem>
<para>Failures are often not repeatable.</para>
</listitem>
<listitem>
<para>Probe effect causes debuggers to produce very different results
from non-debug uses.</para>
</listitem>
<listitem>
<para>Debuggers require special support to show thread state.</para>
</listitem>
<listitem>
<para>Tests on a single processor system may give no indication of
serious errors which would appear on multiprocessor systems, and visa
versa. Thus test cases should include a varying number of
processors.</para>
</listitem>
<listitem>
<para>For programs which create a varying number of threads according
to workload, tests which don't span the full range of possibilities
may miss serious errors.</para>
</listitem>
</itemizedlist></para>
</section>
<section>
<title>Getting a head start</title>
<para>Although it might appear that multithreaded programs are inherently
unreliable, many reliable multithreaded programs do exist. Multithreading
techniques are known which lead to reliable programs.</para>
<para>Design patterns for reliable multithreaded programs, including the
important <emphasis>monitor</emphasis> pattern, are presented in
<emphasis>Pattern-Oriented Software Architecture Volume 2 - Patterns for
Concurrent and Networked Objects</emphasis>
&cite.SchmidtStalRohnertBuschmann;. Many important multithreading programming
considerations (independent of threading library) are discussed in
<emphasis>Programming with POSIX Threads</emphasis> &cite.Butenhof97;.</para>
<para>Doing some reading before attempting multithreaded designs will
give you a head start toward reliable multithreaded programs.</para>
</section>
</section>
<section>
<title>C++ Standard Library usage in multithreaded programs</title>
<section>
<title>Runtime libraries</title>
<para>
<emphasis role="bold">Warning:</emphasis> Multithreaded programs such as
those using &Boost.Thread; must link to <link
linkend="thread.glossary.thread-safe">thread-safe</link> versions of
all runtime libraries used by the program, including the runtime library
for the C++ Standard Library. Failure to do so will cause <link
linkend="thread.glossary.race-condition">race conditions</link> to occur
when multiple threads simultaneously execute runtime library functions for
<code>new</code>, <code>delete</code>, or other language features which
imply shared state.</para>
</section>
<section>
<title>Potentially non-thread-safe functions</title>
<para>Certain C++ Standard Library functions inherited from C are
particular problems because they hold internal state between
calls:
<itemizedlist>
<listitem>
<para><code>rand</code></para>
</listitem>
<listitem>
<para><code>strtok</code></para>
</listitem>
<listitem>
<para><code>asctime</code></para>
</listitem>
<listitem>
<para><code>ctime</code></para>
</listitem>
<listitem>
<para><code>gmtime</code></para>
</listitem>
<listitem>
<para><code>localtime</code></para>
</listitem>
</itemizedlist></para>
<para>It is possible to write thread-safe implementations of these by
using thread specific storage (see
<classname>boost::thread_specific_ptr</classname>), and several C++
compiler vendors do just that. The technique is well-know and is explained
in &cite.Butenhof97;.</para>
<para>But at least one vendor (HP-UX) does not provide thread-safe
implementations of the above functions in their otherwise thread-safe
runtime library. Instead they provide replacement functions with
different names and arguments.</para>
<para><emphasis role="bold">Recommendation:</emphasis> For the most
portable, yet thread-safe code, use Boost replacements for the problem
functions. See the <libraryname>Boost Random Number Library</libraryname>
and <libraryname>Boost Tokenizer Library</libraryname>.</para>
</section>
</section>
<section>
<title>Common guarantees for all &Boost.Thread; components</title>
<section>
<title>Exceptions</title>
<para>&Boost.Thread; destructors never
throw exceptions. Unless otherwise specified, other
&Boost.Thread; functions that do not have
an exception-specification may throw implementation-defined
exceptions.</para>
<para>In particular, &Boost.Thread;
reports failure to allocate storage by throwing an exception of type
<code>std::bad_alloc</code> or a class derived from
<code>std::bad_alloc</code>, failure to obtain thread resources other than
memory by throwing an exception of type
<classname>boost::thread_resource_error</classname>, and certain lock
related failures by throwing an exception of type
<classname>boost::lock_error</classname>.</para>
<para><emphasis role="bold">Rationale:</emphasis> Follows the C++ Standard
Library practice of allowing all functions except destructors or other
specified functions to throw exceptions on errors.</para>
</section>
<section>
<title>NonCopyable requirement</title>
<para>&Boost.Thread; classes documented as
meeting the NonCopyable requirement disallow copy construction and copy
assignment. For the sake of exposition, the synopsis of such classes show
private derivation from <classname>boost::noncopyable</classname>. Users
should not depend on this derivation, however, as implementations are free
to meet the NonCopyable requirement in other ways.</para>
</section>
</section>
</section>

View File

@@ -1,438 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.rationale" last-revision="$Date$">
<title>Rationale</title>
<para>This page explains the rationale behind various design decisions in the
&Boost.Thread; library. Having the rationale documented here should explain
how we arrived at the current design as well as prevent future rehashing of
discussions and thought processes that have already occurred. It can also give
users a lot of insight into the design process required for this
library.</para>
<section id="thread.rationale.Boost.Thread">
<title>Rationale for the Creation of &Boost.Thread;</title>
<para>Processes often have a degree of "potential parallelism" and it can
often be more intuitive to design systems with this in mind. Further, these
parallel processes can result in more responsive programs. The benefits for
multithreaded programming are quite well known to most modern programmers,
yet the C++ language doesn't directly support this concept.</para>
<para>Many platforms support multithreaded programming despite the fact that
the language doesn't support it. They do this through external libraries,
which are, unfortunately, platform specific. POSIX has tried to address this
problem through the standardization of a "pthread" library. However, this is
a standard only on POSIX platforms, so its portability is limited.</para>
<para>Another problem with POSIX and other platform specific thread
libraries is that they are almost universally C based libraries. This leaves
several C++ specific issues unresolved, such as what happens when an
exception is thrown in a thread. Further, there are some C++ concepts, such
as destructors, that can make usage much easier than what's available in a C
library.</para>
<para>What's truly needed is C++ language support for threads. However, the
C++ standards committee needs existing practice or a good proposal as a
starting point for adding this to the standard.</para>
<para>The &Boost.Thread; library was developed to provide a C++ developer
with a portable interface for writing multithreaded programs on numerous
platforms. There's a hope that the library can be the basis for a more
detailed proposal for the C++ standards committee to consider for inclusion
in the next C++ standard.</para>
</section>
<section id="thread.rationale.primitives">
<title>Rationale for the Low Level Primitives Supported in &Boost.Thread;</title>
<para>The &Boost.Thread; library supplies a set of low level primitives for
writing multithreaded programs, such as mutexes and condition variables. In
fact, the first release of &Boost.Thread; supports only these low level
primitives. However, computer science research has shown that use of these
primitives is difficult since it's difficult to mathematically prove that a
usage pattern is correct, meaning it doesn't result in race conditions or
deadlocks. There are several algebras (such as CSP, CCS and Join calculus)
that have been developed to help write provably correct parallel
processes. In order to prove the correctness these processes must be coded
using higher level abstractions. So why does &Boost.Thread; support the
lower level concepts?</para>
<para>The reason is simple: the higher level concepts need to be implemented
using at least some of the lower level concepts. So having portable lower
level concepts makes it easier to develop the higher level concepts and will
allow researchers to experiment with various techniques.</para>
<para>Beyond this theoretical application of higher level concepts, however,
the fact remains that many multithreaded programs are written using only the
lower level concepts, so they are useful in and of themselves, even if it's
hard to prove that their usage is correct. Since many users will be familiar
with these lower level concepts but unfamiliar with any of the higher
level concepts, supporting the lower level concepts provides
greater accessibility.</para>
</section>
<section id="thread.rationale.locks">
<title>Rationale for the Lock Design</title>
<para>Programmers who are used to multithreaded programming issues will
quickly note that the &Boost.Thread; design for mutex lock concepts is not
<link linkend="thread.glossary.thread-safe">thread-safe</link> (this is
clearly documented as well). At first this may seem like a serious design
flaw. Why have a multithreading primitive that's not thread-safe
itself?</para>
<para>A lock object is not a synchronization primitive. A lock object's sole
responsibility is to ensure that a mutex is both locked and unlocked in a
manner that won't result in the common error of locking a mutex and then
forgetting to unlock it. This means that instances of a lock object are only
going to be created, at least in theory, within block scope and won't be
shared between threads. Only the mutex objects will be created outside of
block scope and/or shared between threads. Though it's possible to create a
lock object outside of block scope and to share it between threads, to do so
would not be a typical usage (in fact, to do so would likely be an
error). Nor are there any cases when such usage would be required.</para>
<para>Lock objects must maintain some state information. In order to allow a
program to determine if a try_lock or timed_lock was successful the lock
object must retain state indicating the success or failure of the call made
in its constructor. If a lock object were to have such state and remain
thread-safe it would need to synchronize access to the state information
which would result in roughly doubling the time of most operations. Worse,
since checking the state can occur only by a call after construction, we'd
have a race condition if the lock object were shared between threads.</para>
<para>So, to avoid the overhead of synchronizing access to the state
information and to avoid the race condition, the &Boost.Thread; library
simply does nothing to make lock objects thread-safe. Instead, sharing a
lock object between threads results in undefined behavior. Since the only
proper usage of lock objects is within block scope this isn't a problem, and
so long as the lock object is properly used there's no danger of any
multithreading issues.</para>
</section>
<section id="thread.rationale.non-copyable">
<title>Rationale for NonCopyable Thread Type</title>
<para>Programmers who are used to C libraries for multithreaded programming
are likely to wonder why &Boost.Thread; uses a noncopyable design for
<classname>boost::thread</classname>. After all, the C thread types are
copyable, and you often have a need for copying them within user
code. However, careful comparison of C designs to C++ designs shows a flaw
in this logic.</para>
<para>All C types are copyable. It is, in fact, not possible to make a
noncopyable type in C. For this reason types that represent system resources
in C are often designed to behave very similarly to a pointer to dynamic
memory. There's an API for acquiring the resource and an API for releasing
the resource. For memory we have pointers as the type and alloc/free for
the acquisition and release APIs. For files we have FILE* as the type and
fopen/fclose for the acquisition and release APIs. You can freely copy
instances of the types but must manually manage the lifetime of the actual
resource through the acquisition and release APIs.</para>
<para>C++ designs recognize that the acquisition and release APIs are error
prone and try to eliminate possible errors by acquiring the resource in the
constructor and releasing it in the destructor. The best example of such a
design is the std::iostream set of classes which can represent the same
resource as the FILE* type in C. A file is opened in the std::fstream's
constructor and closed in its destructor. However, if an iostream were
copyable it could lead to a file being closed twice, an obvious error, so
the std::iostream types are noncopyable by design. This is the same design
used by boost::thread, which is a simple and easy to understand design
that's consistent with other C++ standard types.</para>
<para>During the design of boost::thread it was pointed out that it would be
possible to allow it to be a copyable type if some form of "reference
management" were used, such as ref-counting or ref-lists, and many argued
for a boost::thread_ref design instead. The reasoning was that copying
"thread" objects was a typical need in the C libraries, and so presumably
would be in the C++ libraries as well. It was also thought that
implementations could provide more efficient reference management than
wrappers (such as boost::shared_ptr) around a noncopyable thread
concept. Analysis of whether or not these arguments would hold true doesn't
appear to bear them out. To illustrate the analysis we'll first provide
pseudo-code illustrating the six typical usage patterns of a thread
object.</para>
<section id="thread.rationale.non-copyable.simple">
<title>1. Use case: Simple creation of a thread.</title>
<programlisting>
void foo()
{
create_thread(&amp;bar);
}
</programlisting>
</section>
<section id="thread.rationale.non-copyable.joined">
<title>2. Use case: Creation of a thread that's later joined.</title>
<programlisting>
void foo()
{
thread = create_thread(&amp;bar);
join(thread);
}
</programlisting>
</section>
<section id="thread.rationale.non-copyable.loop">
<title>3. Use case: Simple creation of several threads in a loop.</title>
<programlisting>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
create_thread(&amp;bar);
}
</programlisting>
</section>
<section id="thread.rationale.non-copyable.loop-join">
<title>4. Use case: Creation of several threads in a loop which are later joined.</title>
<programlisting>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = create_thread(&amp;bar);
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i].join();
}
</programlisting>
</section>
<section id="thread.rationale.non-copyable.pass">
<title>5. Use case: Creation of a thread whose ownership is passed to another object/method.</title>
<programlisting>
void foo()
{
thread = create_thread(&amp;bar);
manager.owns(thread);
}
</programlisting>
</section>
<section id="thread.rationale.non-copyable.shared">
<title>6. Use case: Creation of a thread whose ownership is shared between multiple
objects.</title>
<programlisting>
void foo()
{
thread = create_thread(&amp;bar);
manager1.add(thread);
manager2.add(thread);
}
</programlisting>
</section>
<para>Of these usage patterns there's only one that requires reference
management (number 6). Hopefully it's fairly obvious that this usage pattern
simply won't occur as often as the other usage patterns. So there really
isn't a "typical need" for a thread concept, though there is some
need.</para>
<para>Since the need isn't typical we must use different criteria for
deciding on either a thread_ref or thread design. Possible criteria include
ease of use and performance. So let's analyze both of these
carefully.</para>
<para>With ease of use we can look at existing experience. The standard C++
objects that represent a system resource, such as std::iostream, are
noncopyable, so we know that C++ programmers must at least be experienced
with this design. Most C++ developers are also used to smart pointers such
as boost::shared_ptr, so we know they can at least adapt to a thread_ref
concept with little effort. So existing experience isn't going to lead us to
a choice.</para>
<para>The other thing we can look at is how difficult it is to use both
types for the six usage patterns above. If we find it overly difficult to
use a concept for any of the usage patterns there would be a good argument
for choosing the other design. So we'll code all six usage patterns using
both designs.</para>
<section id="thread.rationale_comparison.non-copyable.simple">
<title>1. Comparison: simple creation of a thread.</title>
<programlisting>
void foo()
{
thread thrd(&amp;bar);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
}
</programlisting>
</section>
<section id="thread.rationale_comparison.non-copyable.joined">
<title>2. Comparison: creation of a thread that's later joined.</title>
<programlisting>
void foo()
{
thread thrd(&amp;bar);
thrd.join();
}
void foo()
{
thread_ref thrd =
create_thread(&amp;bar);thrd-&gt;join();
}
</programlisting>
</section>
<section id="thread.rationale_comparison.non-copyable.loop">
<title>3. Comparison: simple creation of several threads in a loop.</title>
<programlisting>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
thread thrd(&amp;bar);
}
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
thread_ref thrd = create_thread(&amp;bar);
}
</programlisting>
</section>
<section id="thread.rationale_comparison.non-copyable.loop-join">
<title>4. Comparison: creation of several threads in a loop which are later joined.</title>
<programlisting>
void foo()
{
std::auto_ptr&lt;thread&gt; threads[NUM_THREADS];
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = std::auto_ptr&lt;thread&gt;(new thread(&amp;bar));
for (int i= 0; i&lt;NUM_THREADS;
++i)threads[i]-&gt;join();
}
void foo()
{
thread_ref threads[NUM_THREADS];
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = create_thread(&amp;bar);
for (int i= 0; i&lt;NUM_THREADS;
++i)threads[i]-&gt;join();
}
</programlisting>
</section>
<section id="thread.rationale_comparison.non-copyable.pass">
<title>5. Comparison: creation of a thread whose ownership is passed to another object/method.</title>
<programlisting>
void foo()
{
thread thrd* = new thread(&amp;bar);
manager.owns(thread);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
manager.owns(thrd);
}
</programlisting>
</section>
<section id="thread.rationale_comparison.non-copyable.shared">
<title>6. Comparison: creation of a thread whose ownership is shared
between multiple objects.</title>
<programlisting>
void foo()
{
boost::shared_ptr&lt;thread&gt; thrd(new thread(&amp;bar));
manager1.add(thrd);
manager2.add(thrd);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
manager1.add(thrd);
manager2.add(thrd);
}
</programlisting>
</section>
<para>This shows the usage patterns being nearly identical in complexity for
both designs. The only actual added complexity occurs because of the use of
operator new in
<link linkend="thread.rationale_comparison.non-copyable.loop-join">(4)</link>,
<link linkend="thread.rationale_comparison.non-copyable.pass">(5)</link>, and
<link linkend="thread.rationale_comparison.non-copyable.shared">(6)</link>;
and the use of std::auto_ptr and boost::shared_ptr in
<link linkend="thread.rationale_comparison.non-copyable.loop-join">(4)</link> and
<link linkend="thread.rationale_comparison.non-copyable.shared">(6)</link>
respectively. However, that's not really
much added complexity, and C++ programmers are used to using these idioms
anyway. Some may dislike the presence of operator new in user code, but
this can be eliminated by proper design of higher level concepts, such as
the boost::thread_group class that simplifies example
<link linkend="thread.rationale_comparison.non-copyable.loop-join">(4)</link>
down to:</para>
<programlisting>
void foo()
{
thread_group threads;
for (int i=0; i&lt;NUM_THREADS; ++i)
threads.create_thread(&amp;bar);
threads.join_all();
}
</programlisting>
<para>So ease of use is really a wash and not much help in picking a
design.</para>
<para>So what about performance? Looking at the above code examples,
we can analyze the theoretical impact to performance that both designs
have. For <link linkend="thread.rationale_comparison.non-copyable.simple">(1)</link>
we can see that platforms that don't have a ref-counted native
thread type (POSIX, for instance) will be impacted by a thread_ref
design. Even if the native thread type is ref-counted there may be an impact
if more state information has to be maintained for concepts foreign to the
native API, such as clean up stacks for Win32 implementations.
For <link linkend="thread.rationale_comparison.non-copyable.joined">(2)</link>
and <link linkend="thread.rationale_comparison.non-copyable.loop">(3)</link>
the performance impact will be identical to
<link linkend="thread.rationale_comparison.non-copyable.simple">(1)</link>.
For <link linkend="thread.rationale_comparison.non-copyable.loop-join">(4)</link>
things get a little more interesting and we find that theoretically at least
the thread_ref may perform faster since the thread design requires dynamic
memory allocation/deallocation. However, in practice there may be dynamic
allocation for the thread_ref design as well, it will just be hidden from
the user. As long as the implementation has to do dynamic allocations the
thread_ref loses again because of the reference management. For
<link linkend="thread.rationale_comparison.non-copyable.pass">(5)</link> we see
the same impact as we do for
<link linkend="thread.rationale_comparison.non-copyable.loop-join">(4)</link>.
For <link linkend="thread.rationale_comparison.non-copyable.shared">(6)</link>
we still have a possible impact to
the thread design because of dynamic allocation but thread_ref no longer
suffers because of its reference management, and in fact, theoretically at
least, the thread_ref may do a better job of managing the references. All of
this indicates that thread wins for
<link linkend="thread.rationale_comparison.non-copyable.simple">(1)</link>,
<link linkend="thread.rationale_comparison.non-copyable.joined">(2)</link> and
<link linkend="thread.rationale_comparison.non-copyable.loop">(3)</link>; with
<link linkend="thread.rationale_comparison.non-copyable.loop-join">(4)</link>
and <link linkend="thread.rationale_comparison.non-copyable.pass">(5)</link> the
winner depending on the implementation and the platform but with the thread design
probably having a better chance; and with
<link linkend="thread.rationale_comparison.non-copyable.shared">(6)</link>
it will again depend on the
implementation and platform but this time we favor thread_ref
slightly. Given all of this it's a narrow margin, but the thread design
prevails.</para>
<para>Given this analysis, and the fact that noncopyable objects for system
resources are the normal designs that C++ programmers are used to dealing
with, the &Boost.Thread; library has gone with a noncopyable design.</para>
</section>
<section id="thread.rationale.events">
<title>Rationale for not providing <emphasis>Event Variables</emphasis></title>
<para><emphasis>Event variables</emphasis> are simply far too
error-prone. <classname>boost::condition</classname> variables are a much safer
alternative. [Note that Graphical User Interface <emphasis>events</emphasis> are
a different concept, and are not what is being discussed here.]</para>
<para>Event variables were one of the first synchronization primitives. They
are still used today, for example, in the native Windows multithreading
API. Yet both respected computer science researchers and experienced
multithreading practitioners believe event variables are so inherently
error-prone that they should never be used, and thus should not be part of a
multithreading library.</para>
<para>Per Brinch Hansen &cite.Hansen73; analyzed event variables in some
detail, pointing out [emphasis his] that "<emphasis>event operations force
the programmer to be aware of the relative speeds of the sending and
receiving processes</emphasis>". His summary:</para>
<blockquote>
<para>We must therefore conclude that event variables of the previous type
are impractical for system design. <emphasis>The effect of an interaction
between two processes must be independent of the speed at which it is
carried out.</emphasis></para>
</blockquote>
<para>Experienced programmers using the Windows platform today report that
event variables are a continuing source of errors, even after previous bad
experiences caused them to be very careful in their use of event
variables. Overt problems can be avoided, for example, by teaming the event
variable with a mutex, but that may just convert a <link
linkend="thread.glossary.race-condition">race condition</link> into another
problem, such as excessive resource use. One of the most distressing aspects
of the experience reports is the claim that many defects are latent. That
is, the programs appear to work correctly, but contain hidden timing
dependencies which will cause them to fail when environmental factors or
usage patterns change, altering relative thread timings.</para>
<para>The decision to exclude event variables from &Boost.Thread; has been
surprising to some Windows programmers. They have written programs which
work using event variables, and wonder what the problem is. It seems similar
to the "goto considered harmful" controversy of 30 years ago. It isn't that
events, like gotos, can't be made to work, but rather that virtually all
programs using alternatives will be easier to write, debug, read, maintain,
and will be less likely to contain latent defects.</para>
<para>[Rationale provided by Beman Dawes]</para>
</section>
</section>

View File

@@ -1,492 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/read_write_mutex.hpp"
last-revision="$Date$">
<namespace name="boost">
<namespace name="read_write_scheduling_policy">
<enum name="read_write_scheduling_policy">
<enumvalue name="writer_priority" />
<enumvalue name="reader_priority" />
<enumvalue name="alternating_many_reads" />
<enumvalue name="alternating_single_read" />
<purpose>
<para>Specifies the
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
to use when a set of threads try to obtain different types of
locks simultaneously.</para>
</purpose>
<description>
<para>The only clock type supported by &Boost.Thread; is
<code>TIME_UTC</code>. The epoch for <code>TIME_UTC</code>
is 1970-01-01 00:00:00.</para>
</description>
</enum>
</namespace>
<class name="read_write_mutex">
<purpose>
<para>The <classname>read_write_mutex</classname> class is a model of the
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link> concept.</para>
<note> Unfortunately it turned out that the current implementation of Read/Write Mutex has
some serious problems. So it was decided not to put this implementation into
release grade code. Also discussions on the mailing list led to the
conclusion that the current concepts need to be rethought. In particular
the schedulings <link linkend="thread.concepts.read-write-scheduling-policies.inter-class">
Inter-Class Scheduling Policies</link> are deemed unnecessary.
There seems to be common belief that a fair scheme suffices.
The following documentation has been retained however, to give
readers of this document the opportunity to study the original design.
</note>
</purpose>
<description>
<para>The <classname>read_write_mutex</classname> class is a model of the
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>try_read_write_mutex</classname> and <classname>timed_read_write_mutex</classname>.</para>
<para>The <classname>read_write_mutex</classname> class supplies the following typedefs,
which <link linkend="thread.concepts.read-write-lock-models">model</link>
the specified locking strategies:
<informaltable>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_read_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedReadWriteLock">ScopedReadWriteLock</link></entry>
</row>
<row>
<entry>scoped_read_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
<para>The <classname>read_write_mutex</classname> class uses an
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>
locking strategy, so attempts to recursively lock a <classname>read_write_mutex</classname>
object or attempts to unlock one by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.
This strategy allows implementations to be as efficient as possible
on any given platform. It is, however, recommended that
implementations include debugging support to detect misuse when
<code>NDEBUG</code> is not defined.</para>
<para>Like all
<link linkend="thread.concepts.read-write-mutex-models">read/write mutex models</link>
in &Boost.Thread;, <classname>read_write_mutex</classname> has two types of
<link linkend="thread.concepts.read-write-scheduling-policies">scheduling policies</link>, an
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
between threads trying to obtain different types of locks and an
<link linkend="thread.concepts.read-write-scheduling-policies.intra-class">intra-class sheduling policy</link>
between threads trying to obtain the same type of lock.
The <classname>read_write_mutex</classname> class allows the
programmer to choose what
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
will be used; however, like all read/write mutex models,
<classname>read_write_mutex</classname> leaves the
<link linkend="thread.concepts.read-write-scheduling-policies.intra-class">intra-class sheduling policy</link> as
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>.
</para>
<note>Self-deadlock is virtually guaranteed if a thread tries to
lock the same <classname>read_write_mutex</classname> multiple times
unless all locks are read-locks (but see below)</note>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_read_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_read_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<parameter name="count">
<paramtype>boost::read_write_scheduling_policy</paramtype>
</parameter>
<effects>Constructs a <classname>read_write_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>read_write_mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
<class name="try_read_write_mutex">
<purpose>
<para>The <classname>try_read_write_mutex</classname> class is a model of the
<link linkend="thread.concepts.TryReadWriteMutex">TryReadWriteMutex</link> concept.</para>
<note> Unfortunately it turned out that the current implementation of Read/Write Mutex has
some serious problems. So it was decided not to put this implementation into
release grade code. Also discussions on the mailing list led to the
conclusion that the current concepts need to be rethought. In particular
the schedulings <link linkend="thread.concepts.read-write-scheduling-policies.inter-class">
Inter-Class Scheduling Policies</link> are deemed unnecessary.
There seems to be common belief that a fair scheme suffices.
The following documentation has been retained however, to give
readers of this document the opportunity to study the original design.
</note>
</purpose>
<description>
<para>The <classname>try_read_write_mutex</classname> class is a model of the
<link linkend="thread.concepts.TryReadWriteMutex">TryReadWriteMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>read_write_mutex</classname> and <classname>timed_read_write_mutex</classname>.</para>
<para>The <classname>try_read_write_mutex</classname> class supplies the following typedefs,
which <link linkend="thread.concepts.read-write-lock-models">model</link>
the specified locking strategies:
<informaltable>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_read_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedReadWriteLock">ScopedReadWriteLock</link></entry>
</row>
<row>
<entry>scoped_try_read_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryReadWriteLock">ScopedTryReadWriteLock</link></entry>
</row>
<row>
<entry>scoped_read_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_read_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
<row>
<entry>scoped_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
<para>The <classname>try_read_write_mutex</classname> class uses an
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>
locking strategy, so attempts to recursively lock a <classname>try_read_write_mutex</classname>
object or attempts to unlock one by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.
This strategy allows implementations to be as efficient as possible
on any given platform. It is, however, recommended that
implementations include debugging support to detect misuse when
<code>NDEBUG</code> is not defined.</para>
<para>Like all
<link linkend="thread.concepts.read-write-mutex-models">read/write mutex models</link>
in &Boost.Thread;, <classname>try_read_write_mutex</classname> has two types of
<link linkend="thread.concepts.read-write-scheduling-policies">scheduling policies</link>, an
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
between threads trying to obtain different types of locks and an
<link linkend="thread.concepts.read-write-scheduling-policies.intra-class">intra-class sheduling policy</link>
between threads trying to obtain the same type of lock.
The <classname>try_read_write_mutex</classname> class allows the
programmer to choose what
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
will be used; however, like all read/write mutex models,
<classname>try_read_write_mutex</classname> leaves the
<link linkend="thread.concepts.read-write-scheduling-policies.intra-class">intra-class sheduling policy</link> as
<link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
</para>
<note>Self-deadlock is virtually guaranteed if a thread tries to
lock the same <classname>try_read_write_mutex</classname> multiple times
unless all locks are read-locks (but see below)</note>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_read_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_read_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_read_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_read_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<parameter name="count">
<paramtype>boost::read_write_scheduling_policy</paramtype>
</parameter>
<effects>Constructs a <classname>try_read_write_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>try_read_write_mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
<class name="timed_read_write_mutex">
<purpose>
<para>The <classname>timed_read_write_mutex</classname> class is a model of the
<link linkend="thread.concepts.TimedReadWriteMutex">TimedReadWriteMutex</link> concept.</para>
<note> Unfortunately it turned out that the current implementation of Read/Write Mutex has
some serious problems. So it was decided not to put this implementation into
release grade code. Also discussions on the mailing list led to the
conclusion that the current concepts need to be rethought. In particular
the schedulings <link linkend="thread.concepts.read-write-scheduling-policies.inter-class">
Inter-Class Scheduling Policies</link> are deemed unnecessary.
There seems to be common belief that a fair scheme suffices.
The following documentation has been retained however, to give
readers of this document the opportunity to study the original design.
</note>
</purpose>
<description>
<para>The <classname>timed_read_write_mutex</classname> class is a model of the
<link linkend="thread.concepts.TimedReadWriteMutex">TimedReadWriteMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>read_write_mutex</classname> and <classname>try_read_write_mutex</classname>.</para>
<para>The <classname>timed_read_write_mutex</classname> class supplies the following typedefs,
which <link linkend="thread.concepts.read-write-lock-models">model</link>
the specified locking strategies:
<informaltable>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_read_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedReadWriteLock">ScopedReadWriteLock</link></entry>
</row>
<row>
<entry>scoped_try_read_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryReadWriteLock">ScopedTryReadWriteLock</link></entry>
</row>
<row>
<entry>scoped_timed_read_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedTimedReadWriteLock">ScopedTimedReadWriteLock</link></entry>
</row>
<row>
<entry>scoped_read_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_read_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
<row>
<entry>scoped_timed_read_lock</entry>
<entry><link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link></entry>
</row>
<row>
<entry>scoped_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
<row>
<entry>scoped_timed_write_lock</entry>
<entry><link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
<para>The <classname>timed_read_write_mutex</classname> class uses an
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">Unspecified</link>
locking strategy, so attempts to recursively lock a <classname>timed_read_write_mutex</classname>
object or attempts to unlock one by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.
This strategy allows implementations to be as efficient as possible
on any given platform. It is, however, recommended that
implementations include debugging support to detect misuse when
<code>NDEBUG</code> is not defined.</para>
<para>Like all
<link linkend="thread.concepts.read-write-mutex-models">read/write mutex models</link>
in &Boost.Thread;, <classname>timed_read_write_mutex</classname> has two types of
<link linkend="thread.concepts.read-write-scheduling-policies">scheduling policies</link>, an
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
between threads trying to obtain different types of locks and an
<link linkend="thread.concepts.read-write-scheduling-policies.intra-class">intra-class sheduling policy</link>
between threads trying to obtain the same type of lock.
The <classname>timed_read_write_mutex</classname> class allows the
programmer to choose what
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class sheduling policy</link>
will be used; however, like all read/write mutex models,
<classname>timed_read_write_mutex</classname> leaves the
<link linkend="thread.concepts.read-write-scheduling-policies.intra-class">intra-class sheduling policy</link> as
<link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
</para>
<note>Self-deadlock is virtually guaranteed if a thread tries to
lock the same <classname>timed_read_write_mutex</classname> multiple times
unless all locks are read-locks (but see below)</note>
</description>
<typedef name="scoped_read_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_read_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_timed_read_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_read_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_read_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_timed_read_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_timed_write_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<parameter name="count">
<paramtype>boost::read_write_scheduling_policy</paramtype>
</parameter>
<effects>Constructs a <classname>timed_read_write_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>timed_read_write_mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
</namespace>
</header>

View File

@@ -1,306 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/recursive_mutex.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="recursive_mutex">
<purpose>
<para>The <classname>recursive_mutex</classname> class is a model of the
<link linkend="thread.concepts.Mutex">Mutex</link> concept.</para>
</purpose>
<description>
<para>The <classname>recursive_mutex</classname> class is a model of the
<link linkend="thread.concepts.Mutex">Mutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>recursive_try_mutex</classname> and <classname>recursive_timed_mutex</classname>.</para>
<para>For <link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking mechanics, see <classname>mutex</classname>,
<classname>try_mutex</classname>, and <classname>timed_mutex</classname>.
</para>
<para>The <classname>recursive_mutex</classname> class supplies the following typedef,
which models the specified locking strategy:
<table>
<title>Supported Lock Types</title>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
</tbody>
</tgroup>
</table>
</para>
<para>The <classname>recursive_mutex</classname> class uses a
<link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking strategy, so attempts to recursively lock a
<classname>recursive_mutex</classname> object
succeed and an internal "lock count" is maintained.
Attempts to unlock a <classname>recursive_mutex</classname> object
by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.</para>
<para>Like all
<link linkend="thread.concepts.mutex-models">mutex models</link>
in &Boost.Thread;, <classname>recursive_mutex</classname> leaves the
<link linkend="thread.concepts.sheduling-policies">scheduling policy</link>
as <link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
Programmers should make no assumptions about the order in which
waiting threads acquire a lock.</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<effects>Constructs a <classname>recursive_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>recursive_mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
<class name="recursive_try_mutex">
<purpose>
<para>The <classname>recursive_try_mutex</classname> class is a model of the
<link linkend="thread.concepts.TryMutex">TryMutex</link> concept.</para>
</purpose>
<description>
<para>The <classname>recursive_try_mutex</classname> class is a model of the
<link linkend="thread.concepts.TryMutex">TryMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>recursive_mutex</classname> and <classname>recursive_timed_mutex</classname>.</para>
<para>For <link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking mechanics, see <classname>mutex</classname>,
<classname>try_mutex</classname>, and <classname>timed_mutex</classname>.
</para>
<para>The <classname>recursive_try_mutex</classname> class supplies the following typedefs,
which model the specified locking strategies:
<table>
<title>Supported Lock Types</title>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
</tbody>
</tgroup>
</table>
</para>
<para>The <classname>recursive_try_mutex</classname> class uses a
<link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking strategy, so attempts to recursively lock a
<classname>recursive_try_mutex</classname> object
succeed and an internal "lock count" is maintained.
Attempts to unlock a <classname>recursive_mutex</classname> object
by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.</para>
<para>Like all
<link linkend="thread.concepts.mutex-models">mutex models</link>
in &Boost.Thread;, <classname>recursive_try_mutex</classname> leaves the
<link linkend="thread.concepts.sheduling-policies">scheduling policy</link>
as <link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
Programmers should make no assumptions about the order in which
waiting threads acquire a lock.</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<effects>Constructs a <classname>recursive_try_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>recursive_try_mutex</classname> object.
</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
<class name="recursive_timed_mutex">
<purpose>
<para>The <classname>recursive_timed_mutex</classname> class is a model of the
<link linkend="thread.concepts.TimedMutex">TimedMutex</link> concept.</para>
</purpose>
<description>
<para>The <classname>recursive_timed_mutex</classname> class is a model of the
<link linkend="thread.concepts.TimedMutex">TimedMutex</link> concept.
It should be used to synchronize access to shared resources using
<link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking mechanics.</para>
<para>For classes that model related mutex concepts, see
<classname>recursive_mutex</classname> and <classname>recursive_try_mutex</classname>.</para>
<para>For <link linkend="thread.concepts.unspecified-locking-strategy">Unspecified</link>
locking mechanics, see <classname>mutex</classname>,
<classname>try_mutex</classname>, and <classname>timed_mutex</classname>.
</para>
<para>The <classname>recursive_timed_mutex</classname> class supplies the following typedefs,
which model the specified locking strategies:
<table>
<title>Supported Lock Types</title>
<tgroup cols="2" align="left">
<thead>
<row>
<entry>Lock Name</entry>
<entry>Lock Concept</entry>
</row>
</thead>
<tbody>
<row>
<entry>scoped_lock</entry>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
</row>
<row>
<entry>scoped_try_lock</entry>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
</row>
<row>
<entry>scoped_timed_lock</entry>
<entry><link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link></entry>
</row>
</tbody>
</tgroup>
</table>
</para>
<para>The <classname>recursive_timed_mutex</classname> class uses a
<link linkend="thread.concepts.recursive-locking-strategy">Recursive</link>
locking strategy, so attempts to recursively lock a
<classname>recursive_timed_mutex</classname> object
succeed and an internal "lock count" is maintained.
Attempts to unlock a <classname>recursive_mutex</classname> object
by threads that don't own a lock on it result in
<emphasis role="bold">undefined behavior</emphasis>.</para>
<para>Like all
<link linkend="thread.concepts.mutex-models">mutex models</link>
in &Boost.Thread;, <classname>recursive_timed_mutex</classname> leaves the
<link linkend="thread.concepts.sheduling-policies">scheduling policy</link>
as <link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>.
Programmers should make no assumptions about the order in which
waiting threads acquire a lock.</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<typedef name="scoped_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_try_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<typedef name="scoped_timed_lock">
<type><emphasis>implementation-defined</emphasis></type>
</typedef>
<constructor>
<effects>Constructs a <classname>recursive_timed_mutex</classname> object.
</effects>
<postconditions><code>*this</code> is in an unlocked state.
</postconditions>
</constructor>
<destructor>
<effects>Destroys a <classname>recursive_timed_mutex</classname> object.</effects>
<requires><code>*this</code> is in an unlocked state.</requires>
<notes><emphasis role="bold">Danger:</emphasis> Destruction of a
locked mutex is a serious programming error resulting in undefined
behavior such as a program crash.</notes>
</destructor>
</class>
</namespace>
</header>

View File

@@ -1,30 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<library-reference id="thread.reference"
last-revision="$Date$"
xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="barrier-ref.xml"/>
<xi:include href="condition-ref.xml"/>
<xi:include href="exceptions-ref.xml"/>
<xi:include href="mutex-ref.xml"/>
<xi:include href="once-ref.xml"/>
<xi:include href="recursive_mutex-ref.xml"/>
<!--
The read_write_mutex is held back from release, since the
implementation suffers from a serious, yet unresolved bug.
The implementation is likely to appear in a reworked
form in the next release.
-->
<xi:include href="read_write_mutex-ref.xml"/>
<xi:include href="thread-ref.xml"/>
<xi:include href="tss-ref.xml"/>
<xi:include href="xtime-ref.xml"/>
</library-reference>

View File

@@ -1,204 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.release_notes" last-revision="$Date$">
<title>Release Notes</title>
<section id="thread.release_notes.boost_1_34_0">
<title>Boost 1.34.0</title>
<section id="thread.release_notes.boost_1_34_0.change_log.maintainance">
<title>New team of maintainers</title>
<para>
Since the original author William E. Kempf no longer is available to
maintain the &Boost.Thread; library, a new team has been formed
in an attempt to continue the work on &Boost.Thread;.
Fortunately William E. Kempf has given
<ulink url="http://lists.boost.org/Archives/boost/2006/09/110143.php">
permission </ulink>
to use his work under the boost license.
</para>
<para>
The team currently consists of
<itemizedlist>
<listitem>
Anthony Williams, for the Win32 platform,
</listitem>
<listitem>
Roland Schwarz, for the linux platform, and various "housekeeping" tasks.
</listitem>
</itemizedlist>
Volunteers for other platforms are welcome!
</para>
<para>
As the &Boost.Thread; was kind of orphaned over the last release, this release
attempts to fix the known bugs. Upcoming releases will bring in new things.
</para>
</section>
<section id="thread.release_notes.boost_1_34_0.change_log.read_write_mutex">
<title>read_write_mutex still broken</title>
<para>
<note>
It has been decided not to release the Read/Write Mutex, since the current
implementation suffers from a serious bug. The documentation of the concepts
has been included though, giving the interested reader an opportunity to study the
original concepts. Please refer to the following links if you are interested
which problems led to the decision to held back this mutex type.The issue
has been discovered before 1.33 was released and the code has
been omitted from that release. A reworked mutex is expected to appear in 1.35.
Also see:
<ulink url="http://lists.boost.org/Archives/boost/2005/08/92307.php">
read_write_mutex bug</ulink>
and
<ulink url="http://lists.boost.org/Archives/boost/2005/09/93180.php">
read_write_mutex fundamentally broken in 1.33</ulink>
</note>
</para>
</section>
</section>
<section id="thread.release_notes.boost_1_32_0">
<title>Boost 1.32.0</title>
<section id="thread.release_notes.boost_1_32_0.change_log.documentation">
<title>Documentation converted to BoostBook</title>
<para>The documentation was converted to BoostBook format,
and a number of errors and inconsistencies were
fixed in the process.
Since this was a fairly large task, there are likely to be
more errors and inconsistencies remaining. If you find any,
please report them!</para>
</section>
<section id="thread.release_notes.boost_1_32_0.change_log.static_link">
<title>Statically-link build option added</title>
<para>The option to link &Boost.Thread; as a static
library has been added (with some limitations on Win32 platforms).
This feature was originally removed from an earlier version
of Boost because <classname>boost::thread_specific_ptr</classname>
required that &Boost.Thread; be dynamically linked in order
for its cleanup functionality to work on Win32 platforms.
Because this limitation never applied to non-Win32 platforms,
because significant progress has been made in removing
the limitation on Win32 platforms (many thanks to
Aaron LaFramboise and Roland Scwarz!), and because the lack
of static linking is one of the most common complaints of
&Boost.Thread; users, this decision was reversed.</para>
<para>On non-Win32 platforms:
To choose the dynamically linked version of &Boost.Thread;
using Boost's auto-linking feature, #define BOOST_THREAD_USE_DLL;
to choose the statically linked version,
#define BOOST_THREAD_USE_LIB.
If neither symbols is #defined, the default will be chosen.
Currently the default is the statically linked version.</para>
<para>On Win32 platforms using VC++:
Use the same #defines as for non-Win32 platforms
(BOOST_THREAD_USE_DLL and BOOST_THREAD_USE_LIB).
If neither is #defined, the default will be chosen.
Currently the default is the statically linked version
if the VC++ run-time library is set to
"Multi-threaded" or "Multi-threaded Debug", and
the dynamically linked version
if the VC++ run-time library is set to
"Multi-threaded DLL" or "Multi-threaded Debug DLL".</para>
<para>On Win32 platforms using compilers other than VC++:
Use the same #defines as for non-Win32 platforms
(BOOST_THREAD_USE_DLL and BOOST_THREAD_USE_LIB).
If neither is #defined, the default will be chosen.
Currently the default is the dynamically linked version
because it has not yet been possible to implement automatic
tss cleanup in the statically linked version for compilers
other than VC++, although it is hoped that this will be
possible in a future version of &Boost.Thread;.
Note for advanced users: &Boost.Thread; provides several "hook"
functions to allow users to experiment with the statically
linked version on Win32 with compilers other than VC++.
These functions are on_process_enter(), on_process_exit(),
on_thread_enter(), and on_thread_exit(), and are defined
in tls_hooks.cpp. See the comments in that file for more
information.</para>
</section>
<section id="thread.release_notes.boost_1_32_0.change_log.barrier">
<title>Barrier functionality added</title>
<para>A new class, <classname>boost::barrier</classname>, was added.</para>
</section>
<section id="thread.release_notes.boost_1_32_0.change_log.read_write_mutex">
<title>Read/write mutex functionality added</title>
<para>New classes,
<classname>boost::read_write_mutex</classname>,
<classname>boost::try_read_write_mutex</classname>, and
<classname>boost::timed_read_write_mutex</classname>
were added.
<note>Since the read/write mutex and related classes are new,
both interface and implementation are liable to change
in future releases of &Boost.Thread;.
The lock concepts and lock promotion in particular are
still under discussion and very likely to change.</note>
</para>
</section>
<section id="thread.release_notes.boost_1_32_0.change_log.thread_specific_ptr">
<title>Thread-specific pointer functionality changed</title>
<para>The <classname>boost::thread_specific_ptr</classname>
constructor now takes an optional pointer to a cleanup function that
is called to release the thread-specific data that is being pointed
to by <classname>boost::thread_specific_ptr</classname> objects.</para>
<para>Fixed: the number of available thread-specific storage "slots"
is too small on some platforms.</para>
<para>Fixed: <functionname>thread_specific_ptr::reset()</functionname>
doesn't check error returned by <functionname>tss::set()</functionname>
(the <functionname>tss::set()</functionname> function now throws
if it fails instead of returning an error code).</para>
<para>Fixed: calling
<functionname>boost::thread_specific_ptr::reset()</functionname> or
<functionname>boost::thread_specific_ptr::release()</functionname>
causes double-delete: once when
<functionname>boost::thread_specific_ptr::reset()</functionname> or
<functionname>boost::thread_specific_ptr::release()</functionname>
is called and once when
<functionname>boost::thread_specific_ptr::~thread_specific_ptr()</functionname>
is called.</para>
</section>
<section id="thread.release_notes.boost_1_32_0.change_log.mutex">
<title>Mutex implementation changed for Win32</title>
<para>On Win32, <classname>boost::mutex</classname>,
<classname>boost::try_mutex</classname>, <classname>boost::recursive_mutex</classname>,
and <classname>boost::recursive_try_mutex</classname> now use a Win32 critical section
whenever possible; otherwise they use a Win32 mutex. As before,
<classname>boost::timed_mutex</classname> and
<classname>boost::recursive_timed_mutex</classname> use a Win32 mutex.</para>
</section>
<section id="thread.release_notes.boost_1_32_0.change_log.wince">
<title>Windows CE support improved</title>
<para>Minor changes were made to make Boost.Thread work on Windows CE.</para>
</section>
</section>
</section>

View File

@@ -1,270 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/thread.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="thread">
<purpose>
<para>The <classname>thread</classname> class represents threads of
execution, and provides the functionality to create and manage
threads within the &Boost.Thread; library. See
<xref linkend="thread.glossary"/> for a precise description of
<link linkend="thread.glossary.thread">thread of execution</link>,
and for definitions of threading-related terms and of thread states such as
<link linkend="thread.glossary.thread-state">blocked</link>.</para>
</purpose>
<description>
<para>A <link linkend="thread.glossary.thread">thread of execution</link>
has an initial function. For the program's initial thread, the initial
function is <code>main()</code>. For other threads, the initial
function is <code>operator()</code> of the function object passed to
the <classname>thread</classname> object's constructor.</para>
<para>A thread of execution is said to be &quot;finished&quot;
or to have &quot;finished execution&quot; when its initial function returns or
is terminated. This includes completion of all thread cleanup
handlers, and completion of the normal C++ function return behaviors,
such as destruction of automatic storage (stack) objects and releasing
any associated implementation resources.</para>
<para>A thread object has an associated state which is either
&quot;joinable&quot; or &quot;non-joinable&quot;.</para>
<para>Except as described below, the policy used by an implementation
of &Boost.Thread; to schedule transitions between thread states is
unspecified.</para>
<para><note>Just as the lifetime of a file may be different from the
lifetime of an <code>iostream</code> object which represents the file, the lifetime
of a thread of execution may be different from the
<classname>thread</classname> object which represents the thread of
execution. In particular, after a call to <code>join()</code>,
the thread of execution will no longer exist even though the
<classname>thread</classname> object continues to exist until the
end of its normal lifetime. The converse is also possible; if
a <classname>thread</classname> object is destroyed without
<code>join()</code> first having been called, the thread of execution
continues until its initial function completes.</note></para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<constructor>
<effects>Constructs a <classname>thread</classname> object
representing the current thread of execution.</effects>
<postconditions><code>*this</code> is non-joinable.</postconditions>
<notes><emphasis role="bold">Danger:</emphasis>
<code>*this</code> is valid only within the current thread.</notes>
</constructor>
<constructor specifiers="explicit">
<parameter name="threadfunc">
<paramtype>const boost::function0&lt;void&gt;&amp;</paramtype>
</parameter>
<effects>
Starts a new thread of execution and constructs a
<classname>thread</classname> object representing it.
Copies <code>threadfunc</code> (which in turn copies
the function object wrapped by <code>threadfunc</code>)
to an internal location which persists for the lifetime
of the new thread of execution. Calls <code>operator()</code>
on the copy of the <code>threadfunc</code> function object
in the new thread of execution.
</effects>
<postconditions><code>*this</code> is joinable.</postconditions>
<throws><code>boost::thread_resource_error</code> if a new thread
of execution cannot be started.</throws>
</constructor>
<destructor>
<effects>Destroys <code>*this</code>. The actual thread of
execution may continue to execute after the
<classname>thread</classname> object has been destroyed.
</effects>
<notes>If <code>*this</code> is joinable the actual thread
of execution becomes &quot;detached&quot;. Any resources used
by the thread will be reclaimed when the thread of execution
completes. To ensure such a thread of execution runs to completion
before the <classname>thread</classname> object is destroyed, call
<code>join()</code>.</notes>
</destructor>
<method-group name="comparison">
<method name="operator==" cv="const">
<type>bool</type>
<parameter name="rhs">
<type>const thread&amp;</type>
</parameter>
<requires>The thread is non-terminated or <code>*this</code>
is joinable.</requires>
<returns><code>true</code> if <code>*this</code> and
<code>rhs</code> represent the same thread of
execution.</returns>
</method>
<method name="operator!=" cv="const">
<type>bool</type>
<parameter name="rhs">
<type>const thread&amp;</type>
</parameter>
<requires>The thread is non-terminated or <code>*this</code>
is joinable.</requires>
<returns><code>!(*this==rhs)</code>.</returns>
</method>
</method-group>
<method-group name="modifier">
<method name="join">
<type>void</type>
<requires><code>*this</code> is joinable.</requires>
<effects>The current thread of execution blocks until the
initial function of the thread of execution represented by
<code>*this</code> finishes and all resources are
reclaimed.</effects>
<postcondition><code>*this</code> is non-joinable.</postcondition>
<notes>If <code>*this == thread()</code> the result is
implementation-defined. If the implementation doesn't
detect this the result will be
<link linkend="thread.glossary.deadlock">deadlock</link>.
</notes>
</method>
</method-group>
<method-group name="static">
<method name="sleep" specifiers="static">
<type>void</type>
<parameter name="xt">
<paramtype>const <classname>xtime</classname>&amp;</paramtype>
</parameter>
<effects>The current thread of execution blocks until
<code>xt</code> is reached.</effects>
</method>
<method name="yield" specifiers="static">
<type>void</type>
<effects>The current thread of execution is placed in the
<link linkend="thread.glossary.thread-state">ready</link>
state.</effects>
<notes>
<simpara>Allow the current thread to give up the rest of its
time slice (or other scheduling quota) to another thread.
Particularly useful in non-preemptive implementations.</simpara>
</notes>
</method>
</method-group>
</class>
<class name="thread_group">
<purpose>
The <classname>thread_group</classname> class provides a container
for easy grouping of threads to simplify several common thread
creation and management idioms.
</purpose>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<constructor>
<effects>Constructs an empty <classname>thread_group</classname>
container.</effects>
</constructor>
<destructor>
<effects>Destroys each contained thread object. Destroys <code>*this</code>.</effects>
<notes>Behavior is undefined if another thread references
<code>*this </code> during the execution of the destructor.
</notes>
</destructor>
<method-group name="modifier">
<method name="create_thread">
<type><classname>thread</classname>*</type>
<parameter name="threadfunc">
<paramtype>const boost::function0&lt;void&gt;&amp;</paramtype>
</parameter>
<effects>Creates a new <classname>thread</classname> object
that executes <code>threadfunc</code> and adds it to the
<code>thread_group</code> container object's list of managed
<classname>thread</classname> objects.</effects>
<returns>Pointer to the newly created
<classname>thread</classname> object.</returns>
</method>
<method name="add_thread">
<type>void</type>
<parameter name="thrd">
<paramtype><classname>thread</classname>*</paramtype>
</parameter>
<effects>Adds <code>thrd</code> to the
<classname>thread_group</classname> object's list of managed
<classname>thread</classname> objects. The <code>thrd</code>
object must have been allocated via <code>operator new</code> and will
be deleted when the group is destroyed.</effects>
</method>
<method name="remove_thread">
<type>void</type>
<parameter name="thrd">
<paramtype><classname>thread</classname>*</paramtype>
</parameter>
<effects>Removes <code>thread</code> from <code>*this</code>'s
list of managed <classname>thread</classname> objects.</effects>
<throws><emphasis role="bold">???</emphasis> if
<code>thrd</code> is not in <code>*this</code>'s list
of managed <classname>thread</classname> objects.</throws>
</method>
<method name="join_all">
<type>void</type>
<effects>Calls <code>join()</code> on each of the managed
<classname>thread</classname> objects.</effects>
</method>
</method-group>
</class>
</namespace>
</header>

View File

@@ -158,6 +158,7 @@
[include condition_variables.qbk]
[include once.qbk]
[include barrier.qbk]
[include futures.qbk]
[endsect]
[include tss.qbk]

View File

@@ -1,48 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<library name="Thread" dirname="thread" id="thread"
last-revision="$Date$"
xmlns:xi="http://www.w3.org/2001/XInclude">
<libraryinfo>
<author>
<firstname>William</firstname>
<othername>E.</othername>
<surname>Kempf</surname>
</author>
<copyright>
<year>2001</year>
<year>2002</year>
<year>2003</year>
<holder>William E. Kempf</holder>
</copyright>
<legalnotice>
<para>Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)</para>
</legalnotice>
<librarypurpose>Portable C++ multi-threading</librarypurpose>
<librarycategory name="category:concurrent" />
<title>Boost.Thread</title>
</libraryinfo>
<title>Boost.Thread</title>
<xi:include href="overview.xml"/>
<xi:include href="design.xml"/>
<xi:include href="concepts.xml"/>
<xi:include href="rationale.xml"/>
<xi:include href="reference.xml"/>
<xi:include href="faq.xml"/>
<xi:include href="configuration.xml"/>
<xi:include href="build.xml"/>
<xi:include href="implementation_notes.xml"/>
<xi:include href="release_notes.xml"/>
<xi:include href="glossary.xml"/>
<xi:include href="acknowledgements.xml"/>
<xi:include href="bibliography.xml"/>
</library>

View File

@@ -219,6 +219,7 @@ __thread_id__ yield a total order for every non-equal thread ID.
};
void swap(thread& lhs,thread& rhs);
detail::thread_move_t<thread> move(detail::thread_move_t<thread> t);
[section:default_constructor Default Constructor]
@@ -234,6 +235,40 @@ __thread_id__ yield a total order for every non-equal thread ID.
[endsect]
[section:move_constructor Move Constructor]
thread(detail::thread_move_t<thread> other);
[variablelist
[[Effects:] [Transfers ownership of the thread managed by `other` (if any) to the newly constructed __thread__ instance.]]
[[Postconditions:] [`other->get_id()==thread::id()`]]
[[Throws:] [Nothing]]
]
[endsect]
[section:move_assignment Move assignment operator]
thread& operator=(detail::thread_move_t<thread> other);
[variablelist
[[Effects:] [Transfers ownership of the thread managed by `other` (if
any) to `*this`. If there was a thread previously associated with
`*this` then that thread is detached.]]
[[Postconditions:] [`other->get_id()==thread::id()`]]
[[Throws:] [Nothing]]
]
[endsect]
[section:callable_constructor Thread Constructor]
template<typename Callable>
@@ -521,6 +556,26 @@ value as `this->get_id()` prior to the call.]]
[endsect]
[section:non_member_move Non-member function `move()`]
#include <boost/thread/thread.hpp>
detail::thread_move_t<thread> move(detail::thread_move_t<thread> t)
[variablelist
[[Returns:] [`t`.]]
]
Enables moving thread objects. e.g.
extern void some_func();
boost::thread t(some_func);
boost::thread t2(boost::move(t)); // transfer thread from t to t2
[endsect]
[section:id Class `boost::thread::id`]
@@ -756,11 +811,14 @@ instances of __thread_id__ `a` and `b` is the same if `a==b`, and different if `
{
template<typename TimeDuration>
void sleep(TimeDuration const& rel_time);
void sleep(system_time const& abs_time)
}
[variablelist
[[Effects:] [Suspends the current thread until the specified time has elapsed.]]
[[Effects:] [Suspends the current thread until the time period
specified by `rel_time` has elapsed or the time point specified by
`abs_time` has been reached.]]
[[Throws:] [__thread_interrupted__ if the current thread of execution is interrupted.]]
@@ -916,6 +974,13 @@ exits (even if the thread has been interrupted).]]
[[Throws:] [`std::bad_alloc` if memory cannot be allocated for the copy of the function, __thread_resource_error__ if any other
error occurs within the thread library. Any exception thrown whilst copying `func` into internal storage.]]
[[Note:] [This function is *not* called if the thread was terminated
forcefully using platform-specific APIs, or if the thread is
terminated due to a call to `exit()`, `abort()` or
`std::terminate()`. In particular, returning from `main()` is
equivalent to call to `exit()`, so will not call any functions
registered with `at_thread_exit()`]]
]
[endsect]

View File

@@ -1,206 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/tss.hpp"
last-revision="$Date$">
<namespace name="boost">
<class name="thread_specific_ptr">
<purpose>
The <classname>thread_specific_ptr</classname> class defines
an interface for using thread specific storage.
</purpose>
<description>
<para>Thread specific storage is data associated with
individual threads and is often used to make operations
that rely on global data
<link linkend="thread.glossary.thread-safe">thread-safe</link>.
</para>
<para>Template <classname>thread_specific_ptr</classname>
stores a pointer to an object obtained on a thread-by-thread
basis and calls a specified cleanup handler on the contained
pointer when the thread terminates. The cleanup handlers are
called in the reverse order of construction of the
<classname>thread_specific_ptr</classname>s, and for the
initial thread are called by the destructor, providing the
same ordering guarantees as for normal declarations. Each
thread initially stores the null pointer in each
<classname>thread_specific_ptr</classname> instance.</para>
<para>The template <classname>thread_specific_ptr</classname>
is useful in the following cases:
<itemizedlist>
<listitem>An interface was originally written assuming
a single thread of control and it is being ported to a
multithreaded environment.</listitem>
<listitem>Each thread of control invokes sequences of
methods that share data that are physically unique
for each thread, but must be logically accessed
through a globally visible access point instead of
being explicitly passed.</listitem>
</itemizedlist>
</para>
</description>
<inherit access="private">
<type><classname>boost::noncopyable</classname></type>
<purpose>Exposition only</purpose>
</inherit>
<constructor>
<requires>The expression <code>delete get()</code> is well
formed.</requires>
<effects>A thread-specific data key is allocated and visible to
all threads in the process. Upon creation, the value
<code>NULL</code> will be associated with the new key in all
active threads. A cleanup method is registered with the key
that will call <code>delete</code> on the value associated
with the key for a thread when it exits. When a thread exits,
if a key has a registered cleanup method and the thread has a
non-<code>NULL</code> value associated with that key, the value
of the key is set to <code>NULL</code> and then the cleanup
method is called with the previously associated value as its
sole argument. The order in which registered cleanup methods
are called when a thread exits is undefined. If after all the
cleanup methods have been called for all non-<code>NULL</code>
values, there are still some non-<code>NULL</code> values
with associated cleanup handlers the result is undefined
behavior.</effects>
<throws><classname>boost::thread_resource_error</classname> if
the necessary resources can not be obtained.</throws>
<notes>There may be an implementation specific limit to the
number of thread specific storage objects that can be created,
and this limit may be small.</notes>
<rationale>The most common need for cleanup will be to call
<code>delete</code> on the associated value. If other forms
of cleanup are required the overloaded constructor should be
called instead.</rationale>
</constructor>
<constructor>
<parameter name="cleanup">
<paramtype>void (*cleanup)(void*)</paramtype>
</parameter>
<effects>A thread-specific data key is allocated and visible to
all threads in the process. Upon creation, the value
<code>NULL</code> will be associated with the new key in all
active threads. The <code>cleanup</code> method is registered
with the key and will be called for a thread with the value
associated with the key for that thread when it exits. When a
thread exits, if a key has a registered cleanup method and the
thread has a non-<code>NULL</code> value associated with that
key, the value of the key is set to <code>NULL</code> and then
the cleanup method is called with the previously associated
value as its sole argument. The order in which registered
cleanup methods are called when a thread exits is undefined.
If after all the cleanup methods have been called for all
non-<code>NULL</code> values, there are still some
non-<code>NULL</code> values with associated cleanup handlers
the result is undefined behavior.</effects>
<throws><classname>boost::thread_resource_error</classname> if
the necessary resources can not be obtained.</throws>
<notes>There may be an implementation specific limit to the
number of thread specific storage objects that can be created,
and this limit may be small.</notes>
<rationale>There is the occasional need to register
specialized cleanup methods, or to register no cleanup method
at all (done by passing <code>NULL</code> to this constructor.
</rationale>
</constructor>
<destructor>
<effects>Deletes the thread-specific data key allocated by the
constructor. The thread-specific data values associated with
the key need not be <code>NULL</code>. It is the responsibility
of the application to perform any cleanup actions for data
associated with the key.</effects>
<notes>Does not destroy any data that may be stored in any
thread's thread specific storage. For this reason you should
not destroy a <classname>thread_specific_ptr</classname> object
until you are certain there are no threads running that have
made use of its thread specific storage.</notes>
<rationale>Associated data is not cleaned up because registered
cleanup methods need to be run in the thread that allocated the
associated data to be guarranteed to work correctly. There's no
safe way to inject the call into another thread's execution
path, making it impossible to call the cleanup methods safely.
</rationale>
</destructor>
<method-group name="modifier functions">
<method name="release">
<type>T*</type>
<postconditions><code>*this</code> holds the null pointer
for the current thread.</postconditions>
<returns><code>this-&gt;get()</code> prior to the call.</returns>
<rationale>This method provides a mechanism for the user to
relinquish control of the data associated with the
thread-specific key.</rationale>
</method>
<method name="reset">
<type>void</type>
<parameter name="p">
<paramtype>T*</paramtype>
<default>0</default>
</parameter>
<effects>If <code>this-&gt;get() != p &amp;&amp;
this-&gt;get() != NULL</code> then call the
associated cleanup function.</effects>
<postconditions><code>*this</code> holds the pointer
<code>p</code> for the current thread.</postconditions>
</method>
</method-group>
<method-group name="observer functions">
<method name="get" cv="const">
<type>T*</type>
<returns>The object stored in thread specific storage for
the current thread for <code>*this</code>.</returns>
<notes>Each thread initially returns 0.</notes>
</method>
<method name="operator-&gt;" cv="const">
<type>T*</type>
<returns><code>this-&gt;get()</code>.</returns>
</method>
<method name="operator*()" cv="const">
<type>T&amp;</type>
<requires><code>this-&gt;get() != 0</code></requires>
<returns><code>this-&gt;get()</code>.</returns>
</method>
</method-group>
</class>
</namespace>
</header>

View File

@@ -1,82 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<header name="boost/thread/xtime.hpp"
last-revision="$Date$">
<namespace name="boost">
<enum name="xtime_clock_types">
<enumvalue name="TIME_UTC" />
<purpose>
<para>Specifies the clock type to use when creating
an object of type <classname>xtime</classname>.</para>
</purpose>
<description>
<para>The only clock type supported by &Boost.Thread; is
<code>TIME_UTC</code>. The epoch for <code>TIME_UTC</code>
is 1970-01-01 00:00:00.</para>
</description>
</enum>
<struct name="xtime">
<purpose>
<simpara>An object of type <classname>xtime</classname>
defines a time that is used to perform high-resolution time operations.
This is a temporary solution that will be replaced by a more robust time
library once available in Boost.</simpara>
</purpose>
<description>
<simpara>The <classname>xtime</classname> type is used to represent a point on
some time scale or a duration in time. This type may be proposed for the C standard by
Markus Kuhn. &Boost.Thread; provides only a very minimal implementation of this
proposal; it is expected that a full implementation (or some other time
library) will be provided in Boost as a separate library, at which time &Boost.Thread;
will deprecate its own implementation.</simpara>
<simpara><emphasis role="bold">Note</emphasis> that the resolution is
implementation specific. For many implementations the best resolution
of time is far more than one nanosecond, and even when the resolution
is reasonably good, the latency of a call to <code>xtime_get()</code>
may be significant. For maximum portability, avoid durations of less than
one second.</simpara>
</description>
<free-function-group name="creation">
<function name="xtime_get">
<type>int</type>
<parameter name="xtp">
<paramtype><classname>xtime</classname>*</paramtype>
</parameter>
<parameter name="clock_type">
<paramtype>int</paramtype>
</parameter>
<postconditions>
<simpara><code>xtp</code> represents the current point in
time as a duration since the epoch specified by
<code>clock_type</code>.</simpara>
</postconditions>
<returns>
<simpara><code>clock_type</code> if successful, otherwise 0.</simpara>
</returns>
</function>
</free-function-group>
<data-member name="sec">
<type><emphasis>platform-specific-type</emphasis></type>
</data-member>
</struct>
</namespace>
</header>

View File

@@ -1,2 +0,0 @@
bin
*.pdb

View File

@@ -50,8 +50,9 @@ boost::mutex io_mutex;
void sender() {
int n = 0;
while (n < 100) {
while (n < 1000000) {
buf.send(n);
if(!(n%10000))
{
boost::mutex::scoped_lock io_lock(io_mutex);
std::cout << "sent: " << n << std::endl;
@@ -65,18 +66,24 @@ void receiver() {
int n;
do {
n = buf.receive();
if(!(n%10000))
{
boost::mutex::scoped_lock io_lock(io_mutex);
std::cout << "received: " << n << std::endl;
}
} while (n != -1); // -1 indicates end of buffer
buf.send(-1);
}
int main(int, char*[])
{
boost::thread thrd1(&sender);
boost::thread thrd2(&receiver);
boost::thread thrd3(&receiver);
boost::thread thrd4(&receiver);
thrd1.join();
thrd2.join();
thrd3.join();
thrd4.join();
return 0;
}

View File

@@ -112,7 +112,7 @@ int main(int argc, char* argv[])
std::cout << "---Noise ON..." << std::endl;
}
for (int i = 0; i < 1000000; ++i)
for (int i = 0; i < 1000000000; ++i)
cond.notify_all();
{

View File

@@ -1,6 +1,6 @@
// Copyright (C) 2001-2003
// William E. Kempf
// (C) Copyright 2008 Anthony Williams
// (C) Copyright 2008-9 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -21,5 +21,6 @@
#include <boost/thread/locks.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/thread/future.hpp>
#endif

View File

@@ -9,6 +9,7 @@
#define BOOST_BARRIER_JDM030602_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
@@ -27,7 +28,7 @@ namespace boost
: m_threshold(count), m_count(count), m_generation(0)
{
if (count == 0)
throw std::invalid_argument("count cannot be zero.");
boost::throw_exception(std::invalid_argument("count cannot be zero."));
}
bool wait()

View File

@@ -19,8 +19,14 @@
#include "platform.hpp"
// provided for backwards compatibility, since this
// macro was used for several releases by mistake.
#if defined(BOOST_THREAD_DYN_DLL)
# define BOOST_THREAD_DYN_LINK
#endif
// compatibility with the rest of Boost's auto-linking code:
#if defined(BOOST_THREAD_DYN_DLL) || defined(BOOST_ALL_DYN_LINK)
#if defined(BOOST_THREAD_DYN_LINK) || defined(BOOST_ALL_DYN_LINK)
# undef BOOST_THREAD_USE_LIB
# define BOOST_THREAD_USE_DLL
#endif

View File

@@ -1,209 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_XLOCK_WEK070601_HPP
#define BOOST_XLOCK_WEK070601_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/utility.hpp>
#include <boost/thread/exceptions.hpp>
namespace boost {
class condition;
struct xtime;
namespace detail { namespace thread {
template <typename Mutex>
class lock_ops : private noncopyable
{
private:
lock_ops() { }
public:
typedef typename Mutex::cv_state lock_state;
static void lock(Mutex& m)
{
m.do_lock();
}
static bool trylock(Mutex& m)
{
return m.do_trylock();
}
static bool timedlock(Mutex& m, const xtime& xt)
{
return m.do_timedlock(xt);
}
static void unlock(Mutex& m)
{
m.do_unlock();
}
static void lock(Mutex& m, lock_state& state)
{
m.do_lock(state);
}
static void unlock(Mutex& m, lock_state& state)
{
m.do_unlock(state);
}
};
template <typename Mutex>
class scoped_lock : private noncopyable
{
public:
typedef Mutex mutex_type;
explicit scoped_lock(Mutex& mx, bool initially_locked=true)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<Mutex>::lock(m_mutex);
m_locked = true;
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<Mutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
Mutex& m_mutex;
bool m_locked;
};
template <typename TryMutex>
class scoped_try_lock : private noncopyable
{
public:
typedef TryMutex mutex_type;
explicit scoped_try_lock(TryMutex& mx)
: m_mutex(mx), m_locked(false)
{
try_lock();
}
scoped_try_lock(TryMutex& mx, bool initially_locked)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_try_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<TryMutex>::lock(m_mutex);
m_locked = true;
}
bool try_lock()
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TryMutex>::trylock(m_mutex));
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<TryMutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
TryMutex& m_mutex;
bool m_locked;
};
template <typename TimedMutex>
class scoped_timed_lock : private noncopyable
{
public:
typedef TimedMutex mutex_type;
scoped_timed_lock(TimedMutex& mx, const xtime& xt)
: m_mutex(mx), m_locked(false)
{
timed_lock(xt);
}
scoped_timed_lock(TimedMutex& mx, bool initially_locked)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_timed_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<TimedMutex>::lock(m_mutex);
m_locked = true;
}
bool try_lock()
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TimedMutex>::trylock(m_mutex));
}
bool timed_lock(const xtime& xt)
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TimedMutex>::timedlock(m_mutex, xt));
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<TimedMutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
TimedMutex& m_mutex;
bool m_locked;
};
} // namespace thread
} // namespace detail
} // namespace boost
#endif // BOOST_XLOCK_WEK070601_HPP
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs.
// 30 Jul 01 WEKEMPF Moved lock types into boost::detail::thread. Renamed
// some types. Added locked() methods.

View File

@@ -41,9 +41,9 @@ namespace boost
#ifndef BOOST_NO_SFINAE
template<typename T>
typename enable_if<boost::is_convertible<T&,detail::thread_move_t<T> >, T >::type move(T& t)
typename enable_if<boost::is_convertible<T&,detail::thread_move_t<T> >, detail::thread_move_t<T> >::type move(T& t)
{
return T(detail::thread_move_t<T>(t));
return detail::thread_move_t<T>(t);
}
#endif

View File

@@ -29,7 +29,7 @@
# define BOOST_THREAD_HPUX
#elif defined(__CYGWIN__)
# define BOOST_THREAD_CYGWIN
#elif defined(_WIN32) || defined(__WIN32__) || defined(WIN32)
#elif (defined(_WIN32) || defined(__WIN32__) || defined(WIN32)) && !defined(BOOST_DISABLE_WIN32)
# define BOOST_THREAD_WIN32
#elif defined(__BEOS__)
# define BOOST_THREAD_BEOS

File diff suppressed because it is too large Load Diff

View File

@@ -3,10 +3,12 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007-10 Anthony Williams
#include <boost/thread/exceptions.hpp>
#ifndef BOOST_NO_IOSTREAM
#include <ostream>
#endif
#include <boost/thread/detail/move.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/xtime.hpp>
@@ -39,10 +41,13 @@ namespace boost
public detail::thread_data_base
{
public:
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
thread_data(F&& f_):
f(static_cast<F&&>(f_))
{}
thread_data(F& f_):
f(f_)
{}
#else
thread_data(F f_):
f(f_)
@@ -110,16 +115,15 @@ namespace boost
void release_handle();
mutable boost::mutex thread_info_mutex;
detail::thread_data_ptr thread_info;
void start_thread();
explicit thread(detail::thread_data_ptr data);
detail::thread_data_ptr get_thread_info() const;
detail::thread_data_ptr get_thread_info BOOST_PREVENT_MACRO_SUBSTITUTION () const;
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename F>
static inline detail::thread_data_ptr make_thread_info(F&& f)
{
@@ -127,7 +131,7 @@ namespace boost
}
static inline detail::thread_data_ptr make_thread_info(void (*f)())
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<void(*)()> >(f));
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<void(*)()> >(static_cast<void(*&&)()>(f)));
}
#else
template<typename F>
@@ -141,19 +145,31 @@ namespace boost
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<F> >(f));
}
struct dummy;
#endif
struct dummy;
public:
#if BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100)
thread(const volatile thread&);
#endif
thread();
~thread();
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
#ifdef BOOST_MSVC
template <class F>
explicit thread(F f,typename disable_if<boost::is_convertible<F&,detail::thread_move_t<F> >, dummy* >::type=0):
thread_info(make_thread_info(static_cast<F&&>(f)))
{
start_thread();
}
#else
template <class F>
thread(F&& f):
thread_info(make_thread_info(static_cast<F&&>(f)))
{
start_thread();
}
#endif
thread(thread&& other)
{
@@ -201,14 +217,21 @@ namespace boost
thread_info=x->thread_info;
x->thread_info.reset();
}
#if BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100)
thread& operator=(thread x)
{
swap(x);
return *this;
}
#else
thread& operator=(detail::thread_move_t<thread> x)
{
thread new_thread(x);
swap(new_thread);
return *this;
}
#endif
operator detail::thread_move_t<thread>()
{
return move();
@@ -333,41 +356,24 @@ namespace boost
return lhs.swap(rhs);
}
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
inline thread&& move(thread& t)
{
return static_cast<thread&&>(t);
}
inline thread&& move(thread&& t)
{
return t;
return static_cast<thread&&>(t);
}
#else
inline thread move(detail::thread_move_t<thread> t)
inline detail::thread_move_t<thread> move(detail::thread_move_t<thread> t)
{
return thread(t);
return t;
}
#endif
namespace this_thread
{
class BOOST_THREAD_DECL disable_interruption
{
disable_interruption(const disable_interruption&);
disable_interruption& operator=(const disable_interruption&);
bool interruption_was_enabled;
friend class restore_interruption;
public:
disable_interruption();
~disable_interruption();
};
class BOOST_THREAD_DECL restore_interruption
{
restore_interruption(const restore_interruption&);
restore_interruption& operator=(const restore_interruption&);
public:
explicit restore_interruption(disable_interruption& d);
~restore_interruption();
};
thread::id BOOST_THREAD_DECL get_id();
void BOOST_THREAD_DECL interruption_point();
@@ -389,7 +395,7 @@ namespace boost
thread_data(thread_data_)
{}
friend class thread;
friend id this_thread::get_id();
friend id BOOST_THREAD_DECL this_thread::get_id();
public:
id():
thread_data()
@@ -425,6 +431,8 @@ namespace boost
return !(thread_data<y.thread_data);
}
#ifndef BOOST_NO_IOSTREAM
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x)
@@ -438,8 +446,34 @@ namespace boost
return os<<"{Not-any-thread}";
}
}
#else
template<class charT, class traits>
std::basic_ostream<charT, traits>&
print(std::basic_ostream<charT, traits>& os) const
{
if(thread_data)
{
return os<<thread_data;
}
else
{
return os<<"{Not-any-thread}";
}
}
#endif
#endif
};
#if !defined(BOOST_NO_IOSTREAM) && defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template<class charT, class traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const thread::id& x)
{
return x.print(os);
}
#endif
inline bool thread::operator==(const thread& other) const
{
return get_id()==other.get_id();
@@ -456,7 +490,7 @@ namespace boost
{
virtual ~thread_exit_function_base()
{}
virtual void operator()() const=0;
virtual void operator()()=0;
};
template<typename F>
@@ -469,13 +503,13 @@ namespace boost
f(f_)
{}
void operator()() const
void operator()()
{
f();
}
};
void add_thread_exit_function(thread_exit_function_base*);
void BOOST_THREAD_DECL add_thread_exit_function(thread_exit_function_base*);
}
namespace this_thread
@@ -487,83 +521,6 @@ namespace boost
detail::add_thread_exit_function(thread_exit_func);
}
}
class thread_group:
private noncopyable
{
public:
~thread_group()
{
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
delete *it;
}
}
template<typename F>
thread* create_thread(F threadfunc)
{
boost::lock_guard<mutex> guard(m);
std::auto_ptr<thread> new_thread(new thread(threadfunc));
threads.push_back(new_thread.get());
return new_thread.release();
}
void add_thread(thread* thrd)
{
if(thrd)
{
boost::lock_guard<mutex> guard(m);
threads.push_back(thrd);
}
}
void remove_thread(thread* thrd)
{
boost::lock_guard<mutex> guard(m);
std::list<thread*>::iterator const it=std::find(threads.begin(),threads.end(),thrd);
if(it!=threads.end())
{
threads.erase(it);
}
}
void join_all()
{
boost::lock_guard<mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->join();
}
}
void interrupt_all()
{
boost::lock_guard<mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->interrupt();
}
}
size_t size() const
{
boost::lock_guard<mutex> guard(m);
return threads.size();
}
private:
std::list<thread*> threads;
mutable mutex m;
};
}
#ifdef BOOST_MSVC

View File

@@ -0,0 +1,108 @@
#ifndef BOOST_THREAD_DETAIL_THREAD_GROUP_HPP
#define BOOST_THREAD_DETAIL_THREAD_GROUP_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-9 Anthony Williams
#include <list>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4251)
#endif
namespace boost
{
class thread_group
{
private:
thread_group(thread_group const&);
thread_group& operator=(thread_group const&);
public:
thread_group() {}
~thread_group()
{
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
delete *it;
}
}
template<typename F>
thread* create_thread(F threadfunc)
{
boost::lock_guard<shared_mutex> guard(m);
std::auto_ptr<thread> new_thread(new thread(threadfunc));
threads.push_back(new_thread.get());
return new_thread.release();
}
void add_thread(thread* thrd)
{
if(thrd)
{
boost::lock_guard<shared_mutex> guard(m);
threads.push_back(thrd);
}
}
void remove_thread(thread* thrd)
{
boost::lock_guard<shared_mutex> guard(m);
std::list<thread*>::iterator const it=std::find(threads.begin(),threads.end(),thrd);
if(it!=threads.end())
{
threads.erase(it);
}
}
void join_all()
{
boost::shared_lock<shared_mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->join();
}
}
void interrupt_all()
{
boost::shared_lock<shared_mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->interrupt();
}
}
size_t size() const
{
boost::shared_lock<shared_mutex> guard(m);
return threads.size();
}
private:
std::list<thread*> threads;
mutable shared_mutex m;
};
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -0,0 +1,35 @@
#ifndef BOOST_THREAD_DETAIL_THREAD_INTERRUPTION_HPP
#define BOOST_THREAD_DETAIL_THREAD_INTERRUPTION_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-9 Anthony Williams
namespace boost
{
namespace this_thread
{
class BOOST_THREAD_DECL disable_interruption
{
disable_interruption(const disable_interruption&);
disable_interruption& operator=(const disable_interruption&);
bool interruption_was_enabled;
friend class restore_interruption;
public:
disable_interruption();
~disable_interruption();
};
class BOOST_THREAD_DECL restore_interruption
{
restore_interruption(const restore_interruption&);
restore_interruption& operator=(const restore_interruption&);
public:
explicit restore_interruption(disable_interruption& d);
~restore_interruption();
};
}
}
#endif

View File

@@ -12,27 +12,9 @@
#if defined(BOOST_HAS_WINTHREADS)
typedef void (__cdecl *thread_exit_handler)(void);
extern "C" BOOST_THREAD_DECL int at_thread_exit(
thread_exit_handler exit_handler
);
//Add a function to the list of functions that will
//be called when a thread is about to exit.
//Currently only implemented for Win32, but should
//later be implemented for all platforms.
//Used by Win32 implementation of Boost.Threads
//tss to perform cleanup.
//Like the C runtime library atexit() function,
//which it mimics, at_thread_exit() returns
//zero if successful and a nonzero
//value if an error occurs.
#endif //defined(BOOST_HAS_WINTHREADS)
#if defined(BOOST_HAS_WINTHREADS)
extern "C" BOOST_THREAD_DECL void on_process_enter(void);
namespace boost
{
BOOST_THREAD_DECL void __cdecl on_process_enter(void);
//Function to be called when the exe or dll
//that uses Boost.Threads first starts
//or is first loaded.
@@ -42,7 +24,7 @@
//a method for doing so has been discovered.
//May be omitted; may be called multiple times.
extern "C" BOOST_THREAD_DECL void on_process_exit(void);
BOOST_THREAD_DECL void __cdecl on_process_exit(void);
//Function to be called when the exe or dll
//that uses Boost.Threads first starts
//or is first loaded.
@@ -52,7 +34,7 @@
//a method for doing so has been discovered.
//Must not be omitted; may be called multiple times.
extern "C" BOOST_THREAD_DECL void on_thread_enter(void);
BOOST_THREAD_DECL void __cdecl on_thread_enter(void);
//Function to be called just after a thread starts
//in an exe or dll that uses Boost.Threads.
//Must be called in the context of the thread
@@ -61,7 +43,7 @@
//a method for doing so has been discovered.
//May be omitted; may be called multiple times.
extern "C" BOOST_THREAD_DECL void __cdecl on_thread_exit(void);
BOOST_THREAD_DECL void __cdecl on_thread_exit(void);
//Function to be called just be fore a thread ends
//in an exe or dll that uses Boost.Threads.
//Must be called in the context of the thread
@@ -70,10 +52,11 @@
//a method for doing so has been discovered.
//Must not be omitted; may be called multiple times.
extern "C" void tss_cleanup_implemented(void);
void tss_cleanup_implemented();
//Dummy function used both to detect whether tss cleanup
//cleanup has been implemented and to force
//it to be linked into the Boost.Threads library.
}
#endif //defined(BOOST_HAS_WINTHREADS)

View File

@@ -1,6 +1,6 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
// Copyright (C) 2007-9 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -24,23 +24,36 @@
namespace boost
{
class BOOST_THREAD_DECL thread_interrupted
class thread_interrupted
{};
class BOOST_THREAD_DECL thread_exception : public std::exception
{
protected:
thread_exception();
thread_exception(int sys_err_code);
class thread_exception:
public std::exception
{
protected:
thread_exception():
m_sys_err(0)
{}
thread_exception(int sys_err_code):
m_sys_err(sys_err_code)
{}
public:
~thread_exception() throw();
public:
~thread_exception() throw()
{}
int native_error() const;
int native_error() const
{
return m_sys_err;
}
private:
int m_sys_err;
};
private:
int m_sys_err;
};
class condition_error:
public std::exception
@@ -53,62 +66,117 @@ private:
};
class BOOST_THREAD_DECL lock_error : public thread_exception
{
public:
lock_error();
lock_error(int sys_err_code);
~lock_error() throw();
class lock_error:
public thread_exception
{
public:
lock_error()
{}
lock_error(int sys_err_code):
thread_exception(sys_err_code)
{}
~lock_error() throw()
{}
virtual const char* what() const throw();
};
virtual const char* what() const throw()
{
return "boost::lock_error";
}
};
class BOOST_THREAD_DECL thread_resource_error : public thread_exception
{
public:
thread_resource_error();
thread_resource_error(int sys_err_code);
~thread_resource_error() throw();
class thread_resource_error:
public thread_exception
{
public:
thread_resource_error()
{}
thread_resource_error(int sys_err_code):
thread_exception(sys_err_code)
{}
~thread_resource_error() throw()
{}
virtual const char* what() const throw();
};
virtual const char* what() const throw()
{
return "boost::thread_resource_error";
}
};
class BOOST_THREAD_DECL unsupported_thread_option : public thread_exception
{
public:
unsupported_thread_option();
unsupported_thread_option(int sys_err_code);
~unsupported_thread_option() throw();
class unsupported_thread_option:
public thread_exception
{
public:
unsupported_thread_option()
{}
unsupported_thread_option(int sys_err_code):
thread_exception(sys_err_code)
{}
~unsupported_thread_option() throw()
{}
virtual const char* what() const throw();
};
virtual const char* what() const throw()
{
return "boost::unsupported_thread_option";
}
};
class BOOST_THREAD_DECL invalid_thread_argument : public thread_exception
{
public:
invalid_thread_argument();
invalid_thread_argument(int sys_err_code);
~invalid_thread_argument() throw();
class invalid_thread_argument:
public thread_exception
{
public:
invalid_thread_argument()
{}
invalid_thread_argument(int sys_err_code):
thread_exception(sys_err_code)
{}
~invalid_thread_argument() throw()
{}
virtual const char* what() const throw();
};
virtual const char* what() const throw()
{
return "boost::invalid_thread_argument";
}
};
class BOOST_THREAD_DECL thread_permission_error : public thread_exception
{
public:
thread_permission_error();
thread_permission_error(int sys_err_code);
~thread_permission_error() throw();
class thread_permission_error:
public thread_exception
{
public:
thread_permission_error()
{}
thread_permission_error(int sys_err_code):
thread_exception(sys_err_code)
{}
~thread_permission_error() throw()
{}
virtual const char* what() const throw();
};
virtual const char* what() const throw()
{
return "boost::thread_permission_error";
}
};
} // namespace boost
#include <boost/config/abi_suffix.hpp>
#endif // BOOST_THREAD_CONFIG_PDM070801_H
// Change log:
// 3 Jan 03 WEKEMPF Modified for DLL implementation.
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -11,6 +11,7 @@
#include <iterator>
#include <boost/thread/thread_time.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/config/abi_prefix.hpp>
@@ -27,40 +28,100 @@ namespace boost
#ifndef BOOST_THREAD_NO_AUTO_DETECT_MUTEX_TYPES
namespace detail
{
template<typename T>
#define BOOST_DEFINE_HAS_MEMBER_CALLED(member_name) \
template<typename T, bool=boost::is_class<T>::value> \
struct has_member_called_##member_name \
{ \
BOOST_STATIC_CONSTANT(bool, value=false); \
}; \
\
template<typename T> \
struct has_member_called_##member_name<T,true> \
{ \
typedef char true_type; \
struct false_type \
{ \
true_type dummy[2]; \
}; \
\
struct fallback { int member_name; }; \
struct derived: \
T, fallback \
{ \
derived(); \
}; \
\
template<int fallback::*> struct tester; \
\
template<typename U> \
static false_type has_member(tester<&U::member_name>*); \
template<typename U> \
static true_type has_member(...); \
\
BOOST_STATIC_CONSTANT( \
bool, value=sizeof(has_member<derived>(0))==sizeof(true_type)); \
}
BOOST_DEFINE_HAS_MEMBER_CALLED(lock);
BOOST_DEFINE_HAS_MEMBER_CALLED(unlock);
BOOST_DEFINE_HAS_MEMBER_CALLED(try_lock);
template<typename T,bool=has_member_called_lock<T>::value >
struct has_member_lock
{
typedef char true_type;
struct false_type
{
true_type dummy[2];
};
template<typename U>
static true_type has_member(U*,void (U::*dummy)()=&U::lock);
static false_type has_member(void*);
BOOST_STATIC_CONSTANT(bool, value=sizeof(has_member_lock<T>::has_member((T*)NULL))==sizeof(true_type));
};
template<typename T>
struct has_member_unlock
{
typedef char true_type;
struct false_type
{
true_type dummy[2];
};
template<typename U>
static true_type has_member(U*,void (U::*dummy)()=&U::unlock);
static false_type has_member(void*);
BOOST_STATIC_CONSTANT(bool, value=sizeof(has_member_unlock<T>::has_member((T*)NULL))==sizeof(true_type));
BOOST_STATIC_CONSTANT(bool, value=false);
};
template<typename T>
struct has_member_lock<T,true>
{
typedef char true_type;
struct false_type
{
true_type dummy[2];
};
template<typename U,typename V>
static true_type has_member(V (U::*)());
template<typename U>
static false_type has_member(U);
BOOST_STATIC_CONSTANT(
bool,value=sizeof(has_member_lock<T>::has_member(&T::lock))==sizeof(true_type));
};
template<typename T,bool=has_member_called_unlock<T>::value >
struct has_member_unlock
{
BOOST_STATIC_CONSTANT(bool, value=false);
};
template<typename T>
struct has_member_unlock<T,true>
{
typedef char true_type;
struct false_type
{
true_type dummy[2];
};
template<typename U,typename V>
static true_type has_member(V (U::*)());
template<typename U>
static false_type has_member(U);
BOOST_STATIC_CONSTANT(
bool,value=sizeof(has_member_unlock<T>::has_member(&T::unlock))==sizeof(true_type));
};
template<typename T,bool=has_member_called_try_lock<T>::value >
struct has_member_try_lock
{
BOOST_STATIC_CONSTANT(bool, value=false);
};
template<typename T>
struct has_member_try_lock<T,true>
{
typedef char true_type;
struct false_type
@@ -69,10 +130,12 @@ namespace boost
};
template<typename U>
static true_type has_member(U*,bool (U::*dummy)()=&U::try_lock);
static false_type has_member(void*);
static true_type has_member(bool (U::*)());
template<typename U>
static false_type has_member(U);
BOOST_STATIC_CONSTANT(bool, value=sizeof(has_member_try_lock<T>::has_member((T*)NULL))==sizeof(true_type));
BOOST_STATIC_CONSTANT(
bool,value=sizeof(has_member_try_lock<T>::has_member(&T::try_lock))==sizeof(true_type));
};
}
@@ -214,6 +277,9 @@ namespace boost
unique_lock& operator=(unique_lock&);
unique_lock& operator=(upgrade_lock<Mutex>& other);
public:
#if BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100)
unique_lock(const volatile unique_lock&);
#endif
unique_lock():
m(0),is_locked(false)
{}
@@ -245,7 +311,7 @@ namespace boost
{
timed_lock(target_time);
}
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
unique_lock(unique_lock&& other):
m(other.m),is_locked(other.is_locked)
{
@@ -260,16 +326,16 @@ namespace boost
}
unique_lock& operator=(unique_lock<Mutex>&& other)
unique_lock& operator=(unique_lock&& other)
{
unique_lock temp(other);
unique_lock temp(other.move());
swap(temp);
return *this;
}
unique_lock& operator=(upgrade_lock<Mutex>&& other)
{
unique_lock temp(other);
unique_lock temp(other.move());
swap(temp);
return *this;
}
@@ -297,12 +363,20 @@ namespace boost
return detail::thread_move_t<unique_lock<Mutex> >(*this);
}
#if BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100)
unique_lock& operator=(unique_lock<Mutex> other)
{
swap(other);
return *this;
}
#else
unique_lock& operator=(detail::thread_move_t<unique_lock<Mutex> > other)
{
unique_lock temp(other);
swap(temp);
return *this;
}
#endif
unique_lock& operator=(detail::thread_move_t<upgrade_lock<Mutex> > other)
{
@@ -310,17 +384,17 @@ namespace boost
swap(temp);
return *this;
}
void swap(unique_lock& other)
{
std::swap(m,other.m);
std::swap(is_locked,other.is_locked);
}
void swap(detail::thread_move_t<unique_lock<Mutex> > other)
{
std::swap(m,other->m);
std::swap(is_locked,other->is_locked);
}
#endif
void swap(unique_lock& other)
{
std::swap(m,other.m);
std::swap(is_locked,other.is_locked);
}
~unique_lock()
{
@@ -333,7 +407,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
m->lock();
is_locked=true;
@@ -342,7 +416,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
is_locked=m->try_lock();
return is_locked;
@@ -368,7 +442,7 @@ namespace boost
{
if(!owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
m->unlock();
is_locked=false;
@@ -405,25 +479,42 @@ namespace boost
friend class upgrade_lock<Mutex>;
};
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename Mutex>
void swap(unique_lock<Mutex>&& lhs,unique_lock<Mutex>&& rhs)
{
lhs.swap(rhs);
}
#else
template<typename Mutex>
inline upgrade_lock<Mutex>&& move(upgrade_lock<Mutex>&& ul)
{
return static_cast<upgrade_lock<Mutex>&&>(ul);
}
template<typename Mutex>
inline upgrade_lock<Mutex>&& move(upgrade_lock<Mutex>& ul)
{
return static_cast<upgrade_lock<Mutex>&&>(ul);
}
#endif
template<typename Mutex>
void swap(unique_lock<Mutex>& lhs,unique_lock<Mutex>& rhs)
{
lhs.swap(rhs);
}
#endif
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename Mutex>
inline unique_lock<Mutex>&& move(unique_lock<Mutex>&& ul)
{
return ul;
return static_cast<unique_lock<Mutex>&&>(ul);
}
template<typename Mutex>
inline unique_lock<Mutex>&& move(unique_lock<Mutex>& ul)
{
return static_cast<unique_lock<Mutex>&&>(ul);
}
#endif
@@ -524,24 +615,24 @@ namespace boost
return *this;
}
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
void swap(shared_lock&& other)
{
std::swap(m,other.m);
std::swap(is_locked,other.is_locked);
}
#else
void swap(shared_lock& other)
{
std::swap(m,other.m);
std::swap(is_locked,other.is_locked);
}
void swap(boost::detail::thread_move_t<shared_lock<Mutex> > other)
{
std::swap(m,other->m);
std::swap(is_locked,other->is_locked);
}
#endif
void swap(shared_lock& other)
{
std::swap(m,other.m);
std::swap(is_locked,other.is_locked);
}
Mutex* mutex() const
{
@@ -559,7 +650,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
m->lock_shared();
is_locked=true;
@@ -568,7 +659,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
is_locked=m->try_lock_shared();
return is_locked;
@@ -577,7 +668,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
is_locked=m->timed_lock_shared(target_time);
return is_locked;
@@ -587,7 +678,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
is_locked=m->timed_lock_shared(target_time);
return is_locked;
@@ -596,7 +687,7 @@ namespace boost
{
if(!owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
m->unlock_shared();
is_locked=false;
@@ -618,7 +709,7 @@ namespace boost
};
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename Mutex>
void swap(shared_lock<Mutex>&& lhs,shared_lock<Mutex>&& rhs)
{
@@ -662,6 +753,39 @@ namespace boost
{
try_lock();
}
#ifdef BOOST_HAS_RVALUE_REFS
upgrade_lock(upgrade_lock<Mutex>&& other):
m(other.m),is_locked(other.is_locked)
{
other.is_locked=false;
other.m=0;
}
upgrade_lock(unique_lock<Mutex>&& other):
m(other.m),is_locked(other.is_locked)
{
if(is_locked)
{
m->unlock_and_lock_upgrade();
}
other.is_locked=false;
other.m=0;
}
upgrade_lock& operator=(upgrade_lock<Mutex>&& other)
{
upgrade_lock temp(static_cast<upgrade_lock<Mutex>&&>(other));
swap(temp);
return *this;
}
upgrade_lock& operator=(unique_lock<Mutex>&& other)
{
upgrade_lock temp(static_cast<unique_lock<Mutex>&&>(other));
swap(temp);
return *this;
}
#else
upgrade_lock(detail::thread_move_t<upgrade_lock<Mutex> > other):
m(other->m),is_locked(other->is_locked)
{
@@ -704,6 +828,7 @@ namespace boost
swap(temp);
return *this;
}
#endif
void swap(upgrade_lock& other)
{
@@ -722,7 +847,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
m->lock_upgrade();
is_locked=true;
@@ -731,7 +856,7 @@ namespace boost
{
if(owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
is_locked=m->try_lock_upgrade();
return is_locked;
@@ -740,7 +865,7 @@ namespace boost
{
if(!owns_lock())
{
throw boost::lock_error();
boost::throw_exception(boost::lock_error());
}
m->unlock_upgrade();
is_locked=false;
@@ -764,7 +889,7 @@ namespace boost
};
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename Mutex>
unique_lock<Mutex>::unique_lock(upgrade_lock<Mutex>&& other):
m(other.m),is_locked(other.is_locked)
@@ -772,7 +897,7 @@ namespace boost
other.is_locked=false;
if(is_locked)
{
m.unlock_upgrade_and_lock();
m->unlock_upgrade_and_lock();
}
}
#else
@@ -808,6 +933,20 @@ namespace boost
}
}
#ifdef BOOST_HAS_RVALUE_REFS
upgrade_to_unique_lock(upgrade_to_unique_lock<Mutex>&& other):
source(other.source),exclusive(move(other.exclusive))
{
other.source=0;
}
upgrade_to_unique_lock& operator=(upgrade_to_unique_lock<Mutex>&& other)
{
upgrade_to_unique_lock temp(other);
swap(temp);
return *this;
}
#else
upgrade_to_unique_lock(detail::thread_move_t<upgrade_to_unique_lock<Mutex> > other):
source(other->source),exclusive(move(other->exclusive))
{
@@ -820,6 +959,7 @@ namespace boost
swap(temp);
return *this;
}
#endif
void swap(upgrade_to_unique_lock& other)
{
std::swap(source,other.source);
@@ -864,6 +1004,28 @@ namespace boost
try_lock_wrapper(Mutex& m_,try_to_lock_t):
base(m_,try_to_lock)
{}
#ifndef BOOST_NO_RVALUE_REFERENCES
try_lock_wrapper(try_lock_wrapper&& other):
base(other.move())
{}
try_lock_wrapper&& move()
{
return static_cast<try_lock_wrapper&&>(*this);
}
try_lock_wrapper& operator=(try_lock_wrapper<Mutex>&& other)
{
try_lock_wrapper temp(other.move());
swap(temp);
return *this;
}
void swap(try_lock_wrapper&& other)
{
base::swap(other);
}
#else
try_lock_wrapper(detail::thread_move_t<try_lock_wrapper<Mutex> > other):
base(detail::thread_move_t<base>(*other))
{}
@@ -885,22 +1047,15 @@ namespace boost
return *this;
}
#ifdef BOOST_HAS_RVALUE_REFS
void swap(try_lock_wrapper&& other)
{
base::swap(other);
}
#else
void swap(try_lock_wrapper& other)
{
base::swap(other);
}
void swap(detail::thread_move_t<try_lock_wrapper<Mutex> > other)
{
base::swap(*other);
}
#endif
void swap(try_lock_wrapper& other)
{
base::swap(other);
}
void lock()
{
base::lock();
@@ -937,7 +1092,7 @@ namespace boost
}
};
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename Mutex>
void swap(try_lock_wrapper<Mutex>&& lhs,try_lock_wrapper<Mutex>&& rhs)
{
@@ -1085,7 +1240,7 @@ namespace boost
{
unsigned const lock_count=2;
unsigned lock_first=0;
while(true)
for(;;)
{
switch(lock_first)
{
@@ -1138,7 +1293,7 @@ namespace boost
{
unsigned const lock_count=3;
unsigned lock_first=0;
while(true)
for(;;)
{
switch(lock_first)
{
@@ -1170,7 +1325,7 @@ namespace boost
{
unsigned const lock_count=4;
unsigned lock_first=0;
while(true)
for(;;)
{
switch(lock_first)
{
@@ -1208,7 +1363,7 @@ namespace boost
{
unsigned const lock_count=5;
unsigned lock_first=0;
while(true)
for(;;)
{
switch(lock_first)
{

View File

@@ -3,7 +3,7 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2007-10 Anthony Williams
#include "timespec.hpp"
#include "pthread_mutex_scoped_lock.hpp"
@@ -14,17 +14,55 @@
namespace boost
{
namespace this_thread
{
void BOOST_THREAD_DECL interruption_point();
}
namespace thread_cv_detail
{
template<typename MutexType>
struct lock_on_exit
{
MutexType* m;
lock_on_exit():
m(0)
{}
void activate(MutexType& m_)
{
m_.unlock();
m=&m_;
}
~lock_on_exit()
{
if(m)
{
m->lock();
}
}
};
}
inline void condition_variable::wait(unique_lock<mutex>& m)
{
detail::interruption_checker check_for_interruption(&cond);
BOOST_VERIFY(!pthread_cond_wait(&cond,m.mutex()->native_handle()));
thread_cv_detail::lock_on_exit<unique_lock<mutex> > guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
guard.activate(m);
int const res=pthread_cond_wait(&cond,&internal_mutex);
BOOST_ASSERT(!res);
this_thread::interruption_point();
}
inline bool condition_variable::timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until)
{
detail::interruption_checker check_for_interruption(&cond);
thread_cv_detail::lock_on_exit<unique_lock<mutex> > guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
guard.activate(m);
struct timespec const timeout=detail::get_timespec(wait_until);
int const cond_res=pthread_cond_timedwait(&cond,m.mutex()->native_handle(),&timeout);
int const cond_res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout);
this_thread::interruption_point();
if(cond_res==ETIMEDOUT)
{
return false;
@@ -35,11 +73,13 @@ namespace boost
inline void condition_variable::notify_one()
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
inline void condition_variable::notify_all()
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
}
@@ -48,8 +88,8 @@ namespace boost
pthread_mutex_t internal_mutex;
pthread_cond_t cond;
condition_variable_any(condition_variable&);
condition_variable_any& operator=(condition_variable&);
condition_variable_any(condition_variable_any&);
condition_variable_any& operator=(condition_variable_any&);
public:
condition_variable_any()
@@ -57,13 +97,13 @@ namespace boost
int const res=pthread_mutex_init(&internal_mutex,NULL);
if(res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
}
~condition_variable_any()
@@ -77,17 +117,15 @@ namespace boost
{
int res=0;
{
detail::interruption_checker check_for_interruption(&cond);
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_wait(&cond,&internal_mutex);
}
m.lock();
thread_cv_detail::lock_on_exit<lock_type> guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
guard.activate(m);
res=pthread_cond_wait(&cond,&internal_mutex);
this_thread::interruption_point();
}
if(res)
{
throw condition_error();
boost::throw_exception(condition_error());
}
}
@@ -103,13 +141,11 @@ namespace boost
struct timespec const timeout=detail::get_timespec(wait_until);
int res=0;
{
detail::interruption_checker check_for_interruption(&cond);
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout);
}
m.lock();
thread_cv_detail::lock_on_exit<lock_type> guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
guard.activate(m);
res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout);
this_thread::interruption_point();
}
if(res==ETIMEDOUT)
{
@@ -117,7 +153,7 @@ namespace boost
}
if(res)
{
throw condition_error();
boost::throw_exception(condition_error());
}
return true;
}

View File

@@ -6,6 +6,7 @@
// (C) Copyright 2007-8 Anthony Williams
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>
@@ -19,6 +20,7 @@ namespace boost
class condition_variable
{
private:
pthread_mutex_t internal_mutex;
pthread_cond_t cond;
condition_variable(condition_variable&);
@@ -27,14 +29,21 @@ namespace boost
public:
condition_variable()
{
int const res=pthread_cond_init(&cond,NULL);
int const res=pthread_mutex_init(&internal_mutex,NULL);
if(res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
boost::throw_exception(thread_resource_error());
}
}
~condition_variable()
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
BOOST_VERIFY(!pthread_cond_destroy(&cond));
}
@@ -46,7 +55,8 @@ namespace boost
while(!pred()) wait(m);
}
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until);
inline bool timed_wait(unique_lock<mutex>& m,
boost::system_time const& wait_until);
bool timed_wait(unique_lock<mutex>& m,xtime const& wait_until)
{
return timed_wait(m,system_time(wait_until));

View File

@@ -7,6 +7,7 @@
#include <pthread.h>
#include <boost/utility.hpp>
#include <boost/throw_exception.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
@@ -26,10 +27,11 @@
namespace boost
{
class mutex:
boost::noncopyable
class mutex
{
private:
mutex(mutex const&);
mutex& operator=(mutex const&);
pthread_mutex_t m;
public:
mutex()
@@ -37,7 +39,7 @@ namespace boost
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
}
~mutex()
@@ -47,7 +49,11 @@ namespace boost
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
int const res=pthread_mutex_lock(&m);
if(res)
{
boost::throw_exception(lock_error(res));
}
}
void unlock()
@@ -58,7 +64,11 @@ namespace boost
bool try_lock()
{
int const res=pthread_mutex_trylock(&m);
BOOST_ASSERT(!res || res==EBUSY);
if(res && (res!=EBUSY))
{
boost::throw_exception(lock_error(res));
}
return !res;
}
@@ -74,9 +84,11 @@ namespace boost
typedef mutex try_mutex;
class timed_mutex:
boost::noncopyable
class timed_mutex
{
private:
timed_mutex(timed_mutex const&);
timed_mutex& operator=(timed_mutex const&);
private:
pthread_mutex_t m;
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
@@ -89,14 +101,14 @@ namespace boost
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
is_locked=false;
#endif

View File

@@ -10,6 +10,7 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/config.hpp>
#include <pthread.h>
#include <boost/assert.hpp>
@@ -58,10 +59,13 @@ namespace boost
if(flag.epoch==uninitialized_flag)
{
flag.epoch=being_initialized;
#ifndef BOOST_NO_EXCEPTIONS
try
{
#endif
pthread::pthread_mutex_scoped_unlock relocker(&detail::once_epoch_mutex);
f();
#ifndef BOOST_NO_EXCEPTIONS
}
catch(...)
{
@@ -69,6 +73,7 @@ namespace boost
BOOST_VERIFY(!pthread_cond_broadcast(&detail::once_epoch_cv));
throw;
}
#endif
flag.epoch=--detail::once_global_epoch;
BOOST_VERIFY(!pthread_cond_broadcast(&detail::once_epoch_cv));
}

View File

@@ -18,15 +18,25 @@ namespace boost
class pthread_mutex_scoped_lock
{
pthread_mutex_t* m;
bool locked;
public:
explicit pthread_mutex_scoped_lock(pthread_mutex_t* m_):
m(m_)
m(m_),locked(true)
{
BOOST_VERIFY(!pthread_mutex_lock(m));
}
~pthread_mutex_scoped_lock()
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
locked=false;
}
~pthread_mutex_scoped_lock()
{
if(locked)
{
unlock();
}
}
};

View File

@@ -7,6 +7,7 @@
#include <pthread.h>
#include <boost/utility.hpp>
#include <boost/throw_exception.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
@@ -25,43 +26,76 @@
#endif
#endif
#if defined(BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE) && defined(BOOST_PTHREAD_HAS_TIMEDLOCK)
#define BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class recursive_mutex:
boost::noncopyable
class recursive_mutex
{
private:
recursive_mutex(recursive_mutex const&);
recursive_mutex& operator=(recursive_mutex const&);
pthread_mutex_t m;
#ifndef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
pthread_cond_t cond;
bool is_locked;
pthread_t owner;
unsigned count;
#endif
public:
recursive_mutex()
{
#ifdef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
pthread_mutexattr_t attr;
int const init_attr_res=pthread_mutexattr_init(&attr);
if(init_attr_res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
int const set_attr_res=pthread_mutexattr_settype(&attr,PTHREAD_MUTEX_RECURSIVE);
if(set_attr_res)
{
throw thread_resource_error();
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
boost::throw_exception(thread_resource_error());
}
int const res=pthread_mutex_init(&m,&attr);
if(res)
{
throw thread_resource_error();
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
boost::throw_exception(thread_resource_error());
}
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
#else
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
boost::throw_exception(thread_resource_error());
}
is_locked=false;
count=0;
#endif
}
~recursive_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
#ifndef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
BOOST_VERIFY(!pthread_cond_destroy(&cond));
#endif
}
#ifdef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
@@ -78,25 +112,70 @@ namespace boost
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
#else
void lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && pthread_equal(owner,pthread_self()))
{
++count;
return;
}
while(is_locked)
{
BOOST_VERIFY(!pthread_cond_wait(&cond,&m));
}
is_locked=true;
++count;
owner=pthread_self();
}
void unlock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(!--count)
{
is_locked=false;
}
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
bool try_lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && !pthread_equal(owner,pthread_self()))
{
return false;
}
is_locked=true;
++count;
owner=pthread_self();
return true;
}
#endif
typedef unique_lock<recursive_mutex> scoped_lock;
typedef detail::try_lock_wrapper<recursive_mutex> scoped_try_lock;
};
typedef recursive_mutex recursive_try_mutex;
class recursive_timed_mutex:
boost::noncopyable
class recursive_timed_mutex
{
private:
recursive_timed_mutex(recursive_timed_mutex const&);
recursive_timed_mutex& operator=(recursive_timed_mutex const&);
private:
pthread_mutex_t m;
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
#ifndef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
pthread_cond_t cond;
bool is_locked;
pthread_t owner;
@@ -105,38 +184,38 @@ namespace boost
public:
recursive_timed_mutex()
{
#ifdef BOOST_PTHREAD_HAS_TIMEDLOCK
#ifdef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
pthread_mutexattr_t attr;
int const init_attr_res=pthread_mutexattr_init(&attr);
if(init_attr_res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
int const set_attr_res=pthread_mutexattr_settype(&attr,PTHREAD_MUTEX_RECURSIVE);
if(set_attr_res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
int const res=pthread_mutex_init(&m,&attr);
if(res)
{
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
#else
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
is_locked=false;
count=0;
@@ -145,7 +224,7 @@ namespace boost
~recursive_timed_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
#ifndef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
BOOST_VERIFY(!pthread_cond_destroy(&cond));
#endif
}
@@ -156,7 +235,7 @@ namespace boost
return timed_lock(get_system_time()+relative_time);
}
#ifdef BOOST_PTHREAD_HAS_TIMEDLOCK
#ifdef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));

View File

@@ -10,8 +10,8 @@
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/detail/thread_interruption.hpp>
#include <boost/config/abi_prefix.hpp>
@@ -225,7 +225,7 @@ namespace boost
template<typename TimeDuration>
bool timed_lock_upgrade(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
return timed_lock_upgrade(get_system_time()+relative_time);
}
bool try_lock_upgrade()

View File

@@ -12,7 +12,9 @@
#include <boost/thread/mutex.hpp>
#include <boost/optional.hpp>
#include <pthread.h>
#include <boost/assert.hpp>
#include "condition_variable_fwd.hpp"
#include <map>
#include <boost/config/abi_prefix.hpp>
@@ -22,8 +24,18 @@ namespace boost
namespace detail
{
struct tss_cleanup_function;
struct thread_exit_callback_node;
struct tss_data_node;
struct tss_data_node
{
boost::shared_ptr<boost::detail::tss_cleanup_function> func;
void* value;
tss_data_node(boost::shared_ptr<boost::detail::tss_cleanup_function> func_,
void* value_):
func(func_),value(value_)
{}
};
struct thread_data_base;
typedef boost::shared_ptr<thread_data_base> thread_data_ptr;
@@ -41,14 +53,15 @@ namespace boost
bool join_started;
bool joined;
boost::detail::thread_exit_callback_node* thread_exit_callbacks;
boost::detail::tss_data_node* tss_data;
std::map<void const*,boost::detail::tss_data_node> tss_data;
bool interrupt_enabled;
bool interrupt_requested;
pthread_mutex_t* cond_mutex;
pthread_cond_t* current_cond;
thread_data_base():
done(false),join_started(false),joined(false),
thread_exit_callbacks(0),tss_data(0),
thread_exit_callbacks(0),
interrupt_enabled(true),
interrupt_requested(false),
current_cond(0)
@@ -65,6 +78,8 @@ namespace boost
class interruption_checker
{
thread_data_base* const thread_info;
pthread_mutex_t* m;
bool set;
void check_for_interruption()
{
@@ -77,23 +92,35 @@ namespace boost
void operator=(interruption_checker&);
public:
explicit interruption_checker(pthread_cond_t* cond):
thread_info(detail::get_current_thread_data())
explicit interruption_checker(pthread_mutex_t* cond_mutex,pthread_cond_t* cond):
thread_info(detail::get_current_thread_data()),m(cond_mutex),
set(thread_info && thread_info->interrupt_enabled)
{
if(thread_info && thread_info->interrupt_enabled)
if(set)
{
lock_guard<mutex> guard(thread_info->data_mutex);
check_for_interruption();
thread_info->cond_mutex=cond_mutex;
thread_info->current_cond=cond;
BOOST_VERIFY(!pthread_mutex_lock(m));
}
else
{
BOOST_VERIFY(!pthread_mutex_lock(m));
}
}
~interruption_checker()
{
if(thread_info && thread_info->interrupt_enabled)
if(set)
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
lock_guard<mutex> guard(thread_info->data_mutex);
thread_info->cond_mutex=NULL;
thread_info->current_cond=NULL;
check_for_interruption();
}
else
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
}
}
};

View File

@@ -17,7 +17,7 @@ namespace boost
return new T();
}
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename T,typename A1>
inline T* heap_new(A1&& a1)
{

View File

@@ -20,6 +20,8 @@
#endif
#include <boost/thread/detail/thread.hpp>
#include <boost/thread/detail/thread_interruption.hpp>
#include <boost/thread/detail/thread_group.hpp>
#endif

View File

@@ -6,6 +6,7 @@
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/date_time/time_clock.hpp>
#include <boost/date_time/microsec_time_clock.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
@@ -17,7 +18,11 @@ namespace boost
inline system_time get_system_time()
{
#if defined(BOOST_DATE_TIME_HAS_HIGH_PRECISION_CLOCK)
return boost::date_time::microsec_clock<system_time>::universal_time();
#else // defined(BOOST_DATE_TIME_HAS_HIGH_PRECISION_CLOCK)
return boost::date_time::second_clock<system_time>::universal_time();
#endif // defined(BOOST_DATE_TIME_HAS_HIGH_PRECISION_CLOCK)
}
namespace detail

View File

@@ -1,111 +1,113 @@
#ifndef BOOST_THREAD_TSS_HPP
#define BOOST_THREAD_TSS_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/thread/detail/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread/detail/thread_heap_alloc.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
struct tss_cleanup_function
{
virtual ~tss_cleanup_function()
{}
virtual void operator()(void* data)=0;
};
BOOST_THREAD_DECL void set_tss_data(void const* key,boost::shared_ptr<tss_cleanup_function> func,void* tss_data,bool cleanup_existing);
BOOST_THREAD_DECL void* get_tss_data(void const* key);
}
template <typename T>
class thread_specific_ptr
{
private:
thread_specific_ptr(thread_specific_ptr&);
thread_specific_ptr& operator=(thread_specific_ptr&);
struct delete_data:
detail::tss_cleanup_function
{
void operator()(void* data)
{
delete static_cast<T*>(data);
}
};
struct run_custom_cleanup_function:
detail::tss_cleanup_function
{
void (*cleanup_function)(T*);
explicit run_custom_cleanup_function(void (*cleanup_function_)(T*)):
cleanup_function(cleanup_function_)
{}
void operator()(void* data)
{
cleanup_function(static_cast<T*>(data));
}
};
boost::shared_ptr<detail::tss_cleanup_function> cleanup;
public:
thread_specific_ptr():
cleanup(detail::heap_new<delete_data>(),detail::do_heap_delete<delete_data>())
{}
explicit thread_specific_ptr(void (*func_)(T*))
{
if(func_)
{
cleanup.reset(detail::heap_new<run_custom_cleanup_function>(func_),detail::do_heap_delete<run_custom_cleanup_function>());
}
}
~thread_specific_ptr()
{
reset();
}
T* get() const
{
return static_cast<T*>(detail::get_tss_data(this));
}
T* operator->() const
{
return get();
}
T& operator*() const
{
return *get();
}
T* release()
{
T* const temp=get();
detail::set_tss_data(this,boost::shared_ptr<detail::tss_cleanup_function>(),0,false);
return temp;
}
void reset(T* new_value=0)
{
T* const current_value=get();
if(current_value!=new_value)
{
detail::set_tss_data(this,cleanup,new_value,true);
}
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif
#ifndef BOOST_THREAD_TSS_HPP
#define BOOST_THREAD_TSS_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/thread/detail/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread/detail/thread_heap_alloc.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
struct tss_cleanup_function
{
virtual ~tss_cleanup_function()
{}
virtual void operator()(void* data)=0;
};
BOOST_THREAD_DECL void set_tss_data(void const* key,boost::shared_ptr<tss_cleanup_function> func,void* tss_data,bool cleanup_existing);
BOOST_THREAD_DECL void* get_tss_data(void const* key);
}
template <typename T>
class thread_specific_ptr
{
private:
thread_specific_ptr(thread_specific_ptr&);
thread_specific_ptr& operator=(thread_specific_ptr&);
struct delete_data:
detail::tss_cleanup_function
{
void operator()(void* data)
{
delete static_cast<T*>(data);
}
};
struct run_custom_cleanup_function:
detail::tss_cleanup_function
{
void (*cleanup_function)(T*);
explicit run_custom_cleanup_function(void (*cleanup_function_)(T*)):
cleanup_function(cleanup_function_)
{}
void operator()(void* data)
{
cleanup_function(static_cast<T*>(data));
}
};
boost::shared_ptr<detail::tss_cleanup_function> cleanup;
public:
typedef T element_type;
thread_specific_ptr():
cleanup(detail::heap_new<delete_data>(),detail::do_heap_delete<delete_data>())
{}
explicit thread_specific_ptr(void (*func_)(T*))
{
if(func_)
{
cleanup.reset(detail::heap_new<run_custom_cleanup_function>(func_),detail::do_heap_delete<run_custom_cleanup_function>());
}
}
~thread_specific_ptr()
{
detail::set_tss_data(this,boost::shared_ptr<detail::tss_cleanup_function>(),0,true);
}
T* get() const
{
return static_cast<T*>(detail::get_tss_data(this));
}
T* operator->() const
{
return get();
}
T& operator*() const
{
return *get();
}
T* release()
{
T* const temp=get();
detail::set_tss_data(this,boost::shared_ptr<detail::tss_cleanup_function>(),0,false);
return temp;
}
void reset(T* new_value=0)
{
T* const current_value=get();
if(current_value!=new_value)
{
detail::set_tss_data(this,cleanup,new_value,true);
}
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -61,15 +61,30 @@ namespace boost
void lock()
{
BOOST_VERIFY(timed_lock(::boost::detail::get_system_time_sentinel()));
}
bool timed_lock(::boost::system_time const& wait_until)
{
if(!win32::interlocked_bit_test_and_set(&active_count,lock_flag_bit))
if(try_lock())
{
return true;
return;
}
long old_count=active_count;
mark_waiting_and_try_lock(old_count);
if(old_count&lock_flag_value)
{
bool lock_acquired=false;
void* const sem=get_event();
do
{
BOOST_VERIFY(win32::WaitForSingleObject(
sem,::boost::detail::win32::infinite)==0);
clear_waiting_and_try_lock(old_count);
lock_acquired=!(old_count&lock_flag_value);
}
while(!lock_acquired);
}
}
void mark_waiting_and_try_lock(long& old_count)
{
for(;;)
{
long const new_count=(old_count&lock_flag_value)?(old_count+1):(old_count|lock_flag_value);
@@ -80,6 +95,33 @@ namespace boost
}
old_count=current;
}
}
void clear_waiting_and_try_lock(long& old_count)
{
old_count&=~lock_flag_value;
old_count|=event_set_flag_value;
for(;;)
{
long const new_count=((old_count&lock_flag_value)?old_count:((old_count-1)|lock_flag_value))&~event_set_flag_value;
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,new_count,old_count);
if(current==old_count)
{
break;
}
old_count=current;
}
}
bool timed_lock(::boost::system_time const& wait_until)
{
if(try_lock())
{
return true;
}
long old_count=active_count;
mark_waiting_and_try_lock(old_count);
if(old_count&lock_flag_value)
{
@@ -93,18 +135,7 @@ namespace boost
BOOST_INTERLOCKED_DECREMENT(&active_count);
return false;
}
old_count&=~lock_flag_value;
old_count|=event_set_flag_value;
for(;;)
{
long const new_count=((old_count&lock_flag_value)?old_count:((old_count-1)|lock_flag_value))&~event_set_flag_value;
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,new_count,old_count);
if(current==old_count)
{
break;
}
old_count=current;
}
clear_waiting_and_try_lock(old_count);
lock_acquired=!(old_count&lock_flag_value);
}
while(!lock_acquired);

View File

@@ -20,9 +20,11 @@ namespace boost
}
class mutex:
boost::noncopyable,
public ::boost::detail::underlying_mutex
{
private:
mutex(mutex const&);
mutex& operator=(mutex const&);
public:
mutex()
{
@@ -40,9 +42,11 @@ namespace boost
typedef mutex try_mutex;
class timed_mutex:
boost::noncopyable,
public ::boost::detail::basic_timed_mutex
{
private:
timed_mutex(timed_mutex const&);
timed_mutex& operator=(timed_mutex const&);
public:
timed_mutex()
{

View File

@@ -30,81 +30,90 @@ namespace std
namespace boost
{
typedef long once_flag;
struct once_flag
{
long status;
long count;
};
#define BOOST_ONCE_INIT 0
#define BOOST_ONCE_INIT {0,0}
namespace detail
{
struct win32_mutex_scoped_lock
{
void* const mutex_handle;
explicit win32_mutex_scoped_lock(void* mutex_handle_):
mutex_handle(mutex_handle_)
{
BOOST_VERIFY(!win32::WaitForSingleObject(mutex_handle,win32::infinite));
}
~win32_mutex_scoped_lock()
{
BOOST_VERIFY(win32::ReleaseMutex(mutex_handle)!=0);
}
private:
void operator=(win32_mutex_scoped_lock&);
};
#ifdef BOOST_NO_ANSI_APIS
typedef wchar_t once_char_type;
#else
typedef char once_char_type;
#endif
unsigned const once_mutex_name_fixed_length=54;
unsigned const once_mutex_name_length=once_mutex_name_fixed_length+
sizeof(void*)*2+sizeof(unsigned long)*2+1;
template <class I>
void int_to_string(I p, wchar_t* buf)
void int_to_string(I p, once_char_type* buf)
{
for(unsigned i=0; i < sizeof(I)*2; ++i,++buf)
{
*buf = L'A' + static_cast<wchar_t>((p >> (i*4)) & 0x0f);
}
*buf = 0;
}
#else
template <class I>
void int_to_string(I p, char* buf)
{
for(unsigned i=0; i < sizeof(I)*2; ++i,++buf)
{
*buf = 'A' + static_cast<char>((p >> (i*4)) & 0x0f);
}
*buf = 0;
}
#endif
// create a named mutex. It doesn't really matter what this name is
// as long as it is unique both to this process, and to the address of "flag":
inline void* create_once_mutex(void* flag_address)
{
#ifdef BOOST_NO_ANSI_APIS
typedef wchar_t char_type;
static const char_type fixed_mutex_name[]=L"{C15730E2-145C-4c5e-B005-3BC753F42475}-once-flag";
once_char_type const a=L'A';
#else
typedef char char_type;
static const char_type fixed_mutex_name[]="{C15730E2-145C-4c5e-B005-3BC753F42475}-once-flag";
once_char_type const a='A';
#endif
unsigned const once_mutex_name_fixed_buffer_size=sizeof(fixed_mutex_name)/sizeof(char_type);
unsigned const once_mutex_name_fixed_length=once_mutex_name_fixed_buffer_size-1;
unsigned const once_mutex_name_length=once_mutex_name_fixed_buffer_size+sizeof(void*)*2+sizeof(unsigned long)*2;
char_type mutex_name[once_mutex_name_length];
*buf = a + static_cast<once_char_type>((p >> (i*4)) & 0x0f);
}
*buf = 0;
}
inline void name_once_mutex(once_char_type* mutex_name,void* flag_address)
{
#ifdef BOOST_NO_ANSI_APIS
static const once_char_type fixed_mutex_name[]=L"Local\\{C15730E2-145C-4c5e-B005-3BC753F42475}-once-flag";
#else
static const once_char_type fixed_mutex_name[]="Local\\{C15730E2-145C-4c5e-B005-3BC753F42475}-once-flag";
#endif
BOOST_STATIC_ASSERT(sizeof(fixed_mutex_name) ==
(sizeof(once_char_type)*(once_mutex_name_fixed_length+1)));
std::memcpy(mutex_name,fixed_mutex_name,sizeof(fixed_mutex_name));
BOOST_STATIC_ASSERT(sizeof(void*) == sizeof(std::ptrdiff_t));
detail::int_to_string(reinterpret_cast<std::ptrdiff_t>(flag_address), mutex_name + once_mutex_name_fixed_length);
detail::int_to_string(win32::GetCurrentProcessId(), mutex_name + once_mutex_name_fixed_length + sizeof(void*)*2);
#ifdef BOOST_NO_ANSI_APIS
return win32::CreateMutexW(0, 0, mutex_name);
detail::int_to_string(reinterpret_cast<std::ptrdiff_t>(flag_address),
mutex_name + once_mutex_name_fixed_length);
detail::int_to_string(win32::GetCurrentProcessId(),
mutex_name + once_mutex_name_fixed_length + sizeof(void*)*2);
}
inline void* open_once_event(once_char_type* mutex_name,void* flag_address)
{
if(!*mutex_name)
{
name_once_mutex(mutex_name,flag_address);
}
#ifdef BOOST_NO_ANSI_APIS
return ::boost::detail::win32::OpenEventW(
#else
return win32::CreateMutexA(0, 0, mutex_name);
return ::boost::detail::win32::OpenEventA(
#endif
::boost::detail::win32::synchronize |
::boost::detail::win32::event_modify_state,
false,
mutex_name);
}
inline void* create_once_event(once_char_type* mutex_name,void* flag_address)
{
if(!*mutex_name)
{
name_once_mutex(mutex_name,flag_address);
}
#ifdef BOOST_NO_ANSI_APIS
return ::boost::detail::win32::CreateEventW(
#else
return ::boost::detail::win32::CreateEventA(
#endif
0,::boost::detail::win32::manual_reset_event,
::boost::detail::win32::event_initially_reset,
mutex_name);
}
}
@@ -114,19 +123,79 @@ namespace boost
// Try for a quick win: if the procedure has already been called
// just skip through:
long const function_complete_flag_value=0xc15730e2;
long const running_value=0x7f0725e3;
long status;
bool counted=false;
detail::win32::handle_manager event_handle;
detail::once_char_type mutex_name[detail::once_mutex_name_length];
mutex_name[0]=0;
if(::boost::detail::interlocked_read_acquire(&flag)!=function_complete_flag_value)
while((status=::boost::detail::interlocked_read_acquire(&flag.status))
!=function_complete_flag_value)
{
void* const mutex_handle(::boost::detail::create_once_mutex(&flag));
BOOST_ASSERT(mutex_handle);
detail::win32::handle_manager const closer(mutex_handle);
detail::win32_mutex_scoped_lock const lock(mutex_handle);
if(flag!=function_complete_flag_value)
status=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&flag.status,running_value,0);
if(!status)
{
f();
BOOST_INTERLOCKED_EXCHANGE(&flag,function_complete_flag_value);
try
{
if(!event_handle)
{
event_handle=detail::open_once_event(mutex_name,&flag);
}
if(event_handle)
{
::boost::detail::win32::ResetEvent(event_handle);
}
f();
if(!counted)
{
BOOST_INTERLOCKED_INCREMENT(&flag.count);
counted=true;
}
BOOST_INTERLOCKED_EXCHANGE(&flag.status,function_complete_flag_value);
if(!event_handle &&
(::boost::detail::interlocked_read_acquire(&flag.count)>1))
{
event_handle=detail::create_once_event(mutex_name,&flag);
}
if(event_handle)
{
::boost::detail::win32::SetEvent(event_handle);
}
break;
}
catch(...)
{
BOOST_INTERLOCKED_EXCHANGE(&flag.status,0);
if(!event_handle)
{
event_handle=detail::open_once_event(mutex_name,&flag);
}
if(event_handle)
{
::boost::detail::win32::SetEvent(event_handle);
}
throw;
}
}
if(!counted)
{
BOOST_INTERLOCKED_INCREMENT(&flag.count);
counted=true;
status=::boost::detail::interlocked_read_acquire(&flag.status);
if(status==function_complete_flag_value)
{
break;
}
if(!event_handle)
{
event_handle=detail::create_once_event(mutex_name,&flag);
continue;
}
}
BOOST_VERIFY(!::boost::detail::win32::WaitForSingleObject(
event_handle,::boost::detail::win32::infinite));
}
}
}

View File

@@ -20,9 +20,11 @@
namespace boost
{
class recursive_mutex:
boost::noncopyable,
public ::boost::detail::basic_recursive_mutex
{
private:
recursive_mutex(recursive_mutex const&);
recursive_mutex& operator=(recursive_mutex const&);
public:
recursive_mutex()
{
@@ -40,9 +42,11 @@ namespace boost
typedef recursive_mutex recursive_try_mutex;
class recursive_timed_mutex:
boost::noncopyable,
public ::boost::detail::basic_recursive_timed_mutex
{
private:
recursive_timed_mutex(recursive_timed_mutex const&);
recursive_timed_mutex& operator=(recursive_timed_mutex const&);
public:
recursive_timed_mutex()
{

View File

@@ -19,9 +19,11 @@
namespace boost
{
class shared_mutex:
private boost::noncopyable
class shared_mutex
{
private:
shared_mutex(shared_mutex const&);
shared_mutex& operator=(shared_mutex const&);
private:
struct state_data
{
@@ -49,33 +51,35 @@ namespace boost
return *reinterpret_cast<T const*>(&res);
}
enum
{
unlock_sem = 0,
exclusive_sem = 1
};
state_data state;
detail::win32::handle semaphores[2];
detail::win32::handle &unlock_sem;
detail::win32::handle &exclusive_sem;
detail::win32::handle upgrade_sem;
void release_waiters(state_data old_state)
{
if(old_state.exclusive_waiting)
{
BOOST_VERIFY(detail::win32::ReleaseSemaphore(exclusive_sem,1,0)!=0);
BOOST_VERIFY(detail::win32::ReleaseSemaphore(semaphores[exclusive_sem],1,0)!=0);
}
if(old_state.shared_waiting || old_state.exclusive_waiting)
{
BOOST_VERIFY(detail::win32::ReleaseSemaphore(unlock_sem,old_state.shared_waiting + (old_state.exclusive_waiting?1:0),0)!=0);
BOOST_VERIFY(detail::win32::ReleaseSemaphore(semaphores[unlock_sem],old_state.shared_waiting + (old_state.exclusive_waiting?1:0),0)!=0);
}
}
public:
shared_mutex():
unlock_sem(semaphores[0]),
exclusive_sem(semaphores[1])
shared_mutex()
{
unlock_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
exclusive_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
semaphores[unlock_sem]=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
semaphores[exclusive_sem]=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
upgrade_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
state_data state_={0};
state=state_;
@@ -84,8 +88,8 @@ namespace boost
~shared_mutex()
{
detail::win32::CloseHandle(upgrade_sem);
detail::win32::CloseHandle(unlock_sem);
detail::win32::CloseHandle(exclusive_sem);
detail::win32::CloseHandle(semaphores[unlock_sem]);
detail::win32::CloseHandle(semaphores[exclusive_sem]);
}
bool try_lock_shared()
@@ -97,6 +101,10 @@ namespace boost
if(!new_state.exclusive && !new_state.exclusive_waiting_blocked)
{
++new_state.shared_count;
if(!new_state.shared_count)
{
return false;
}
}
state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state);
@@ -131,10 +139,18 @@ namespace boost
if(new_state.exclusive || new_state.exclusive_waiting_blocked)
{
++new_state.shared_waiting;
if(!new_state.shared_waiting)
{
boost::throw_exception(boost::lock_error());
}
}
else
{
++new_state.shared_count;
if(!new_state.shared_count)
{
boost::throw_exception(boost::lock_error());
}
}
state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state);
@@ -150,7 +166,7 @@ namespace boost
return true;
}
unsigned long const res=detail::win32::WaitForSingleObject(unlock_sem,::boost::detail::get_milliseconds_until(wait_until));
unsigned long const res=detail::win32::WaitForSingleObject(semaphores[unlock_sem],::boost::detail::get_milliseconds_until(wait_until));
if(res==detail::win32::timeout)
{
for(;;)
@@ -166,6 +182,10 @@ namespace boost
else
{
++new_state.shared_count;
if(!new_state.shared_count)
{
return false;
}
}
state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state);
@@ -282,6 +302,11 @@ namespace boost
if(new_state.shared_count || new_state.exclusive)
{
++new_state.exclusive_waiting;
if(!new_state.exclusive_waiting)
{
boost::throw_exception(boost::lock_error());
}
new_state.exclusive_waiting_blocked=true;
}
else
@@ -374,10 +399,18 @@ namespace boost
if(new_state.exclusive || new_state.exclusive_waiting_blocked || new_state.upgrade)
{
++new_state.shared_waiting;
if(!new_state.shared_waiting)
{
boost::throw_exception(boost::lock_error());
}
}
else
{
++new_state.shared_count;
if(!new_state.shared_count)
{
boost::throw_exception(boost::lock_error());
}
new_state.upgrade=true;
}
@@ -394,7 +427,7 @@ namespace boost
return;
}
BOOST_VERIFY(!detail::win32::WaitForSingleObject(unlock_sem,detail::win32::infinite));
BOOST_VERIFY(!detail::win32::WaitForSingleObject(semaphores[unlock_sem],detail::win32::infinite));
}
}
@@ -411,6 +444,10 @@ namespace boost
else
{
++new_state.shared_count;
if(!new_state.shared_count)
{
return false;
}
new_state.upgrade=true;
}

View File

@@ -144,6 +144,11 @@ namespace boost
start(0),milliseconds(~uintmax_t(0)),relative(true)
{}
};
inline unsigned long pin_to_zero(long value)
{
return (value<0)?0u:(unsigned long)value;
}
}
namespace this_thread
@@ -163,7 +168,7 @@ namespace boost
template<typename TimeDuration>
inline void sleep(TimeDuration const& rel_time)
{
interruptible_wait(static_cast<unsigned long>(rel_time.total_milliseconds()));
interruptible_wait(detail::pin_to_zero(rel_time.total_milliseconds()));
}
inline void sleep(system_time const& abs_time)
{

View File

@@ -8,6 +8,7 @@
#include "thread_primitives.hpp"
#include <stdexcept>
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#if defined( BOOST_USE_WINDOWS_H )
# include <windows.h>
@@ -55,17 +56,17 @@ namespace boost
{
namespace detail
{
inline BOOST_THREAD_DECL void* allocate_raw_heap_memory(unsigned size)
inline /*BOOST_THREAD_DECL*/ void* allocate_raw_heap_memory(unsigned size)
{
void* const heap_memory=detail::win32::HeapAlloc(detail::win32::GetProcessHeap(),0,size);
if(!heap_memory)
{
throw std::bad_alloc();
boost::throw_exception(std::bad_alloc());
}
return heap_memory;
}
inline BOOST_THREAD_DECL void free_raw_heap_memory(void* heap_memory)
inline /*BOOST_THREAD_DECL*/ void free_raw_heap_memory(void* heap_memory)
{
BOOST_VERIFY(detail::win32::HeapFree(detail::win32::GetProcessHeap(),0,heap_memory)!=0);
}
@@ -86,7 +87,7 @@ namespace boost
}
}
#ifdef BOOST_HAS_RVALUE_REFS
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename T,typename A1>
inline T* heap_new(A1&& a1)
{

View File

@@ -11,6 +11,7 @@
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/assert.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/detail/interlocked.hpp>
@@ -30,14 +31,18 @@ namespace boost
unsigned const infinite=INFINITE;
unsigned const timeout=WAIT_TIMEOUT;
handle const invalid_handle_value=INVALID_HANDLE_VALUE;
unsigned const event_modify_state=EVENT_MODIFY_STATE;
unsigned const synchronize=SYNCHRONIZE;
# ifdef BOOST_NO_ANSI_APIS
using ::CreateMutexW;
using ::CreateEventW;
using ::OpenEventW;
using ::CreateSemaphoreW;
# else
using ::CreateMutexA;
using ::CreateEventA;
using ::OpenEventA;
using ::CreateSemaphoreA;
# endif
using ::CloseHandle;
@@ -99,6 +104,8 @@ namespace boost
unsigned const infinite=~0U;
unsigned const timeout=258U;
handle const invalid_handle_value=(handle)(-1);
unsigned const event_modify_state=2;
unsigned const synchronize=0x100000u;
extern "C"
{
@@ -107,10 +114,12 @@ namespace boost
__declspec(dllimport) void* __stdcall CreateMutexW(_SECURITY_ATTRIBUTES*,int,wchar_t const*);
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES*,long,long,wchar_t const*);
__declspec(dllimport) void* __stdcall CreateEventW(_SECURITY_ATTRIBUTES*,int,int,wchar_t const*);
__declspec(dllimport) void* __stdcall OpenEventW(unsigned long,int,wchar_t const*);
# else
__declspec(dllimport) void* __stdcall CreateMutexA(_SECURITY_ATTRIBUTES*,int,char const*);
__declspec(dllimport) void* __stdcall CreateSemaphoreA(_SECURITY_ATTRIBUTES*,long,long,char const*);
__declspec(dllimport) void* __stdcall CreateEventA(_SECURITY_ATTRIBUTES*,int,int,char const*);
__declspec(dllimport) void* __stdcall OpenEventA(unsigned long,int,char const*);
# endif
__declspec(dllimport) int __stdcall CloseHandle(void*);
__declspec(dllimport) int __stdcall ReleaseMutex(void*);
@@ -177,7 +186,7 @@ namespace boost
#endif
if(!res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
return res;
}
@@ -191,7 +200,7 @@ namespace boost
#endif
if(!res)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
return res;
}
@@ -204,7 +213,7 @@ namespace boost
bool const success=DuplicateHandle(current_process,source,current_process,&new_handle,0,false,same_access_flag)!=0;
if(!success)
{
throw thread_resource_error();
boost::throw_exception(thread_resource_error());
}
return new_handle;
}

View File

@@ -1,42 +0,0 @@
// Copyright (C) 2002-2003
// David Moore, William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/barrier.hpp>
#include <string> // see http://article.gmane.org/gmane.comp.lib.boost.devel/106981
namespace boost {
barrier::barrier(unsigned int count)
: m_threshold(count), m_count(count), m_generation(0)
{
if (count == 0)
throw std::invalid_argument("count cannot be zero.");
}
barrier::~barrier()
{
}
bool barrier::wait()
{
boost::mutex::scoped_lock lock(m_mutex);
unsigned int gen = m_generation;
if (--m_count == 0)
{
m_generation++;
m_count = m_threshold;
m_cond.notify_all();
return true;
}
while (gen == m_generation)
m_cond.wait(lock);
return false;
}
} // namespace boost

View File

@@ -1,705 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/limits.hpp>
#include <cassert>
#include "timeconv.inl"
#if defined(BOOST_HAS_WINTHREADS)
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#elif defined(BOOST_HAS_PTHREADS)
# include <errno.h>
#elif defined(BOOST_HAS_MPTASKS)
# include <MacErrors.h>
# include "mac/init.hpp"
# include "mac/safe.hpp"
#endif
// The following include can be removed after the bug on QNX
// has been tracked down. I need this only for debugging
//#if !defined(NDEBUG) && defined(BOOST_HAS_PTHREADS)
#include <iostream>
//#endif
namespace boost {
namespace detail {
#if defined(BOOST_HAS_WINTHREADS)
condition_impl::condition_impl()
: m_gone(0), m_blocked(0), m_waiting(0)
{
m_gate = reinterpret_cast<void*>(CreateSemaphore(0, 1, 1, 0));
m_queue = reinterpret_cast<void*>(
CreateSemaphore(0, 0, (std::numeric_limits<long>::max)(), 0));
m_mutex = reinterpret_cast<void*>(CreateMutex(0, 0, 0));
if (!m_gate || !m_queue || !m_mutex)
{
int res = 0;
if (m_gate)
{
res = CloseHandle(reinterpret_cast<HANDLE>(m_gate));
assert(res);
}
if (m_queue)
{
res = CloseHandle(reinterpret_cast<HANDLE>(m_queue));
assert(res);
}
if (m_mutex)
{
res = CloseHandle(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
}
throw thread_resource_error();
}
}
condition_impl::~condition_impl()
{
int res = 0;
res = CloseHandle(reinterpret_cast<HANDLE>(m_gate));
assert(res);
res = CloseHandle(reinterpret_cast<HANDLE>(m_queue));
assert(res);
res = CloseHandle(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
}
void condition_impl::notify_one()
{
unsigned signals = 0;
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
return;
}
++m_waiting;
--m_blocked;
signals = 1;
}
else
{
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = 1;
--m_blocked;
}
else
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (signals)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_queue), signals, 0);
assert(res);
}
}
void condition_impl::notify_all()
{
unsigned signals = 0;
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
return;
}
m_waiting += (signals = m_blocked);
m_blocked = 0;
}
else
{
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = m_blocked;
m_blocked = 0;
}
else
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (signals)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_queue), signals, 0);
assert(res);
}
}
void condition_impl::enter_wait()
{
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
++m_blocked;
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
void condition_impl::do_wait()
{
int res = 0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue), INFINITE);
assert(res == WAIT_OBJECT_0);
unsigned was_waiting=0;
unsigned was_gone=0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1,
0); // open m_gate
assert(res);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
m_blocked -= m_gone;
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
m_gone = 0;
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue),
INFINITE);
assert(res == WAIT_OBJECT_0);
}
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
}
bool condition_impl::do_timed_wait(const xtime& xt)
{
bool ret = false;
unsigned int res = 0;
for (;;)
{
int milliseconds;
to_duration(xt, milliseconds);
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue),
milliseconds);
assert(res != WAIT_FAILED && res != WAIT_ABANDONED);
ret = (res == WAIT_OBJECT_0);
if (res == WAIT_TIMEOUT)
{
xtime cur;
xtime_get(&cur, TIME_UTC);
if (xtime_cmp(xt, cur) > 0)
continue;
}
break;
}
unsigned was_waiting=0;
unsigned was_gone=0;
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_mutex), INFINITE);
assert(res == WAIT_OBJECT_0);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (!ret) // timeout
{
if (m_blocked != 0)
--m_blocked;
else
++m_gone; // count spurious wakeups
}
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1,
0); // open m_gate
assert(res);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_gate), INFINITE);
assert(res == WAIT_OBJECT_0);
m_blocked -= m_gone;
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
m_gone = 0;
}
res = ReleaseMutex(reinterpret_cast<HANDLE>(m_mutex));
assert(res);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
res = WaitForSingleObject(reinterpret_cast<HANDLE>(m_queue),
INFINITE);
assert(res == WAIT_OBJECT_0);
}
res = ReleaseSemaphore(reinterpret_cast<HANDLE>(m_gate), 1, 0);
assert(res);
}
return ret;
}
#elif defined(BOOST_HAS_PTHREADS)
condition_impl::condition_impl()
{
int res = 0;
res = pthread_cond_init(&m_condition, 0);
if (res != 0)
throw thread_resource_error();
res = pthread_mutex_init(&m_mutex, 0);
if (res != 0)
throw thread_resource_error();
}
condition_impl::~condition_impl()
{
int res = 0;
res = pthread_cond_destroy(&m_condition);
assert(res == 0);
res = pthread_mutex_destroy(&m_mutex);
assert(res == 0);
}
void condition_impl::notify_one()
{
int res = 0;
res = pthread_mutex_lock(&m_mutex);
assert(res == 0);
res = pthread_cond_signal(&m_condition);
assert(res == 0);
res = pthread_mutex_unlock(&m_mutex);
assert(res == 0);
}
void condition_impl::notify_all()
{
int res = 0;
res = pthread_mutex_lock(&m_mutex);
assert(res == 0);
res = pthread_cond_broadcast(&m_condition);
assert(res == 0);
res = pthread_mutex_unlock(&m_mutex);
assert(res == 0);
}
void condition_impl::do_wait(pthread_mutex_t* pmutex)
{
int res = 0;
res = pthread_cond_wait(&m_condition, pmutex);
assert(res == 0);
}
bool condition_impl::do_timed_wait(const xtime& xt, pthread_mutex_t* pmutex)
{
timespec ts;
to_timespec(xt, ts);
int res = 0;
res = pthread_cond_timedwait(&m_condition, pmutex, &ts);
// Test code for QNX debugging, to get information during regressions
#ifndef NDEBUG
if (res == EINVAL) {
boost::xtime now;
boost::xtime_get(&now, boost::TIME_UTC);
std::cerr << "now: " << now.sec << " " << now.nsec << std::endl;
std::cerr << "time: " << time(0) << std::endl;
std::cerr << "xtime: " << xt.sec << " " << xt.nsec << std::endl;
std::cerr << "ts: " << ts.tv_sec << " " << ts.tv_nsec << std::endl;
std::cerr << "pmutex: " << pmutex << std::endl;
std::cerr << "condition: " << &m_condition << std::endl;
assert(res != EINVAL);
}
#endif
assert(res == 0 || res == ETIMEDOUT);
return res != ETIMEDOUT;
}
#elif defined(BOOST_HAS_MPTASKS)
using threads::mac::detail::safe_enter_critical_region;
using threads::mac::detail::safe_wait_on_semaphore;
condition_impl::condition_impl()
: m_gone(0), m_blocked(0), m_waiting(0)
{
threads::mac::detail::thread_init();
OSStatus lStatus = noErr;
lStatus = MPCreateSemaphore(1, 1, &m_gate);
if(lStatus == noErr)
lStatus = MPCreateSemaphore(ULONG_MAX, 0, &m_queue);
if(lStatus != noErr || !m_gate || !m_queue)
{
if (m_gate)
{
lStatus = MPDeleteSemaphore(m_gate);
assert(lStatus == noErr);
}
if (m_queue)
{
lStatus = MPDeleteSemaphore(m_queue);
assert(lStatus == noErr);
}
throw thread_resource_error();
}
}
condition_impl::~condition_impl()
{
OSStatus lStatus = noErr;
lStatus = MPDeleteSemaphore(m_gate);
assert(lStatus == noErr);
lStatus = MPDeleteSemaphore(m_queue);
assert(lStatus == noErr);
}
void condition_impl::notify_one()
{
unsigned signals = 0;
OSStatus lStatus = noErr;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
return;
}
++m_waiting;
--m_blocked;
}
else
{
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = 1;
--m_blocked;
}
else
{
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
while (signals)
{
lStatus = MPSignalSemaphore(m_queue);
assert(lStatus == noErr);
--signals;
}
}
}
void condition_impl::notify_all()
{
unsigned signals = 0;
OSStatus lStatus = noErr;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
if (m_waiting != 0) // the m_gate is already closed
{
if (m_blocked == 0)
{
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
return;
}
m_waiting += (signals = m_blocked);
m_blocked = 0;
}
else
{
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
if (m_blocked > m_gone)
{
if (m_gone != 0)
{
m_blocked -= m_gone;
m_gone = 0;
}
signals = m_waiting = m_blocked;
m_blocked = 0;
}
else
{
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
while (signals)
{
lStatus = MPSignalSemaphore(m_queue);
assert(lStatus == noErr);
--signals;
}
}
}
void condition_impl::enter_wait()
{
OSStatus lStatus = noErr;
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
++m_blocked;
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
void condition_impl::do_wait()
{
OSStatus lStatus = noErr;
lStatus = safe_wait_on_semaphore(m_queue, kDurationForever);
assert(lStatus == noErr);
unsigned was_waiting=0;
unsigned was_gone=0;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
lStatus = MPSignalSemaphore(m_gate); // open m_gate
assert(lStatus == noErr);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
m_blocked -= m_gone;
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
m_gone = 0;
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
lStatus = safe_wait_on_semaphore(m_queue, kDurationForever);
assert(lStatus == noErr);
}
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
}
bool condition_impl::do_timed_wait(const xtime& xt)
{
int milliseconds;
to_duration(xt, milliseconds);
OSStatus lStatus = noErr;
lStatus = safe_wait_on_semaphore(m_queue, milliseconds);
assert(lStatus == noErr || lStatus == kMPTimeoutErr);
bool ret = (lStatus == noErr);
unsigned was_waiting=0;
unsigned was_gone=0;
lStatus = safe_enter_critical_region(m_mutex, kDurationForever,
m_mutex_mutex);
assert(lStatus == noErr);
was_waiting = m_waiting;
was_gone = m_gone;
if (was_waiting != 0)
{
if (!ret) // timeout
{
if (m_blocked != 0)
--m_blocked;
else
++m_gone; // count spurious wakeups
}
if (--m_waiting == 0)
{
if (m_blocked != 0)
{
lStatus = MPSignalSemaphore(m_gate); // open m_gate
assert(lStatus == noErr);
was_waiting = 0;
}
else if (m_gone != 0)
m_gone = 0;
}
}
else if (++m_gone == ((std::numeric_limits<unsigned>::max)() / 2))
{
// timeout occured, normalize the m_gone count
// this may occur if many calls to wait with a timeout are made and
// no call to notify_* is made
lStatus = safe_wait_on_semaphore(m_gate, kDurationForever);
assert(lStatus == noErr);
m_blocked -= m_gone;
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
m_gone = 0;
}
lStatus = MPExitCriticalRegion(m_mutex);
assert(lStatus == noErr);
if (was_waiting == 1)
{
for (/**/ ; was_gone; --was_gone)
{
// better now than spurious later
lStatus = safe_wait_on_semaphore(m_queue, kDurationForever);
assert(lStatus == noErr);
}
lStatus = MPSignalSemaphore(m_gate);
assert(lStatus == noErr);
}
return ret;
}
#endif
} // namespace detail
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs.
// 3 Jan 03 WEKEMPF Modified for DLL implementation.

View File

@@ -1,124 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/exceptions.hpp>
#include <cstring>
#include <string>
namespace boost {
thread_exception::thread_exception()
: m_sys_err(0)
{
}
thread_exception::thread_exception(int sys_err_code)
: m_sys_err(sys_err_code)
{
}
thread_exception::~thread_exception() throw()
{
}
int thread_exception::native_error() const
{
return m_sys_err;
}
lock_error::lock_error()
{
}
lock_error::lock_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
lock_error::~lock_error() throw()
{
}
const char* lock_error::what() const throw()
{
return "boost::lock_error";
}
thread_resource_error::thread_resource_error()
{
}
thread_resource_error::thread_resource_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
thread_resource_error::~thread_resource_error() throw()
{
}
const char* thread_resource_error::what() const throw()
{
return "boost::thread_resource_error";
}
unsupported_thread_option::unsupported_thread_option()
{
}
unsupported_thread_option::unsupported_thread_option(int sys_err_code)
: thread_exception(sys_err_code)
{
}
unsupported_thread_option::~unsupported_thread_option() throw()
{
}
const char* unsupported_thread_option::what() const throw()
{
return "boost::unsupported_thread_option";
}
invalid_thread_argument::invalid_thread_argument()
{
}
invalid_thread_argument::invalid_thread_argument(int sys_err_code)
: thread_exception(sys_err_code)
{
}
invalid_thread_argument::~invalid_thread_argument() throw()
{
}
const char* invalid_thread_argument::what() const throw()
{
return "boost::invalid_thread_argument";
}
thread_permission_error::thread_permission_error()
{
}
thread_permission_error::thread_permission_error(int sys_err_code)
: thread_exception(sys_err_code)
{
}
thread_permission_error::~thread_permission_error() throw()
{
}
const char* thread_permission_error::what() const throw()
{
return "boost::thread_permission_error";
}
} // namespace boost

View File

@@ -1,8 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#define TARGET_CARBON 1

View File

@@ -1,66 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include "delivery_man.hpp"
#include "os.hpp"
#include "execution_context.hpp"
namespace boost {
namespace threads {
namespace mac {
namespace detail {
delivery_man::delivery_man():
m_pPackage(NULL),
m_pSemaphore(kInvalidID),
m_bPackageWaiting(false)
{
assert(at_st());
OSStatus lStatus = MPCreateSemaphore(1UL, 0UL, &m_pSemaphore);
// TODO - throw on error here
assert(lStatus == noErr);
}
delivery_man::~delivery_man()
{
assert(m_bPackageWaiting == false);
OSStatus lStatus = MPDeleteSemaphore(m_pSemaphore);
assert(lStatus == noErr);
}
void delivery_man::accept_deliveries()
{
if(m_bPackageWaiting)
{
assert(m_pPackage != NULL);
m_pPackage->accept();
m_pPackage = NULL;
m_bPackageWaiting = false;
// signal to the thread making the call that we're done
OSStatus lStatus = MPSignalSemaphore(m_pSemaphore);
assert(lStatus == noErr);
}
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,84 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_DELIVERY_MAN_MJM012402_HPP
#define BOOST_DELIVERY_MAN_MJM012402_HPP
#include <boost/function.hpp>
#include <boost/utility.hpp>
#include <boost/thread/mutex.hpp>
#include "package.hpp"
#include <Multiprocessing.h>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
// class delivery_man is intended to move boost::function objects from MP tasks to
// other execution contexts (such as deferred task time or system task time).
class delivery_man: private noncopyable
{
public:
delivery_man();
~delivery_man();
public:
template<class R>
R deliver(function<R> &rFunctor);
void accept_deliveries();
private:
base_package *m_pPackage;
mutex m_oMutex;
MPSemaphoreID m_pSemaphore;
bool m_bPackageWaiting;
};
template<class R>
R delivery_man::deliver(function<R> &rFunctor)
{
assert(at_mp());
// lock our mutex
mutex::scoped_lock oLock(m_oMutex);
// create a package and save it
package<R> oPackage(rFunctor);
m_pPackage = &oPackage;
m_bPackageWaiting = true;
// wait on the semaphore
OSStatus lStatus = MPWaitOnSemaphore(m_pSemaphore, kDurationForever);
assert(lStatus == noErr);
return(oPackage.return_value());
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_DELIVERY_MAN_MJM012402_HPP

View File

@@ -1,93 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include "dt_scheduler.hpp"
#include "ot_context.hpp"
#include <boost/thread/detail/singleton.hpp>
#include <OpenTransportProtocol.h>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
const OTTimeout k_ulTimerTaskDelay = 1UL;
dt_scheduler::dt_scheduler():
m_bReschedule(false),
m_uppTask(NULL),
m_lTask(0UL)
{
using ::boost::detail::thread::singleton;
ot_context &rContext(singleton<ot_context>::instance());
m_uppTask = NewOTProcessUPP(task_entry);
m_lTask = OTCreateTimerTaskInContext(m_uppTask, this, rContext.get_context());
}
dt_scheduler::~dt_scheduler()
{
OTDestroyTimerTask(m_lTask);
m_lTask = 0UL;
DisposeOTProcessUPP(m_uppTask);
m_uppTask = NULL;
}
void dt_scheduler::start_polling()
{
m_bReschedule = true;
schedule_task();
}
void dt_scheduler::stop_polling()
{
m_bReschedule = false;
}
void dt_scheduler::schedule_task()
{
if(m_bReschedule)
{
OTScheduleTimerTask(m_lTask, k_ulTimerTaskDelay);
}
}
/*static*/ pascal void dt_scheduler::task_entry(void *pRefCon)
{
dt_scheduler *pThis = reinterpret_cast<dt_scheduler *>(pRefCon);
assert(pThis != NULL);
pThis->task();
}
void dt_scheduler::task()
{
periodic_function();
schedule_task();
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,63 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_DT_SCHEDULER_MJM012402_HPP
#define BOOST_DT_SCHEDULER_MJM012402_HPP
#include "periodical.hpp"
#include <OpenTransport.h>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
// class dt_scheduler calls its pure-virtual periodic_function method periodically at
// deferred task time. This is generally 1kHz under Mac OS 9.
class dt_scheduler
{
public:
dt_scheduler();
virtual ~dt_scheduler();
protected:
void start_polling();
void stop_polling();
private:
virtual void periodic_function() = 0;
private:
void schedule_task();
static pascal void task_entry(void *pRefCon);
void task();
private:
bool m_bReschedule;
OTProcessUPP m_uppTask;
long m_lTask;
};
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_DT_SCHEDULER_MJM012402_HPP

View File

@@ -1,60 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include <Debugging.h>
#include <Multiprocessing.h>
#include "execution_context.hpp"
#include "init.hpp"
namespace boost {
namespace threads {
namespace mac {
execution_context_t execution_context()
{
// make sure that MP services are available the first time through
static bool bIgnored = detail::thread_init();
// first check if we're an MP task
if(MPTaskIsPreemptive(kInvalidID))
{
return(k_eExecutionContextMPTask);
}
#if TARGET_CARBON
// Carbon has TaskLevel
UInt32 ulLevel = TaskLevel();
if(ulLevel == 0UL)
{
return(k_eExecutionContextSystemTask);
}
if(ulLevel & kInDeferredTaskMask)
{
return(k_eExecutionContextDeferredTask);
}
return(k_eExecutionContextOther);
#else
// this can be implemented using TaskLevel if you don't mind linking against
// DebugLib (and therefore breaking Mac OS 8.6 support), or CurrentExecutionLevel.
# error execution_context unimplimented
#endif
}
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,47 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_EXECUTION_CONTEXT_MJM012402_HPP
#define BOOST_EXECUTION_CONTEXT_MJM012402_HPP
namespace boost {
namespace threads {
namespace mac {
// utility functions for figuring out what context your code is executing in.
// Bear in mind that at_mp and in_blue are the only functions guarenteed by
// Apple to work. There is simply no way of being sure that you will not get
// false readings about task level at interrupt time in blue.
typedef enum {
k_eExecutionContextSystemTask,
k_eExecutionContextDeferredTask,
k_eExecutionContextMPTask,
k_eExecutionContextOther
} execution_context_t;
execution_context_t execution_context();
inline bool at_st()
{ return(execution_context() == k_eExecutionContextSystemTask); }
inline bool at_mp()
{ return(execution_context() == k_eExecutionContextMPTask); }
inline bool in_blue()
{ return(!at_mp()); }
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_EXECUTION_CONTEXT_MJM012402_HPP

View File

@@ -1,58 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include "init.hpp"
#include "remote_call_manager.hpp"
#include <boost/thread/detail/singleton.hpp>
#include <Multiprocessing.h>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
namespace {
// force these to get called by the end of static initialization time.
static bool g_bInitialized = (thread_init() && create_singletons());
}
bool thread_init()
{
static bool bResult = MPLibraryIsLoaded();
return(bResult);
}
bool create_singletons()
{
using ::boost::detail::thread::singleton;
singleton<remote_call_manager>::instance();
return(true);
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,34 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_INIT_MJM012402_HPP
#define BOOST_INIT_MJM012402_HPP
namespace boost {
namespace threads {
namespace mac {
namespace detail {
bool thread_init();
bool create_singletons();
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_INIT_MJM012402_HPP

View File

@@ -1,24 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include <cassert>
#include <cstdio>
#include <MacTypes.h>
#include "remote_calls.hpp"
// this function will be called when an assertion fails. We redirect the assertion
// to DebugStr (MacsBug under Mac OS 1.x-9.x, Console under Mac OS X).
void __assertion_failed(char const *pszAssertion, char const *pszFile, int nLine)
{
using std::snprintf;
unsigned char strlDebug[sizeof(Str255) + 1];
char *pszDebug = reinterpret_cast<char *>(&strlDebug[1]);
strlDebug[0] = snprintf(pszDebug, sizeof(Str255), "assertion failed: \"%s\", %s, line %d", pszAssertion, pszFile, nLine);
boost::threads::mac::dt_remote_call(DebugStr, static_cast<ConstStringPtr>(strlDebug));
}

View File

@@ -1,128 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
//
// includes
//
#include <abort_exit.h>
#include <console.h>
#include <console_io.h>
#include <misc_io.h>
#include <SIOUX.h>
#include "remote_calls.hpp"
//
// using declarations
//
using std::__file_handle;
using std::__idle_proc;
using std::__io_error;
using std::__no_io_error;
using std::size_t;
using boost::threads::mac::st_remote_call;
//
// prototypes
//
static bool check_console();
static int do_read_console(__file_handle ulHandle, unsigned char *pBuffer, size_t *pCount, __idle_proc pfnIdleProc);
static int do_write_console(__file_handle ulHandle, unsigned char *pBuffer, size_t *pCount, __idle_proc pfnIdleProc);
//
// MSL function replacements
//
// these two functions are called by cin and cout, respectively, as well as by (all?)
// other functions in MSL that do console I/O. All that they do is as the remote
// call manager to ensure that their guts are called at system task time.
int __read_console(__file_handle handle, unsigned char * buffer, size_t * count, __idle_proc idle_proc)
{
return(st_remote_call(do_read_console, handle, buffer, count, idle_proc));
}
int __write_console(__file_handle handle, unsigned char * buffer, size_t * count, __idle_proc idle_proc)
{
return(st_remote_call(do_write_console, handle, buffer, count, idle_proc));
}
//
// implementations
//
static bool check_console()
{
static bool s_bHaveConsole(false);
static bool s_bWontHaveConsole(false);
if(s_bHaveConsole)
{
return(true);
}
if(s_bWontHaveConsole == false)
{
__stdio_atexit();
if(InstallConsole(0) != 0)
{
s_bWontHaveConsole = true;
return(false);
}
__console_exit = RemoveConsole;
s_bHaveConsole = true;
return(true);
}
return(false);
}
int do_read_console(__file_handle /*ulHandle*/, unsigned char *pBuffer, size_t *pCount, __idle_proc /*pfnIdleProc*/)
{
assert(pCount != NULL);
assert(pBuffer != NULL || *pCount == 0UL);
if(check_console() == false)
{
return(__io_error);
}
std::fflush(stdout);
long lCount = ReadCharsFromConsole(reinterpret_cast<char *>(pBuffer), static_cast<long>(*pCount));
*pCount = static_cast<size_t>(lCount);
if(lCount == -1L)
{
return(__io_error);
}
return(__no_io_error);
}
int do_write_console(__file_handle /*ulHandle*/, unsigned char *pBuffer, size_t *pCount, __idle_proc /*pfnIdleProc*/)
{
if(check_console() == false)
{
return(__io_error);
}
long lCount = WriteCharsToConsole(reinterpret_cast<char *>(pBuffer), static_cast<long>(*pCount));
*pCount = static_cast<size_t>(lCount);
if(lCount == -1L)
{
return(__io_error);
}
return(__no_io_error);
}

View File

@@ -1,52 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
//
// includes
//
#include <cstdlib>
#include <Multiprocessing.h>
//
// using declarations
//
using std::size_t;
extern "C" {
//
// prototypes
//
void *malloc(size_t ulSize);
void free(void *pBlock);
}
//
// MSL function replacements
//
// all allocation/deallocation currently goes through MPAllocateAligned/MPFree. This
// solution is sub-optimal at best, but will have to do for now.
void *malloc(size_t ulSize)
{
static bool bIgnored = MPLibraryIsLoaded();
return(MPAllocateAligned(ulSize, kMPAllocateDefaultAligned, 0UL));
}
void free(void *pBlock)
{
if(pBlock == NULL) return;
MPFree(pBlock);
}

View File

@@ -1,99 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
//
// includes
//
#include <new>
#include <Multiprocessing.h>
//
// using declarations
//
using std::size_t;
using std::bad_alloc;
using std::nothrow_t;
using std::nothrow;
//
// local utility functions
//
// all allocation/deallocation currently goes through MPAllocateAligned/MPFree. This
// solution is sub-optimal at best, but will have to do for now.
inline static void *allocate(size_t ulSize, const nothrow_t &)
{
static bool bIgnored = MPLibraryIsLoaded();
return(MPAllocateAligned(ulSize, kMPAllocateDefaultAligned, 0UL));
}
inline static void *allocate(size_t ulSize)
{
void *pBlock = allocate(ulSize, nothrow);
if(pBlock == NULL)
throw(bad_alloc());
return(pBlock);
}
inline static void deallocate(void *pBlock)
{
if(pBlock == NULL) return;
MPFree(pBlock);
}
//
// global operators
//
void *operator new(size_t ulSize)
{
return(allocate(ulSize));
}
void *operator new[](size_t ulSize)
{
return(allocate(ulSize));
}
void *operator new(size_t ulSize, const nothrow_t &rNoThrow)
{
return(allocate(ulSize, rNoThrow));
}
void *operator new[](size_t ulSize, const nothrow_t &rNoThrow)
{
return(allocate(ulSize, rNoThrow));
}
void operator delete(void *pBlock)
{
deallocate(pBlock);
}
void operator delete[](void *pBlock)
{
deallocate(pBlock);
}
void operator delete(void *pBlock, const nothrow_t &)
{
deallocate(pBlock);
}
void operator delete[](void *pBlock, const nothrow_t &)
{
deallocate(pBlock);
}

View File

@@ -1,150 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include <cassert>
// we include timesize.mac.h to get whether or not __TIMESIZE_DOUBLE__ is
// defined. This is not safe, given that __TIMESIZE_DOUBLE__ affects MSL
// at MSL's compile time, not ours, so be forgiving if you have changed it
// since you have built MSL.
#include <timesize.mac.h>
#include <time.h>
#include <boost/thread/detail/force_cast.hpp>
#include <boost/thread/xtime.hpp>
#include "execution_context.hpp"
#include <DriverServices.h>
extern "C"
{
clock_t __get_clock();
time_t __get_time();
int __to_gm_time(time_t *pTime);
int __is_dst();
}
static inline uint64_t get_nanoseconds()
{
using boost::detail::thread::force_cast;
return(force_cast<uint64_t>(AbsoluteToNanoseconds(UpTime())));
}
#ifdef __TIMESIZE_DOUBLE__
// return number of microseconds since startup as a double
clock_t __get_clock()
{
static const double k_dNanosecondsPerMicrosecond(1000.0);
return(get_nanoseconds() / k_dNanosecondsPerMicrosecond);
}
#else
// return number of ticks (60th of a second) since startup as a long
clock_t __get_clock()
{
static const uint64_t k_ullTicksPerSecond(60ULL);
static const uint64_t k_ullNanosecondsPerSecond(1000ULL * 1000ULL * 1000ULL);
static const uint64_t k_ullNanosecondsPerTick(k_ullNanosecondsPerSecond / k_ullTicksPerSecond);
return(get_nanoseconds() / k_ullNanosecondsPerTick);
}
#endif
// return number of seconds elapsed since Jan 1, 1970
time_t __get_time()
{
boost::xtime sTime;
int nType = boost::xtime_get(&sTime, boost::TIME_UTC);
assert(nType == boost::TIME_UTC);
return(static_cast<time_t>(sTime.sec));
}
static inline MachineLocation &read_location()
{
static MachineLocation s_sLocation;
assert(boost::threads::mac::at_st());
ReadLocation(&s_sLocation);
return(s_sLocation);
}
static inline MachineLocation &get_location()
{
static MachineLocation &s_rLocation(read_location());
return(s_rLocation);
}
// force the machine location to be cached at static initlialization
static MachineLocation &g_rIgnored(get_location());
static inline long calculate_delta()
{
MachineLocation &rLocation(get_location());
// gmtDelta is a 24-bit, signed integer. We need to strip out the lower 24 bits,
// then sign-extend what we have.
long lDelta = rLocation.u.gmtDelta & 0x00ffffffL;
if((lDelta & 0x00800000L) != 0L)
{
lDelta |= 0xFF000000;
}
return(lDelta);
}
static inline bool check_if_location_is_broken()
{
MachineLocation &rLocation(get_location());
if(rLocation.latitude == 0 && rLocation.longitude == 0 && rLocation.u.gmtDelta == 0)
return(true);
return(false);
}
static inline bool location_is_broken()
{
static bool s_bLocationIsBroken(check_if_location_is_broken());
return(s_bLocationIsBroken);
}
// translate time to GMT
int __to_gm_time(time_t *pTime)
{
if(location_is_broken())
{
return(0);
}
static long s_lDelta(calculate_delta());
*pTime -= s_lDelta;
return(1);
}
static inline bool is_daylight_savings_time()
{
MachineLocation &rLocation(get_location());
return(rLocation.u.dlsDelta != 0);
}
// check if we're in daylight savings time
int __is_dst()
{
if(location_is_broken())
{
return(-1);
}
static bool bIsDaylightSavingsTime(is_daylight_savings_time());
return(static_cast<int>(bIsDaylightSavingsTime));
}

View File

@@ -1,57 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include "os.hpp"
#include <cassert>
#include <Gestalt.h>
namespace boost {
namespace threads {
namespace mac {
namespace os {
// read the OS version from Gestalt
static inline long get_version()
{
long lVersion;
OSErr nErr = Gestalt(gestaltSystemVersion, &lVersion);
assert(nErr == noErr);
return(lVersion);
}
// check if we're running under Mac OS X and cache that information
bool x()
{
static bool bX = (version() >= 0x1000);
return(bX);
}
// read the OS version and cache it
long version()
{
static long lVersion = get_version();
return(lVersion);
}
} // namespace os
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,37 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_OS_MJM012402_HPP
#define BOOST_OS_MJM012402_HPP
namespace boost {
namespace threads {
namespace mac {
namespace os {
// functions to determine the OS environment. With namespaces, you get a cute call:
// mac::os::x
bool x();
long version();
} // namespace os
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_OS_MJM012402_HPP

View File

@@ -1,46 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include "ot_context.hpp"
#include "execution_context.hpp"
#include <cassert>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
ot_context::ot_context()
{
assert(at_st());
OSStatus lStatus = InitOpenTransportInContext(0UL, &m_pContext);
// TODO - throw on error
assert(lStatus == noErr);
}
ot_context::~ot_context()
{
CloseOpenTransportInContext(m_pContext);
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,58 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_OT_CONTEXT_MJM012402_HPP
#define BOOST_OT_CONTEXT_MJM012402_HPP
#include <OpenTransport.h>
#include <boost/utility.hpp>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
// class ot_context is intended to be used only as a singleton. All that this class
// does is ask OpenTransport to create him an OTClientContextPtr, and then doles
// this out to anyone who wants it. ot_context should only be instantiated at
// system task time.
class ot_context: private noncopyable
{
protected:
ot_context();
~ot_context();
public:
OTClientContextPtr get_context();
private:
OTClientContextPtr m_pContext;
};
inline OTClientContextPtr ot_context::get_context()
{ return(m_pContext); }
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_OT_CONTEXT_MJM012402_HPP

View File

@@ -1,76 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_PACKAGE_MJM012402_HPP
#define BOOST_PACKAGE_MJM012402_HPP
namespace boost {
namespace threads {
namespace mac {
namespace detail {
class base_package: private noncopyable
{
public:
virtual void accept() = 0;
};
template<class R>
class package: public base_package
{
public:
inline package(function<R> &rFunctor):
m_rFunctor(rFunctor)
{ /* no-op */ }
inline ~package()
{ /* no-op */ }
virtual void accept()
{ m_oR = m_rFunctor(); }
inline R return_value()
{ return(m_oR); }
private:
function<R> &m_rFunctor;
R m_oR;
};
template<>
class package<void>: public base_package
{
public:
inline package(function<void> &rFunctor):
m_rFunctor(rFunctor)
{ /* no-op */ }
inline ~package()
{ /* no-op */ }
virtual void accept()
{ m_rFunctor(); }
inline void return_value()
{ return; }
private:
function<void> &m_rFunctor;
};
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_PACKAGE_MJM012402_HPP

View File

@@ -1,97 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_PERIODICAL_MJM012402_HPP
#define BOOST_PERIODICAL_MJM012402_HPP
#include <boost/function.hpp>
#include <boost/utility.hpp>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
// class periodical inherits from its template parameter, which should follow the
// pattern set by classes dt_scheduler and st_scheduler. periodical knows how to
// call a boost::function, where the xx_scheduler classes only know to to call a
// member periodically.
template<class Scheduler>
class periodical: private noncopyable, private Scheduler
{
public:
periodical(function<void> &rFunction);
~periodical();
public:
void start();
void stop();
protected:
virtual void periodic_function();
private:
function<void> m_oFunction;
};
template<class Scheduler>
periodical<Scheduler>::periodical(function<void> &rFunction):
m_oFunction(rFunction)
{
// no-op
}
template<class Scheduler>
periodical<Scheduler>::~periodical()
{
stop();
}
template<class Scheduler>
void periodical<Scheduler>::start()
{
start_polling();
}
template<class Scheduler>
void periodical<Scheduler>::stop()
{
stop_polling();
}
template<class Scheduler>
inline void periodical<Scheduler>::periodic_function()
{
try
{
m_oFunction();
}
catch(...)
{
}
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_PERIODICAL_MJM012402_HPP

View File

@@ -1,9 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#define NDEBUG
#define TARGET_CARBON 1

View File

@@ -1,48 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include "remote_call_manager.hpp"
#include <boost/bind.hpp>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
using detail::delivery_man;
remote_call_manager::remote_call_manager():
m_oDTDeliveryMan(),
m_oSTDeliveryMan(),
m_oDTFunction(bind(&delivery_man::accept_deliveries, &m_oDTDeliveryMan)),
m_oSTFunction(bind(&delivery_man::accept_deliveries, &m_oSTDeliveryMan)),
m_oDTPeriodical(m_oDTFunction),
m_oSTPeriodical(m_oSTFunction)
{
m_oDTPeriodical.start();
m_oSTPeriodical.start();
}
remote_call_manager::~remote_call_manager()
{
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,102 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_REMOTE_CALL_MANAGER_MJM012402_HPP
#define BOOST_REMOTE_CALL_MANAGER_MJM012402_HPP
#include <boost/utility.hpp>
#include "delivery_man.hpp"
#include "dt_scheduler.hpp"
#include "periodical.hpp"
#include "execution_context.hpp"
#include "st_scheduler.hpp"
namespace boost {
namespace threads {
namespace mac {
namespace detail {
// class remote_call_manager is used by the remote call functions (dt_remote_call and
// st_remote_call) to execute functions in non-MP contexts.
class remote_call_manager: private noncopyable
{
protected:
remote_call_manager();
~remote_call_manager();
public:
template<class R>
R execute_at_dt(function<R> &rFunctor);
template<class R>
R execute_at_st(function<R> &rFunctor);
private:
template<class R>
static R execute_now(function<R> &rFunctor);
private:
delivery_man m_oDTDeliveryMan;
delivery_man m_oSTDeliveryMan;
function<void> m_oDTFunction;
function<void> m_oSTFunction;
periodical<dt_scheduler> m_oDTPeriodical;
periodical<st_scheduler> m_oSTPeriodical;
};
template<class R>
/*static*/ inline R remote_call_manager::execute_now(function<R> &rFunctor)
{
return(rFunctor());
}
template<>
/*static*/ inline void remote_call_manager::execute_now<void>(function<void> &rFunctor)
{
rFunctor();
}
template<class R>
inline R remote_call_manager::execute_at_dt(function<R> &rFunctor)
{
if(at_mp())
{
return(m_oDTDeliveryMan.deliver(rFunctor));
}
return(execute_now(rFunctor));
}
template<class R>
inline R remote_call_manager::execute_at_st(function<R> &rFunctor)
{
if(at_mp())
{
return(m_oSTDeliveryMan.deliver(rFunctor));
}
assert(at_st());
return(execute_now(rFunctor));
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_REMOTE_CALL_MANAGER_MJM012402_HPP

View File

@@ -1,157 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_REMOTE_CALLS_MJM012402_HPP
#define BOOST_REMOTE_CALLS_MJM012402_HPP
#include <boost/bind.hpp>
#include "remote_call_manager.hpp"
#include <boost/thread/detail/singleton.hpp>
// this file contains macros to generate functions with the signatures:
// ReturnType st_remote_call([pascal] ReturnType (*pfnFunction)(
// [Argument1Type[, Argument2Type[...]]])
// [, Argument1Type oArgument1[, Argument2Type oArgument2[...]]])
// and
// ReturnType dt_remote_call([pascal] ReturnType (*pfnFunction)(
// [Argument1Type[, Argument2Type[...]]])
// [, Argument1Type oArgument1[, Argument2Type oArgument2[...]]])
// in other words, identical to the function pointer versions of boost::bind, but
// with the return type returned. The purpose of these functions is to be able to
// request that a function be called at system task time or deferred task time, then
// sleep until it is called, and finally get back its return value.
#define BOOST_REMOTE_CALL_CLASS_LIST_0
#define BOOST_REMOTE_CALL_CLASS_LIST_1 BOOST_REMOTE_CALL_CLASS_LIST_0, class A1
#define BOOST_REMOTE_CALL_CLASS_LIST_2 BOOST_REMOTE_CALL_CLASS_LIST_1, class A2
#define BOOST_REMOTE_CALL_CLASS_LIST_3 BOOST_REMOTE_CALL_CLASS_LIST_2, class A3
#define BOOST_REMOTE_CALL_CLASS_LIST_4 BOOST_REMOTE_CALL_CLASS_LIST_3, class A4
#define BOOST_REMOTE_CALL_CLASS_LIST_5 BOOST_REMOTE_CALL_CLASS_LIST_4, class A5
#define BOOST_REMOTE_CALL_CLASS_LIST_6 BOOST_REMOTE_CALL_CLASS_LIST_5, class A6
#define BOOST_REMOTE_CALL_CLASS_LIST_7 BOOST_REMOTE_CALL_CLASS_LIST_6, class A7
#define BOOST_REMOTE_CALL_CLASS_LIST_8 BOOST_REMOTE_CALL_CLASS_LIST_7, class A8
#define BOOST_REMOTE_CALL_CLASS_LIST_9 BOOST_REMOTE_CALL_CLASS_LIST_8, class A9
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_0
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_1 BOOST_REMOTE_CALL_ARGUMENT_LIST_0 A1 oA1
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_2 BOOST_REMOTE_CALL_ARGUMENT_LIST_1, A2 oA2
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_3 BOOST_REMOTE_CALL_ARGUMENT_LIST_2, A3 oA3
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_4 BOOST_REMOTE_CALL_ARGUMENT_LIST_3, A4 oA4
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_5 BOOST_REMOTE_CALL_ARGUMENT_LIST_4, A5 oA5
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_6 BOOST_REMOTE_CALL_ARGUMENT_LIST_5, A6 oA6
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_7 BOOST_REMOTE_CALL_ARGUMENT_LIST_6, A7 oA7
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_8 BOOST_REMOTE_CALL_ARGUMENT_LIST_7, A8 oA8
#define BOOST_REMOTE_CALL_ARGUMENT_LIST_9 BOOST_REMOTE_CALL_ARGUMENT_LIST_8, A9 oA9
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_0
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_1 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_0, oA1
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_2 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_1, oA2
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_3 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_2, oA3
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_4 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_3, oA4
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_5 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_4, oA5
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_6 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_5, oA6
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_7 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_6, oA7
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_8 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_7, oA8
#define BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_9 BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_8, oA9
#define BOOST_REMOTE_CALL_COMMA_0
#define BOOST_REMOTE_CALL_COMMA_1 ,
#define BOOST_REMOTE_CALL_COMMA_2 ,
#define BOOST_REMOTE_CALL_COMMA_3 ,
#define BOOST_REMOTE_CALL_COMMA_4 ,
#define BOOST_REMOTE_CALL_COMMA_5 ,
#define BOOST_REMOTE_CALL_COMMA_6 ,
#define BOOST_REMOTE_CALL_COMMA_7 ,
#define BOOST_REMOTE_CALL_COMMA_8 ,
#define BOOST_REMOTE_CALL_COMMA_9 ,
// this is the macro that ties it all together. From here, we generate all forms of
// dt_remote_call and st_remote_call.
#define BOOST_REMOTE_CALL(context, stack, n) \
template<class R BOOST_REMOTE_CALL_CLASS_LIST_ ## n> \
inline R context ## _remote_call(stack R (*pfnF)( \
BOOST_REMOTE_CALL_ARGUMENT_LIST_ ## n) \
BOOST_REMOTE_CALL_COMMA_ ## n \
BOOST_REMOTE_CALL_ARGUMENT_LIST_ ## n) \
{ \
using ::boost::detail::thread::singleton; \
using detail::remote_call_manager; \
function<R> oFunc(bind(pfnF BOOST_REMOTE_CALL_FUNCTION_ARGUMENT_LIST_ ## n)); \
remote_call_manager &rManager(singleton<remote_call_manager>::instance()); \
return(rManager.execute_at_ ## context(oFunc)); \
}
namespace boost {
namespace threads {
namespace mac {
BOOST_REMOTE_CALL(st, , 0)
BOOST_REMOTE_CALL(st, , 1)
BOOST_REMOTE_CALL(st, , 2)
BOOST_REMOTE_CALL(st, , 3)
BOOST_REMOTE_CALL(st, , 4)
BOOST_REMOTE_CALL(st, , 5)
BOOST_REMOTE_CALL(st, , 6)
BOOST_REMOTE_CALL(st, , 7)
BOOST_REMOTE_CALL(st, , 8)
BOOST_REMOTE_CALL(st, , 9)
BOOST_REMOTE_CALL(dt, , 0)
BOOST_REMOTE_CALL(dt, , 1)
BOOST_REMOTE_CALL(dt, , 2)
BOOST_REMOTE_CALL(dt, , 3)
BOOST_REMOTE_CALL(dt, , 4)
BOOST_REMOTE_CALL(dt, , 5)
BOOST_REMOTE_CALL(dt, , 6)
BOOST_REMOTE_CALL(dt, , 7)
BOOST_REMOTE_CALL(dt, , 8)
BOOST_REMOTE_CALL(dt, , 9)
BOOST_REMOTE_CALL(st, pascal, 0)
BOOST_REMOTE_CALL(st, pascal, 1)
BOOST_REMOTE_CALL(st, pascal, 2)
BOOST_REMOTE_CALL(st, pascal, 3)
BOOST_REMOTE_CALL(st, pascal, 4)
BOOST_REMOTE_CALL(st, pascal, 5)
BOOST_REMOTE_CALL(st, pascal, 6)
BOOST_REMOTE_CALL(st, pascal, 7)
BOOST_REMOTE_CALL(st, pascal, 8)
BOOST_REMOTE_CALL(st, pascal, 9)
BOOST_REMOTE_CALL(dt, pascal, 0)
BOOST_REMOTE_CALL(dt, pascal, 1)
BOOST_REMOTE_CALL(dt, pascal, 2)
BOOST_REMOTE_CALL(dt, pascal, 3)
BOOST_REMOTE_CALL(dt, pascal, 4)
BOOST_REMOTE_CALL(dt, pascal, 5)
BOOST_REMOTE_CALL(dt, pascal, 6)
BOOST_REMOTE_CALL(dt, pascal, 7)
BOOST_REMOTE_CALL(dt, pascal, 8)
BOOST_REMOTE_CALL(dt, pascal, 9)
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_REMOTE_CALLS_MJM012402_HPP

View File

@@ -1,210 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#include <DriverServices.h>
#include <Events.h>
#include <Multiprocessing.h>
#include <Threads.h>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <boost/thread/detail/force_cast.hpp>
#include <limits>
#include "execution_context.hpp"
using boost::detail::thread::force_cast;
namespace boost {
namespace threads {
namespace mac {
namespace detail {
static OSStatus safe_wait(function<OSStatus, Duration> &rFunction, Duration lDuration);
// we call WNE to allow tasks that own the resource the blue is waiting on system
// task time, in case they are blocked on an ST remote call (or a memory allocation
// for that matter).
static void idle()
{
if(at_st())
{
EventRecord sEvent;
bool bEvent = WaitNextEvent(0U, &sEvent, 0UL, NULL);
}
}
OSStatus safe_wait_on_semaphore(MPSemaphoreID pSemaphoreID, Duration lDuration)
{
function<OSStatus, Duration> oWaitOnSemaphore;
oWaitOnSemaphore = bind(MPWaitOnSemaphore, pSemaphoreID, _1);
return(safe_wait(oWaitOnSemaphore, lDuration));
}
OSStatus safe_enter_critical_region(MPCriticalRegionID pCriticalRegionID, Duration lDuration, MPCriticalRegionID pCriticalRegionCriticalRegionID/* = kInvalidID*/)
{
if(pCriticalRegionCriticalRegionID != kInvalidID)
{
if(at_mp())
{
// enter the critical region's critical region
OSStatus lStatus = noErr;
AbsoluteTime sExpiration;
if(lDuration != kDurationImmediate && lDuration != kDurationForever)
{
sExpiration = AddDurationToAbsolute(lDuration, UpTime());
}
lStatus = MPEnterCriticalRegion(pCriticalRegionCriticalRegionID, lDuration);
assert(lStatus == noErr || lStatus == kMPTimeoutErr);
if(lStatus == noErr)
{
// calculate a new duration
if(lDuration != kDurationImmediate && lDuration != kDurationForever)
{
// check if we have any time left
AbsoluteTime sUpTime(UpTime());
if(force_cast<uint64_t>(sExpiration) > force_cast<uint64_t>(sUpTime))
{
// reset our duration to our remaining time
lDuration = AbsoluteDeltaToDuration(sExpiration, sUpTime);
}
else
{
// no time left
lDuration = kDurationImmediate;
}
}
// if we entered the critical region, exit it again
lStatus = MPExitCriticalRegion(pCriticalRegionCriticalRegionID);
assert(lStatus == noErr);
}
else
{
// otherwise, give up
return(lStatus);
}
}
else
{
// if we're at system task time, try to enter the critical region's critical
// region until we succeed. MP tasks will block on this until we let it go.
OSStatus lStatus;
do
{
lStatus = MPEnterCriticalRegion(pCriticalRegionCriticalRegionID, kDurationImmediate);
} while(lStatus == kMPTimeoutErr);
assert(lStatus == noErr);
}
}
// try to enter the critical region
function<OSStatus, Duration> oEnterCriticalRegion;
oEnterCriticalRegion = bind(MPEnterCriticalRegion, pCriticalRegionID, _1);
OSStatus lStatus = safe_wait(oEnterCriticalRegion, lDuration);
// if we entered the critical region's critical region to get the critical region,
// exit the critical region's critical region.
if(pCriticalRegionCriticalRegionID != kInvalidID && at_mp() == false)
{
lStatus = MPExitCriticalRegion(pCriticalRegionCriticalRegionID);
assert(lStatus == noErr);
}
return(lStatus);
}
OSStatus safe_wait_on_queue(MPQueueID pQueueID, void **pParam1, void **pParam2, void **pParam3, Duration lDuration)
{
function<OSStatus, Duration> oWaitOnQueue;
oWaitOnQueue = bind(MPWaitOnQueue, pQueueID, pParam1, pParam2, pParam3, _1);
return(safe_wait(oWaitOnQueue, lDuration));
}
OSStatus safe_delay_until(AbsoluteTime *pWakeUpTime)
{
if(execution_context() == k_eExecutionContextMPTask)
{
return(MPDelayUntil(pWakeUpTime));
}
else
{
uint64_t ullWakeUpTime = force_cast<uint64_t>(*pWakeUpTime);
while(force_cast<uint64_t>(UpTime()) < ullWakeUpTime)
{
idle();
}
return(noErr);
}
}
OSStatus safe_wait(function<OSStatus, Duration> &rFunction, Duration lDuration)
{
if(execution_context() == k_eExecutionContextMPTask)
{
return(rFunction(lDuration));
}
else
{
uint64_t ullExpiration = 0ULL;
// get the expiration time in UpTime units
if(lDuration == kDurationForever)
{
ullExpiration = (::std::numeric_limits<uint64_t>::max)();
}
else if(lDuration == kDurationImmediate)
{
ullExpiration = force_cast<uint64_t>(UpTime());
}
else
{
AbsoluteTime sExpiration = AddDurationToAbsolute(lDuration, UpTime());
ullExpiration = force_cast<uint64_t>(sExpiration);
}
OSStatus lStatus;
bool bExpired = false;
do
{
lStatus = rFunction(kDurationImmediate);
// mm - "if" #if 0'd out to allow task time to threads blocked on I/O
#if 0
if(lStatus == kMPTimeoutErr)
#endif
{
idle();
}
if(lDuration != kDurationForever)
{
bExpired = (force_cast<uint64_t>(UpTime()) < ullExpiration);
}
} while(lStatus == kMPTimeoutErr && bExpired == false);
return(lStatus);
}
}
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost

View File

@@ -1,41 +0,0 @@
// (C) Copyright Mac Murrett 2001.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
#ifndef BOOST_SAFE_MJM012402_HPP
#define BOOST_SAFE_MJM012402_HPP
#include <Multiprocessing.h>
namespace boost {
namespace threads {
namespace mac {
namespace detail {
// these functions are used to wain in an execution context-independent manor. All of these
// functions are both MP- and ST-safe.
OSStatus safe_wait_on_semaphore(MPSemaphoreID pSemaphoreID, Duration lDuration);
OSStatus safe_enter_critical_region(MPCriticalRegionID pCriticalRegionID, Duration lDuration, MPCriticalRegionID pCriticalRegionCriticalRegionID = kInvalidID);
OSStatus safe_wait_on_queue(MPQueueID pQueueID, void **pParam1, void **pParam2, void **pParam3, Duration lDuration);
OSStatus safe_delay_until(AbsoluteTime *pWakeUpTime);
} // namespace detail
} // namespace mac
} // namespace threads
} // namespace boost
#endif // BOOST_SAFE_MJM012402_HPP

Some files were not shown because too many files have changed in this diff Show More