2
0
mirror of https://github.com/boostorg/random.git synced 2026-01-19 04:22:17 +00:00

Make statistics_tests usable with the current library

[SVN r60279]
This commit is contained in:
Steven Watanabe
2010-03-07 05:22:40 +00:00
parent bef66181dd
commit 2e4c0f628c
9 changed files with 338 additions and 233 deletions

10
extra/Jamfile.v2 Normal file
View File

@@ -0,0 +1,10 @@
# Jamfile.v2
#
# Copyright (c) 2009
# Steven Watanabe
#
# Distributed under the Boost Software License, Version 1.0 (See
# accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
run test_haertel.cpp ;

156
extra/haertel.hpp Normal file
View File

@@ -0,0 +1,156 @@
/* haertel.hpp file
*
* Copyright Jens Maurer 2000, 2002
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id$
*
* Revision history
*/
/*
* NOTE: This is not part of the official boost submission. It exists
* only as a collection of ideas.
*/
#ifndef BOOST_RANDOM_HAERTEL_HPP
#define BOOST_RANDOM_HAERTEL_HPP
#include <boost/cstdint.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/inversive_congruential.hpp>
namespace boost {
namespace random {
// Wikramaratna 1989 ACORN
template<class IntType, int k, IntType m, IntType val>
class additive_congruential
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = 0;
static const result_type max_value = m-1;
#else
enum {
has_fixed_range = true,
min_value = 0,
max_value = m-1
};
#endif
template<class InputIterator>
explicit additive_congruential(InputIterator start) { seed(start); }
template<class InputIterator>
void seed(InputIterator start)
{
for(int i = 0; i <= k; ++i, ++start)
values[i] = *start;
}
result_type operator()()
{
for(int i = 1; i <= k; ++i) {
IntType tmp = values[i-1] + values[i];
if(tmp >= m)
tmp -= m;
values[i] = tmp;
}
return values[k];
}
result_type validation() const { return val; }
private:
IntType values[k+1];
};
template<class IntType, int r, int s, IntType m, IntType val>
class lagged_fibonacci_int
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = 0;
static const result_type max_value = m-1;
#else
enum {
has_fixed_range = true,
min_value = 0,
max_value = m-1
};
#endif
explicit lagged_fibonacci_int(IntType start) { seed(start); }
template<class Generator>
explicit lagged_fibonacci_int(Generator & gen) { seed(gen); }
void seed(IntType start)
{
linear_congruential<uint32_t, 299375077, 0, 0, 0> init;
seed(init);
}
template<class Generator>
void seed(Generator & gen)
{
assert(r > s);
for(int i = 0; i < 607; ++i)
values[i] = gen();
current = 0;
lag = r-s;
}
result_type operator()()
{
result_type tmp = values[current] + values[lag];
if(tmp >= m)
tmp -= m;
values[current] = tmp;
++current;
if(current >= r)
current = 0;
++lag;
if(lag >= r)
lag = 0;
return tmp;
}
result_type validation() const { return val; }
private:
result_type values[r];
int current, lag;
};
} // namespace random
} // namespace boost
// distributions from Haertel's dissertation
// (additional parameterizations of the basic templates)
namespace Haertel {
typedef boost::random::linear_congruential<boost::uint64_t, 45965, 453816691,
(boost::uint64_t(1)<<31), 0> LCG_Af2;
typedef boost::random::linear_congruential<boost::uint64_t, 211936855, 0,
(boost::uint64_t(1)<<29)-3, 0> LCG_Die1;
typedef boost::random::linear_congruential<boost::uint32_t, 2824527309u, 0,
0, 0> LCG_Fis;
typedef boost::random::linear_congruential<boost::uint64_t, 950706376u, 0,
(boost::uint64_t(1)<<31)-1, 0> LCG_FM;
typedef boost::random::linear_congruential<boost::int32_t, 51081, 0,
2147483647, 0> LCG_Hae;
typedef boost::random::linear_congruential<boost::uint32_t, 69069, 1,
0, 0> LCG_VAX;
typedef boost::random::inversive_congruential<boost::int64_t, 240318, 197,
1000081, 0> NLG_Inv1;
typedef boost::random::inversive_congruential<boost::int64_t, 15707262,
13262967, (1<<24)-17, 0> NLG_Inv2;
typedef boost::random::inversive_congruential<boost::int32_t, 1, 1,
2147483647, 0> NLG_Inv4;
typedef boost::random::inversive_congruential<boost::int32_t, 1, 2,
1<<30, 0> NLG_Inv5;
typedef boost::random::additive_congruential<boost::int32_t, 6,
(1<<30)-35, 0> MRG_Acorn7;
typedef boost::random::lagged_fibonacci_int<boost::uint32_t, 607, 273,
0, 0> MRG_Fib2;
} // namespace Haertel
#endif

62
extra/test_haertel.cpp Normal file
View File

@@ -0,0 +1,62 @@
/* haertel.hpp file
*
* Copyright Jens Maurer 2000, 2002
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id$
*
* Revision history
*/
#include <string>
#include <iostream>
#include <boost/format.hpp>
#include "haertel.hpp"
#define BOOST_TEST_MAIN
#include <boost/test/included/unit_test.hpp>
template<class Gen, class T>
inline void check_validation(Gen & gen, T value, const std::string & name)
{
for(int i = 0; i < 100000-1; ++i)
gen();
typename Gen::result_type actual = gen();
BOOST_CHECK_MESSAGE(value == actual,
boost::str(boost::format("%s: check value == gen() failed [%d != %d]") %
name % value % actual));
}
// we have validation after 100000 steps with Haertel's generators
template<class Gen, class T>
void validate(T value, const std::string & name)
{
Gen gen(1234567);
check_validation(gen, value, name);
}
BOOST_AUTO_TEST_CASE(test_haertel)
{
using namespace Haertel;
validate<LCG_Af2>(183269031u, "LCG_Af2");
validate<LCG_Die1>(522319944u, "LCG_Die1");
validate<LCG_Fis>(-2065162233u, "LCG_Fis");
validate<LCG_FM>(581815473u, "LCG_FM");
validate<LCG_Hae>(28931709, "LCG_Hae");
validate<LCG_VAX>(1508154087u, "LCG_VAX");
validate<NLG_Inv2>(6666884, "NLG_Inv2");
validate<NLG_Inv4>(1521640076, "NLG_Inv4");
validate<NLG_Inv5>(641840839, "NLG_Inv5");
static const int acorn7_init[]
= { 1234567, 7654321, 246810, 108642, 13579, 97531, 555555 };
MRG_Acorn7 acorn7(acorn7_init);
check_validation(acorn7, 874294697, "MRG_Acorn7");
// This currently fails. I don't want to touch it until
// I trace the source of this generator. --SJW
validate<MRG_Fib2>(1234567u, "MRG_Fib2");
}

View File

@@ -19,4 +19,5 @@
#pragma warning(push)
#pragma warning(disable:4512)
#pragma warning(disable:4127)
#pragma warning(disable:4724)
#endif

View File

@@ -115,6 +115,13 @@ public:
private:
#ifdef BOOST_MSVC
#pragma warning(push)
// disable division by zero warning, since we can't
// actually divide by zero.
#pragma warning(disable:4723)
#endif
/// \cond hide_private_members
template<class Engine>
static result_type generate(Engine& eng, result_type min_value, result_type /*max_value*/, range_type range)
@@ -271,6 +278,10 @@ private:
}
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
void init()
{
_range = random::detail::subtract<result_type>()(_max, _min);

View File

@@ -126,7 +126,7 @@ public:
r_base /= 2;
}
return ((eng() - (eng.min)()) / _factor) % _range + _min;
return static_cast<result_type>(((eng() - (eng.min)()) / _factor) % _range + _min);
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS

View File

@@ -1,4 +1,5 @@
# Copyright 2003 Jens Maurer
# Copyright 2009-2010 Steven Watanabe
# Distributed under the Boost Software License, Version 1.0. (See accompany-
# ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
@@ -43,5 +44,5 @@ for urng in $(all-urngs)
# run random_speed.cpp ;
# run statistic_tests.cpp ;
exe statistic_tests : statistic_tests.cpp ;
explicit statistics_tests ;

View File

@@ -10,216 +10,35 @@
* Revision history
*/
/*
* NOTE: This is not part of the official boost submission. It exists
* only as a collection of ideas.
*/
#include <iostream>
#include <iomanip>
#include <string>
#include <functional>
#include <math.h> // lgamma is not in namespace std
#include <vector>
#include <set>
#include <algorithm>
#include <boost/cstdint.hpp>
#include <boost/random.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include "statistic_tests.hpp"
#include "integrate.hpp"
namespace boost {
namespace random {
// Wikramaratna 1989 ACORN
template<class IntType, int k, IntType m, IntType val>
class additive_congruential
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = 0;
static const result_type max_value = m-1;
#else
enum {
has_fixed_range = true,
min_value = 0,
max_value = m-1
};
#endif
template<class InputIterator>
explicit additive_congruential(InputIterator start) { seed(start); }
template<class InputIterator>
void seed(InputIterator start)
{
for(int i = 0; i <= k; ++i, ++start)
values[i] = *start;
}
result_type operator()()
{
for(int i = 1; i <= k; ++i) {
IntType tmp = values[i-1] + values[i];
if(tmp >= m)
tmp -= m;
values[i] = tmp;
}
return values[k];
}
result_type validation() const { return val; }
private:
IntType values[k+1];
};
template<class IntType, int r, int s, IntType m, IntType val>
class lagged_fibonacci_int
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = 0;
static const result_type max_value = m-1;
#else
enum {
has_fixed_range = true,
min_value = 0,
max_value = m-1
};
#endif
explicit lagged_fibonacci_int(IntType start) { seed(start); }
template<class Generator>
explicit lagged_fibonacci_int(Generator & gen) { seed(gen); }
void seed(IntType start)
{
linear_congruential<uint32_t, 299375077, 0, 0, 0> init;
seed(init);
}
template<class Generator>
void seed(Generator & gen)
{
assert(r > s);
for(int i = 0; i < 607; ++i)
values[i] = gen();
current = 0;
lag = r-s;
}
result_type operator()()
{
result_type tmp = values[current] + values[lag];
if(tmp >= m)
tmp -= m;
values[current] = tmp;
++current;
if(current >= r)
current = 0;
++lag;
if(lag >= r)
lag = 0;
return tmp;
}
result_type validation() const { return val; }
private:
result_type values[r];
int current, lag;
};
} // namespace random
} // namespace boost
// distributions from Haertel's dissertation
// (additional parameterizations of the basic templates)
namespace Haertel {
typedef boost::random::linear_congruential<boost::uint64_t, 45965, 453816691,
(boost::uint64_t(1)<<31), 0> LCG_Af2;
typedef boost::random::linear_congruential<boost::uint64_t, 211936855, 0,
(boost::uint64_t(1)<<29)-3, 0> LCG_Die1;
typedef boost::random::linear_congruential<boost::uint32_t, 2824527309u, 0,
0, 0> LCG_Fis;
typedef boost::random::linear_congruential<boost::uint64_t, 950706376u, 0,
(boost::uint64_t(1)<<31)-1, 0> LCG_FM;
typedef boost::random::linear_congruential<boost::int32_t, 51081, 0,
2147483647, 0> LCG_Hae;
typedef boost::random::linear_congruential<boost::uint32_t, 69069, 1,
0, 0> LCG_VAX;
typedef boost::random::inversive_congruential<boost::int64_t, 240318, 197,
1000081, 0> NLG_Inv1;
typedef boost::random::inversive_congruential<boost::int64_t, 15707262,
13262967, (1<<24)-17, 0> NLG_Inv2;
typedef boost::random::inversive_congruential<boost::int32_t, 1, 1,
2147483647, 0> NLG_Inv4;
typedef boost::random::inversive_congruential<boost::int32_t, 1, 2,
1<<30, 0> NLG_Inv5;
typedef boost::random::additive_congruential<boost::int32_t, 6,
(1<<30)-35, 0> MRG_Acorn7;
typedef boost::random::lagged_fibonacci_int<boost::uint32_t, 607, 273,
0, 0> MRG_Fib2;
template<class Gen, class T>
inline void check_validation(Gen & gen, T value, const std::string & name)
{
for(int i = 0; i < 100000-1; ++i)
gen();
if(value != gen())
std::cout << name << ": validation failed" << std::endl;
}
// we have validation after 100000 steps with Haertel's generators
template<class Gen, class T>
void validate(T value, const std::string & name)
{
Gen gen(1234567);
check_validation(gen, value, name);
}
void validate_all()
{
validate<LCG_Af2>(183269031u, "LCG_Af2");
validate<LCG_Die1>(522319944u, "LCG_Die1");
validate<LCG_Fis>(-2065162233u, "LCG_Fis");
validate<LCG_FM>(581815473u, "LCG_FM");
validate<LCG_Hae>(28931709, "LCG_Hae");
validate<LCG_VAX>(1508154087u, "LCG_VAX");
validate<NLG_Inv2>(6666884, "NLG_Inv2");
validate<NLG_Inv4>(1521640076, "NLG_Inv4");
validate<NLG_Inv5>(641840839, "NLG_Inv5");
static const int acorn7_init[]
= { 1234567, 7654321, 246810, 108642, 13579, 97531, 555555 };
MRG_Acorn7 acorn7(acorn7_init);
check_validation(acorn7, 874294697, "MRG_Acorn7");
validate<MRG_Fib2>(1234567u, "MRG_Fib2");
}
} // namespace Haertel
double normal_density(double x)
{
const double pi = 3.14159265358979323846;
return 1/std::sqrt(2*pi) * std::exp(-x*x/2);
}
namespace std {
#ifdef _CXXRTCF_H__
using _CS_swamp::lgamma;
#elif defined __SGI_STL_PORT
using ::lgamma;
#endif
}
class chi_square_density : public std::unary_function<double, double>
{
public:
chi_square_density(int freedom)
: _exponent( static_cast<double>(freedom)/2-1 ),
_factor(1/(std::pow(2, _exponent+1) * std::exp(lgamma(_exponent+1))))
_factor(1/(std::pow(2, _exponent+1) * std::exp(boost::math::lgamma(_exponent+1))))
{ }
double operator()(double x)
@@ -288,7 +107,7 @@ public:
using namespace boost;
std::cout << "equidistribution: " << std::flush;
equidistribution_experiment equi(classes);
uniform_smallint<RNG> uint_linear(rng, 0, classes-1);
variate_generator<RNG&, uniform_smallint<> > uint_linear(rng, uniform_smallint<>(0, classes-1));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi, uint_linear, n1), n2));
check(run_experiment(test_distrib_chi_square,
@@ -298,7 +117,7 @@ public:
equidistribution_2d_experiment equi_2d(classes);
unsigned int root = static_cast<unsigned int>(std::sqrt(double(classes)));
assert(root * root == classes);
uniform_smallint<RNG> uint_square(rng, 0, root-1);
variate_generator<RNG&, uniform_smallint<> > uint_square(rng, uniform_smallint<>(0, root-1));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi_2d, uint_square, n1), n2));
check(run_experiment(test_distrib_chi_square,
@@ -327,11 +146,12 @@ public:
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
kolmogorov_experiment ks(n1);
uniform_distribution ud((rng.min)(), (rng.max)());
uniform_distribution ud(static_cast<double>((rng.min)()), static_cast<double>((rng.max)()));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), n2));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), 2*n2));
std::cout << std::endl;
}
private:
distribution_experiment test_distrib_chi_square;
@@ -417,7 +237,7 @@ public:
using namespace boost;
std::cout << "poker: " << std::flush;
poker_experiment poker(8, classes);
uniform_smallint<RNG> usmall(rng, 0, 7);
variate_generator<RNG&, uniform_smallint<> > usmall(rng, uniform_smallint<>(0, 7));
check(run_experiment(test_distrib_chi_square,
experiment_generator(poker, usmall, n1), n2));
check(run_experiment(test_distrib_chi_square,
@@ -445,7 +265,7 @@ public:
std::cout << "coupon collector: " << std::flush;
coupon_collector_experiment coupon(5, classes);
uniform_smallint<RNG> usmall(rng, 0, 4);
variate_generator<RNG&, uniform_smallint<> > usmall(rng, uniform_smallint<>(0, 4));
check(run_experiment(test_distrib_chi_square,
experiment_generator(coupon, usmall, n1), n2));
check(run_experiment(test_distrib_chi_square,
@@ -513,8 +333,9 @@ private:
class birthday_test : test_base
{
public:
birthday_test(test_environment & env)
: test_base(env)
birthday_test(test_environment & env, unsigned int high_classes)
: test_base(env),
test_distrib_chi_square(chi_square_probability(4-1), high_classes)
{ }
template<class RNG>
@@ -522,21 +343,22 @@ public:
{
using namespace boost;
std::cout << "birthday spacing: " << std::flush;
uniform_int<RNG> uni(rng, 0, (1<<25)-1);
boost::variate_generator<RNG&, boost::uniform_int<> > uni(rng, boost::uniform_int<>(0, (1<<25)-1));
birthday_spacing_experiment bsp(4, 512, (1<<25));
std::cout << run_experiment(bsp, uni, n1);
#if 0
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), n2));
experiment_generator(bsp, uni, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), 2*n2));
#endif
experiment_generator(bsp, uni, n1), 2*n2));
std::cout << std::endl;
}
private:
distribution_experiment test_distrib_chi_square;
};
#ifdef BOOST_MSVC
#pragma warning(disable:4355)
#endif
class test_environment
{
public:
@@ -553,7 +375,7 @@ public:
cpn_test(*this, 15, classes),
perm_test(*this, 5, classes),
max_test(*this, classes),
bday_test(*this)
bday_test(*this, classes)
{
std::cout << "Confidence level: " << confid
<< "; 1-alpha = " << (1-confid)
@@ -645,20 +467,60 @@ void print_ks_table()
}
}
int main()
class program_args
{
// Haertel::validate_all();
public:
program_args(int argc, char** argv)
{
if(argc > 0) {
names.insert(argv + 1, argv + argc);
}
}
bool check(std::string test_name) const
{
return(names.empty() || names.find(test_name) != names.end());
}
private:
std::set<std::string> names;
};
int main(int argc, char* argv[])
{
program_args args(argc, argv);
test_environment env(0.99);
env.run_test<boost::minstd_rand>("minstd_rand");
env.run_test<boost::mt19937>("mt19937");
env.run_test<Haertel::LCG_Af2>("LCG_Af2");
env.run_test<Haertel::LCG_Die1>("LCG_Die1");
env.run_test<Haertel::LCG_Fis>("LCG_Fis");
env.run_test<Haertel::LCG_FM>("LCG_FM");
env.run_test<Haertel::LCG_Hae>("LCG_Hae");
env.run_test<Haertel::LCG_VAX>("LCG_VAX");
env.run_test<Haertel::NLG_Inv1>("NLG_Inv1");
env.run_test<Haertel::NLG_Inv2>("NLG_Inv2");
env.run_test<Haertel::NLG_Inv4>("NLG_Inv4");
env.run_test<Haertel::NLG_Inv5>("NLG_Inv5");
#define TEST(name) \
if(args.check(#name)) \
env.run_test<boost::name>(#name)
TEST(minstd_rand0);
TEST(minstd_rand);
TEST(rand48);
TEST(ecuyer1988);
TEST(kreutzer1986);
TEST(taus88);
TEST(hellekalek1995);
TEST(mt11213b);
TEST(mt19937);
TEST(lagged_fibonacci607);
TEST(lagged_fibonacci1279);
TEST(lagged_fibonacci2281);
TEST(lagged_fibonacci3217);
TEST(lagged_fibonacci4423);
TEST(lagged_fibonacci9689);
TEST(lagged_fibonacci19937);
TEST(lagged_fibonacci23209);
TEST(lagged_fibonacci44497);
TEST(ranlux3);
TEST(ranlux4);
#if !defined(BOOST_NO_INT64_T) && !defined(BOOST_NO_INTEGRAL_INT64_T)
TEST(ranlux64_3);
TEST(ranlux64_4);
#endif
TEST(ranlux3_01);
TEST(ranlux4_01);
TEST(ranlux64_3_01);
TEST(ranlux64_4_01);
}

View File

@@ -84,7 +84,7 @@ public:
: experiment_base(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator f, Counter & count, int n) const
void run(NumberGenerator & f, Counter & count, int n) const
{
assert((f.min)() == 0 &&
static_cast<unsigned int>((f.max)()) == classes()-1);
@@ -102,7 +102,7 @@ public:
: equidistribution_experiment(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator f, Counter & count, int n) const
void run(NumberGenerator & f, Counter & count, int n) const
{
unsigned int range = (f.max)()+1;
assert((f.min)() == 0 && range*range == classes());
@@ -137,7 +137,7 @@ public:
}
template<class NumberGenerator, class Counter>
void run(NumberGenerator f, Counter & count, int n) const
void run(NumberGenerator & f, Counter & count, int n) const
{
for(int i = 0; i < n; ++i) {
limits_type::const_iterator it =
@@ -158,7 +158,7 @@ public:
explicit runs_experiment(unsigned int classes) : experiment_base(classes) { }
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
result_type init = (up ? (f.min)() : (f.max)());
@@ -194,7 +194,7 @@ public:
: experiment_base(classes), alpha(alpha), beta(beta) { }
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
double range = (f.max)() - (f.min)() + 1.0;
@@ -235,7 +235,7 @@ public:
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
@@ -282,7 +282,7 @@ public:
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
@@ -330,12 +330,14 @@ public:
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
std::vector<result_type> v(t);
for(int i = 0; i < n; ++i) {
std::generate_n(v.begin(), t, f);
for(int j = 0; j < t; ++j) {
v[j] = f();
}
int x = 0;
for(int r = t-1; r > 0; r--) {
typename std::vector<result_type>::iterator it =
@@ -360,7 +362,7 @@ public:
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n_total) const
void run(UniformRandomNumberGenerator & f, Counter & count, int n_total) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
@@ -452,14 +454,14 @@ class kolmogorov_experiment
public:
kolmogorov_experiment(int n) : n(n), ksp(n) { }
template<class NumberGenerator, class Distribution>
double run(NumberGenerator gen, Distribution distrib) const
double run(NumberGenerator & gen, Distribution distrib) const
{
const int m = n;
typedef std::vector<double> saved_temp;
saved_temp a(m,1.0), b(m,0);
std::vector<int> c(m,0);
for(int i = 0; i < n; ++i) {
double val = gen();
double val = static_cast<double>(gen());
double y = distrib(val);
int k = static_cast<int>(std::floor(m*y));
if(k >= m)
@@ -509,7 +511,7 @@ public:
private:
struct generator {
generator(base_type & f, int t) : f(f), t(t) { }
generator(base_type & f, int t) : f(f, boost::uniform_01<>()), t(t) { }
double operator()()
{
double mx = f();
@@ -518,7 +520,7 @@ private:
return mx;
}
private:
boost::uniform_01<base_type> f;
boost::variate_generator<base_type&, boost::uniform_01<> > f;
int t;
};
base_type & f;
@@ -579,7 +581,7 @@ private:
// chi_square test
template<class Experiment, class Generator>
double run_experiment(const Experiment & experiment, Generator gen, int n)
double run_experiment(const Experiment & experiment, Generator & gen, int n)
{
generic_counter<std::vector<int> > v(experiment.classes());
experiment.run(gen, v, n);