2
0
mirror of https://github.com/boostorg/random.git synced 2026-01-19 04:22:17 +00:00
Files
random/test/statistic_tests.cpp
2010-03-07 05:22:40 +00:00

527 lines
15 KiB
C++

/* statistic_tests.cpp file
*
* Copyright Jens Maurer 2000, 2002
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id$
*
* Revision history
*/
#include <iostream>
#include <iomanip>
#include <string>
#include <functional>
#include <vector>
#include <set>
#include <algorithm>
#include <boost/cstdint.hpp>
#include <boost/random.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include "statistic_tests.hpp"
#include "integrate.hpp"
double normal_density(double x)
{
const double pi = 3.14159265358979323846;
return 1/std::sqrt(2*pi) * std::exp(-x*x/2);
}
class chi_square_density : public std::unary_function<double, double>
{
public:
chi_square_density(int freedom)
: _exponent( static_cast<double>(freedom)/2-1 ),
_factor(1/(std::pow(2, _exponent+1) * std::exp(boost::math::lgamma(_exponent+1))))
{ }
double operator()(double x)
{
return _factor*std::pow(x, _exponent)*std::exp(-x/2);
}
private:
double _exponent, _factor;
};
// computes F(x) or F(y) - F(x)
class chi_square_probability : public distribution_function<double>
{
public:
chi_square_probability(int freedom) : dens(freedom) {}
double operator()(double x) { return operator()(0, x); }
double operator()(double x, double y)
{ return trapezoid(dens, x, y, 1000); }
private:
chi_square_density dens;
};
class uniform_distribution : public distribution_function<double>
{
public:
uniform_distribution(double from, double to) : from(from), to(to)
{ assert(from < to); }
double operator()(double x)
{
if(x < from)
return 0;
else if(x > to)
return 1;
else
return (x-from)/(to-from);
}
double operator()(double x, double delta)
{ return operator()(x+delta) - operator()(x); }
private:
double from, to;
};
class test_environment;
class test_base
{
protected:
explicit test_base(test_environment & env) : environment(env) { }
void check(double val) const;
private:
test_environment & environment;
};
class equidistribution_test : test_base
{
public:
equidistribution_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "equidistribution: " << std::flush;
equidistribution_experiment equi(classes);
variate_generator<RNG&, uniform_smallint<> > uint_linear(rng, uniform_smallint<>(0, classes-1));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi, uint_linear, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi, uint_linear, n1), 2*n2));
std::cout << " 2D: " << std::flush;
equidistribution_2d_experiment equi_2d(classes);
unsigned int root = static_cast<unsigned int>(std::sqrt(double(classes)));
assert(root * root == classes);
variate_generator<RNG&, uniform_smallint<> > uint_square(rng, uniform_smallint<>(0, root-1));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi_2d, uint_square, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi_2d, uint_square, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class ks_equidistribution_test : test_base
{
public:
ks_equidistribution_test(test_environment & env, unsigned int classes)
: test_base(env),
test_distrib_chi_square(kolmogorov_smirnov_probability(5000),
classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "KS: " << std::flush;
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
kolmogorov_experiment ks(n1);
uniform_distribution ud(static_cast<double>((rng.min)()), static_cast<double>((rng.max)()));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), n2));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), 2*n2));
std::cout << std::endl;
}
private:
distribution_experiment test_distrib_chi_square;
};
class runs_test : test_base
{
public:
runs_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "runs: up: " << std::flush;
runs_experiment<true> r_up(classes);
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_up, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_up, gen_ref, n1), 2*n2));
std::cout << " down: " << std::flush;
runs_experiment<false> r_down(classes);
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_down, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_down, gen_ref, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class gap_test : test_base
{
public:
gap_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "gaps: " << std::flush;
gap_experiment gap(classes, 0.2, 0.8);
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
check(run_experiment(test_distrib_chi_square,
experiment_generator(gap, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(gap, gen_ref, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class poker_test : test_base
{
public:
poker_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "poker: " << std::flush;
poker_experiment poker(8, classes);
variate_generator<RNG&, uniform_smallint<> > usmall(rng, uniform_smallint<>(0, 7));
check(run_experiment(test_distrib_chi_square,
experiment_generator(poker, usmall, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(poker, usmall, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class coupon_collector_test : test_base
{
public:
coupon_collector_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "coupon collector: " << std::flush;
coupon_collector_experiment coupon(5, classes);
variate_generator<RNG&, uniform_smallint<> > usmall(rng, uniform_smallint<>(0, 4));
check(run_experiment(test_distrib_chi_square,
experiment_generator(coupon, usmall, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(coupon, usmall, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class permutation_test : test_base
{
public:
permutation_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(fac<int>(classes)-1),
high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "permutation: " << std::flush;
permutation_experiment perm(classes);
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class maximum_test : test_base
{
public:
maximum_test(test_environment & env, unsigned int high_classes)
: test_base(env),
test_distrib_chi_square(kolmogorov_smirnov_probability(1000),
high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "maximum-of-t: " << std::flush;
maximum_experiment<RNG> mx(rng, n1, 5);
check(run_experiment(test_distrib_chi_square, mx, n2));
check(run_experiment(test_distrib_chi_square, mx, 2*n2));
std::cout << std::endl;
}
private:
distribution_experiment test_distrib_chi_square;
};
class birthday_test : test_base
{
public:
birthday_test(test_environment & env, unsigned int high_classes)
: test_base(env),
test_distrib_chi_square(chi_square_probability(4-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "birthday spacing: " << std::flush;
boost::variate_generator<RNG&, boost::uniform_int<> > uni(rng, boost::uniform_int<>(0, (1<<25)-1));
birthday_spacing_experiment bsp(4, 512, (1<<25));
check(run_experiment(test_distrib_chi_square,
experiment_generator(bsp, uni, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(bsp, uni, n1), 2*n2));
std::cout << std::endl;
}
private:
distribution_experiment test_distrib_chi_square;
};
#ifdef BOOST_MSVC
#pragma warning(disable:4355)
#endif
class test_environment
{
public:
static const int classes = 20;
explicit test_environment(double confid)
: confidence(confid),
confidence_chi_square_quantil(quantil(chi_square_density(classes-1), 0, confidence, 1e-4)),
test_distrib_chi_square6(chi_square_probability(7-1), classes),
ksequi_test(*this, classes),
equi_test(*this, 100, classes),
rns_test(*this, 7, classes),
gp_test(*this, 7, classes),
pk_test(*this, 5, classes),
cpn_test(*this, 15, classes),
perm_test(*this, 5, classes),
max_test(*this, classes),
bday_test(*this, classes)
{
std::cout << "Confidence level: " << confid
<< "; 1-alpha = " << (1-confid)
<< "; chi_square(" << (classes-1)
<< ", " << confidence_chi_square_quantil
<< ") = "
<< chi_square_probability(classes-1)(0, confidence_chi_square_quantil)
<< std::endl;
}
bool check_confidence(double val, double chi_square_conf) const
{
std::cout << val;
bool result = (val <= chi_square_conf);
if(!result) {
std::cout << "* [";
double prob = (val > 10*chi_square_conf ? 1 :
chi_square_probability(classes-1)(0, val));
std::cout << (1-prob) << "]";
}
std::cout << " " << std::flush;
return result;
}
bool check(double chi_square_value) const
{
return check_confidence(chi_square_value, confidence_chi_square_quantil);
}
template<class RNG>
void run_test(const std::string & name)
{
using namespace boost;
std::cout << "Running tests on " << name << std::endl;
RNG rng(1234567);
typedef boost::uniform_01<RNG> UGen;
#if 1
ksequi_test.run(rng, 5000, 250);
equi_test.run(rng, 5000, 250);
rns_test.run(rng, 100000, 250);
gp_test.run(rng, 10000, 250);
pk_test.run(rng, 5000, 250);
cpn_test.run(rng, 500, 250);
perm_test.run(rng, 1200, 250);
max_test.run(rng, 1000, 250);
#endif
bday_test.run(rng, 1000, 150);
std::cout << std::endl;
}
private:
double confidence;
double confidence_chi_square_quantil;
distribution_experiment test_distrib_chi_square6;
ks_equidistribution_test ksequi_test;
equidistribution_test equi_test;
runs_test rns_test;
gap_test gp_test;
poker_test pk_test;
coupon_collector_test cpn_test;
permutation_test perm_test;
maximum_test max_test;
birthday_test bday_test;
};
void test_base::check(double val) const
{
environment.check(val);
}
void print_ks_table()
{
std::cout.setf(std::ios::fixed);
std::cout.precision(5);
static const double all_p[] = { 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 };
for(int n = 0; n <= 10000; (n < 55 ? ++n : n *= 10)) {
std::cout << std::setw(4) << n << " ";
for(unsigned int i = 0; i < sizeof(all_p)/sizeof(all_p[0]); ++i) {
std::cout << std::setw(8)
<< (n == 0 ? all_p[i] :
invert_monotone_inc(kolmogorov_smirnov_probability(n), all_p[i], 0, 10))
<< " ";
}
std::cout << std::endl;
}
}
class program_args
{
public:
program_args(int argc, char** argv)
{
if(argc > 0) {
names.insert(argv + 1, argv + argc);
}
}
bool check(std::string test_name) const
{
return(names.empty() || names.find(test_name) != names.end());
}
private:
std::set<std::string> names;
};
int main(int argc, char* argv[])
{
program_args args(argc, argv);
test_environment env(0.99);
#define TEST(name) \
if(args.check(#name)) \
env.run_test<boost::name>(#name)
TEST(minstd_rand0);
TEST(minstd_rand);
TEST(rand48);
TEST(ecuyer1988);
TEST(kreutzer1986);
TEST(taus88);
TEST(hellekalek1995);
TEST(mt11213b);
TEST(mt19937);
TEST(lagged_fibonacci607);
TEST(lagged_fibonacci1279);
TEST(lagged_fibonacci2281);
TEST(lagged_fibonacci3217);
TEST(lagged_fibonacci4423);
TEST(lagged_fibonacci9689);
TEST(lagged_fibonacci19937);
TEST(lagged_fibonacci23209);
TEST(lagged_fibonacci44497);
TEST(ranlux3);
TEST(ranlux4);
#if !defined(BOOST_NO_INT64_T) && !defined(BOOST_NO_INTEGRAL_INT64_T)
TEST(ranlux64_3);
TEST(ranlux64_4);
#endif
TEST(ranlux3_01);
TEST(ranlux4_01);
TEST(ranlux64_3_01);
TEST(ranlux64_4_01);
}