2
0
mirror of https://github.com/boostorg/random.git synced 2026-01-19 04:22:17 +00:00

Add distributions to statistic_tests

[SVN r60335]
This commit is contained in:
Steven Watanabe
2010-03-08 03:46:47 +00:00
parent 2e4c0f628c
commit 1302406b34
3 changed files with 153 additions and 118 deletions

View File

@@ -43,11 +43,11 @@ simpson(UnaryFunction f, typename UnaryFunction::argument_type a,
}
// compute b so that f(b) = y; assume f is monotone increasing
template<class UnaryFunction>
inline typename UnaryFunction::argument_type
template<class UnaryFunction, class T>
inline T
invert_monotone_inc(UnaryFunction f, typename UnaryFunction::result_type y,
typename UnaryFunction::argument_type lower = -1,
typename UnaryFunction::argument_type upper = 1)
T lower = -1,
T upper = 1)
{
while(upper-lower > 1e-6) {
double middle = (upper+lower)/2;

View File

@@ -23,64 +23,18 @@
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/distributions/uniform.hpp>
#include <boost/math/distributions/chi_squared.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/math/distributions/triangular.hpp>
#include <boost/math/distributions/cauchy.hpp>
#include <boost/math/distributions/gamma.hpp>
#include <boost/math/distributions/exponential.hpp>
#include <boost/math/distributions/lognormal.hpp>
#include "statistic_tests.hpp"
#include "integrate.hpp"
double normal_density(double x)
{
const double pi = 3.14159265358979323846;
return 1/std::sqrt(2*pi) * std::exp(-x*x/2);
}
class chi_square_density : public std::unary_function<double, double>
{
public:
chi_square_density(int freedom)
: _exponent( static_cast<double>(freedom)/2-1 ),
_factor(1/(std::pow(2, _exponent+1) * std::exp(boost::math::lgamma(_exponent+1))))
{ }
double operator()(double x)
{
return _factor*std::pow(x, _exponent)*std::exp(-x/2);
}
private:
double _exponent, _factor;
};
// computes F(x) or F(y) - F(x)
class chi_square_probability : public distribution_function<double>
{
public:
chi_square_probability(int freedom) : dens(freedom) {}
double operator()(double x) { return operator()(0, x); }
double operator()(double x, double y)
{ return trapezoid(dens, x, y, 1000); }
private:
chi_square_density dens;
};
class uniform_distribution : public distribution_function<double>
{
public:
uniform_distribution(double from, double to) : from(from), to(to)
{ assert(from < to); }
double operator()(double x)
{
if(x < from)
return 0;
else if(x > to)
return 1;
else
return (x-from)/(to-from);
}
double operator()(double x, double delta)
{ return operator()(x+delta) - operator()(x); }
private:
double from, to;
};
class test_environment;
class test_base
@@ -98,7 +52,7 @@ public:
equidistribution_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
test_distrib_chi_square(boost::math::chi_squared(classes-1), high_classes)
{ }
template<class RNG>
@@ -129,10 +83,10 @@ private:
distribution_experiment test_distrib_chi_square;
};
class ks_equidistribution_test : test_base
class ks_distribution_test : test_base
{
public:
ks_equidistribution_test(test_environment & env, unsigned int classes)
ks_distribution_test(test_environment & env, unsigned int classes)
: test_base(env),
test_distrib_chi_square(kolmogorov_smirnov_probability(5000),
classes)
@@ -140,17 +94,20 @@ public:
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
boost::math::uniform ud(static_cast<double>((rng.min)()), static_cast<double>((rng.max)()));
run(rng, ud, n1, n2);
}
template<class RNG, class Dist>
void run(RNG & rng, const Dist& dist, int n1, int n2)
{
using namespace boost;
std::cout << "KS: " << std::flush;
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
kolmogorov_experiment ks(n1);
uniform_distribution ud(static_cast<double>((rng.min)()), static_cast<double>((rng.max)()));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), n2));
ks_experiment_generator(ks, rng, dist), n2));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), 2*n2));
ks_experiment_generator(ks, rng, dist), 2*n2));
std::cout << std::endl;
}
private:
@@ -163,7 +120,7 @@ public:
runs_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
test_distrib_chi_square(boost::math::chi_squared(classes-1), high_classes)
{ }
template<class RNG>
@@ -199,7 +156,7 @@ public:
gap_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
test_distrib_chi_square(boost::math::chi_squared(classes-1), high_classes)
{ }
template<class RNG>
@@ -228,7 +185,7 @@ public:
poker_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
test_distrib_chi_square(boost::math::chi_squared(classes-1), high_classes)
{ }
template<class RNG>
@@ -255,7 +212,7 @@ public:
coupon_collector_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
test_distrib_chi_square(boost::math::chi_squared(classes-1), high_classes)
{ }
template<class RNG>
@@ -283,7 +240,7 @@ public:
permutation_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(fac<int>(classes)-1),
test_distrib_chi_square(boost::math::chi_squared(fac<int>(classes)-1),
high_classes)
{ }
@@ -335,7 +292,7 @@ class birthday_test : test_base
public:
birthday_test(test_environment & env, unsigned int high_classes)
: test_base(env),
test_distrib_chi_square(chi_square_probability(4-1), high_classes)
test_distrib_chi_square(boost::math::chi_squared(4-1), high_classes)
{ }
template<class RNG>
@@ -365,9 +322,9 @@ public:
static const int classes = 20;
explicit test_environment(double confid)
: confidence(confid),
confidence_chi_square_quantil(quantil(chi_square_density(classes-1), 0, confidence, 1e-4)),
test_distrib_chi_square6(chi_square_probability(7-1), classes),
ksequi_test(*this, classes),
confidence_chi_square_quantil(quantile(boost::math::chi_squared(classes-1), confidence)),
test_distrib_chi_square6(boost::math::chi_squared(7-1), classes),
ksdist_test(*this, classes),
equi_test(*this, 100, classes),
rns_test(*this, 7, classes),
gp_test(*this, 7, classes),
@@ -382,7 +339,7 @@ public:
<< "; chi_square(" << (classes-1)
<< ", " << confidence_chi_square_quantil
<< ") = "
<< chi_square_probability(classes-1)(0, confidence_chi_square_quantil)
<< cdf(boost::math::chi_squared(classes-1), confidence_chi_square_quantil)
<< std::endl;
}
@@ -393,7 +350,7 @@ public:
if(!result) {
std::cout << "* [";
double prob = (val > 10*chi_square_conf ? 1 :
chi_square_probability(classes-1)(0, val));
cdf(boost::math::chi_squared(classes-1), val));
std::cout << (1-prob) << "]";
}
std::cout << " " << std::flush;
@@ -413,10 +370,8 @@ public:
std::cout << "Running tests on " << name << std::endl;
RNG rng(1234567);
typedef boost::uniform_01<RNG> UGen;
#if 1
ksequi_test.run(rng, 5000, 250);
ksdist_test.run(rng, 5000, 250);
equi_test.run(rng, 5000, 250);
rns_test.run(rng, 100000, 250);
gp_test.run(rng, 10000, 250);
@@ -424,17 +379,33 @@ public:
cpn_test.run(rng, 500, 250);
perm_test.run(rng, 1200, 250);
max_test.run(rng, 1000, 250);
#endif
bday_test.run(rng, 1000, 150);
std::cout << std::endl;
}
template<class RNG, class Dist, class ExpectedDist>
void run_test(const std::string & name, const Dist & dist, const ExpectedDist & expected_dist)
{
using namespace boost;
std::cout << "Running tests on " << name << std::endl;
RNG rng;
variate_generator<RNG&, Dist> vgen(rng, dist);
ksdist_test.run(vgen, expected_dist, 5000, 250);
rns_test.run(vgen, 100000, 250);
perm_test.run(vgen, 1200, 250);
std::cout << std::endl;
}
private:
double confidence;
double confidence_chi_square_quantil;
distribution_experiment test_distrib_chi_square6;
ks_equidistribution_test ksequi_test;
ks_distribution_test ksdist_test;
equidistribution_test equi_test;
runs_test rns_test;
gap_test gp_test;
@@ -450,23 +421,6 @@ void test_base::check(double val) const
environment.check(val);
}
void print_ks_table()
{
std::cout.setf(std::ios::fixed);
std::cout.precision(5);
static const double all_p[] = { 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 };
for(int n = 0; n <= 10000; (n < 55 ? ++n : n *= 10)) {
std::cout << std::setw(4) << n << " ";
for(unsigned int i = 0; i < sizeof(all_p)/sizeof(all_p[0]); ++i) {
std::cout << std::setw(8)
<< (n == 0 ? all_p[i] :
invert_monotone_inc(kolmogorov_smirnov_probability(n), all_p[i], 0, 10))
<< " ";
}
std::cout << std::endl;
}
}
class program_args
{
public:
@@ -476,7 +430,7 @@ public:
names.insert(argv + 1, argv + argc);
}
}
bool check(std::string test_name) const
bool check(const std::string & test_name) const
{
return(names.empty() || names.find(test_name) != names.end());
}
@@ -523,4 +477,18 @@ int main(int argc, char* argv[])
TEST(ranlux4_01);
TEST(ranlux64_3_01);
TEST(ranlux64_4_01);
if(args.check("normal"))
env.run_test<boost::mt19937>("normal", boost::normal_distribution<>(), boost::math::normal());
if(args.check("triangle"))
env.run_test<boost::mt19937>("triangle", boost::triangle_distribution<>(0, 1, 3), boost::math::triangular(0, 1, 3));
if(args.check("cauchy"))
env.run_test<boost::mt19937>("cauchy", boost::cauchy_distribution<>(), boost::math::cauchy());
if(args.check("gamma"))
env.run_test<boost::mt19937>("gamma", boost::gamma_distribution<>(1), boost::math::gamma_distribution<>(1));
if(args.check("exponential"))
env.run_test<boost::mt19937>("exponential", boost::exponential_distribution<>(), boost::math::exponential());
if(args.check("lognormal"))
env.run_test<boost::mt19937>("lognormal", boost::lognormal_distribution<>(1, 1),
boost::math::lognormal(std::log(1.0/std::sqrt(2.0)), std::sqrt(std::log(2.0))));
}

View File

@@ -21,7 +21,9 @@
#include <boost/random.hpp>
#include <boost/config.hpp>
#include <boost/bind.hpp>
#include "integrate.hpp"
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
namespace std
@@ -119,12 +121,12 @@ public:
class distribution_experiment : public equidistribution_experiment
{
public:
template<class UnaryFunction>
distribution_experiment(UnaryFunction probability , unsigned int classes)
template<class Distribution>
distribution_experiment(Distribution dist , unsigned int classes)
: equidistribution_experiment(classes), limit(classes)
{
for(unsigned int i = 0; i < classes-1; ++i)
limit[i] = invert_monotone_inc(probability, (i+1)*0.05, 0, 1000);
limit[i] = quantile(dist, (i+1)*0.05);
limit[classes-1] = std::numeric_limits<double>::infinity();
if(limit[classes-1] < (std::numeric_limits<double>::max)())
limit[classes-1] = (std::numeric_limits<double>::max)();
@@ -150,6 +152,36 @@ private:
limits_type limit;
};
template<bool up, bool is_float>
struct runs_direction_helper
{
template<class T>
static T init(T)
{
return (std::numeric_limits<T>::max)();
}
};
template<>
struct runs_direction_helper<true, true>
{
template<class T>
static T init(T)
{
return -(std::numeric_limits<T>::max)();
}
};
template<>
struct runs_direction_helper<true, false>
{
template<class T>
static T init(T)
{
return (std::numeric_limits<T>::min)();
}
};
// runs-up/runs-down experiment
template<bool up>
class runs_experiment : public experiment_base
@@ -157,11 +189,15 @@ class runs_experiment : public experiment_base
public:
explicit runs_experiment(unsigned int classes) : experiment_base(classes) { }
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
template<class NumberGenerator, class Counter>
void run(NumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
result_type init = (up ? (f.min)() : (f.max)());
typedef typename NumberGenerator::result_type result_type;
result_type init =
runs_direction_helper<
up,
!std::numeric_limits<result_type>::is_integer
>::init(result_type());
result_type previous = init;
unsigned int length = 0;
for(int i = 0; i < n; ++i) {
@@ -423,7 +459,7 @@ public:
n_n = std::pow(static_cast<double>(n), n);
}
double operator()(double t) const
double cdf(double t) const
{
if(approx) {
return 1-std::exp(-2*t*t)*(1-2.0/3.0*t/sqrt_n);
@@ -436,8 +472,8 @@ public:
return 1 - t/n_n * sum;
}
}
double operator()(double t1, double t2) const
{ return operator()(t2) - operator()(t1); }
//double operator()(double t1, double t2) const
//{ return operator()(t2) - operator()(t1); }
private:
bool approx;
@@ -446,6 +482,16 @@ private:
double n_n;
};
inline double cdf(const kolmogorov_smirnov_probability& dist, double val)
{
return dist.cdf(val);
}
inline double quantile(const kolmogorov_smirnov_probability& dist, double val)
{
return invert_monotone_inc(boost::bind(&cdf, dist, _1), val, 0.0, 1000.0);
}
/*
* Experiments for generators with continuous distribution functions
*/
@@ -462,7 +508,7 @@ public:
std::vector<int> c(m,0);
for(int i = 0; i < n; ++i) {
double val = static_cast<double>(gen());
double y = distrib(val);
double y = cdf(distrib, val);
int k = static_cast<int>(std::floor(m*y));
if(k >= m)
--k; // should not happen
@@ -486,13 +532,24 @@ public:
}
double probability(double x) const
{
return ksp(x);
return cdf(ksp, x);
}
private:
int n;
kolmogorov_smirnov_probability ksp;
};
struct power_distribution
{
power_distribution(double t) : t(t) {}
double t;
};
double cdf(const power_distribution& dist, double val)
{
return std::pow(val, dist.t);
}
// maximum-of-t test (KS-based)
template<class UniformRandomNumberGenerator>
class maximum_experiment
@@ -504,9 +561,8 @@ public:
double operator()() const
{
double res = ke.run(generator(f, t),
std::bind2nd(std::ptr_fun(static_cast<double (*)(double, double)>(&std::pow)), t));
return res;
generator gen(f, t);
return ke.run(gen, power_distribution(t));
}
private:
@@ -590,6 +646,17 @@ double run_experiment(const Experiment & experiment, Generator & gen, int n)
experiment));
}
// chi_square test
template<class Experiment, class Generator>
double run_experiment(const Experiment & experiment, const Generator & gen, int n)
{
generic_counter<std::vector<int> > v(experiment.classes());
experiment.run(gen, v, n);
return chi_square_value(v.begin(), v.end(),
std::bind1st(std::mem_fun_ref(&Experiment::probability),
experiment));
}
// number generator with experiment results (for nesting)
template<class Experiment, class Generator>
class experiment_generator_t
@@ -597,7 +664,7 @@ class experiment_generator_t
public:
experiment_generator_t(const Experiment & exper, Generator & gen, int n)
: experiment(exper), generator(gen), n(n) { }
double operator()() { return run_experiment(experiment, generator, n); }
double operator()() const { return run_experiment(experiment, generator, n); }
private:
const Experiment & experiment;
Generator & generator;
@@ -619,7 +686,7 @@ public:
ks_experiment_generator_t(const Experiment & exper, Generator & gen,
const Distribution & distrib)
: experiment(exper), generator(gen), distribution(distrib) { }
double operator()() { return experiment.run(generator, distribution); }
double operator()() const { return experiment.run(generator, distribution); }
private:
const Experiment & experiment;
Generator & generator;