2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-19 16:32:16 +00:00

Compare commits

...

8 Commits

Author SHA1 Message Date
Ullrich Köthe
b2a7dfef5a added --with-extra-libs
[SVN r8452]
2000-12-11 14:29:54 +00:00
Jens Maurer
a49bc99b94 fix $(CXX) to $CXX
[SVN r8408]
2000-12-08 22:40:44 +00:00
Ullrich Köthe
56287c49ca changed configuration for shared linking
[SVN r8398]
2000-12-06 22:59:49 +00:00
Ullrich Köthe
e5ec0d0c71 improved configuration of shared library creation
[SVN r8397]
2000-12-06 19:18:05 +00:00
Ullrich Köthe
3dcb1c7e98 added a build system and updated documentation
[SVN r8369]
2000-11-30 16:45:18 +00:00
nobody
8fc12312b3 This commit was manufactured by cvs2svn to create branch 'build_system'.
[SVN r8364]
2000-11-30 04:53:33 +00:00
nobody
33d898bf30 This commit was manufactured by cvs2svn to create branch 'cursor'.
[SVN r8363]
2000-11-30 04:53:32 +00:00
Dave Abrahams
54ec2a41b2 initial import
[SVN r8331]
2000-11-27 06:57:31 +00:00
82 changed files with 7647 additions and 7417 deletions

View File

@@ -1,212 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
py_cpp Python/C++ binding documentation
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277"
align="center" height="86"> py_cpp<a href="#naming_contest">*</a>
</h1>
<p>
The source code for py_cpp, including a MSVC demo project is available <a
href="py_cpp_20001106.zip">here</a>.
<h2>Synopsis</h2>
<p>
py_cpp is a system for quickly and easily interfacing C++ code with <a
href="http:www.python.org">Python</a> such that the Python interface is
very similar to the C++ interface. It is designed to be minimally
intrusive on your C++ design. In most cases, you should not have to alter
your C++ classes in any way in order to use them with py_cpp. The system
<em>should</em> simply &ldquo;reflect&rdquo; your C++ classes and functions into
Python. The major features of py_cpp include support for:
<ul>
<li><a href="inheritance.hml">Subclassing extension types in Python</a>
<li><a href="overriding.html">Overriding virtual functions in Python</a>
<li><a href="overloading.html">[Member] function Overloading</a>
<li><a href="special.html#numeric_auto">Automatic wrapping of numeric operators</a>
</ul>
among others.
<h2>Supported Platforms</h2>
<p>py_cpp has been tested in the following configurations:
<ul>
<li>Against Python 1.5.2 using the following compiler/library:
<ul>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>/<a
href="http://www.stlport.org">STLport 4.0</a>
<li><a href="http://gcc.gnu.org/">GCC 2.95.2</a> [by <a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich
Koethe</a>]
<li><a href="http://gcc.gnu.org/">GCC 2.95.2</a>/<a href="http://www.stlport.org">STLport 4.0</a>
<li>Compaq C++ V6.2-024 for Digital UNIX V5.0 Rev. 910 (an <a
href="http://www.edg.com/">EDG</a>-based compiler) with <a
href="http://www.stlport.org/beta.html">STLport-4.1b3</a> [by <a
href="mailto:rwgk@cci.lbl.gov">Ralf W. Grosse-Kunstleve</a>]
<li>An upcoming release of <a href="http://www.metrowerks.com/products/windows/">Metrowerks CodeWarrior
Pro6 for Windows</a> (the first release has a bug that's fatal to py_cpp)
</ul>
<br>
<li>Against Python 2.0 using the following compiler/library combinations:
<ul>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a> [by
<a href="mailto:aleaxit@yahoo.com">Alex Martelli</a>]
</ul>
</ul>
<p>Py_cpp requires the <a href="http://www.boost.org">boost</a> libraries, and is
has been accepted for inclusion into the boost libraries pending &ldquo;boostification&ldquo;
(completion of the documentation, change in some naming conventions and
resolution of some namespace issues).
<h2>Credits</h2>
<ul>
<li><a href="mailto:abrahams@mediaone.net">David Abrahams</a> originated
and wrote py_cpp.
<li><a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich Koethe</a>
had independently developed a similar system. When he discovered py_cpp,
he generously contributed countless hours of coding and much insight into
improving it. He is responsible for an early version of the support for <a
href="overloading.html">function overloading</a> and wrote the support for
<a href="inheritance.html#implicit_conversion">reflecting C++ inheritance
relationships</a>. He has helped to improve error-reporting from both
Python and C++, and has designed an extremely easy-to-use way of
exposing <a href="special.html#numeric">numeric operators</a>, including
a way to avoid explicit coercion by means of overloading.
<li>The members of the boost mailing list and the Python community supplied
invaluable early feedback. In particular, Ron Clarke, Mark Evans, Anton
Gluck, Ralf W. Grosse-Kunstleve, Prabhu Ramachandran, and Barry Scott took
the brave step of trying to use py_cpp while it was still in early stages
of development.
<li>The development of py_cpp wouldn't have been
possible without the generous support of <a href="http://www.dragonsys.com/">Dragon Systems/Lernout and
Hauspie, Inc</a> who supported its development as an open-source project.
</ul>
<h2>Table of Contents</h2>
<ol>
<li><a href="extending.html">A Brief Introduction to writing Python
extension modules</a>
<li><a href="comparisons.html">Comparisons between py_cpp and other
systems for extending Python</a>
<li><a href="example1.html">A Simple Example Using py_cpp</a>
<li><a href="overriding.html">Overridable Virtual Functions</a>
<li><a href="overloading.html">Function Overloading</a>
<li><a href="inheritance.html">Inheritance</a>
<li><a href="special.html">Special Method and Operator Support</a>
<li><a href="under-the-hood.html">A Peek Under the Hood</a>
<li><a href="building.html">Building a Module with Py_cpp</a>
<li>Advanced Topics
<ol>
<li>class_builder&lt;&gt;
<li><a href="enums.html">enums</a>
<li>References
<li><a href="pointers.html">Pointers and Smart Pointers</a>
<li>Built-in Python Types
<li>Other Extension Types
<li>Templates
</ol>
</ol>
<p>
More sophisticated examples are given in
<code>extclass_demo.cpp</code>, <code> extclass_demo.h</code>, and <code>
test_extclass.py</code> in the <a href="py_cpp.tgz">source code
archive</a>. There's much more here, and much more documentation to
come...
<p>
Questions should be directed to <a href=
"http://www.egroups.com/list/boost">the boost mailing list</a>.
<h2>Naming Contest</h2>
<p>
Yes, I know py_cpp is a lousy name. Problem is, the best names my puny
imagination can muster (IDLE and GRAIL) are taken, so I'm holding a
naming contest. First prize? You get to pick the name&lt;0.2wink&gt; and
you will be credited in the documentation. Names that have been suggested
so far include:
<ul>
<li>
Py++
<li>
Python++
<li>
Coil
<li>
SnakeSkin
<li>
CCCP - <b>C</b>onvert <b>C</b>++ <b>
C</b>lasses to <b>P</b>ython
<li>
C<sup>3</sup>PO - <b>C</b>onvert <b>C</b>++
<b>C</b>lasses to <b>P</b>ython <b>
O</b>bjects
<li>
PALIN - <b>P</b>ython <b>
A</b>ugmented-<b>L</b>anguage <b>
IN</b>tegration
<li>
CLEESE - <b>C</b>++ <b>L</b>anguage <b>E</b>xtension <b>E</b>nvironment
<b>S</b>upremely <b>E</b>asy
<li>
JONES - <b>J</b>ust <b>O</b>bscenely <b>N</b>eat <b>E</b>xtension
<b>S</b>ystem
<li>
C-thru
<li>
SeamlessC
<li>
BorderCrossing
<li>
Perseus (because he solved a hairy problem involving snakes by using
reflection and was invisible most of the time).
</ul>
Please <a href="http://www.egroups.com/list/boost">post</a> or send <a
href="http:mailto:abrahams@mediaone.net">me</a> your suggestions!<br>
<br>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &ldquo;as is&rdquo; without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Nov 26, 2000

View File

@@ -1,43 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Building a Module with Py_cpp
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Building a Module with Py_cpp
</h1>
<p>
Right now, the only supported configuration is one in which the py_cpp
source files are statically linked with the source for your extension
module. You may first build them into a library and link it with your
extension module source, but the effect is the same as compiling all
the source files together. Some users have successfully built the
py_cpp sources into a shared library, and support for a shared library
build is planned, but not yet implemented. The py_cpp source files are:
<blockquote>
<pre>
<a href="../../../libs/python/src/extension_class.cpp">extclass.cpp</a>
<a href="../../../libs/python/src/functions.cpp">functions.cpp</a>
<a href="../../../libs/python/src/init_function.cpp">init_function.cpp</a>
<a href="../../../libs/python/src/module_builder.cpp">module.cpp</a>
<a href="../../../libs/python/src/types.cpp">newtypes.cpp</a>
<a href="../../../libs/python/src/objects.cpp">objects.cpp</a>
<a href="../../../libs/python/src/conversions.cpp">py.cpp</a>
<a href="../../../libs/python/src/classes.cpp">subclass.cpp</a>
</pre>
</blockquote>
<p>
Previous: <a href="under-the-hood.html">A Peek Under the Hood</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &ldquo;as
is&rdquo; without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Nov 26, 2000
</div>

View File

@@ -1,829 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file was generated for 10-argument python callbacks by gen_callback.python
#ifndef CALLBACK_DWA_052100_H_
# define CALLBACK_DWA_052100_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/conversions.hpp>
namespace boost { namespace python {
namespace detail {
template <class T>
inline void callback_adjust_refcount(PyObject*, type<T>) {}
inline void callback_adjust_refcount(PyObject* p, type<PyObject*>)
{ Py_INCREF(p); }
}
// Calling Python from C++
template <class R>
struct callback
{
static R call_method(PyObject* self, const char* name)
{
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("()")));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
static R call(PyObject* self)
{
ref result(PyEval_CallFunction(self, const_cast<char*>("()")));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1>
static R call_method(PyObject* self, const char* name, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(O)"),
p1.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1>
static R call(PyObject* self, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallFunction(self, const_cast<char*>("(O)"),
p1.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2>
static R call(PyObject* self, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
};
// This specialization wouldn't be needed, but MSVC6 doesn't correctly allow the following:
// void g();
// void f() { return g(); }
template <>
struct callback<void>
{
static void call_method(PyObject* self, const char* name)
{
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("()")));
}
static void call(PyObject* self)
{
ref result(PyEval_CallFunction(self, const_cast<char*>("()")));
}
template <class A1>
static void call_method(PyObject* self, const char* name, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(O)"),
p1.get()));
}
template <class A1>
static void call(PyObject* self, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallFunction(self, const_cast<char*>("(O)"),
p1.get()));
}
template <class A1, class A2>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
}
template <class A1, class A2>
static void call(PyObject* self, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
}
template <class A1, class A2, class A3>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
}
template <class A1, class A2, class A3>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
}
template <class A1, class A2, class A3, class A4>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
}
template <class A1, class A2, class A3, class A4>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
}
template <class A1, class A2, class A3, class A4, class A5>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
}
template <class A1, class A2, class A3, class A4, class A5>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
}
};
// Make it a compile-time error to try to return a const char* from a virtual
// function. The standard conversion
//
// from_python(PyObject* string, boost::python::type<const char*>)
//
// returns a pointer to the character array which is internal to string. The
// problem with trying to do this in a standard callback function is that the
// Python string would likely be destroyed upon return from the calling function
// (boost::python::callback<const char*>::call[_method]) when its reference count is
// decremented. If you absolutely need to do this and you're sure it's safe (it
// usually isn't), you can use
//
// boost::python::string result(boost::python::callback<boost::python::string>::call[_method](...args...));
// ...result.c_str()... // access the char* array
template <>
struct callback<const char*>
{
// Try hard to generate a readable error message
typedef struct unsafe_since_python_string_may_be_destroyed {} call, call_method;
};
}} // namespace boost::python
#endif // CALLBACK_DWA_052100_H_

File diff suppressed because it is too large Load Diff

View File

@@ -1,156 +0,0 @@
#ifndef CLASS_WRAPPER_DWA101000_H_
# define CLASS_WRAPPER_DWA101000_H_
#include <boost/python/detail/extension_class.hpp>
#include <boost/python/operators.hpp>
#include <boost/python/module_builder.hpp>
#include <boost/python/conversions.hpp>
#include <boost/python/detail/cast.hpp>
#include <boost/python/reference.hpp>
namespace boost { namespace python {
// Syntactic sugar to make wrapping classes more convenient
template <class T, class U = detail::held_instance<T> >
class class_builder
: python_extension_class_converters<T, U> // Works around MSVC6.x/GCC2.95.2 bug described below
{
public:
class_builder(module_builder& module, const char* name)
: m_class(new detail::extension_class<T, U>(name))
{
module.add(ref(as_object(m_class.get()), ref::increment_count), name);
}
~class_builder()
{}
// define constructors
template <class signature>
void def(const signature& signature)
{ m_class->def(signature); }
// export heterogeneous reverse-argument operators
// (type of lhs: 'left', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>(),
// boost::python::left_operand<int const &>());
template <long which, class left, class right>
void def(operators<which, right> o1, left_operand<left> o2)
{ m_class->def(o1, o2); }
// export heterogeneous operators (type of lhs: 'left', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>(),
// boost::python::right_operand<int const &>());
template <long which, class left, class right>
void def(operators<which, left> o1, right_operand<right> o2)
{ m_class->def(o1, o2); }
// define a function that passes Python arguments and keywords
// to C++ verbatim (as a 'tuple const &' and 'dictionary const &'
// respectively). This is useful for manual argument passing.
// It's also the only possibility to pass keyword arguments to C++.
// Fn must have a signatur that is compatible to
// PyObject * (*)(PyObject * aTuple, PyObject * aDictionary)
template <class Fn>
void def_raw(Fn fn, const char* name)
{ m_class->def_raw(fn, name); }
// define member functions. In fact this works for free functions, too -
// they act like static member functions, or if they start with the
// appropriate self argument (as a pointer or reference), they can be used
// just like ordinary member functions -- just like Python!
template <class Fn>
void def(Fn fn, const char* name)
{ m_class->def(fn, name); }
// Define a virtual member function with a default implementation.
// default_fn should be a function which provides the default implementation.
// Be careful that default_fn does not in fact call fn virtually!
template <class Fn, class DefaultFn>
void def(Fn fn, const char* name, DefaultFn default_fn)
{ m_class->def(fn, name, default_fn); }
// Provide a function which implements x.<name>, reading from the given
// member (pm) of the T obj
template <class MemberType>
void def_getter(MemberType T::*pm, const char* name)
{ m_class->def_getter(pm, name); }
// Provide a function which implements assignment to x.<name>, writing to
// the given member (pm) of the T obj
template <class MemberType>
void def_setter(MemberType T::*pm, const char* name)
{ m_class->def_getter(pm, name); }
// Expose the given member (pm) of the T obj as a read-only attribute
template <class MemberType>
void def_readonly(MemberType T::*pm, const char* name)
{ m_class->def_readonly(pm, name); }
// Expose the given member (pm) of the T obj as a read/write attribute
template <class MemberType>
void def_read_write(MemberType T::*pm, const char* name)
{ m_class->def_read_write(pm, name); }
// define the standard coercion needed for operator overloading
void def_standard_coerce()
{ m_class->def_standard_coerce(); }
// declare the given class a base class of this one and register
// conversion functions
template <class S, class V>
void declare_base(class_builder<S, V> const & base)
{
m_class->declare_base(base.get_extension_class());
}
// declare the given class a base class of this one and register
// upcast conversion function
template <class S, class V>
void declare_base(class_builder<S, V> const & base, without_downcast_t)
{
m_class->declare_base(base.get_extension_class(), without_downcast);
}
// get the embedded ExtensioClass object
detail::extension_class<T, U> * get_extension_class() const
{
return m_class.get();
}
// set an arbitrary attribute. Useful for non-function class data members,
// e.g. enums
void add(PyObject* x, const char* name)
{ m_class->set_attribute(name, x); }
void add(ref x, const char* name)
{ m_class->set_attribute(name, x); }
private:
// declare the given class a base class of this one and register
// conversion functions
template <class S, class V>
void declare_base(detail::extension_class<S, V> * base)
{
m_class->declare_base(base);
}
// declare the given class a base class of this one and register
// upcast conversion function
template <class S, class V>
void declare_base(detail::extension_class<S, V> * base, without_downcast_t)
{
m_class->declare_base(base, without_downcast);
}
reference<detail::extension_class<T, U> > m_class;
};
// The bug mentioned at the top of this file is that on certain compilers static
// global functions declared within the body of a class template will only be
// generated when the class template is constructed, and when (for some reason)
// the construction does not occur via a new-expression. Otherwise, we could
// rely on the initialization of the m_class data member to cause all of the
// to_/from_python functions to come into being.
}} // namespace boost::python
#endif // CLASS_WRAPPER_DWA101000_H_

View File

@@ -1,527 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef SUBCLASS_DWA051500_H_
# define SUBCLASS_DWA051500_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/types.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/singleton.hpp>
# include <boost/utility.hpp>
# include <boost/python/conversions.hpp>
# include <boost/python/callback.hpp>
namespace boost { namespace python {
// A simple type which acts something like a built-in Python class obj.
class instance
: public boost::python::detail::python_object
{
public:
instance(PyTypeObject* class_);
~instance();
// Standard Python functions.
PyObject* repr();
int compare(PyObject*);
PyObject* str();
long hash();
PyObject* call(PyObject* args, PyObject* keywords);
PyObject* getattr(const char* name, bool use_special_function = true);
int setattr(const char* name, PyObject* value);
// Mapping methods
int length();
PyObject* get_subscript(PyObject* key);
void set_subscript(PyObject* key, PyObject* value);
// Sequence methods
PyObject* get_slice(int start, int finish);
void set_slice(int start, int finish, PyObject* value);
// Number methods
PyObject* add(PyObject* other);
PyObject* subtract(PyObject* other);
PyObject* multiply(PyObject* other);
PyObject* divide(PyObject* other);
PyObject* remainder(PyObject* other);
PyObject* divmod(PyObject* other);
PyObject* power(PyObject*, PyObject*);
PyObject* negative();
PyObject* positive();
PyObject* absolute();
int nonzero();
PyObject* invert();
PyObject* lshift(PyObject* other);
PyObject* rshift(PyObject* other);
PyObject* do_and(PyObject* other);
PyObject* do_xor(PyObject* other);
PyObject* do_or(PyObject* other);
int coerce(PyObject**, PyObject**);
PyObject* as_int();
PyObject* as_long();
PyObject* as_float();
PyObject* oct();
PyObject* hex();
private: // noncopyable, without the size bloat
instance(const instance&);
void operator=(const instance&);
private: // helper functions
int setattr_dict(PyObject* value);
private:
dictionary m_name_space;
};
template <class T> class meta_class;
namespace detail {
class class_base : public type_object_base
{
public:
class_base(PyTypeObject* meta_class_obj, string name, tuple bases, const dictionary& name_space);
tuple bases() const;
string name() const;
dictionary& dict();
// Standard Python functions.
PyObject* getattr(const char* name);
int setattr(const char* name, PyObject* value);
PyObject* repr() const;
void add_base(ref base);
protected:
bool initialize_instance(instance* obj, PyObject* args, PyObject* keywords);
private: // virtual functions
// Subclasses should override this to delete the particular obj type
virtual void delete_instance(PyObject*) const = 0;
private: // boost::python::type_object_base required interface implementation
void instance_dealloc(PyObject*) const; // subclasses should not override this
private:
string m_name;
tuple m_bases;
dictionary m_name_space;
};
void enable_named_method(class_base* type_obj, const char* name);
}
// A type which acts a lot like a built-in Python class. T is the obj type,
// so class_t<instance> is a very simple "class-alike".
template <class T>
class class_t
: public boost::python::detail::class_base
{
public:
class_t(meta_class<T>* meta_class_obj, string name, tuple bases, const dictionary& name_space);
// Standard Python functions.
PyObject* call(PyObject* args, PyObject* keywords);
private: // Implement mapping methods on instances
PyObject* instance_repr(PyObject*) const;
int instance_compare(PyObject*, PyObject* other) const;
PyObject* instance_str(PyObject*) const;
long instance_hash(PyObject*) const;
int instance_mapping_length(PyObject*) const;
PyObject* instance_mapping_subscript(PyObject*, PyObject*) const;
int instance_mapping_ass_subscript(PyObject*, PyObject*, PyObject*) const;
private: // Implement sequence methods on instances
int instance_sequence_length(PyObject*) const;
PyObject* instance_sequence_item(PyObject* obj, int n) const;
int instance_sequence_ass_item(PyObject* obj, int n, PyObject* value) const;
PyObject* instance_sequence_slice(PyObject*, int start, int finish) const;
int instance_sequence_ass_slice(PyObject*, int start, int finish, PyObject* value) const;
private: // Implement number methods on instances
PyObject* instance_number_add(PyObject*, PyObject*) const;
PyObject* instance_number_subtract(PyObject*, PyObject*) const;
PyObject* instance_number_multiply(PyObject*, PyObject*) const;
PyObject* instance_number_divide(PyObject*, PyObject*) const;
PyObject* instance_number_remainder(PyObject*, PyObject*) const;
PyObject* instance_number_divmod(PyObject*, PyObject*) const;
PyObject* instance_number_power(PyObject*, PyObject*, PyObject*) const;
PyObject* instance_number_negative(PyObject*) const;
PyObject* instance_number_positive(PyObject*) const;
PyObject* instance_number_absolute(PyObject*) const;
int instance_number_nonzero(PyObject*) const;
PyObject* instance_number_invert(PyObject*) const;
PyObject* instance_number_lshift(PyObject*, PyObject*) const;
PyObject* instance_number_rshift(PyObject*, PyObject*) const;
PyObject* instance_number_and(PyObject*, PyObject*) const;
PyObject* instance_number_xor(PyObject*, PyObject*) const;
PyObject* instance_number_or(PyObject*, PyObject*) const;
int instance_number_coerce(PyObject*, PyObject**, PyObject**) const;
PyObject* instance_number_int(PyObject*) const;
PyObject* instance_number_long(PyObject*) const;
PyObject* instance_number_float(PyObject*) const;
PyObject* instance_number_oct(PyObject*) const;
PyObject* instance_number_hex(PyObject*) const;
private: // Miscellaneous "special" methods
PyObject* instance_call(PyObject* obj, PyObject* args, PyObject* keywords) const;
PyObject* instance_getattr(PyObject* obj, const char* name) const;
int instance_setattr(PyObject* obj, const char* name, PyObject* value) const;
private: // Implementation of boost::python::detail::class_base required interface
void delete_instance(PyObject*) const;
private: // noncopyable, without the size bloat
class_t(const class_t<T>&);
void operator=(const class_t&);
};
// The type of a class_t<T> object.
template <class T>
class meta_class
: public boost::python::detail::reprable<
boost::python::detail::callable<
boost::python::detail::getattrable<
boost::python::detail::setattrable<
boost::python::detail::type_object<class_t<T> > > > > >,
boost::noncopyable
{
public:
meta_class();
// Standard Python functions.
PyObject* call(PyObject* args, PyObject* keywords);
struct type_object
: boost::python::detail::singleton<type_object,
boost::python::detail::callable<
boost::python::detail::type_object<meta_class> > >
{
type_object() : singleton_base(&PyType_Type) {}
};
};
//
// Member function implementations.
//
template <class T>
meta_class<T>::meta_class()
: properties(type_object::instance())
{
}
template <class T>
class_t<T>::class_t(meta_class<T>* meta_class_obj, string name, tuple bases, const dictionary& name_space)
: boost::python::detail::class_base(meta_class_obj, name, bases, name_space)
{
}
template <class T>
void class_t<T>::delete_instance(PyObject* obj) const
{
delete downcast<T>(obj);
}
template <class T>
PyObject* class_t<T>::call(PyObject* args, PyObject* keywords)
{
reference<T> result(new T(this));
if (!this->initialize_instance(result.get(), args, keywords))
return 0;
else
return result.release();
}
template <class T>
PyObject* class_t<T>::instance_repr(PyObject* obj) const
{
return downcast<T>(obj)->repr();
}
template <class T>
int class_t<T>::instance_compare(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->compare(other);
}
template <class T>
PyObject* class_t<T>::instance_str(PyObject* obj) const
{
return downcast<T>(obj)->str();
}
template <class T>
long class_t<T>::instance_hash(PyObject* obj) const
{
return downcast<T>(obj)->hash();
}
template <class T>
int class_t<T>::instance_mapping_length(PyObject* obj) const
{
return downcast<T>(obj)->length();
}
template <class T>
int class_t<T>::instance_sequence_length(PyObject* obj) const
{
return downcast<T>(obj)->length();
}
template <class T>
PyObject* class_t<T>::instance_mapping_subscript(PyObject* obj, PyObject* key) const
{
return downcast<T>(obj)->get_subscript(key);
}
template <class T>
PyObject* class_t<T>::instance_sequence_item(PyObject* obj, int n) const
{
ref key(to_python(n));
return downcast<T>(obj)->get_subscript(key.get());
}
template <class T>
int class_t<T>::instance_sequence_ass_item(PyObject* obj, int n, PyObject* value) const
{
ref key(to_python(n));
downcast<T>(obj)->set_subscript(key.get(), value);
return 0;
}
template <class T>
int class_t<T>::instance_mapping_ass_subscript(PyObject* obj, PyObject* key, PyObject* value) const
{
downcast<T>(obj)->set_subscript(key, value);
return 0;
}
void adjust_slice_indices(PyObject* obj, int& start, int& finish);
template <class T>
PyObject* class_t<T>::instance_sequence_slice(PyObject* obj, int start, int finish) const
{
adjust_slice_indices(obj, start, finish);
return downcast<T>(obj)->get_slice(start, finish);
}
template <class T>
int class_t<T>::instance_sequence_ass_slice(PyObject* obj, int start, int finish, PyObject* value) const
{
adjust_slice_indices(obj, start, finish);
downcast<T>(obj)->set_slice(start, finish, value);
return 0;
}
template <class T>
PyObject* class_t<T>::instance_call(PyObject* obj, PyObject* args, PyObject* keywords) const
{
return downcast<T>(obj)->call(args, keywords);
}
template <class T>
PyObject* class_t<T>::instance_getattr(PyObject* obj, const char* name) const
{
return downcast<T>(obj)->getattr(name);
}
template <class T>
int class_t<T>::instance_setattr(PyObject* obj, const char* name, PyObject* value) const
{
return downcast<T>(obj)->setattr(name, value);
}
template <class T>
PyObject* class_t<T>::instance_number_add(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->add(other);
}
template <class T>
PyObject* class_t<T>::instance_number_subtract(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->subtract(other);
}
template <class T>
PyObject* class_t<T>::instance_number_multiply(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->multiply(other);
}
template <class T>
PyObject* class_t<T>::instance_number_divide(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->divide(other);
}
template <class T>
PyObject* class_t<T>::instance_number_remainder(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->remainder(other);
}
template <class T>
PyObject* class_t<T>::instance_number_divmod(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->divmod(other);
}
template <class T>
PyObject* class_t<T>::instance_number_power(PyObject* obj, PyObject* exponent, PyObject* modulus) const
{
return downcast<T>(obj)->power(exponent, modulus);
}
template <class T>
PyObject* class_t<T>::instance_number_negative(PyObject* obj) const
{
return downcast<T>(obj)->negative();
}
template <class T>
PyObject* class_t<T>::instance_number_positive(PyObject* obj) const
{
return downcast<T>(obj)->positive();
}
template <class T>
PyObject* class_t<T>::instance_number_absolute(PyObject* obj) const
{
return downcast<T>(obj)->absolute();
}
template <class T>
int class_t<T>::instance_number_nonzero(PyObject* obj) const
{
return downcast<T>(obj)->nonzero();
}
template <class T>
PyObject* class_t<T>::instance_number_invert(PyObject* obj) const
{
return downcast<T>(obj)->invert();
}
template <class T>
PyObject* class_t<T>::instance_number_lshift(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->lshift(other);
}
template <class T>
PyObject* class_t<T>::instance_number_rshift(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->rshift(other);
}
template <class T>
PyObject* class_t<T>::instance_number_and(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->do_and(other);
}
template <class T>
PyObject* class_t<T>::instance_number_xor(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->do_xor(other);
}
template <class T>
PyObject* class_t<T>::instance_number_or(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->do_or(other);
}
template <class T>
int class_t<T>::instance_number_coerce(PyObject* obj, PyObject** x, PyObject** y) const
{
return downcast<T>(obj)->coerce(x, y);
}
template <class T>
PyObject* class_t<T>::instance_number_int(PyObject* obj) const
{
return downcast<T>(obj)->as_int();
}
template <class T>
PyObject* class_t<T>::instance_number_long(PyObject* obj) const
{
return downcast<T>(obj)->as_long();
}
template <class T>
PyObject* class_t<T>::instance_number_float(PyObject* obj) const
{
return downcast<T>(obj)->as_float();
}
template <class T>
PyObject* class_t<T>::instance_number_oct(PyObject* obj) const
{
return downcast<T>(obj)->oct();
}
template <class T>
PyObject* class_t<T>::instance_number_hex(PyObject* obj) const
{
return downcast<T>(obj)->hex();
}
namespace detail {
inline dictionary& class_base::dict()
{
return m_name_space;
}
inline tuple class_base::bases() const
{
return m_bases;
}
}
template <class T>
PyObject* meta_class<T>::call(PyObject* args, PyObject* /*keywords*/)
{
PyObject* name;
PyObject* bases;
PyObject* name_space;
if (!PyArg_ParseTuple(args, const_cast<char*>("O!O!O!"),
&PyString_Type, &name,
&PyTuple_Type, &bases,
&PyDict_Type, &name_space))
{
return 0;
}
return as_object(
new class_t<T>(this, string(ref(name, ref::increment_count)),
tuple(ref(bases, ref::increment_count)),
dictionary(ref(name_space, ref::increment_count)))
);
}
namespace detail {
const string& setattr_string();
const string& getattr_string();
const string& delattr_string();
inline string class_base::name() const
{
return m_name;
}
}
}} // namespace boost::python
#endif

View File

@@ -1,325 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef METHOD_DWA122899_H_
# define METHOD_DWA122899_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/detail/none.hpp>
# include <boost/python/detail/signatures.hpp>
# include <boost/smart_ptr.hpp>
# include <boost/python/errors.hpp>
# include <string>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
// This can be instantiated on an enum to provide the to_python/from_python
// conversions, provided the values can fit in a long.
template <class EnumType>
class py_enum_as_int_converters
{
friend EnumType from_python(PyObject* x, boost::python::type<EnumType>)
{
return static_cast<EnumType>(
from_python(x, boost::python::type<long>()));
}
friend EnumType from_python(PyObject* x, boost::python::type<const EnumType&>)
{
return static_cast<EnumType>(
from_python(x, boost::python::type<long>()));
}
friend PyObject* to_python(EnumType x)
{
return to_python(static_cast<long>(x));
}
};
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
template <class EnumType> class enum_as_int_converters
: public BOOST_PYTHON_CONVERSION::py_enum_as_int_converters<EnumType> {};
template <class P, class T> class wrapped_pointer;
//#pragma warn_possunwant off
inline void decref_impl(PyObject* p) { Py_DECREF(p); }
inline void xdecref_impl(PyObject* p) { Py_XDECREF(p); }
//#pragma warn_possunwant reset
template <class T>
inline void decref(T* p)
{
char* const raw_p = reinterpret_cast<char*>(p);
char* const p_base = raw_p - offsetof(PyObject, ob_refcnt);
decref_impl(reinterpret_cast<PyObject*>(p_base));
}
template <class T>
inline void xdecref(T* p)
{
char* const raw_p = reinterpret_cast<char*>(p);
char* const p_base = raw_p - offsetof(PyObject, ob_refcnt);
xdecref_impl(reinterpret_cast<PyObject*>(p_base));
}
}} // namespace boost::python
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
//
// Converters
//
PyObject* to_python(long);
long from_python(PyObject* p, boost::python::type<long>);
long from_python(PyObject* p, boost::python::type<const long&>);
PyObject* to_python(unsigned long);
unsigned long from_python(PyObject* p, boost::python::type<unsigned long>);
unsigned long from_python(PyObject* p, boost::python::type<const unsigned long&>);
PyObject* to_python(int);
int from_python(PyObject*, boost::python::type<int>);
int from_python(PyObject*, boost::python::type<const int&>);
PyObject* to_python(unsigned int);
unsigned int from_python(PyObject*, boost::python::type<unsigned int>);
unsigned int from_python(PyObject*, boost::python::type<const unsigned int&>);
PyObject* to_python(short);
short from_python(PyObject*, boost::python::type<short>);
short from_python(PyObject*, boost::python::type<const short&>);
PyObject* to_python(unsigned short);
unsigned short from_python(PyObject*, boost::python::type<unsigned short>);
unsigned short from_python(PyObject*, boost::python::type<const unsigned short&>);
PyObject* to_python(signed char);
signed char from_python(PyObject*, boost::python::type<signed char>);
signed char from_python(PyObject*, boost::python::type<const signed char&>);
PyObject* to_python(unsigned char);
unsigned char from_python(PyObject*, boost::python::type<unsigned char>);
unsigned char from_python(PyObject*, boost::python::type<const unsigned char&>);
PyObject* to_python(float);
float from_python(PyObject*, boost::python::type<float>);
float from_python(PyObject*, boost::python::type<const float&>);
PyObject* to_python(double);
double from_python(PyObject*, boost::python::type<double>);
double from_python(PyObject*, boost::python::type<const double&>);
PyObject* to_python(bool);
bool from_python(PyObject*, boost::python::type<bool>);
bool from_python(PyObject*, boost::python::type<const bool&>);
PyObject* to_python(void);
void from_python(PyObject*, boost::python::type<void>);
PyObject* to_python(const char* s);
const char* from_python(PyObject*, boost::python::type<const char*>);
PyObject* to_python(const std::string& s);
std::string from_python(PyObject*, boost::python::type<std::string>);
std::string from_python(PyObject*, boost::python::type<const std::string&>);
// For when your C++ function really wants to pass/return a PyObject*
PyObject* to_python(PyObject*);
PyObject* from_python(PyObject*, boost::python::type<PyObject*>);
// Some standard conversions to/from smart pointer types. You can add your own
// from these examples. These are not generated using the friend technique from
// wrapped_pointer because:
//
// 1. We want to be able to extend conversion to/from WrappedPointers using
// arbitrary smart pointer types.
//
// 2. It helps with compilation independence. This way, code which creates
// wrappers for functions accepting and returning smart_ptr<T> does not
// have to have already seen the invocation of wrapped_type<T>.
//
// Unfortunately, MSVC6 is so incredibly lame that we have to rely on the friend
// technique to auto_generate standard pointer conversions for wrapped
// types. This means that you need to write a non-templated function for each
// specific smart_ptr<T> which you want to convert from_python. For example,
//
// namespace boost { namespace python {
// #ifdef MUST_SUPPORT_MSVC
//
// MyPtr<Foo> from_python(PyObject*p, type<MyPtr<Foo> >)
// { return smart_ptr_from_python(p, type<MyPtr<Foo> >(), type<Foo>());}
// }
//
// MyPtr<Bar> from_python(PyObject*p, type<MyPtr<Bar> >)
// { return smart_ptr_from_python(p, type<MyPtr<Bar> >(), type<Bar>());}
//
// ... // definitions for MyPtr<Baz>, MyPtr<Mumble>, etc.
//
// #else
//
// // Just once for all MyPtr<T>
// template <class T>
// MyPtr<T> from_python(PyObject*p, type<MyPtr<T> >)
// {
// return smart_ptr_from_python(p, type<MyPtr<T> >(), type<T>());
// }
//
// #endif
// }} // namespace boost::python
#if !defined(BOOST_MSVC6_OR_EARLIER)
template <class T>
boost::shared_ptr<T> from_python(PyObject*p, boost::python::type<boost::shared_ptr<T> >)
{
return smart_ptr_from_python(p, boost::python::type<boost::shared_ptr<T> >(), boost::python::type<T>());
}
#endif
#if 0
template <class T>
PyObject* to_python(std::auto_ptr<T> p)
{
return new boost::python::wrapped_pointer<std::auto_ptr<T>, T>(p);
}
template <class T>
PyObject* to_python(boost::shared_ptr<T> p)
{
return new boost::python::wrapped_pointer<boost::shared_ptr<T>, T>(p);
}
#endif
//
// inline implementations
//
#ifndef BOOST_MSVC6_OR_EARLIER
inline PyObject* to_python(double d)
{
return PyFloat_FromDouble(d);
}
inline PyObject* to_python(float f)
{
return PyFloat_FromDouble(f);
}
#endif // BOOST_MSVC6_OR_EARLIER
inline PyObject* to_python(long l)
{
return PyInt_FromLong(l);
}
inline PyObject* to_python(int x)
{
return PyInt_FromLong(x);
}
inline PyObject* to_python(short x)
{
return PyInt_FromLong(x);
}
inline PyObject* to_python(bool b)
{
return PyInt_FromLong(b);
}
inline PyObject* to_python(void)
{
return boost::python::detail::none();
}
inline PyObject* to_python(const char* s)
{
return PyString_FromString(s);
}
inline std::string from_python(PyObject* p, boost::python::type<const std::string&>)
{
return from_python(p, boost::python::type<std::string>());
}
inline PyObject* to_python(PyObject* p)
{
Py_INCREF(p);
return p;
}
inline PyObject* from_python(PyObject* p, boost::python::type<PyObject*>)
{
return p;
}
inline const char* from_python(PyObject* p, boost::python::type<const char* const&>)
{
return from_python(p, boost::python::type<const char*>());
}
inline double from_python(PyObject* p, boost::python::type<const double&>)
{
return from_python(p, boost::python::type<double>());
}
inline float from_python(PyObject* p, boost::python::type<const float&>)
{
return from_python(p, boost::python::type<float>());
}
inline int from_python(PyObject* p, boost::python::type<const int&>)
{
return from_python(p, boost::python::type<int>());
}
inline short from_python(PyObject* p, boost::python::type<const short&>)
{
return from_python(p, boost::python::type<short>());
}
inline long from_python(PyObject* p, boost::python::type<const long&>)
{
return from_python(p, boost::python::type<long>());
}
inline bool from_python(PyObject* p, boost::python::type<const bool&>)
{
return from_python(p, boost::python::type<bool>());
}
inline unsigned int from_python(PyObject* p, boost::python::type<const unsigned int&>)
{
return from_python(p, boost::python::type<unsigned int>());
}
inline unsigned short from_python(PyObject* p, boost::python::type<const unsigned short&>)
{
return from_python(p, boost::python::type<unsigned short>());
}
inline signed char from_python(PyObject* p, boost::python::type<const signed char&>)
{
return from_python(p, boost::python::type<signed char>());
}
inline unsigned char from_python(PyObject* p, boost::python::type<const unsigned char&>)
{
return from_python(p, boost::python::type<unsigned char>());
}
inline unsigned long from_python(PyObject* p, boost::python::type<const unsigned long&>)
{
return from_python(p, boost::python::type<unsigned long>());
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
#endif // METHOD_DWA122899_H_

View File

@@ -1,62 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef BASE_OBJECT_DWA051600_H_
# define BASE_OBJECT_DWA051600_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/signatures.hpp> // really just for type<>
# include <boost/python/detail/wrap_python.hpp>
# include <cstring>
namespace boost { namespace python { namespace detail {
// base_object - adds a constructor and non-virtual destructor to a
// base Python type (e.g. PyObject, PyTypeObject).
template <class python_type>
struct base_object : python_type
{
typedef python_type base_python_type;
// Initializes type and reference count. All other fields of base_python_type are 0
base_object(PyTypeObject* type_obj);
// Decrements reference count on the type
~base_object();
};
// Easy typedefs for common usage
typedef base_object<PyObject> python_object;
typedef base_object<PyTypeObject> python_type;
//
// class_t template member function implementations
//
template <class python_type>
base_object<python_type>::base_object(PyTypeObject* type_obj)
{
base_python_type* bp = this;
#if !defined(_MSC_VER) || defined(__STLPORT)
std::
#endif
memset(bp, 0, sizeof(base_python_type));
ob_refcnt = 1;
ob_type = type_obj;
Py_INCREF(type_obj);
}
template <class python_type>
inline base_object<python_type>::~base_object()
{
Py_DECREF(ob_type);
}
}}} // namespace boost::python::detail
#endif // BASE_OBJECT_DWA051600_H_

View File

@@ -1,81 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef CAST_DWA052500_H_
# define CAST_DWA052500_H_
# include <boost/python/detail/wrap_python.hpp>
# include <boost/operators.hpp>
namespace boost { namespace python {
namespace detail {
// The default way of converting a PyObject* or PyTypeObject* to a T*
template <class T>
struct downcast_traits
{
template <class U>
static T* cast(U* p) { return static_cast<T*>(p); }
};
inline PyTypeObject* as_base_object(const PyTypeObject*, PyObject* p)
{
return reinterpret_cast<PyTypeObject*>(p);
}
inline PyObject* as_base_object(const PyObject*, PyObject* p)
{
return p;
}
inline const PyTypeObject* as_base_object(const PyTypeObject*, const PyObject* p)
{
return reinterpret_cast<const PyTypeObject*>(p);
}
inline const PyObject* as_base_object(const PyObject*, const PyObject* p)
{
return p;
}
} // namespace detail
// Convert a pointer to any type derived from PyObject or PyTypeObject to a PyObject*
inline PyObject* as_object(PyObject* p) { return p; }
inline PyObject* as_object(PyTypeObject* p) { return reinterpret_cast<PyObject*>(p); }
// If I didn't have to support stupid MSVC6 we could just use a simple template function:
// template <class T> T* downcast(PyObject*).
template <class T>
struct downcast : boost::dereferenceable<downcast<T>, T*>
{
downcast(PyObject* p)
: m_p(detail::downcast_traits<T>::cast(detail::as_base_object((T*)0, p)))
{}
downcast(const PyObject* p)
: m_p(detail::downcast_traits<T>::cast(detail::as_base_object((const T*)0, p)))
{}
downcast(PyTypeObject* p)
: m_p(detail::downcast_traits<T>::cast(p))
{}
downcast(const PyTypeObject* p)
: m_p(detail::downcast_traits<T>::cast(p))
{}
operator T*() const { return m_p; }
T* get() const { return m_p; }
T& operator*() const { return *m_p; }
private:
T* m_p;
};
}} // namespace boost::python
#endif // CAST_DWA052500_H_

View File

@@ -1,56 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef CONFIG_DWA052200_H_
# define CONFIG_DWA052200_H_
# include <boost/config.hpp>
# include <cstddef>
# ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
// A gcc bug forces some symbols into the global namespace
# define BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
# define BOOST_PYTHON_END_CONVERSION_NAMESPACE
# define BOOST_PYTHON_CONVERSION
# define BOOST_PYTHON_IMPORT_CONVERSION(x) using ::x
# else
# define BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE namespace boost { namespace python {
# define BOOST_PYTHON_END_CONVERSION_NAMESPACE }} // namespace boost::python
# define BOOST_PYTHON_CONVERSION python
# define BOOST_PYTHON_IMPORT_CONVERSION(x) void never_defined() // so we can follow the macro with a ';'
# endif
# if defined(BOOST_MSVC)
# if _MSC_VER <= 1200
# define BOOST_MSVC6_OR_EARLIER 1
# endif
# pragma warning (disable : 4786)
# endif
// Work around the broken library implementation/strict ansi checking on some
// EDG-based compilers (e.g. alpha), which incorrectly warn that the result of
// offsetof() is not an integer constant expression.
# if defined(__DECCXX_VER) && __DECCXX_VER <= 60290024
# define BOOST_OFFSETOF(s_name, s_member) \
((size_t)__INTADDR__(&(((s_name *)0)->s_member)))
# else
# define BOOST_OFFSETOF(s_name, s_member) \
offsetof(s_name, s_member)
# endif
// The STLport puts all of the standard 'C' library names in std (as far as the
// user is concerned), but without it you need a fix if you're using MSVC.
# if defined(BOOST_MSVC6_OR_EARLIER) && !defined(__STLPORT)
# define BOOST_CSTD_
# else
# define BOOST_CSTD_ std
# endif
#endif // CONFIG_DWA052200_H_

View File

@@ -1,834 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file automatically generated for 5-argument constructors by
// gen_extclass.python
#ifndef EXTENSION_CLASS_DWA052000_H_
# define EXTENSION_CLASS_DWA052000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/classes.hpp>
# include <vector>
# include <boost/python/detail/none.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/functions.hpp>
# include <memory>
# include <boost/python/detail/init_function.hpp>
# include <typeinfo>
# include <boost/smart_ptr.hpp>
namespace boost { namespace python {
// forward declarations
template <long which, class operand> struct operators;
template <class T> struct left_operand;
template <class T> struct right_operand;
enum without_downcast_t { without_downcast };
namespace detail {
// forward declarations
class extension_instance;
class extension_class_base;
template <class T> class instance_holder;
template <class T, class U> class instance_value_holder;
template <class ref, class T> class instance_ptr_holder;
template <class Specified> struct operand_select;
template <long> struct choose_op;
template <long> struct choose_rop;
template <long> struct choose_unary_op;
template <long> struct define_operator;
meta_class<extension_instance>* extension_meta_class();
extension_instance* get_extension_instance(PyObject* p);
void report_missing_instance_data(extension_instance*, class_t<extension_instance>*, const std::type_info&);
void report_missing_ptr_data(extension_instance*, class_t<extension_instance>*, const std::type_info&);
void report_missing_class_object(const std::type_info&);
void report_released_smart_pointer(const std::type_info&);
template <class T>
T* check_non_null(T* p)
{
if (p == 0)
report_released_smart_pointer(typeid(T));
return p;
}
template <class T> class held_instance;
typedef void* (*conversion_function_ptr)(void*);
struct base_class_info
{
base_class_info(extension_class_base* t, conversion_function_ptr f)
:class_object(t), convert(f)
{}
extension_class_base* class_object;
conversion_function_ptr convert;
};
typedef base_class_info derived_class_info;
struct add_operator_base;
class extension_class_base : public class_t<extension_instance>
{
public:
extension_class_base(const char* name);
public:
// the purpose of try_class_conversions() and its related functions
// is explained in extclass.cpp
void* try_class_conversions(instance_holder_base*) const;
void* try_base_class_conversions(instance_holder_base*) const;
void* try_derived_class_conversions(instance_holder_base*) const;
void set_attribute(const char* name, PyObject* x);
void set_attribute(const char* name, ref x);
private:
virtual void* extract_object_from_holder(instance_holder_base* v) const = 0;
virtual std::vector<base_class_info> const& base_classes() const = 0;
virtual std::vector<derived_class_info> const& derived_classes() const = 0;
protected:
friend struct add_operator_base;
void add_method(reference<function> method, const char* name);
void add_method(function* method, const char* name);
void add_constructor_object(function*);
void add_setter_method(function*, const char* name);
void add_getter_method(function*, const char* name);
};
template <class T>
class class_registry
{
public:
static extension_class_base* class_object()
{ return static_class_object; }
// Register/unregister the Python class object corresponding to T
static void register_class(extension_class_base*);
static void unregister_class(extension_class_base*);
// Establish C++ inheritance relationships
static void register_base_class(base_class_info const&);
static void register_derived_class(derived_class_info const&);
// Query the C++ inheritance relationships
static std::vector<base_class_info> const& base_classes();
static std::vector<derived_class_info> const& derived_classes();
private:
static extension_class_base* static_class_object;
static std::vector<base_class_info> static_base_class_info;
static std::vector<derived_class_info> static_derived_class_info;
};
}}} // namespace boost::python::detail
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
// This class' only job is to define from_python and to_python converters for T
// and U. T is the class the user really intends to wrap. U is a class derived
// from T with some virtual function overriding boilerplate, or if there are no
// virtual functions, U = held_instance<T>.
template <class T, class U = boost::python::detail::held_instance<T> >
class python_extension_class_converters
{
public:
// Get an object which can be used to convert T to/from python. This is used
// as a kind of concept check by the global template
//
// PyObject* to_python(const T& x)
//
// below this class, to prevent the confusing messages that would otherwise
// pop up. Now, if T hasn't been wrapped as an extension class, the user
// will see an error message about the lack of an eligible
// py_extension_class_converters() function.
friend python_extension_class_converters py_extension_class_converters(boost::python::type<T>)
{
return python_extension_class_converters();
}
// This is a member function because in a conforming implementation, friend
// funcitons defined inline in the class body are all instantiated as soon
// as the enclosing class is instantiated. If T is not copyable, that causes
// a compiler error. Instead, we access this function through the global
// template
//
// PyObject* to_python(const T& x)
//
// defined below this class. Since template functions are instantiated only
// on demand, errors will be avoided unless T is noncopyable and the user
// writes code which causes us to try to copy a T.
PyObject* to_python(const T& x) const
{
boost::python::reference<boost::python::detail::extension_instance> result(create_instance());
result->add_implementation(
std::auto_ptr<boost::python::detail::instance_holder_base>(
new boost::python::detail::instance_value_holder<T,U>(result.get(), x)));
return result.release();
}
// Convert to T*
friend T* from_python(PyObject* obj, boost::python::type<T*>)
{
// downcast to an extension_instance, then find the actual T
boost::python::detail::extension_instance* self = boost::python::detail::get_extension_instance(obj);
typedef std::vector<boost::python::detail::instance_holder_base*>::const_iterator iterator;
for (iterator p = self->wrapped_objects().begin();
p != self->wrapped_objects().end(); ++p)
{
boost::python::detail::instance_holder<T>* held = dynamic_cast<boost::python::detail::instance_holder<T>*>(*p);
if (held != 0)
return held->target();
// see extclass.cpp for an explanation of try_class_conversions()
void* target = boost::python::detail::class_registry<T>::class_object()->try_class_conversions(*p);
if(target)
return static_cast<T*>(target);
}
boost::python::detail::report_missing_instance_data(self, boost::python::detail::class_registry<T>::class_object(), typeid(T));
throw boost::python::argument_error();
}
// Convert to PtrType, where PtrType can be dereferenced to obtain a T.
template <class PtrType>
static PtrType& ptr_from_python(PyObject* obj, boost::python::type<PtrType>)
{
// downcast to an extension_instance, then find the actual T
boost::python::detail::extension_instance* self = boost::python::detail::get_extension_instance(obj);
typedef std::vector<boost::python::detail::instance_holder_base*>::const_iterator iterator;
for (iterator p = self->wrapped_objects().begin();
p != self->wrapped_objects().end(); ++p)
{
boost::python::detail::instance_ptr_holder<PtrType, T>* held =
dynamic_cast<boost::python::detail::instance_ptr_holder<PtrType, T>*>(*p);
if (held != 0)
return held->ptr();
}
boost::python::detail::report_missing_ptr_data(self, boost::python::detail::class_registry<T>::class_object(), typeid(T));
throw boost::python::argument_error();
}
template <class PtrType>
static PyObject* ptr_to_python(PtrType x)
{
boost::python::reference<boost::python::detail::extension_instance> result(create_instance());
result->add_implementation(
std::auto_ptr<boost::python::detail::instance_holder_base>(
new boost::python::detail::instance_ptr_holder<PtrType,T>(x)));
return result.release();
}
static boost::python::reference<boost::python::detail::extension_instance> create_instance()
{
PyTypeObject* class_object = boost::python::detail::class_registry<T>::class_object();
if (class_object == 0)
boost::python::detail::report_missing_class_object(typeid(T));
return boost::python::reference<boost::python::detail::extension_instance>(
new boost::python::detail::extension_instance(class_object));
}
// Convert to const T*
friend const T* from_python(PyObject* p, boost::python::type<const T*>)
{ return from_python(p, boost::python::type<T*>()); }
// Convert to const T* const&
friend const T* from_python(PyObject* p, boost::python::type<const T*const&>)
{ return from_python(p, boost::python::type<const T*>()); }
// Convert to T* const&
friend T* from_python(PyObject* p, boost::python::type<T* const&>)
{ return from_python(p, boost::python::type<T*>()); }
// Convert to T&
friend T& from_python(PyObject* p, boost::python::type<T&>)
{ return *boost::python::detail::check_non_null(from_python(p, boost::python::type<T*>())); }
// Convert to const T&
friend const T& from_python(PyObject* p, boost::python::type<const T&>)
{ return from_python(p, boost::python::type<T&>()); }
// Convert to T
friend const T& from_python(PyObject* p, boost::python::type<T>)
{ return from_python(p, boost::python::type<T&>()); }
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T>&>)
{ return ptr_from_python(p, boost::python::type<std::auto_ptr<T> >()); }
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T> >)
{ return ptr_from_python(p, boost::python::type<std::auto_ptr<T> >()); }
friend const std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<const std::auto_ptr<T>&>)
{ return ptr_from_python(p, boost::python::type<std::auto_ptr<T> >()); }
friend PyObject* to_python(std::auto_ptr<T> x)
{ return ptr_to_python(x); }
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T>&>)
{ return ptr_from_python(p, boost::python::type<boost::shared_ptr<T> >()); }
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T> >)
{ return ptr_from_python(p, boost::python::type<boost::shared_ptr<T> >()); }
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<const boost::shared_ptr<T>&>)
{ return ptr_from_python(p, boost::python::type<boost::shared_ptr<T> >()); }
friend PyObject* to_python(boost::shared_ptr<T> x)
{ return ptr_to_python(x); }
};
// Convert T to_python, instantiated on demand and only if there isn't a
// non-template overload for this function. This version is the one invoked when
// T is a wrapped class. See the first 2 functions declared in
// python_extension_class_converters above for more info.
template <class T>
PyObject* to_python(const T& x)
{
return py_extension_class_converters(boost::python::type<T>()).to_python(x);
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
BOOST_PYTHON_IMPORT_CONVERSION(python_extension_class_converters);
namespace detail {
template <class T> class instance_holder;
class read_only_setattr_function : public function
{
public:
read_only_setattr_function(const char* name);
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const;
private:
string m_name;
};
template <class From, class To>
struct define_conversion
{
static void* upcast_ptr(void* v)
{
return static_cast<To*>(static_cast<From*>(v));
}
static void* downcast_ptr(void* v)
{
return dynamic_cast<To*>(static_cast<From*>(v));
}
};
// An easy way to make an extension base class which wraps T. Note that Python
// subclasses of this class will simply be class_t<extension_instance> objects.
//
// U should be a class derived from T which overrides virtual functions with
// boilerplate code to call back into Python. See extclass_demo.h for examples.
//
// U is optional, but you won't be able to override any member functions in
// Python which are called from C++ if you don't supply it. If you just want to
// be able to use T in python without overriding member functions, you can omit
// U.
template <class T, class U = held_instance<T> >
class extension_class
: public python_extension_class_converters<T, U>, // This generates the to_python/from_python functions
public extension_class_base
{
public:
typedef T wrapped_type;
typedef U callback_type;
// Construct with a name that comes from typeid(T).name(). The name only
// affects the objects of this class are represented through repr()
extension_class();
// Construct with the given name. The name only affects the objects of this
// class are represented through repr()
extension_class(const char* name);
~extension_class();
// define constructors
template <class A1, class A2, class A3, class A4, class A5>
inline void def(constructor<A1, A2, A3, A4, A5>)
// The following incantation builds a signature1, signature2,... object. It
// should _all_ get optimized away.
{ add_constructor(
prepend(type<A1>::id(),
prepend(type<A2>::id(),
prepend(type<A3>::id(),
prepend(type<A4>::id(),
prepend(type<A5>::id(),
signature0()))))));
}
// export homogeneous operators (type of both lhs and rhs is 'operator')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>());
// export homogeneous operators (type of both lhs and rhs is 'T const&')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>());
template <long which, class Operand>
inline void def(operators<which,Operand>)
{
typedef typename operand_select<Operand>::template wrapped<T>::type true_operand;
def_operators(operators<which,true_operand>());
}
// export heterogeneous operators (type of lhs: 'left', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>(),
// boost::python::right_operand<int const&>());
// export heterogeneous operators (type of lhs: 'T const&', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>(),
// boost::python::right_operand<int const&>());
template <long which, class Left, class Right>
inline void def(operators<which,Left>, right_operand<Right> r)
{
typedef typename operand_select<Left>::template wrapped<T>::type true_left;
def_operators(operators<which,true_left>(), r);
}
// export heterogeneous reverse-argument operators
// (type of lhs: 'left', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>(),
// boost::python::left_operand<int const&>());
// export heterogeneous reverse-argument operators
// (type of lhs: 'left', of rhs: 'T const&')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>(),
// boost::python::left_operand<int const&>());
template <long which, class Left, class Right>
inline void def(operators<which,Right>, left_operand<Left> l)
{
typedef typename operand_select<Right>::template wrapped<T>::type true_right;
def_operators(operators<which,true_right>(), l);
}
// define a function that passes Python arguments and keywords
// to C++ verbatim (as a 'tuple const&' and 'dictionary const&'
// respectively). This is useful for manual argument passing.
// It's also the only possibility to pass keyword arguments to C++.
// Fn must have a signatur that is compatible to
// PyObject* (*)(PyObject* aTuple, PyObject* aDictionary)
template <class Fn>
inline void def_raw(Fn fn, const char* name)
{
this->add_method(new_raw_arguments_function(fn), name);
}
// define member functions. In fact this works for free functions, too -
// they act like static member functions, or if they start with the
// appropriate self argument (as a pointer), they can be used just like
// ordinary member functions -- just like Python!
template <class Fn>
inline void def(Fn fn, const char* name)
{
this->add_method(new_wrapped_function(fn), name);
}
// Define a virtual member function with a default implementation.
// default_fn should be a function which provides the default implementation.
// Be careful that default_fn does not in fact call fn virtually!
template <class Fn, class DefaultFn>
inline void def(Fn fn, const char* name, DefaultFn default_fn)
{
this->add_method(new_virtual_function(type<T>(), fn, default_fn), name);
}
// Provide a function which implements x.<name>, reading from the given
// member (pm) of the T obj
template <class MemberType>
inline void def_getter(MemberType T::*pm, const char* name)
{
this->add_getter_method(new getter_function<T, MemberType>(pm), name);
}
// Provide a function which implements assignment to x.<name>, writing to
// the given member (pm) of the T obj
template <class MemberType>
inline void def_setter(MemberType T::*pm, const char* name)
{
this->add_setter_method(new setter_function<T, MemberType>(pm), name);
}
// Expose the given member (pm) of the T obj as a read-only attribute
template <class MemberType>
inline void def_readonly(MemberType T::*pm, const char* name)
{
this->add_setter_method(new read_only_setattr_function(name), name);
this->def_getter(pm, name);
}
// Expose the given member (pm) of the T obj as a read/write attribute
template <class MemberType>
inline void def_read_write(MemberType T::*pm, const char* name)
{
this->def_getter(pm, name);
this->def_setter(pm, name);
}
// define the standard coercion needed for operator overloading
void def_standard_coerce();
// declare the given class a base class of this one and register
// up and down conversion functions
template <class S, class V>
void declare_base(extension_class<S, V>* base)
{
// see extclass.cpp for an explanation of why we need to register
// conversion functions
base_class_info baseInfo(base,
&define_conversion<S, T>::downcast_ptr);
class_registry<T>::register_base_class(baseInfo);
add_base(ref(as_object(base), ref::increment_count));
derived_class_info derivedInfo(this,
&define_conversion<T, S>::upcast_ptr);
class_registry<S>::register_derived_class(derivedInfo);
}
// declare the given class a base class of this one and register
// only up conversion function
template <class S, class V>
void declare_base(extension_class<S, V>* base, without_downcast_t)
{
// see extclass.cpp for an explanation of why we need to register
// conversion functions
base_class_info baseInfo(base, 0);
class_registry<T>::register_base_class(baseInfo);
add_base(ref(as_object(base), ref::increment_count));
derived_class_info derivedInfo(this,
&define_conversion<T, S>::upcast_ptr);
class_registry<S>::register_derived_class(derivedInfo);
}
private: // types
typedef instance_value_holder<T,U> holder;
private: // extension_class_base virtual function implementations
std::vector<base_class_info> const& base_classes() const;
std::vector<derived_class_info> const& derived_classes() const;
void* extract_object_from_holder(instance_holder_base* v) const;
private: // Utility functions
template <long which, class Operand>
inline void def_operators(operators<which,Operand>)
{
def_standard_coerce();
// for some strange reason, this prevents MSVC from having an
// "unrecoverable block scoping error"!
typedef choose_op<(which & op_add)> choose_add;
choose_op<(which & op_add)>::template args<Operand>::add(this);
choose_op<(which & op_sub)>::template args<Operand>::add(this);
choose_op<(which & op_mul)>::template args<Operand>::add(this);
choose_op<(which & op_div)>::template args<Operand>::add(this);
choose_op<(which & op_mod)>::template args<Operand>::add(this);
choose_op<(which & op_divmod)>::template args<Operand>::add(this);
choose_op<(which & op_pow)>::template args<Operand>::add(this);
choose_op<(which & op_lshift)>::template args<Operand>::add(this);
choose_op<(which & op_rshift)>::template args<Operand>::add(this);
choose_op<(which & op_and)>::template args<Operand>::add(this);
choose_op<(which & op_xor)>::template args<Operand>::add(this);
choose_op<(which & op_or)>::template args<Operand>::add(this);
choose_unary_op<(which & op_neg)>::template args<Operand>::add(this);
choose_unary_op<(which & op_pos)>::template args<Operand>::add(this);
choose_unary_op<(which & op_abs)>::template args<Operand>::add(this);
choose_unary_op<(which & op_invert)>::template args<Operand>::add(this);
choose_unary_op<(which & op_int)>::template args<Operand>::add(this);
choose_unary_op<(which & op_long)>::template args<Operand>::add(this);
choose_unary_op<(which & op_float)>::template args<Operand>::add(this);
choose_op<(which & op_cmp)>::template args<Operand>::add(this);
choose_unary_op<(which & op_str)>::template args<Operand>::add(this);
}
template <long which, class Left, class Right>
inline void def_operators(operators<which,Left>, right_operand<Right>)
{
def_standard_coerce();
choose_op<(which & op_add)>::template args<Left,Right>::add(this);
choose_op<(which & op_sub)>::template args<Left,Right>::add(this);
choose_op<(which & op_mul)>::template args<Left,Right>::add(this);
choose_op<(which & op_div)>::template args<Left,Right>::add(this);
choose_op<(which & op_mod)>::template args<Left,Right>::add(this);
choose_op<(which & op_divmod)>::template args<Left,Right>::add(this);
choose_op<(which & op_pow)>::template args<Left,Right>::add(this);
choose_op<(which & op_lshift)>::template args<Left,Right>::add(this);
choose_op<(which & op_rshift)>::template args<Left,Right>::add(this);
choose_op<(which & op_and)>::template args<Left,Right>::add(this);
choose_op<(which & op_xor)>::template args<Left,Right>::add(this);
choose_op<(which & op_or)>::template args<Left,Right>::add(this);
choose_op<(which & op_cmp)>::template args<Left,Right>::add(this);
}
template <long which, class Left, class Right>
inline void def_operators(operators<which,Right>, left_operand<Left>)
{
def_standard_coerce();
choose_rop<(which & op_add)>::template args<Left,Right>::add(this);
choose_rop<(which & op_sub)>::template args<Left,Right>::add(this);
choose_rop<(which & op_mul)>::template args<Left,Right>::add(this);
choose_rop<(which & op_div)>::template args<Left,Right>::add(this);
choose_rop<(which & op_mod)>::template args<Left,Right>::add(this);
choose_rop<(which & op_divmod)>::template args<Left,Right>::add(this);
choose_rop<(which & op_pow)>::template args<Left,Right>::add(this);
choose_rop<(which & op_lshift)>::template args<Left,Right>::add(this);
choose_rop<(which & op_rshift)>::template args<Left,Right>::add(this);
choose_rop<(which & op_and)>::template args<Left,Right>::add(this);
choose_rop<(which & op_xor)>::template args<Left,Right>::add(this);
choose_rop<(which & op_or)>::template args<Left,Right>::add(this);
choose_rop<(which & op_cmp)>::template args<Left,Right>::add(this);
}
template <class signature>
void add_constructor(signature sig)
{
this->add_constructor_object(init_function<holder>::create(sig));
}
};
// A simple wrapper over a T which allows us to use extension_class<T> with a
// single template parameter only. See extension_class<T>, above.
template <class T>
class held_instance : public T
{
// There are no member functions: we want to avoid inadvertently overriding
// any virtual functions in T.
public:
held_instance(PyObject*) : T() {}
template <class A1>
held_instance(PyObject*, A1 a1) : T(a1) {}
template <class A1, class A2>
held_instance(PyObject*, A1 a1, A2 a2) : T(a1, a2) {}
template <class A1, class A2, class A3>
held_instance(PyObject*, A1 a1, A2 a2, A3 a3) : T(a1, a2, a3) {}
template <class A1, class A2, class A3, class A4>
held_instance(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4) : T(a1, a2, a3, a4) {}
template <class A1, class A2, class A3, class A4, class A5>
held_instance(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) : T(a1, a2, a3, a4, a5) {}
};
// Abstract base class for all obj holders. Base for template class
// instance_holder<>, below.
class instance_holder_base
{
public:
virtual ~instance_holder_base() {}
virtual bool held_by_value() = 0;
};
// Abstract base class which holds a Held, somehow. Provides a uniform way to
// get a pointer to the held object
template <class Held>
class instance_holder : public instance_holder_base
{
public:
virtual Held*target() = 0;
};
// Concrete class which holds a Held by way of a wrapper class Wrapper. If Held
// can be constructed with arguments (A1...An), Wrapper must have a
// corresponding constructor for arguments (PyObject*, A1...An). Wrapper is
// neccessary to implement virtual function callbacks (there must be a
// back-pointer to the actual Python object so that we can call any
// overrides). held_instance (above) is used as a default Wrapper class when
// there are no virtual functions.
template <class Held, class Wrapper>
class instance_value_holder : public instance_holder<Held>
{
public:
Held* target() { return &m_held; }
Wrapper* value_target() { return &m_held; }
instance_value_holder(extension_instance* p) :
m_held(p) {}
template <class A1>
instance_value_holder(extension_instance* p, A1 a1) :
m_held(p, a1) {}
template <class A1, class A2>
instance_value_holder(extension_instance* p, A1 a1, A2 a2) :
m_held(p, a1, a2) {}
template <class A1, class A2, class A3>
instance_value_holder(extension_instance* p, A1 a1, A2 a2, A3 a3) :
m_held(p, a1, a2, a3) {}
template <class A1, class A2, class A3, class A4>
instance_value_holder(extension_instance* p, A1 a1, A2 a2, A3 a3, A4 a4) :
m_held(p, a1, a2, a3, a4) {}
template <class A1, class A2, class A3, class A4, class A5>
instance_value_holder(extension_instance* p, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) :
m_held(p, a1, a2, a3, a4, a5) {}
public: // implementation of instance_holder_base required interface
bool held_by_value() { return true; }
private:
Wrapper m_held;
};
// Concrete class which holds a HeldType by way of a (possibly smart) pointer
// PtrType. By default, these are only generated for PtrType ==
// std::auto_ptr<HeldType> and PtrType == boost::shared_ptr<HeldType>.
template <class PtrType, class HeldType>
class instance_ptr_holder : public instance_holder<HeldType>
{
public:
HeldType* target() { return &*m_ptr; }
PtrType& ptr() { return m_ptr; }
instance_ptr_holder(PtrType ptr) : m_ptr(ptr) {}
public: // implementation of instance_holder_base required interface
bool held_by_value() { return false; }
private:
PtrType m_ptr;
};
class extension_instance : public instance
{
public:
extension_instance(PyTypeObject* class_);
~extension_instance();
void add_implementation(std::auto_ptr<instance_holder_base> holder);
typedef std::vector<instance_holder_base*> held_objects;
const held_objects& wrapped_objects() const
{ return m_wrapped_objects; }
private:
held_objects m_wrapped_objects;
};
//
// Template function implementations
//
tuple extension_class_coerce(ref l, ref r);
template <class T, class U>
extension_class<T, U>::extension_class()
: extension_class_base(typeid(T).name())
{
class_registry<T>::register_class(this);
}
template <class T, class U>
extension_class<T, U>::extension_class(const char* name)
: extension_class_base(name)
{
class_registry<T>::register_class(this);
}
template <class T, class U>
void extension_class<T, U>::def_standard_coerce()
{
ref coerce_fct = dict().get_item(string("__coerce__"));
if(coerce_fct.get() == 0) // not yet defined
this->def(&extension_class_coerce, "__coerce__");
}
template <class T, class U>
inline
std::vector<base_class_info> const&
extension_class<T, U>::base_classes() const
{
return class_registry<T>::base_classes();
}
template <class T, class U>
inline
std::vector<derived_class_info> const&
extension_class<T, U>::derived_classes() const
{
return class_registry<T>::derived_classes();
}
template <class T, class U>
void* extension_class<T, U>::extract_object_from_holder(instance_holder_base* v) const
{
instance_holder<T>* held = dynamic_cast<instance_holder<T>*>(v);
if(held)
return held->target();
return 0;
}
template <class T, class U>
extension_class<T, U>::~extension_class()
{
class_registry<T>::unregister_class(this);
}
template <class T>
inline void class_registry<T>::register_class(extension_class_base* p)
{
// You're not expected to create more than one of these!
assert(static_class_object == 0);
static_class_object = p;
}
template <class T>
inline void class_registry<T>::unregister_class(extension_class_base* p)
{
// The user should be destroying the same object they created.
assert(static_class_object == p);
(void)p; // unused in shipping version
static_class_object = 0;
}
template <class T>
void class_registry<T>::register_base_class(base_class_info const& i)
{
static_base_class_info.push_back(i);
}
template <class T>
void class_registry<T>::register_derived_class(derived_class_info const& i)
{
static_derived_class_info.push_back(i);
}
template <class T>
std::vector<base_class_info> const& class_registry<T>::base_classes()
{
return static_base_class_info;
}
template <class T>
std::vector<derived_class_info> const& class_registry<T>::derived_classes()
{
return static_derived_class_info;
}
//
// Static data member declaration.
//
template <class T>
extension_class_base* class_registry<T>::static_class_object;
template <class T>
std::vector<base_class_info> class_registry<T>::static_base_class_info;
template <class T>
std::vector<derived_class_info> class_registry<T>::static_derived_class_info;
}}} // namespace boost::python::detail
#endif // EXTENSION_CLASS_DWA052000_H_

View File

@@ -1,306 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef FUNCTIONS_DWA051400_H_
# define FUNCTIONS_DWA051400_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/reference.hpp>
# include <boost/python/detail/signatures.hpp>
# include <boost/python/caller.hpp>
# include <boost/call_traits.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/base_object.hpp>
# include <typeinfo>
# include <vector>
namespace boost { namespace python { namespace detail {
// forward declaration
class extension_instance;
// function --
// the common base class for all overloadable function and method objects
// supplied by the library.
class function : public python_object
{
public:
function();
// function objects are reasonably rare, so we guess we can afford a virtual table.
// This cuts down on the number of distinct type objects which need to be defined.
virtual ~function() {}
PyObject* call(PyObject* args, PyObject* keywords) const;
static void add_to_namespace(reference<function> f, const char* name, PyObject* dict);
private:
virtual PyObject* do_call(PyObject* args, PyObject* keywords) const = 0;
virtual const char* description() const = 0;
private:
struct type_object;
private:
reference<function> m_overloads;
};
// wrapped_function_pointer<> --
// A single function or member function pointer wrapped and presented to
// Python as a callable object.
//
// Template parameters:
// R - the return type of the function pointer
// F - the complete type of the wrapped function pointer
template <class R, class F>
struct wrapped_function_pointer : function
{
typedef F ptr_fun; // pointer-to--function or pointer-to-member-function
wrapped_function_pointer(ptr_fun pf)
: m_pf(pf) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const
{ return caller<R>::call(m_pf, args, keywords); }
const char* description() const
{ return typeid(F).name(); }
private:
const ptr_fun m_pf;
};
// raw_arguments_function
// A function that passes the Python argument tuple and keyword dictionary
// verbatim to C++ (useful for customized argument parsing and variable
// argument lists)
template <class Ret, class Args, class Keywords>
struct raw_arguments_function : function
{
typedef Ret (*ptr_fun)(Args, Keywords);
raw_arguments_function(ptr_fun pf)
: m_pf(pf) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const
{
ref dict(keywords ?
ref(keywords, ref::increment_count) :
ref(PyDict_New()));
return to_python(
(*m_pf)(from_python(args, boost::python::type<Args>()),
from_python(dict.get(), boost::python::type<Keywords>())));
}
const char* description() const
{ return typeid(ptr_fun).name(); }
private:
const ptr_fun m_pf;
};
// virtual_function<> --
// A virtual function with a default implementation wrapped and presented
// to Python as a callable object.
//
// Template parameters:
// T - the type of the target class
// R - the return type of the function pointer
// V - the virtual function pointer being wrapped
// (should be of the form R(T::*)(<args>), or R (*)(T, <args>))
// D - a function which takes a T&, const T&, T*, or const T* first
// parameter and calls T::f on it /non-virtually/, where V
// approximates &T::f.
template <class T, class R, class V, class D>
class virtual_function : public function
{
public:
virtual_function(V virtual_function_ptr, D default_implementation)
: m_virtual_function_ptr(virtual_function_ptr),
m_default_implementation(default_implementation)
{}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const
{ return typeid(V).name(); }
private:
const V m_virtual_function_ptr;
const D m_default_implementation;
};
// A helper function for new_member_function(), below. Implements the core
// functionality once the return type has already been deduced. R is expected to
// be type<X>, where X is the actual return type of pmf.
template <class F, class R>
function* new_wrapped_function_aux(R, F pmf)
{
// We can't just use "typename R::Type" below because MSVC (incorrectly) pukes.
typedef typename R::type return_type;
return new wrapped_function_pointer<return_type, F>(pmf);
}
// Create and return a new member function object wrapping the given
// pointer-to-member function
template <class F>
inline function* new_wrapped_function(F pmf)
{
// Deduce the return type and pass it off to the helper function above
return new_wrapped_function_aux(return_value(pmf), pmf);
}
template <class R, class Args, class keywords>
function* new_raw_arguments_function(R (*pmf)(Args, keywords))
{
return new raw_arguments_function<R, Args, keywords>(pmf);
}
// A helper function for new_virtual_function(), below. Implements the core
// functionality once the return type has already been deduced. R is expected to
// be type<X>, where X is the actual return type of V.
template <class T, class R, class V, class D>
inline function* new_virtual_function_aux(
type<T>, R, V virtual_function_ptr, D default_implementation
)
{
// We can't just use "typename R::Type" below because MSVC (incorrectly) pukes.
typedef typename R::type return_type;
return new virtual_function<T, return_type, V, D>(
virtual_function_ptr, default_implementation);
}
// Create and return a new virtual_function object wrapping the given
// virtual_function_ptr and default_implementation
template <class T, class V, class D>
inline function* new_virtual_function(
type<T>, V virtual_function_ptr, D default_implementation
)
{
// Deduce the return type and pass it off to the helper function above
return new_virtual_function_aux(
type<T>(), return_value(virtual_function_ptr),
virtual_function_ptr, default_implementation);
}
// A function with a bundled "bound target" object. This is what is produced by
// the expression a.b where a is an instance or extension_instance object and b
// is a callable object not found in the obj namespace but on its class or
// a base class.
class bound_function : public python_object
{
public:
static bound_function* create(const ref& target, const ref& fn);
bound_function(const ref& target, const ref& fn);
PyObject* call(PyObject*args, PyObject* keywords) const;
PyObject* getattr(const char* name) const;
private:
struct type_object;
friend struct type_object;
ref m_target;
ref m_unbound_function;
private: // data members for allocation/deallocation optimization
bound_function* m_free_list_link;
static bound_function* free_list;
};
// Special functions designed to access data members of a wrapped C++ object.
template <class ClassType, class MemberType>
class getter_function : public function
{
public:
typedef MemberType ClassType::* pointer_to_member;
getter_function(pointer_to_member pm)
: m_pm(pm) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const
{ return typeid(MemberType (*)(const ClassType&)).name(); }
private:
pointer_to_member m_pm;
};
template <class ClassType, class MemberType>
class setter_function : public function
{
public:
typedef MemberType ClassType::* pointer_to_member;
setter_function(pointer_to_member pm)
: m_pm(pm) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const
{ return typeid(void (*)(const ClassType&, const MemberType&)).name(); }
private:
pointer_to_member m_pm;
};
template <class ClassType, class MemberType>
PyObject* getter_function<ClassType, MemberType>::do_call(
PyObject* args, PyObject* /* keywords */) const
{
PyObject* self;
if (!PyArg_ParseTuple(args, const_cast<char*>("O"), &self))
return 0;
return to_python(
from_python(self, type<const ClassType*>())->*m_pm);
}
template <class ClassType, class MemberType>
PyObject* setter_function<ClassType, MemberType>::do_call(
PyObject* args, PyObject* /* keywords */) const
{
PyObject* self;
PyObject* value;
if (!PyArg_ParseTuple(args, const_cast<char*>("OO"), &self, &value))
return 0;
typedef typename boost::call_traits<MemberType>::const_reference extract_type;
from_python(self, type<ClassType*>())->*m_pm
= from_python(value, type<extract_type>());
return none();
}
template <class T, class R, class V, class D>
PyObject* virtual_function<T,R,V,D>::do_call(PyObject* args, PyObject* keywords) const
{
// If the target object is held by pointer, we must call through the virtual
// function pointer to the most-derived override.
PyObject* target = PyTuple_GetItem(args, 0);
if (target != 0)
{
extension_instance* self = get_extension_instance(target);
if (self->wrapped_objects().size() == 1
&& !self->wrapped_objects()[0]->held_by_value())
{
return caller<R>::call(m_virtual_function_ptr, args, keywords);
}
}
return caller<R>::call(m_default_implementation, args, keywords);
}
}}} // namespace boost::python::detail
#endif // FUNCTIONS_DWA051400_H_

View File

@@ -1,507 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file was generated for %d-argument constructors by gen_init_function.python
#ifndef INIT_FUNCTION_DWA052000_H_
# define INIT_FUNCTION_DWA052000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/functions.hpp>
# include <boost/python/detail/signatures.hpp>
# include <typeinfo>
namespace boost { namespace python {
namespace detail {
// parameter_traits - so far, this is a way to pass a const T& when we can be
// sure T is not a reference type, and a raw T otherwise. This should be
// rolled into boost::call_traits. Ordinarily, parameter_traits would be
// written:
//
// template <class T> struct parameter_traits
// {
// typedef const T& const_reference;
// };
//
// template <class T> struct parameter_traits<T&>
// {
// typedef T& const_reference;
// };
//
// template <> struct parameter_traits<void>
// {
// typedef void const_reference;
// };
//
// ...but since we can't partially specialize on reference types, we need this
// long-winded but equivalent incantation.
// const_ref_selector -- an implementation detail of parameter_traits (below). This uses
// the usual "poor man's partial specialization" hack for MSVC.
template <bool is_ref>
struct const_ref_selector
{
template <class T>
struct const_ref
{
typedef const T& type;
};
};
template <>
struct const_ref_selector<true>
{
template <class T>
struct const_ref
{
typedef T type;
};
};
# ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4181)
# endif // BOOST_MSVC
template <class T>
struct parameter_traits
{
private:
typedef const_ref_selector<boost::is_reference<T>::value> selector;
public:
typedef typename selector::template const_ref<T>::type const_reference;
};
# ifdef BOOST_MSVC
# pragma warning(pop)
# endif // BOOST_MSVC
// Full spcialization for void
template <>
struct parameter_traits<void>
{
typedef void const_reference;
};
template <class T>
class reference_parameter
{
typedef typename parameter_traits<T>::const_reference const_reference;
public:
reference_parameter(const_reference value)
: value(value) {}
operator const_reference() { return value; }
private:
const_reference value;
};
class extension_instance;
class instance_holder_base;
class init;
template <class T> struct init0;
template <class T, class A1> struct init1;
template <class T, class A1, class A2> struct init2;
template <class T, class A1, class A2, class A3> struct init3;
template <class T, class A1, class A2, class A3, class A4> struct init4;
template <class T, class A1, class A2, class A3, class A4, class A5> struct init5;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6> struct Init6;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7> struct Init7;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8> struct Init8;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9> struct Init9;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10> struct Init10;
template <class T>
struct init_function
{
static init* create(signature0) {
return new init0<T>;
}
template <class A1>
static init* create(signature1<A1>) {
return new init1<T,
detail::parameter_traits<A1>::const_reference>;
}
template <class A1, class A2>
static init* create(signature2<A1, A2>) {
return new init2<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference>;
}
template <class A1, class A2, class A3>
static init* create(signature3<A1, A2, A3>) {
return new init3<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference>;
}
template <class A1, class A2, class A3, class A4>
static init* create(signature4<A1, A2, A3, A4>) {
return new init4<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5>
static init* create(signature5<A1, A2, A3, A4, A5>) {
return new init5<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static init* create(signature6<A1, A2, A3, A4, A5, A6>) {
return new Init6<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static init* create(signature7<A1, A2, A3, A4, A5, A6, A7>) {
return new Init7<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static init* create(signature8<A1, A2, A3, A4, A5, A6, A7, A8>) {
return new Init8<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference,
detail::parameter_traits<A8>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static init* create(signature9<A1, A2, A3, A4, A5, A6, A7, A8, A9>) {
return new Init9<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference,
detail::parameter_traits<A8>::const_reference,
detail::parameter_traits<A9>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static init* create(signature10<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>) {
return new Init10<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference,
detail::parameter_traits<A8>::const_reference,
detail::parameter_traits<A9>::const_reference,
detail::parameter_traits<A10>::const_reference>;
}
};
class init : public function
{
private: // override function hook
PyObject* do_call(PyObject* args, PyObject* keywords) const;
private:
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* tail_args, PyObject* keywords) const = 0;
};
template <class T>
struct init0 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
if (!PyArg_ParseTuple(args, const_cast<char*>("")))
throw argument_error();
return new T(self
);
}
const char* description() const
{ return typeid(void (*)(T&)).name(); }
};
template <class T, class A1>
struct init1 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
if (!PyArg_ParseTuple(args, const_cast<char*>("O"), &a1))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1)).name(); }
};
template <class T, class A1, class A2>
struct init2 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
if (!PyArg_ParseTuple(args, const_cast<char*>("OO"), &a1, &a2))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2)).name(); }
};
template <class T, class A1, class A2, class A3>
struct init3 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOO"), &a1, &a2, &a3))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3)).name(); }
};
template <class T, class A1, class A2, class A3, class A4>
struct init4 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOO"), &a1, &a2, &a3, &a4))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5>
struct init5 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOO"), &a1, &a2, &a3, &a4, &a5))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6>
struct Init6 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
struct Init7 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
struct Init8 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
PyObject* a8;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>())),
boost::python::detail::reference_parameter<A8>(from_python(a8, type<A8>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7, A8)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
struct Init9 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
PyObject* a8;
PyObject* a9;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>())),
boost::python::detail::reference_parameter<A8>(from_python(a8, type<A8>())),
boost::python::detail::reference_parameter<A9>(from_python(a9, type<A9>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7, A8, A9)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
struct Init10 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
PyObject* a8;
PyObject* a9;
PyObject* a10;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9, &a10))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>())),
boost::python::detail::reference_parameter<A8>(from_python(a8, type<A8>())),
boost::python::detail::reference_parameter<A9>(from_python(a9, type<A9>())),
boost::python::detail::reference_parameter<A10>(from_python(a10, type<A10>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)).name(); }
};
}}} // namespace boost::python::detail
#endif // INIT_FUNCTION_DWA052000_H_

View File

@@ -1,21 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef NONE_DWA_052000_H_
# define NONE_DWA_052000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
namespace boost { namespace python { namespace detail {
inline PyObject* none() { Py_INCREF(Py_None); return Py_None; }
}}} // namespace boost::python::detail
#endif // NONE_DWA_052000_H_

View File

@@ -1,251 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file automatically generated by gen_signatures.python for 10 arguments.
#ifndef SIGNATURES_DWA050900_H_
# define SIGNATURES_DWA050900_H_
# include <boost/python/detail/config.hpp>
namespace boost { namespace python {
namespace detail {
// A stand-in for the built-in void. This one can be passed to functions and
// (under MSVC, which has a bug, be used as a default template type parameter).
struct void_t {};
}
// An envelope in which type information can be delivered for the purposes
// of selecting an overloaded from_python() function. This is needed to work
// around MSVC's lack of partial specialiation/ordering. Where normally we'd
// want to form a function call like void f<const T&>(), We instead pass
// type<const T&> as one of the function parameters to select a particular
// overload.
//
// The id typedef helps us deal with the lack of partial ordering by generating
// unique types for constructor signatures. In general, type<T>::id is type<T>,
// but type<void_t>::id is just void_t.
template <class T>
struct type
{
typedef type id;
};
template <>
struct type<boost::python::detail::void_t>
{
typedef boost::python::detail::void_t id;
};
namespace detail {
// These basically encapsulate a chain of types, , used to make the syntax of
// add(constructor<T1, ...>()) work. We need to produce a unique type for each number
// of non-default parameters to constructor<>. Q: why not use a recursive
// formulation for infinite extensibility? A: MSVC6 seems to choke on constructs
// that involve recursive template nesting.
//
// signature chaining
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10>
struct signature10 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9>
struct signature9 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class X>
inline signature10<X, T1, T2, T3, T4, T5, T6, T7, T8, T9> prepend(type<X>, signature9<T1, T2, T3, T4, T5, T6, T7, T8, T9>)
{ return signature10<X, T1, T2, T3, T4, T5, T6, T7, T8, T9>(); }
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
struct signature8 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class X>
inline signature9<X, T1, T2, T3, T4, T5, T6, T7, T8> prepend(type<X>, signature8<T1, T2, T3, T4, T5, T6, T7, T8>)
{ return signature9<X, T1, T2, T3, T4, T5, T6, T7, T8>(); }
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7>
struct signature7 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class X>
inline signature8<X, T1, T2, T3, T4, T5, T6, T7> prepend(type<X>, signature7<T1, T2, T3, T4, T5, T6, T7>)
{ return signature8<X, T1, T2, T3, T4, T5, T6, T7>(); }
template <class T1, class T2, class T3, class T4, class T5, class T6>
struct signature6 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class X>
inline signature7<X, T1, T2, T3, T4, T5, T6> prepend(type<X>, signature6<T1, T2, T3, T4, T5, T6>)
{ return signature7<X, T1, T2, T3, T4, T5, T6>(); }
template <class T1, class T2, class T3, class T4, class T5>
struct signature5 {};
template <class T1, class T2, class T3, class T4, class T5, class X>
inline signature6<X, T1, T2, T3, T4, T5> prepend(type<X>, signature5<T1, T2, T3, T4, T5>)
{ return signature6<X, T1, T2, T3, T4, T5>(); }
template <class T1, class T2, class T3, class T4>
struct signature4 {};
template <class T1, class T2, class T3, class T4, class X>
inline signature5<X, T1, T2, T3, T4> prepend(type<X>, signature4<T1, T2, T3, T4>)
{ return signature5<X, T1, T2, T3, T4>(); }
template <class T1, class T2, class T3>
struct signature3 {};
template <class T1, class T2, class T3, class X>
inline signature4<X, T1, T2, T3> prepend(type<X>, signature3<T1, T2, T3>)
{ return signature4<X, T1, T2, T3>(); }
template <class T1, class T2>
struct signature2 {};
template <class T1, class T2, class X>
inline signature3<X, T1, T2> prepend(type<X>, signature2<T1, T2>)
{ return signature3<X, T1, T2>(); }
template <class T1>
struct signature1 {};
template <class T1, class X>
inline signature2<X, T1> prepend(type<X>, signature1<T1>)
{ return signature2<X, T1>(); }
struct signature0 {};
template <class X>
inline signature1<X> prepend(type<X>, signature0)
{ return signature1<X>(); }
// This one terminates the chain. Prepending void_t to the head of a void_t
// signature results in a void_t signature again.
inline signature0 prepend(void_t, signature0) { return signature0(); }
} // namespace detail
template <class A1 = detail::void_t, class A2 = detail::void_t, class A3 = detail::void_t, class A4 = detail::void_t, class A5 = detail::void_t, class A6 = detail::void_t, class A7 = detail::void_t, class A8 = detail::void_t, class A9 = detail::void_t, class A10 = detail::void_t>
struct constructor
{
};
namespace detail {
// Return value extraction:
// This is just another little envelope for carrying a typedef (see type,
// above). I could have re-used type, but that has a very specific purpose. I
// thought this would be clearer.
template <class T>
struct return_value_select { typedef T type; };
// free functions
template <class R>
return_value_select<R> return_value(R (*)()) { return return_value_select<R>(); }
template <class R, class A1>
return_value_select<R> return_value(R (*)(A1)) { return return_value_select<R>(); }
template <class R, class A1, class A2>
return_value_select<R> return_value(R (*)(A1, A2)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3>
return_value_select<R> return_value(R (*)(A1, A2, A3)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7, A8)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)) { return return_value_select<R>(); }
// TODO(?): handle 'const void'
// member functions
template <class R, class T>
return_value_select<R> return_value(R (T::*)()) { return return_value_select<R>(); }
template <class R, class T, class A1>
return_value_select<R> return_value(R (T::*)(A1)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2>
return_value_select<R> return_value(R (T::*)(A1, A2)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3>
return_value_select<R> return_value(R (T::*)(A1, A2, A3)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)) { return return_value_select<R>(); }
template <class R, class T>
return_value_select<R> return_value(R (T::*)() const) { return return_value_select<R>(); }
template <class R, class T, class A1>
return_value_select<R> return_value(R (T::*)(A1) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2>
return_value_select<R> return_value(R (T::*)(A1, A2) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3>
return_value_select<R> return_value(R (T::*)(A1, A2, A3) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) const) { return return_value_select<R>(); }
}}} // namespace boost::python::detail
#endif

View File

@@ -1,68 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef SINGLETON_DWA051900_H_
# define SINGLETON_DWA051900_H_
# include <boost/python/detail/config.hpp>
namespace boost { namespace python { namespace detail {
struct empty {};
template <class Derived, class Base = empty>
struct singleton : Base
{
typedef singleton singleton_base; // Convenience type for derived class constructors
static Derived* instance();
// Pass-through constructors
singleton() : Base() {}
template <class A1>
singleton(const A1& a1) : Base(a1) {}
template <class A1, class A2>
singleton(const A1& a1, const A2& a2) : Base(a1, a2) {}
template <class A1, class A2, class A3>
singleton(const A1& a1, const A2& a2, const A3& a3) : Base(a1, a2, a3) {}
template <class A1, class A2, class A3, class A4>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4) : Base(a1, a2, a3, a4) {}
template <class A1, class A2, class A3, class A4, class A5>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) : Base(a1, a2, a3, a4, a5) {}
template <class A1, class A2, class A3, class A4, class A5, class A6>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) : Base(a1, a2, a3, a4, a5, a6) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7) : Base(a1, a2, a3, a4, a5, a6, a7) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8) : Base(a1, a2, a3, a4, a5, a6, a7, a8) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9) : Base(a1, a2, a3, a4, a5, a6, a7, a8, a9) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10) : Base(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) {}
};
template <class Derived, class Base>
Derived* singleton<Derived,Base>::instance()
{
static Derived x;
return &x;
}
}}} // namespace boost::python::detail
#endif

View File

@@ -1,389 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef TYPES_DWA051800_H_
# define TYPES_DWA051800_H_
// Usage:
// class X : public
// boost::python::callable<
// boost::python::getattrable <
// boost::python::setattrable<python_object, X> > >
// {
// public:
// ref call(args, kw);
// ref getattr(args, kw);
// ref setattr(args, kw);
// };
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/signatures.hpp> // really just for type<>
# include <boost/python/detail/cast.hpp>
# include <boost/python/detail/base_object.hpp>
# include <typeinfo>
# include <vector>
# include <cassert>
namespace boost { namespace python {
class string;
namespace detail {
class instance_holder_base;
class type_object_base : public python_type
{
public:
explicit type_object_base(PyTypeObject* type_type);
virtual ~type_object_base();
public:
enum capability {
hash, call, str, getattr, setattr, compare, repr,
mapping_length, mapping_subscript, mapping_ass_subscript,
sequence_length, sequence_item, sequence_ass_item,
sequence_concat, sequence_repeat, sequence_slice, sequence_ass_slice,
number_add, number_subtract, number_multiply, number_divide,
number_remainder, number_divmod, number_power, number_negative,
number_positive, number_absolute, number_nonzero, number_invert,
number_lshift, number_rshift, number_and, number_xor, number_or,
number_coerce, number_int, number_long, number_float, number_oct,
number_hex
};
void enable(capability);
//
// type behaviors
//
public: // Callbacks for basic type functionality.
virtual PyObject* instance_repr(PyObject*) const;
virtual int instance_compare(PyObject*, PyObject* other) const;
virtual PyObject* instance_str(PyObject*) const;
virtual long instance_hash(PyObject*) const;
virtual PyObject* instance_call(PyObject* obj, PyObject* args, PyObject* kw) const;
virtual PyObject* instance_getattr(PyObject* obj, const char* name) const;
virtual int instance_setattr(PyObject* obj, const char* name, PyObject* value) const;
// Dealloc is a special case, since every type needs a nonzero tp_dealloc slot.
virtual void instance_dealloc(PyObject*) const = 0;
public: // Callbacks for mapping methods
virtual int instance_mapping_length(PyObject*) const;
virtual PyObject* instance_mapping_subscript(PyObject*, PyObject*) const ;
virtual int instance_mapping_ass_subscript(PyObject*, PyObject*, PyObject*) const;
public: // Callbacks for sequence methods
virtual int instance_sequence_length(PyObject* obj) const;
virtual PyObject* instance_sequence_concat(PyObject* obj, PyObject* other) const;
virtual PyObject* instance_sequence_repeat(PyObject* obj, int n) const;
virtual PyObject* instance_sequence_item(PyObject* obj, int n) const;
virtual PyObject* instance_sequence_slice(PyObject* obj, int start, int finish) const;
virtual int instance_sequence_ass_item(PyObject* obj, int n, PyObject* value) const;
virtual int instance_sequence_ass_slice(PyObject* obj, int start, int finish, PyObject* value) const;
public: // Callbacks for number methods
virtual PyObject* instance_number_add(PyObject*, PyObject*) const;
virtual PyObject* instance_number_subtract(PyObject*, PyObject*) const;
virtual PyObject* instance_number_multiply(PyObject*, PyObject*) const;
virtual PyObject* instance_number_divide(PyObject*, PyObject*) const;
virtual PyObject* instance_number_remainder(PyObject*, PyObject*) const;
virtual PyObject* instance_number_divmod(PyObject*, PyObject*) const;
virtual PyObject* instance_number_power(PyObject*, PyObject*, PyObject*) const;
virtual PyObject* instance_number_negative(PyObject*) const;
virtual PyObject* instance_number_positive(PyObject*) const;
virtual PyObject* instance_number_absolute(PyObject*) const;
virtual int instance_number_nonzero(PyObject*) const;
virtual PyObject* instance_number_invert(PyObject*) const;
virtual PyObject* instance_number_lshift(PyObject*, PyObject*) const;
virtual PyObject* instance_number_rshift(PyObject*, PyObject*) const;
virtual PyObject* instance_number_and(PyObject*, PyObject*) const;
virtual PyObject* instance_number_xor(PyObject*, PyObject*) const;
virtual PyObject* instance_number_or(PyObject*, PyObject*) const;
virtual int instance_number_coerce(PyObject*, PyObject**, PyObject**) const;
virtual PyObject* instance_number_int(PyObject*) const;
virtual PyObject* instance_number_long(PyObject*) const;
virtual PyObject* instance_number_float(PyObject*) const;
virtual PyObject* instance_number_oct(PyObject*) const;
virtual PyObject* instance_number_hex(PyObject*) const;
};
template <class T>
class type_object : public type_object_base
{
public:
typedef T instance;
type_object(PyTypeObject* type_type, const char* name)
: type_object_base(type_type)
{
assert(name != 0);
this->tp_name = const_cast<char*>(name);
}
type_object(PyTypeObject* type_type)
: type_object_base(type_type)
{
this->tp_name = const_cast<char*>(typeid(instance).name());
}
private: // Overridable behaviors.
// Called when the reference count goes to zero. The default implementation
// is "delete p". If you have not allocated your object with operator new or
// you have other constraints, you'll need to override this
virtual void dealloc(T* p) const;
private: // Implementation of type_object_base hooks. Do not reimplement in derived classes.
void instance_dealloc(PyObject*) const;
};
//
// type objects
//
template <class Base>
class callable : public Base
{
public:
typedef callable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
callable(PyTypeObject* type_type, const char* name);
callable(PyTypeObject* type_type);
private:
PyObject* instance_call(PyObject* obj, PyObject* args, PyObject* kw) const;
};
template <class Base>
class getattrable : public Base
{
public:
typedef getattrable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
getattrable(PyTypeObject* type_type, const char* name);
getattrable(PyTypeObject* type_type);
private:
PyObject* instance_getattr(PyObject* obj, const char* name) const;
};
template <class Base>
class setattrable : public Base
{
public:
typedef setattrable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
setattrable(PyTypeObject* type_type, const char* name);
setattrable(PyTypeObject* type_type);
private:
int instance_setattr(PyObject* obj, const char* name, PyObject* value) const;
};
template <class Base>
class reprable : public Base
{
public:
typedef reprable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
reprable(PyTypeObject* type_type, const char* name);
reprable(PyTypeObject* type_type);
private:
PyObject* instance_repr(PyObject* obj) const;
};
//
// Member function definitions
//
// type_object<>
template <class T>
void type_object<T>::instance_dealloc(PyObject* obj) const
{
this->dealloc(downcast<instance>(obj).get());
}
template <class T>
void type_object<T>::dealloc(T* obj) const
{
delete obj;
}
// callable
template <class Base>
callable<Base>::callable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(call);
}
template <class Base>
callable<Base>::callable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(call);
}
template <class Base>
PyObject* callable<Base>::instance_call(PyObject* obj, PyObject* args, PyObject* kw) const
{
return downcast<instance>(obj)->call(args, kw);
}
// getattrable
template <class Base>
getattrable<Base>::getattrable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(getattr);
}
template <class Base>
getattrable<Base>::getattrable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(getattr);
}
template <class Base>
PyObject* getattrable<Base>::instance_getattr(PyObject* obj, const char* name) const
{
return downcast<instance>(obj)->getattr(name);
}
// setattrable
template <class Base>
setattrable<Base>::setattrable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(setattr);
}
template <class Base>
setattrable<Base>::setattrable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(setattr);
}
template <class Base>
int setattrable<Base>::instance_setattr(PyObject* obj, const char* name, PyObject* value) const
{
return downcast<instance>(obj)->setattr(name, value);
}
// reprable
template <class Base>
reprable<Base>::reprable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(repr);
}
template <class Base>
reprable<Base>::reprable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(repr);
}
template <class Base>
PyObject* reprable<Base>::instance_repr(PyObject* obj) const
{
return downcast<instance>(obj)->repr();
}
// Helper class for optimized allocation of PODs: If two PODs
// happen to contain identical byte patterns, they may share their
// memory. Reference counting is used to free unused memory.
// This is useful because method tables of related extension classes tend
// to be identical, so less memory is needed for them.
class shared_pod_manager
{
typedef std::pair<char*, std::size_t> holder;
typedef std::vector<holder> storage;
public:
static shared_pod_manager& obj();
~shared_pod_manager();
// Allocate memory for POD T and fill it with zeros.
// This memory is initially not shared.
template <class T>
static void create(T*& t)
{
t = reinterpret_cast<T*>(obj().create(sizeof(T)));
}
// Decrement the refcount for the memory t points to. If the count
// goes to zero, the memory is freed.
template <class T>
static void dispose(T* t)
{
obj().dec_ref(t, sizeof(T));
}
// Attempt to share the memory t points to. If memory with the same
// contents already exists, t is replaced by a pointer to this memory,
// and t's old memory is disposed. Otherwise, t will be registered for
// potential future sharing.
template <class T>
static void replace_if_equal(T*& t)
{
t = reinterpret_cast<T*>(obj().replace_if_equal(t, sizeof(T)));
}
// Create a copy of t's memory that is guaranteed to be private to t.
// Afterwards t points to the new memory, unless it was already private, in
// which case there is no change (except that t's memory will no longer
// be considered for future sharing - see raplade_if_equal())
// This function *must* be called before the contents of (*t) can
// be overwritten. Otherwise, inconsistencies and crashes may result.
template <class T>
static void make_unique_copy(T*& t)
{
t = reinterpret_cast<T*>(obj().make_unique_copy(t, sizeof(T)));
}
private:
void* replace_if_equal(void* pod, std::size_t size);
void* make_unique_copy(void* pod, std::size_t size);
void* create(std::size_t size);
void dec_ref(void* pod, std::size_t size);
void erase_from_list(void* pod);
struct compare;
struct identical;
private:
shared_pod_manager() {} // instance
#ifdef TYPE_OBJECT_BASE_STANDALONE_TEST
public:
#endif
storage m_storage;
};
void add_capability(type_object_base::capability capability,
PyTypeObject* dest);
// This macro gets the length of an array as a compile-time constant, and will
// fail to compile if the parameter is a pointer.
# define PY_ARRAY_LENGTH(a) \
(sizeof(::boost::python::detail::countof_validate(a, &(a))) ? sizeof(a) / sizeof((a)[0]) : 0)
template<typename T>
inline void countof_validate(T* const, T* const*);
template<typename T>
inline int countof_validate(const void*, T);
}}} // namespace boost::python::detail
#endif // TYPES_DWA051800_H_

View File

@@ -1,61 +0,0 @@
#ifdef _DEBUG
# ifndef DEBUG_PYTHON
# undef _DEBUG // Don't let Python force the debug library just because we're debugging.
# define DEBUG_UNDEFINED_FROM_WRAP_PYTHON_H
# endif
#endif
//
// Some things we need in order to get Python.h to work with compilers other
// than MSVC on Win32
//
#if defined(_WIN32)
# ifdef __GNUC__
typedef int pid_t;
# define WORD_BIT 32
# define hypot _hypot
# include <stdio.h>
# define HAVE_CLOCK
# define HAVE_STRFTIME
# define HAVE_STRERROR
# define NT_THREADS
# define WITH_THREAD
# ifndef NETSCAPE_PI
# define USE_SOCKET
# endif
# ifdef USE_DL_IMPORT
# define DL_IMPORT(RTYPE) __declspec(dllimport) RTYPE
# endif
# ifdef USE_DL_EXPORT
# define DL_IMPORT(RTYPE) __declspec(dllexport) RTYPE
# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
# endif
# define HAVE_LONG_LONG 1
# define LONG_LONG long long
# elif defined(__MWERKS__)
# ifndef _MSC_VER
# define PY_MSC_VER_DEFINED_FROM_WRAP_PYTHON_H 1
# define _MSC_VER 900
# endif
# endif
#endif // _WIN32
#include <Python.h>
#ifdef PY_MSC_VER_DEFINED_FROM_WRAP_PYTHON_H
# undef _MSC_VER
#endif
#ifdef DEBUG_UNDEFINED_FROM_WRAP_PYTHON_H
# undef DEBUG_UNDEFINED_FROM_WRAP_PYTHON_H
# define _DEBUG
#endif

View File

@@ -1,30 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef ERRORS_DWA052500_H_
# define ERRORS_DWA052500_H_
namespace boost { namespace python {
struct error_already_set {};
struct argument_error : error_already_set {};
// Handles exceptions caught just before returning to Python code.
void handle_exception();
template <class T>
T* expect_non_null(T* x)
{
if (x == 0)
throw error_already_set();
return x;
}
}} // namespace boost::python
#endif // ERRORS_DWA052500_H_

View File

@@ -1,53 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef MODULE_DWA051000_H_
# define MODULE_DWA051000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/reference.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/functions.hpp>
namespace boost { namespace python {
class module_builder
{
typedef PyObject * (*raw_function_ptr)(boost::python::tuple const &, boost::python::dictionary const &);
public:
// Create a module. REQUIRES: only one module_builder is created per module.
module_builder(const char* name);
// Add elements to the module
void add(detail::function* x, const char* name);
void add(PyTypeObject* x, const char* name = 0);
void add(ref x, const char*name);
template <class Fn>
void def_raw(Fn fn, const char* name)
{
add(detail::new_raw_arguments_function(fn), name);
}
template <class Fn>
void def(Fn fn, const char* name)
{
add(detail::new_wrapped_function(fn), name);
}
static string name();
private:
PyObject* m_module;
static PyMethodDef initial_methods[1];
};
}} // namespace boost::python
#endif

View File

@@ -1,334 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef OBJECTS_DWA051100_H_
# define OBJECTS_DWA051100_H_
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/detail/config.hpp>
# include <boost/python/reference.hpp>
# include "boost/operators.hpp"
# include <utility>
namespace boost { namespace python {
class object
{
public:
explicit object(ref p);
// Return a reference to the held object
ref reference() const;
// Return a raw pointer to the held object
PyObject* get() const;
private:
ref m_p;
};
class tuple : public object
{
public:
explicit tuple(std::size_t n = 0);
explicit tuple(ref p);
template <class First, class Second>
tuple(const std::pair<First,Second>& x)
: object(ref(PyTuple_New(2)))
{
set_item(0, x.first);
set_item(1, x.second);
}
template <class First, class Second>
tuple(const First& first, const Second& second)
: object(ref(PyTuple_New(2)))
{
set_item(0, first);
set_item(1, second);
}
template <class First, class Second, class Third>
tuple(const First& first, const Second& second, const Third& third)
: object(ref(PyTuple_New(3)))
{
set_item(0, first);
set_item(1, second);
set_item(2, third);
}
template <class First, class Second, class Third, class Fourth>
tuple(const First& first, const Second& second, const Third& third, const Fourth& fourth)
: object(ref(PyTuple_New(4)))
{
set_item(0, first);
set_item(1, second);
set_item(2, third);
set_item(3, fourth);
}
static PyTypeObject* type_obj();
static bool accepts(ref p);
std::size_t size() const;
ref operator[](std::size_t pos) const;
template <class T>
void set_item(std::size_t pos, const T& rhs)
{
this->set_item(pos, make_ref(rhs));
}
void set_item(std::size_t pos, const ref& rhs);
tuple slice(int low, int high) const;
friend tuple operator+(const tuple&, const tuple&);
tuple& operator+=(const tuple& rhs);
};
class list : public object
{
struct proxy;
struct slice_proxy;
public:
explicit list(ref p);
explicit list(std::size_t sz = 0);
static PyTypeObject* type_obj();
static bool accepts(ref p);
std::size_t size();
ref operator[](std::size_t pos) const;
proxy operator[](std::size_t pos);
ref get_item(std::size_t pos) const;
template <class T>
void set_item(std::size_t pos, const T& x)
{ this->set_item(pos, make_ref(x)); }
void set_item(std::size_t pos, const ref& );
// void set_item(std::size_t pos, const object& );
template <class T>
void insert(std::size_t index, const T& x)
{ this->insert(index, make_ref(x)); }
void insert(std::size_t index, const ref& item);
template <class T>
void push_back(const T& item)
{ this->push_back(make_ref(item)); }
void push_back(const ref& item);
template <class T>
void append(const T& item)
{ this->append(make_ref(item)); }
void append(const ref& item);
list slice(int low, int high) const;
slice_proxy slice(int low, int high);
void sort();
void reverse();
tuple as_tuple() const;
};
class string
: public object, public boost::multipliable2<string, unsigned int>
{
public:
// Construct from an owned PyObject*.
// Precondition: p must point to a python string.
explicit string(ref p);
explicit string(const char* s);
string(const char* s, std::size_t length);
string(const string& rhs);
enum interned_t { interned };
string(const char* s, interned_t);
// Get the type object for Strings
static PyTypeObject* type_obj();
// Return true if the given object is a python string
static bool accepts(ref o);
// Return the length of the string.
std::size_t size() const;
// Returns a null-terminated representation of the contents of string.
// The pointer refers to the internal buffer of string, not a copy.
// The data must not be modified in any way. It must not be de-allocated.
const char* c_str() const;
string& operator*=(unsigned int repeat_count);
string& operator+=(const string& rhs);
friend string operator+(string x, string y);
string& operator+=(const char* rhs);
friend string operator+(string x, const char* y);
friend string operator+(const char* x, string y);
void intern();
friend string operator%(const string& format, const tuple& args);
};
class dictionary : public object
{
private:
struct proxy;
public:
explicit dictionary(ref p);
dictionary();
void clear();
static PyTypeObject* type_obj();
static bool accepts(ref p);
public:
template <class Key>
proxy operator[](const Key& key)
{ return this->operator[](make_ref(key)); }
proxy operator[](ref key);
template <class Key>
ref operator[](const Key& key) const
{ return this->operator[](make_ref(key)); }
ref operator[](ref key) const;
template <class Key>
ref get_item(const Key& key) const
{ return this->get_item(make_ref(key)); }
ref get_item(const ref& key) const;
template <class Key, class Default>
ref get_item(const Key& key, const Default& default_) const
{ return this->get_item(make_ref(key), make_ref(default_)); }
ref get_item(const ref& key, const ref& default_) const;
template <class Key, class Value>
void set_item(const Key& key, const Value& value)
{ this->set_item(make_ref(key), make_ref(value)); }
void set_item(const ref& key, const ref& value);
template <class Key>
void erase(const Key& key)
{ this->erase(make_ref(key)); }
void erase(ref key);
// proxy operator[](const object& key);
// ref operator[](const object& key) const;
// ref get_item(const object& key, ref default_ = ref()) const;
// void set_item(const object& key, const ref& value);
// void erase(const object& key);
list items() const;
list keys() const;
list values() const;
std::size_t size() const;
// TODO: iterator support
};
struct dictionary::proxy
{
template <class T>
const ref& operator=(const T& rhs)
{ return (*this) = make_ref(rhs); }
const ref& operator=(const ref& rhs);
operator ref() const;
private:
friend class dictionary;
proxy(const ref& dict, const ref& key);
// This is needed to work around the very strange MSVC error report that the
// return type of the built-in operator= differs from that of the ones
// defined above. Couldn't hurt to make these un-assignable anyway, though.
const ref& operator=(const proxy&); // Not actually implemented
private:
ref m_dict;
ref m_key;
};
struct list::proxy
{
template <class T>
const ref& operator=(const T& rhs)
{ return (*this) = make_ref(rhs); }
const ref& operator=(const ref& rhs);
operator ref() const;
private:
friend class list;
proxy(const ref& list, std::size_t index);
// This is needed to work around the very strange MSVC error report that the
// return type of the built-in operator= differs from that of the ones
// defined above. Couldn't hurt to make these un-assignable anyway, though.
const ref& operator=(const proxy&); // Not actually implemented
private:
list m_list;
std::size_t m_index;
};
struct list::slice_proxy
{
const list& operator=(const list& rhs);
operator ref() const;
operator list() const;
std::size_t size();
ref operator[](std::size_t pos) const;
private:
friend class list;
slice_proxy(const ref& list, int low, int high);
private:
ref m_list;
int m_low, m_high;
};
}} // namespace boost::python
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
PyObject* to_python(const boost::python::tuple&);
boost::python::tuple from_python(PyObject* p, boost::python::type<boost::python::tuple>);
inline boost::python::tuple from_python(PyObject* p, boost::python::type<const boost::python::tuple&>)
{
return from_python(p, boost::python::type<boost::python::tuple>());
}
PyObject* to_python(const boost::python::list&);
boost::python::list from_python(PyObject* p, boost::python::type<boost::python::list>);
inline boost::python::list from_python(PyObject* p, boost::python::type<const boost::python::list&>)
{
return from_python(p, boost::python::type<boost::python::list>());
}
PyObject* to_python(const boost::python::string&);
boost::python::string from_python(PyObject* p, boost::python::type<boost::python::string>);
inline boost::python::string from_python(PyObject* p, boost::python::type<const boost::python::string&>)
{
return from_python(p, boost::python::type<boost::python::string>());
}
PyObject* to_python(const boost::python::dictionary&);
boost::python::dictionary from_python(PyObject* p, boost::python::type<boost::python::dictionary>);
inline boost::python::dictionary from_python(PyObject* p, boost::python::type<const boost::python::dictionary&>)
{
return from_python(p, boost::python::type<boost::python::dictionary>());
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
#endif // OBJECTS_DWA051100_H_

View File

@@ -1,504 +0,0 @@
#ifndef OPERATORS_UK112000_H_
#define OPERATORS_UK112000_H_
#include <boost/python/detail/functions.hpp>
#if !defined(__GNUC__) || defined(__SGI_STL_PORT)
# include <sstream>
#else
# include <strstream>
#endif
namespace boost { namespace python {
namespace detail {
// helper class for automatic operand type detection
// during operator wrapping.
struct auto_operand {};
}
// Define operator ids that can be or'ed together
// (boost::python::op_add | boost::python::op_sub | boost::python::op_mul).
// This allows to wrap several operators in one line.
enum operator_id
{
op_add = 0x1,
op_sub = 0x2,
op_mul = 0x4,
op_div = 0x8,
op_mod = 0x10,
op_divmod =0x20,
op_pow = 0x40,
op_lshift = 0x80,
op_rshift = 0x100,
op_and = 0x200,
op_xor = 0x400,
op_or = 0x800,
op_neg = 0x1000,
op_pos = 0x2000,
op_abs = 0x4000,
op_invert = 0x8000,
op_int = 0x10000,
op_long = 0x20000,
op_float = 0x40000,
op_str = 0x80000,
op_cmp = 0x100000
};
// Wrap the operators given by "which". Usage:
// foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>());
template <long which, class operand = boost::python::detail::auto_operand>
struct operators {};
// Wrap heterogeneous operators with given left operand type. Usage:
// foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>(),
// boost::python::left_operand<int>());
template <class T>
struct left_operand {};
// Wrap heterogeneous operators with given right operand type. Usage:
// foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>(),
// boost::python::right_operand<int>());
template <class T>
struct right_operand {};
namespace detail
{
template <class Specified>
struct operand_select
{
template <class wrapped_type>
struct wrapped
{
typedef Specified type;
};
};
template <>
struct operand_select<auto_operand>
{
template <class wrapped_type>
struct wrapped
{
typedef const wrapped_type& type;
};
};
template <long> struct define_operator;
// Base class which grants access to extension_class_base::add_method() to its derived classes
struct add_operator_base
{
protected:
static inline void add_method(extension_class_base* target, function* method, const char* name)
{ target->add_method(method, name); }
};
//
// choose_op, choose_unary_op, and choose_rop
//
// These templates use "poor man's partial specialization" to generate the
// appropriate add_method() call (if any) for a given operator and argument set.
//
// Usage:
// choose_op<(which & op_add)>::template args<left_t,right_t>::add(ext_class);
//
// (see extension_class<>::def_operators() for more examples).
//
template <long op_selector>
struct choose_op
{
template <class Left, class Right = Left>
struct args : add_operator_base
{
static inline void add(extension_class_base* target)
{
typedef define_operator<op_selector> def_op;
add_method(target,
new typename def_op::template operator_function<Left, Right>(),
def_op::name());
}
};
};
// specialization for 0 has no effect
template <>
struct choose_op<0>
{
template <class Left, class Right = Left>
struct args
{
static inline void add(extension_class_base*)
{
}
};
};
template <long op_selector>
struct choose_unary_op
{
template <class Operand>
struct args : add_operator_base
{
static inline void add(extension_class_base* target)
{
typedef define_operator<op_selector> def_op;
add_method(target,
new typename def_op::template operator_function<Operand>(),
def_op::name());
}
};
};
// specialization for 0 has no effect
template <>
struct choose_unary_op<0>
{
template <class Operand>
struct args
{
static inline void add(extension_class_base*)
{
}
};
};
template <long op_selector>
struct choose_rop
{
template <class Left, class Right = Left>
struct args : add_operator_base
{
static inline void add(extension_class_base* target)
{
typedef define_operator<op_selector> def_op;
add_method(target,
new typename def_op::template roperator_function<Right, Left>(),
def_op::rname());
}
};
};
// specialization for 0 has no effect
template <>
struct choose_rop<0>
{
template <class Left, class Right = Left>
struct args
{
static inline void add(extension_class_base*)
{
}
};
};
// Fully specialize define_operator for all operators defined in operator_id above.
// Every specialization defines one function object for normal operator calls and one
// for operator calls with operands reversed ("__r*__" function variants).
// Specializations for most operators follow a standard pattern: execute the expression
// that uses the operator in question. This standard pattern is realized by the following
// macros so that the actual specialization can be done by just calling a macro.
#define PY_DEFINE_BINARY_OPERATORS(id, oper) \
template <> \
struct define_operator<op_##id> \
{ \
template <class Left, class Right = Left> \
struct operator_function : function \
{ \
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const \
{ \
tuple args(ref(arguments, ref::increment_count)); \
\
return BOOST_PYTHON_CONVERSION::to_python( \
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) oper \
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())); \
} \
\
const char* description() const \
{ return "__" #id "__"; } \
}; \
\
template <class Right, class Left> \
struct roperator_function : function \
{ \
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const \
{ \
tuple args(ref(arguments, ref::increment_count)); \
\
return BOOST_PYTHON_CONVERSION::to_python( \
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) oper \
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())); \
} \
\
const char* description() const \
{ return "__r" #id "__"; } \
\
}; \
\
static const char * name() { return "__" #id "__"; } \
static const char * rname() { return "__r" #id "__"; } \
}
#define PY_DEFINE_UNARY_OPERATORS(id, oper) \
template <> \
struct define_operator<op_##id> \
{ \
template <class operand> \
struct operator_function : function \
{ \
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const \
{ \
tuple args(ref(arguments, ref::increment_count)); \
\
return BOOST_PYTHON_CONVERSION::to_python( \
oper(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<operand>()))); \
} \
\
const char* description() const \
{ return "__" #id "__"; } \
}; \
\
static const char * name() { return "__" #id "__"; } \
}
PY_DEFINE_BINARY_OPERATORS(add, +);
PY_DEFINE_BINARY_OPERATORS(sub, -);
PY_DEFINE_BINARY_OPERATORS(mul, *);
PY_DEFINE_BINARY_OPERATORS(div, /);
PY_DEFINE_BINARY_OPERATORS(mod, %);
PY_DEFINE_BINARY_OPERATORS(lshift, <<);
PY_DEFINE_BINARY_OPERATORS(rshift, >>);
PY_DEFINE_BINARY_OPERATORS(and, &);
PY_DEFINE_BINARY_OPERATORS(xor, ^);
PY_DEFINE_BINARY_OPERATORS(or, |);
PY_DEFINE_UNARY_OPERATORS(neg, -);
PY_DEFINE_UNARY_OPERATORS(pos, +);
PY_DEFINE_UNARY_OPERATORS(abs, abs);
PY_DEFINE_UNARY_OPERATORS(invert, ~);
PY_DEFINE_UNARY_OPERATORS(int, long);
PY_DEFINE_UNARY_OPERATORS(long, PyLong_FromLong);
PY_DEFINE_UNARY_OPERATORS(float, double);
#undef PY_DEFINE_BINARY_OPERATORS
#undef PY_DEFINE_UNARY_OPERATORS
// Some operators need special treatment, e.g. because there is no corresponding
// expression in C++. These are specialized manually.
// pow(): Manual specialization needed because an error message is required if this
// function is called with three arguments. The "power modulo" operator is not
// supported by define_operator, but can be wrapped manually (see special.html).
template <>
struct define_operator<op_pow>
{
template <class Left, class Right = Left>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
if (args.size() == 3 && args[2]->ob_type != Py_None->ob_type)
{
PyErr_SetString(PyExc_TypeError, "expected 2 arguments, got 3");
throw argument_error();
}
return BOOST_PYTHON_CONVERSION::to_python(
pow(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()),
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())));
}
const char* description() const
{ return "__pow__"; }
};
template <class Right, class Left>
struct roperator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
if (args.size() == 3 && args[2]->ob_type != Py_None->ob_type)
{
PyErr_SetString(PyExc_TypeError, "bad operand type(s) for pow()");
throw argument_error();
}
return BOOST_PYTHON_CONVERSION::to_python(
pow(BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()),
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())));
}
const char* description() const
{ return "__rpow__"; }
};
static const char * name() { return "__pow__"; }
static const char * rname() { return "__rpow__"; }
};
// divmod(): Manual specialization needed because we must actually call two operators and
// return a tuple containing both results
template <>
struct define_operator<op_divmod>
{
template <class Left, class Right = Left>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
PyObject * res = PyTuple_New(2);
PyTuple_SET_ITEM(res, 0,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) /
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())));
PyTuple_SET_ITEM(res, 1,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) %
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())));
return res;
}
const char* description() const
{ return "__divmod__"; }
};
template <class Right, class Left>
struct roperator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
PyObject * res = PyTuple_New(2);
PyTuple_SET_ITEM(res, 0,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) /
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())));
PyTuple_SET_ITEM(res, 1,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) %
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())));
return res;
}
const char* description() const
{ return "__rdivmod__"; }
};
static const char * name() { return "__divmod__"; }
static const char * rname() { return "__rdivmod__"; }
};
// cmp(): Manual specialization needed because there is no three-way compare in C++.
// It is implemented by two one-way comparisons with operators reversed in the second.
template <>
struct define_operator<op_cmp>
{
template <class Left, class Right = Left>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
return BOOST_PYTHON_CONVERSION::to_python(
(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) <
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())) ?
- 1 :
(BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>()) <
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>())) ?
1 :
0) ;
}
const char* description() const
{ return "__cmp__"; }
};
template <class Right, class Left>
struct roperator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
return BOOST_PYTHON_CONVERSION::to_python(
(BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) <
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())) ?
- 1 :
(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>()) <
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>())) ?
1 :
0) ;
}
const char* description() const
{ return "__rcmp__"; }
};
static const char * name() { return "__cmp__"; }
static const char * rname() { return "__rcmp__"; }
};
// str(): Manual specialization needed because the string conversion does not follow
// the standard pattern relized by the macros.
template <>
struct define_operator<op_str>
{
template <class operand>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject*) const
{
tuple args(ref(arguments, ref::increment_count));
#if !defined(__GNUC__) || defined(__SGI_STL_PORT)
std::ostringstream s;
s << BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<operand>());
#else
std::ostrstream s;
s << BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<operand>()) << char();
#endif
#if !defined(__GNUC__) || defined(__SGI_STL_PORT)
return BOOST_PYTHON_CONVERSION::to_python(s.str());
#else
return BOOST_PYTHON_CONVERSION::to_python(const_cast<char const *>(s.str()));
#endif
}
const char* description() const
{ return "__str__"; }
};
static const char * name() { return "__str__"; }
};
} // namespace detail
}} // namespace boost::python
#endif /* OPERATORS_UK112000_H_ */

View File

@@ -1,173 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef PYPTR_DWA050400_H_
# define PYPTR_DWA050400_H_
# include <boost/python/detail/config.hpp>
# include <boost/operators.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/detail/cast.hpp>
# include <cassert>
# include <boost/python/detail/signatures.hpp>
# include <boost/python/errors.hpp>
# include <boost/python/conversions.hpp>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
template <class T, class Value, class Base>
struct py_ptr_conversions : Base
{
inline friend T from_python(PyObject* x, boost::python::type<const T&>)
{ return T(boost::python::downcast<Value>(x).get(), T::increment_count); }
inline friend T from_python(PyObject* x, boost::python::type<T>)
{ return T(boost::python::downcast<Value>(x).get(), T::increment_count); }
inline friend PyObject* to_python(T x)
{ return boost::python::as_object(x.release()); }
};
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
BOOST_PYTHON_IMPORT_CONVERSION(py_ptr_conversions);
template <class T>
class reference
: public py_ptr_conversions<reference<T>, T,
boost::dereferenceable<reference<T>, T*> > // supplies op->
{
public:
typedef T value_type;
reference(const reference& rhs)
: m_p(rhs.m_p)
{
Py_XINCREF(object());
}
#if !defined(BOOST_MSVC6_OR_EARLIER)
template <class T2>
reference(const reference<T2>& rhs)
: m_p(rhs.object())
{
Py_XINCREF(object());
}
#endif
reference() : m_p(0) {}
// These are two ways of spelling the same thing, that we need to increment
// the reference count on the pointer when we're initialized.
enum increment_count_t { increment_count };
enum allow_null { null_ok };
template <class T2>
explicit reference(T2* x)
: m_p(expect_non_null(x)) {}
template <class T2>
reference(T2* x, increment_count_t)
: m_p(expect_non_null(x)) { Py_INCREF(object()); }
template <class T2>
reference(T2* x, allow_null)
: m_p(x) {}
template <class T2>
reference(T2* x, allow_null, increment_count_t)
: m_p(x) { Py_XINCREF(object()); }
template <class T2>
reference(T2* x, increment_count_t, allow_null)
: m_p(x) { Py_XINCREF(object()); }
#if !defined(BOOST_MSVC6_OR_EARLIER)
template <class T2>
reference& operator=(const reference<T2>& rhs)
{
Py_XDECREF(object());
m_p = rhs.m_p;
Py_XINCREF(object());
return *this;
}
#endif
reference& operator=(const reference& rhs)
{
Py_XINCREF(static_cast<PyObject*>(rhs.m_p));
Py_XDECREF(object());
m_p = rhs.m_p;
return *this;
}
~reference()
{
Py_XDECREF(m_p);
}
T& operator*() const { return *m_p; }
T* get() const { return m_p; }
T* release()
{
T* p = m_p;
m_p = 0;
return p;
}
void reset()
{ Py_XDECREF(m_p); m_p = 0; }
template <class T2>
void reset(T2* x)
{ Py_XDECREF(m_p); m_p = expect_non_null(x);}
template <class T2>
void reset(T2* x, increment_count_t)
{ Py_XDECREF(m_p); m_p = expect_non_null(x); Py_INCREF(object()); }
template <class T2>
void reset(T2* x, allow_null)
{ Py_XDECREF(m_p); m_p = x;}
template <class T2>
void reset(T2* x, allow_null, increment_count_t)
{ Py_XDECREF(m_p); m_p = x; Py_XINCREF(object()); }
template <class T2>
void reset(T2* x, increment_count_t, allow_null)
{ Py_XDECREF(m_p); m_p = x; Py_XINCREF(object()); }
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
private:
template<typename Y> friend class shared_ptr;
#endif
inline PyObject* object() const
{ return as_object(m_p); }
T* m_p;
};
typedef reference<PyObject> ref;
template <class T>
ref make_ref(const T& x)
{
return ref(to_python(x));
}
}} // namespace boost::python
#endif // PYPTR_DWA050400_H_

15
libs/python/Makefile Normal file
View File

@@ -0,0 +1,15 @@
all: lib test
lib::
@cd src ; $(MAKE) lib ; cd ..
test::
@cd test ; $(MAKE) test ; cd ..
install: all
@cd src ; $(MAKE) install ; cd ..
clean:
@cd src ; $(MAKE) clean ; cd ..
@cd test ; $(MAKE) clean ; cd ..

53
libs/python/README Normal file
View File

@@ -0,0 +1,53 @@
To build using g++:
===================
> setenv CXX g++
>
> ./configure \
--with-pythoninc=/usr/local/include/python1.5 \
--with-extra-includes=/usr/local/STLport
>
> make install
where
--with-pythoninc: the directory where 'Python.h' lives
--with-extra-includes: the directory where STLport includes
or the 'limits' header are
To build using another compiler:
================================
> setenv CXX CC # your compiler
>
> ./configure \
--with-pythoninc=/usr/local/include/python1.5 \
--with-shared-cxx-linker="$CXX -G" \
--with-position-independent-code-flag=-pic
>
> make install
where
--with-pythoninc: as above
--with-shared-cxx-linker: command to build a shared library from C++
object files (needed for Python modules)
--with-position-independent-code-flag: flag that tells the compiler
to create position independent code (needed for shared linking)
more options:
=============
> ./configure --help
of particular interest are:
--libdir: the install directory for 'libboostpython.a'
--with-shared-library-extension: the file extension for shared libraries
--with-extra-libs: link modules against these extra libs
(on CYGWIN, you need to link against python15.lib)
For most options, configure provides reasonable defaults, given in brackets.
In particular, it is able to guess the right settings for shared library
creation and linking on some common systems. Likewise, it tries to find Python
in some standard directories if you don't specify a path explicitly.

View File

@@ -0,0 +1,22 @@
CXXINCLUDES = @CXXINCLUDES@
SCXXFLAGS = @SCXXFLAGS@
CXX = @CXX@
CXX_SHARED_LINKER = @CXX_SHARED_LINKER@
prefix = @prefix@
exec_prefix = @exec_prefix@
TARGET_LIBDIR = @libdir@
TARGET_LIBNAME = boostpython
TARGET_LIBFILENAME = lib$(TARGET_LIBNAME).a
MODULE_EXTENSION = @shared_library_extension@
LIBS = @LIBS@
%.o: %.cpp
$(CXX) $(SCXXFLAGS) $(CXXINCLUDES) -c $*.cpp
%.d: %.cpp
@echo creating $@
@set -e; $(CXX) -M $(SCXXFLAGS) $(CXXINCLUDES) -c $*.cpp \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@

View File

@@ -0,0 +1,216 @@
# Microsoft Developer Studio Project File - Name="bpl_static" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Static Library" 0x0104
CFG=bpl_static - Win32 Debug
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "bpl_static.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "bpl_static.mak" CFG="bpl_static - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "bpl_static - Win32 Release" (based on "Win32 (x86) Static Library")
!MESSAGE "bpl_static - Win32 Debug" (based on "Win32 (x86) Static Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
RSC=rc.exe
!IF "$(CFG)" == "bpl_static - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c
# ADD CPP /nologo /MD /W4 /WX /GR /GX /O2 /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /c
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ELSEIF "$(CFG)" == "bpl_static - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W4 /WX /Gm /GR /GX /ZI /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /GZ /c
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ENDIF
# Begin Target
# Name "bpl_static - Win32 Release"
# Name "bpl_static - Win32 Debug"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\src\classes.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\conversions.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\extension_class.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\functions.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\init_function.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\module_builder.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\objects.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\types.cpp
# ADD CPP /W3
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File
SOURCE=..\..\..\boost\python\detail\base_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\callback.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\caller.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\cast.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\class_builder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\classes.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\config.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\conversions.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\errors.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\extension_class.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\functions.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\init_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\module_builder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\none.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\objects.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\operators.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\signatures.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\singleton.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\types.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\wrap_python.hpp
# End Source File
# End Group
# End Target
# End Project

View File

@@ -0,0 +1,74 @@
Microsoft Developer Studio Workspace File, Format Version 6.00
# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!
###############################################################################
Project: "bpl_static"=.\bpl_static.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
}}}
###############################################################################
Project: "example1"=.\example1\example1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "rwgk1"=.\rwgk1\rwgk1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "test"=.\test\test.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Global:
Package=<5>
{{{
}}}
Package=<3>
{{{
}}}
###############################################################################

BIN
libs/python/build/build.opt Normal file

Binary file not shown.

View File

@@ -0,0 +1,51 @@
LIBSRC = \
classes.cpp \
conversions.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
OBJ = $(LIBOBJ)
ifeq "$(OS)" "Windows_NT"
PYTHON_LIB=c:/tools/python/libs/python15.lib
INC = -Ic:/cygnus/usr/include/g++-3 -Ic:/cygnus/usr/include -Ic:/boost -Ic:/tools/python/include
MODULE_EXTENSION=dll
else
INC = -I/usr/local/include/python1.5
MODULE_EXTENSION=so
endif
%.o: ../src/%.cpp
como --pic $(INC) -o $*.o -c $<
%.d: ../src/%.cpp
@echo creating $@
@set -e; como -M $(INC) -c $< \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@
example1: example1.o libpycpp.a
como-dyn-link -o ../example/hellomodule.$(MODULE_EXTENSION) $(PYHTON_LIB) example1.o -L. -lpycpp
python ../example/test_example1.py
example1.o: ../example/example1.cpp
como --pic $(INC) -o $*.o -c $<
clean:
rm -rf *.o *.$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out
libpycpp.a: $(LIBOBJ)
rm -f libpycpp.a
ar cq libpycpp.a $(LIBOBJ)
DEP = $(OBJ:.o=.d)
ifneq "$(MAKECMDGOALS)" "clean"
include $(DEP)
endif

1012
libs/python/build/config.guess vendored Executable file

File diff suppressed because it is too large Load Diff

1238
libs/python/build/config.sub vendored Executable file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,107 @@
# Microsoft Developer Studio Project File - Name="example1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=example1 - Win32 Debug
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "example1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "example1.mak" CFG="example1 - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "example1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "example1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "example1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"Release/hello.dll" /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "example1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm /GR /GX /ZI /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /out:"Debug/hello.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
!ENDIF
# Begin Target
# Name "example1 - Win32 Release"
# Name "example1 - Win32 Debug"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\example1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

47
libs/python/build/gcc.mak Normal file
View File

@@ -0,0 +1,47 @@
BOOST_INLUDES = /local/boost/boost
PYTHON_INCLUDES = /local/python/include/python1.5
USER_INCLUDES = /local/include
LIBDIR = ../../../lib
LIBSRC = \
classes.cpp \
conversions.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
OBJ = $(LIBOBJ)
ifeq "$(OS)" "Windows_NT"
PYTHON_LIB=c:/tools/python/libs/python15.lib
INC = -Ic:/cygnus/usr/include/g++-3 -Ic:/cygnus/usr/include -Ic:/boost -Ic:/tools/python/include
MODULE_EXTENSION=dll
else
INC = -I$(USER_INCLUDES) -I$(BOOST_INLUDES) -I$(PYTHON_INCLUDES)
MODULE_EXTENSION=so
endif
%.o: ../src/%.cpp
g++ -fPIC -Wall -W $(INC) -o $*.o -c $<
%.d: ../src/%.cpp
@echo creating $@
@set -e; g++ -M $(INC) -c $< \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@
example1: example1.o libpycpp.a
g++ -shared -o ../example/hellomodule.$(MODULE_EXTENSION) $(PYHTON_LIB) example1.o -L. -lpycpp
python ../example/test_example1.py
example1.o: ../example/example1.cpp
g++ -fPIC -Wall -W $(INC) -o $*.o -c $<
clean:
rm -rf *.o *.$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out

251
libs/python/build/install-sh Executable file
View File

@@ -0,0 +1,251 @@
#!/bin/sh
#
# install - install a program, script, or datafile
# This comes from X11R5 (mit/util/scripts/install.sh).
#
# Copyright 1991 by the Massachusetts Institute of Technology
#
# Permission to use, copy, modify, distribute, and sell this software and its
# documentation for any purpose is hereby granted without fee, provided that
# the above copyright notice appear in all copies and that both that
# copyright notice and this permission notice appear in supporting
# documentation, and that the name of M.I.T. not be used in advertising or
# publicity pertaining to distribution of the software without specific,
# written prior permission. M.I.T. makes no representations about the
# suitability of this software for any purpose. It is provided "as is"
# without express or implied warranty.
#
# Calling this script install-sh is preferred over install.sh, to prevent
# `make' implicit rules from creating a file called install from it
# when there is no Makefile.
#
# This script is compatible with the BSD install script, but was written
# from scratch. It can only install one file at a time, a restriction
# shared with many OS's install programs.
# set DOITPROG to echo to test this script
# Don't use :- since 4.3BSD and earlier shells don't like it.
doit="${DOITPROG-}"
# put in absolute paths if you don't have them in your path; or use env. vars.
mvprog="${MVPROG-mv}"
cpprog="${CPPROG-cp}"
chmodprog="${CHMODPROG-chmod}"
chownprog="${CHOWNPROG-chown}"
chgrpprog="${CHGRPPROG-chgrp}"
stripprog="${STRIPPROG-strip}"
rmprog="${RMPROG-rm}"
mkdirprog="${MKDIRPROG-mkdir}"
transformbasename=""
transform_arg=""
instcmd="$mvprog"
chmodcmd="$chmodprog 0755"
chowncmd=""
chgrpcmd=""
stripcmd=""
rmcmd="$rmprog -f"
mvcmd="$mvprog"
src=""
dst=""
dir_arg=""
while [ x"$1" != x ]; do
case $1 in
-c) instcmd="$cpprog"
shift
continue;;
-d) dir_arg=true
shift
continue;;
-m) chmodcmd="$chmodprog $2"
shift
shift
continue;;
-o) chowncmd="$chownprog $2"
shift
shift
continue;;
-g) chgrpcmd="$chgrpprog $2"
shift
shift
continue;;
-s) stripcmd="$stripprog"
shift
continue;;
-t=*) transformarg=`echo $1 | sed 's/-t=//'`
shift
continue;;
-b=*) transformbasename=`echo $1 | sed 's/-b=//'`
shift
continue;;
*) if [ x"$src" = x ]
then
src=$1
else
# this colon is to work around a 386BSD /bin/sh bug
:
dst=$1
fi
shift
continue;;
esac
done
if [ x"$src" = x ]
then
echo "install: no input file specified"
exit 1
else
true
fi
if [ x"$dir_arg" != x ]; then
dst=$src
src=""
if [ -d $dst ]; then
instcmd=:
chmodcmd=""
else
instcmd=mkdir
fi
else
# Waiting for this to be detected by the "$instcmd $src $dsttmp" command
# might cause directories to be created, which would be especially bad
# if $src (and thus $dsttmp) contains '*'.
if [ -f $src -o -d $src ]
then
true
else
echo "install: $src does not exist"
exit 1
fi
if [ x"$dst" = x ]
then
echo "install: no destination specified"
exit 1
else
true
fi
# If destination is a directory, append the input filename; if your system
# does not like double slashes in filenames, you may need to add some logic
if [ -d $dst ]
then
dst="$dst"/`basename $src`
else
true
fi
fi
## this sed command emulates the dirname command
dstdir=`echo $dst | sed -e 's,[^/]*$,,;s,/$,,;s,^$,.,'`
# Make sure that the destination directory exists.
# this part is taken from Noah Friedman's mkinstalldirs script
# Skip lots of stat calls in the usual case.
if [ ! -d "$dstdir" ]; then
defaultIFS='
'
IFS="${IFS-${defaultIFS}}"
oIFS="${IFS}"
# Some sh's can't handle IFS=/ for some reason.
IFS='%'
set - `echo ${dstdir} | sed -e 's@/@%@g' -e 's@^%@/@'`
IFS="${oIFS}"
pathcomp=''
while [ $# -ne 0 ] ; do
pathcomp="${pathcomp}${1}"
shift
if [ ! -d "${pathcomp}" ] ;
then
$mkdirprog "${pathcomp}"
else
true
fi
pathcomp="${pathcomp}/"
done
fi
if [ x"$dir_arg" != x ]
then
$doit $instcmd $dst &&
if [ x"$chowncmd" != x ]; then $doit $chowncmd $dst; else true ; fi &&
if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd $dst; else true ; fi &&
if [ x"$stripcmd" != x ]; then $doit $stripcmd $dst; else true ; fi &&
if [ x"$chmodcmd" != x ]; then $doit $chmodcmd $dst; else true ; fi
else
# If we're going to rename the final executable, determine the name now.
if [ x"$transformarg" = x ]
then
dstfile=`basename $dst`
else
dstfile=`basename $dst $transformbasename |
sed $transformarg`$transformbasename
fi
# don't allow the sed command to completely eliminate the filename
if [ x"$dstfile" = x ]
then
dstfile=`basename $dst`
else
true
fi
# Make a temp file name in the proper directory.
dsttmp=$dstdir/#inst.$$#
# Move or copy the file name to the temp name
$doit $instcmd $src $dsttmp &&
trap "rm -f ${dsttmp}" 0 &&
# and set any options; do chmod last to preserve setuid bits
# If any of these fail, we abort the whole thing. If we want to
# ignore errors from any of these, just make sure not to ignore
# errors from the above "$doit $instcmd $src $dsttmp" command.
if [ x"$chowncmd" != x ]; then $doit $chowncmd $dsttmp; else true;fi &&
if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd $dsttmp; else true;fi &&
if [ x"$stripcmd" != x ]; then $doit $stripcmd $dsttmp; else true;fi &&
if [ x"$chmodcmd" != x ]; then $doit $chmodcmd $dsttmp; else true;fi &&
# Now rename the file to the real destination.
$doit $rmcmd -f $dstdir/$dstfile &&
$doit $mvcmd $dsttmp $dstdir/$dstfile
fi &&
exit 0

View File

@@ -0,0 +1,105 @@
# Microsoft Developer Studio Project File - Name="rwgk1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=rwgk1 - Win32 Debug
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "rwgk1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "rwgk1.mak" CFG="rwgk1 - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "rwgk1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "rwgk1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "rwgk1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "rwgk1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ENDIF
# Begin Target
# Name "rwgk1 - Win32 Release"
# Name "rwgk1 - Win32 Debug"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\rwgk1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -0,0 +1,112 @@
# Microsoft Developer Studio Project File - Name="test" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=test - Win32 Debug
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "test.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "test.mak" CFG="test - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "test - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "test - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "test - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /Zm200 /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "test - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm /GR /GX /ZI /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /Zm200 /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
# SUBTRACT LINK32 /pdb:none
!ENDIF
# Begin Target
# Name "test - Win32 Release"
# Name "test - Win32 Debug"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\test\comprehensive.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File
SOURCE=..\..\test\comprehensive.hpp
# End Source File
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -0,0 +1,51 @@
#
# Tested with:
# Compaq C++ V6.2-024 for Digital UNIX V5.0 (Rev. 910)
#
# Python 1.5.2 was installed without any customizations.
# boost_all.zip vers. 1.18.1 was unpacked using unzip -aa and not modified.
# STLport-4.1b3 was unpacked using unzip -aa and not modified.
#
# Initial version 2000-10-20: Ralf W. Grosse-Kunstleve, rwgk@cci.lbl.gov
#
PYINC= /usr/local/include/python1.5
BOOSTINC= /usr/local/boost_1_18_1
STLPORTINC= /usr/local/STLport-4.1b3/stlport
STLPORTOPTS= \
-D__USE_STD_IOSTREAM \
-D__STL_NO_SGI_IOSTREAMS \
-D__STL_NO_NEW_C_HEADERS \
-D_RWSTD_COMPILE_INSTANTIATE=1
STDOPTS= -std strict_ansi
WARNOPTS= -msg_disable 186,450,1115
# use -msg_display_number to obtain integer tags for -msg_disable
CPP= cxx
CPPOPTS= -I$(STLPORTINC) $(STLPORTOPTS) -I$(BOOSTINC) -I$(PYINC) \
$(STDOPTS) $(WARNOPTS)
LD= cxx
LDOPTS= -shared -expect_unresolved '*'
OBJ = extclass.o functions.o init_function.o module.o newtypes.o \
objects.o py.o subclass.o
.SUFFIXES: .o .cpp
all: demo.so hello.so
demo.so: $(OBJ) extclass_demo.o
$(LD) $(LDOPTS) $(OBJ) extclass_demo.o -o demo.so
hello.so: $(OBJ) example1.o
$(LD) $(LDOPTS) $(OBJ) example1.o -o hello.so
.cpp.o:
-$(CPP) $(CPPOPTS) $(INC) -c $*.cpp
clean:
rm -f $(OBJ) extclass_demo.o example1.o demo.so hello.so so_locations
rm -rf cxx_repository
rm -f *.pyc

1495
libs/python/configure vendored Executable file

File diff suppressed because it is too large Load Diff

308
libs/python/configure.in Normal file
View File

@@ -0,0 +1,308 @@
AC_INIT(src/extension_class.cpp)
AC_PREFIX_DEFAULT([`pwd | sed 's?/libs/python$??'`])
AC_CONFIG_AUX_DIR(build)
AC_CANONICAL_SYSTEM
AC_CYGWIN
AC_MINGW32
CCFLAGS=-O
CXXFLAGS=-O
dnl AC_PROG_CC
AC_PROG_CXX
AC_DEFUN(AC_SHARED_LINKING,
[
dnl AC_REQUIRE([AC_PROG_CC])
AC_REQUIRE([AC_PROG_CXX])
AC_REQUIRE([AC_CYGWIN])
AC_REQUIRE([AC_MINGW32])
# try to guess the right configurations
if test "$CYGWIN" = yes || test "$MINGW32" = yes; then
shared_library_extension=".dll"
else
shared_library_extension=".so"
fi
cxx_tmp="dummy $CXX dummy"
if test "$GXX" = "yes"; then # g++
shared_cxx_linker="g++ -shared"
position_independent_code_flag="-fPIC"
elif test "$cxx_tmp[2]" = "como"; then # Comeau C++
shared_cxx_linker="como-dyn-link"
position_independent_code_flag="--pic"
elif test "$cxx_tmp[2]" = "cxx"; then # Compaq C++
case "$target" in
*dec*) shared_cxx_linker="cxx -shared -expect_unresolved '*'"
position_independent_code_flag="";;
esac
elif test "$cxx_tmp[2]" = "CC"; then # native compilers
case "$target" in
*solaris*) shared_cxx_linker="CC -G"
position_independent_code_flag="-pic";;
*irix*) shared_cxx_linker="CC -shared"
position_independent_code_flag="";;
*hpux*) shared_cxx_linker="ld -b"
position_independent_code_flag="+z";;
esac
else
shared_c_linker=""
shared_cxx_linker=""
position_independent_code_flag=""
fi
ifelse( $1, "", [
AC_ARG_ENABLE(shared,
[ --enable-shared: build shared libraries. This activates default settings for
shared linking and position independent code generation (see below).],
, )], [enable_shared=$1])
if test "$enable_shared" != "no" ; then
AC_MSG_CHECKING(for shared library extension )
AC_ARG_WITH(shared-library-extension,
[ --with-shared-library-extension: file extension for shared libraries
(including the dot) [UNIX: .so | Win32: .dll] ],, )
if test "${with_shared_library_extension:+X}" != ""; then
shared_library_extension=$with_shared_library_extension
fi
AC_MSG_RESULT([$shared_library_extension])
AC_SUBST(shared_library_extension)
dnl AC_MSG_CHECKING(for shared linker for C objects )
dnl AC_ARG_WITH(shared-c-linker,
dnl [ --with-shared-c-linker: command for creating a shared library from C objects.
dnl [ gcc: $(CC) -shared
dnl SUN cc: $(CC) -G
dnl IRIX cc: $(CC) -shared ] ],
dnl , )
dnl if test "${with_shared_c_linker:+X}" != ""; then
dnl shared_c_linker=$with_shared_c_linker
dnl fi
dnl AC_MSG_RESULT([$shared_c_linker])
dnl CC_SHARED_LINKER="$shared_c_linker"
dnl AC_SUBST(CC_SHARED_LINKER)
AC_MSG_CHECKING(for shared linker for C++ objects )
AC_ARG_WITH(shared-cxx-linker,
[ --with-shared-cxx-linker: command for creating a shared library from C++ objects.
[ g++: $CXX -shared
Comeau C++: como-dyn-link
Compaq C++: $CXX -shared -expect_unresolved '*'
SUN CC: $CXX -G
IRIX CC: $CXX -shared
HP-UX aCC: ld -b ] ],
, )
if test "${with_shared_cxx_linker:+X}" != ""; then
shared_cxx_linker=$with_shared_cxx_linker
fi
AC_MSG_RESULT([$shared_cxx_linker])
CXX_SHARED_LINKER="$shared_cxx_linker"
AC_SUBST(CXX_SHARED_LINKER)
AC_MSG_CHECKING(for flag to create position independent code )
AC_ARG_WITH(position-independent-code-flag,
[ --with-position-independent-code-flag: flag that tells the compiler to generate
position independent code
[ gcc/g++: -fPIC
Comeau C++: --pic
Compaq C++: <empty>
SUN CC: $CXX -pic
IRIX CC: <empty>
HP-UX aCC: +z ] ],
, )
if test "${with_position_independent_code_flag:+X}" != ""; then
position_independent_code_flag=$with_position_independent_code_flag
fi
AC_MSG_RESULT([$position_independent_code_flag])
SCCFLAGS="$CCFLAGS $position_independent_code_flag"
SCXXFLAGS="$CXXFLAGS $position_independent_code_flag"
AC_SUBST(SCCFLAGS)
AC_SUBST(SCXXFLAGS)
fi
])
#########################################################
AC_DEFUN([AC_WITH_EXTRA_INCLUDES],
[
AC_ARG_WITH(extra-includes,
[ --with-extra-includes=\"dir1 dir2 ...\" : look in these directories for include files],,)
for i in $with_extra_includes; do
CINCLUDES="$CINCLUDES -I"$i
CXXINCLUDES="$CXXINCLUDES -I"$i
done
])
#########################################################
AC_DEFUN([AC_WITH_EXTRA_LIBS],
[
AC_ARG_WITH(extra-libs,
[ --with-extra-libs=\"-Ldir1 -llib1 -Ldir2 -llib2 ...\" : link against these libraries ],,)
LIBS="$CINCLUDES "$with_extra_libs
])
#########################################################
dnl AC_EXTRACT_REGEX(list, regEx)
dnl variable $regExResult returns the first entry in 'list' that matches the
dnl regular expression 'regEx', using the 'expr' utility
dnl $regExResult = "" if nothing is found
AC_DEFUN(AC_EXTRACT_REGEX,
[
regExResult=""
if test "$1" != ""; then
for i in $1; do
regExResult=`expr "$i" : "$2"`
if test "$regExResult" != ""; then
break
fi
done
fi
])
#########################################################
dnl AC_FIND_PACKAGE(packageName, packageLib, packageInc, packageComment, default)
dnl defines with_packageName=yes/no
dnl packageNamelib=<path>/not found
dnl packageNameinclude=<path>/not found
dnl and adds the paths to $LIBS, $CINCLUDES, and $CXXINCLUDES
dnl example:
dnl AC_FIND_PACKAGE(tiff, tiff, tiff.h, support import/export of tiff images, yes)
AC_DEFUN([AC_FIND_PACKAGE],
[
ifelse($5, "yes",
[AC_ARG_WITH([$1], [ --with-$1=dir : $4.
if dir=yes: $1 package files will be searched for
in some standard directories.
if dir is a directory: $1 package files will be searched for
using 'find' below dir.
alternatively, you can specify:], ,)],
[AC_ARG_WITH([$1], [ --with-$1=dir : $4.
if dir=yes (default): $1 package files will be searched for
in some standard directories.
if dir is a directory: $1 package files will be searched for
using 'find' below dir.
alternatively, you can specify:], ,)])
ifelse($2, "", ,[AC_ARG_WITH([$1lib], [ --with-$1lib=dir : the $1 package's lib directory], ,)])
ifelse($3, "", ,[AC_ARG_WITH([$1inc], [ --with-$1inc=dir : the $1 package's include directory], ,)])
[$1]lib="not found"
[$1]include="not found"
if test ${with_[$1]:-""} = "" -a ${with_[$1]lib:-""} = "" -a ${with_[$1]inc:-""} = ""; then
if test "[$5]" = ""; then
with_[$1]="no"
else
with_[$1]=[$5]
fi
fi
if test ${with_[$1]:-""} != "no"; then
if test ! [$2] = "" ; then # check for library
AC_MSG_CHECKING([for lib$2 ])
dirs=""
if test -f ${with_[$1]lib:-""}/lib[$2].so; then
dirs=${with_[$1]lib:-""}/lib[$2].so
elif test -f ${with_[$1]lib:-""}/lib[$2].a; then
dirs=${with_[$1]lib:-""}/lib[$2].a
elif test -d ${with_[$1]:-""}; then
dirs=`find $with_[$1] -name "lib[$2].so" -print; find $with_[$1] -name "lib[$2].a" -print`
elif test ${with_[$1]:-""} = "yes"; then
for i in /usr/local/lib /usr/local/gnu/lib /usr/local/[$1] /opt/lib /opt/gnu/lib /opt/[$1]; do
if test -d $i; then
dirs="$dirs "`find $i -name "lib[$2].so" -print; find $i -name "lib[$2].a" -print`
fi
done
fi
AC_EXTRACT_REGEX($dirs, \(.*lib\)/lib$2\.so)
if test "$regExResult" = ""; then
AC_EXTRACT_REGEX($dirs, \(.*lib\)/lib$2\.a)
fi
if test "$regExResult" = ""; then
AC_EXTRACT_REGEX($dirs, \(.*\)/lib$2\.so)
fi
if test "$regExResult" = ""; then
AC_EXTRACT_REGEX($dirs, \(.*\)/lib$2\.a)
fi
[$1]lib=${regExResult:-"not found"}
AC_MSG_RESULT($[$1]lib)
else
[$1]lib=""
fi
if test ! [$3] = "" ; then # check for header
AC_MSG_CHECKING([for $3 ])
if test -f ${with_[$1]inc:-""}/[$3]; then
dirs=$with_[$1]inc/[$3]
elif test -d ${with_[$1]:-""}; then
dirs=`find $with_[$1] -name patsubst([$3], .*/, ) -print`
elif test ${with_[$1]:-""} = "yes"; then
for i in /usr/local/include /usr/local/gnu/include /usr/local/[$1] \
/opt/include /opt/gnu/include /opt/[$1]; do
if test -d $i; then
dirs="$dirs "`find $i -name patsubst([$3], .*/, ) -print`
fi
done
fi
AC_EXTRACT_REGEX($dirs, \(.*include\)/patsubst([$3], \., \\.))
if test "$regExResult" = ""; then
AC_EXTRACT_REGEX($dirs, \(.*\)/patsubst([$3], \., \\.))
fi
[$1]include=${regExResult:-"not found"}
AC_MSG_RESULT($[$1]include)
else
[$1]include=""
fi
if test "$[$1]lib" = "not found" -o "$[$1]include" = "not found"; then
with_[$1]="no"
AC_MSG_WARN( Configuring without [$1] support)
else
with_[$1]="yes"
if test ! [$2] = "" ; then
LIBS="$LIBS -L$[$1]lib -l[$2]"
fi
if test ! [$3] = "" ; then
CINCLUDES="$CINCLUDES -I$[$1]include"
CXXINCLUDES="$CXXINCLUDES -I$[$1]include"
AC_SUBST(CXXINCLUDES)
fi
fi
fi
])
#########################################################
AC_WITH_EXTRA_INCLUDES
AC_WITH_EXTRA_LIBS
AC_SHARED_LINKING(yes)
#########################################################
AC_CHECK_PROG(python_prog, python, [yes], [not found])
if test "$python_prog" = "yes"; then
AC_FIND_PACKAGE(python, "", Python.h, Python includes (required!), yes)
else
with_python="no"
fi
if test "$with_python" = "no"; then
AC_MSG_ERROR(Python support required to install BPL)
fi
#########################################################
boost_includes=[-I`pwd | sed 's?/libs/python$??'`]
CXXINCLUDES="$CXXINCLUDES $boost_includes"
#########################################################
AC_OUTPUT(build/Makefile)

View File

@@ -0,0 +1,116 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Building an Extension Module
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Building an Extension Module
</h1>
<p>
Right now, the only supported configuration is one in which the BPL
source files are statically linked with the source for your extension
module. BPL comes with a standard build process that compiles the
BPL sources, builds the library <code>'libboostpython.a'</code>,
runs a comprehensive test suite and (upon success)
copies the library into an installation directory specified by the
user. To involke this build process, you need to do the following:
<h4>Compilation with GNU g++:</h4>
<blockquote><pre>
> cd &lt;boost_root&gt;/libs/python
> setenv CXX g++ # use g++
>
> ./configure \
--with-pythoninc=/usr/local/include/python1.5 \
--with-extra-includes=/usr/local/STLport
>
> make install
</pre></blockquote>
where
<blockquote><pre>
--with-pythoninc: the directory where 'Python.h' lives
--with-extra-includes: the directory where STLport includes
or the 'limits' header are
</pre></blockquote>
<h4>Compilation with another compiler:</h4>
<blockquote><pre>
> cd &lt;boost_root&gt;/libs/python
> setenv CXX CC # your compiler
>
> ./configure \
--with-pythoninc=/usr/local/include/python1.5 \
--with-shared-cxx-linker="$CXX -G" \
--with-position-independent-code-flag=-pic
>
> make install
</pre></blockquote>
where
<blockquote><pre>
--with-pythoninc: as above
--with-shared-cxx-linker: command to build a shared library from C++
object files (needed for Python modules)
--with-position-independent-code-flag: flag that tells the compiler
to create position independent code (needed for shared linking)
</pre></blockquote>
<p>
<code>configure</code> provides additional options that are listed
after invoking
<blockquote><pre>
> ./configure --help
</pre></blockquote>
Of particular interest are the following options:
<blockquote><pre>
--libdir: the install directory for 'libboostpython.a'
--enable-shared-library-extension: the file extension for shared libraries
</pre></blockquote>
For most options, configure provides reasonable defaults, given in
brackets. In particular, it is able to guess the right settings for
shared library creation and linking on some common systems. Likewise,
it tries to find Python in some standard directories if you don't
specify a path explicitly.
<p>
If this build process doesn't work for you, you must compile the
source files manually. The BPL source files are:
<blockquote>
<pre>
<a href="../../../libs/python/src/extension_class.cpp">extclass.cpp</a>
<a href="../../../libs/python/src/functions.cpp">functions.cpp</a>
<a href="../../../libs/python/src/init_function.cpp">init_function.cpp</a>
<a href="../../../libs/python/src/module_builder.cpp">module.cpp</a>
<a href="../../../libs/python/src/types.cpp">newtypes.cpp</a>
<a href="../../../libs/python/src/objects.cpp">objects.cpp</a>
<a href="../../../libs/python/src/conversions.cpp">py.cpp</a>
<a href="../../../libs/python/src/classes.cpp">subclass.cpp</a>
</pre>
</blockquote>
You may first build them into a library and link it with your
extension module source, but the effect is the same as compiling all
the source files together. Some users have successfully built the
sources into a shared library, and support for a shared library
build is planned, but not yet implemented.
<p>
Next: <a href="enums.html">Enums</a>
Previous: <a href="under-the-hood.html">A Peek Under the Hood</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Nov 26, 2000
</div>

View File

@@ -12,14 +12,16 @@
<h2>CXX</h2>
<p>
Like py_cpp, <a href="http://cxx.sourceforge.net/">CXX</a> attempts to
provide a C++-oriented interface to Python. In most cases, like py_cpp,
it relieves the user from worrying about reference-counts. As far as I
can tell, there is no support for subclassing C++ extension types in
Python. An even more-significant difference is that a user's C++ code is
still basically &ldquo;dealing with Python objects&rdquo;, though they are wrapped
in C++ classes. This means such jobs as argument parsing and conversion
are still left to be done explicitly by the user.
Like BPL, <a href="http://cxx.sourceforge.net/">CXX</a> attempts to
provide a C++-oriented interface to Python. In most cases, as with the
boost library, it relieves the user from worrying about
reference-counts. Both libraries automatically convert thrown C++
exceptions into Python exceptions. As far as I can tell, CXX has no
support for subclassing C++ extension types in Python. An even
more significant difference is that a user's C++ code is still basically
``dealing with Python objects'', though they are wrapped in
C++ classes. This means such jobs as argument parsing and conversion are
still left to be done explicitly by the user.
<p>
CXX claims to interoperate well with the C++ Standard Library
@@ -38,11 +40,9 @@
<p>
As far as I can tell, CXX enables one to write what is essentially
idiomatic Python code in C++, manipulating Python objects through the
same fully-generic interfaces we use in Python. I think it would be fair
to say that while you're not programming directly to the &ldquo;bare
metal&rdquo; with CXX, in comparison to py_cpp, it presents a low-level
interface to Python. That use is also supported by the py_cpp object
wrappers.
same fully-generic interfaces we use in Python. While you're hardly programming directly to the ``bare
metal'' with CXX, it basically presents a ``C++-ized''
version of the Python 'C' API.
<p>
<a href="mailto:dubois1@llnl.gov">Paul F. Dubois</a>, the original
@@ -51,11 +51,11 @@
fill in the other half. Here is his response to the commentary above:
<blockquote>
&ldquo;My intention with CXX was not to do what you are doing. It was to enable a
``My intention with CXX was not to do what you are doing. It was to enable a
person to write an extension directly in C++ rather than C. I figured others had
the wrapping business covered. I thought maybe CXX would provide an easier
target language for those making wrappers, but I never explored
that.&rdquo;<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
that.''<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
</blockquote>
<h2>SWIG</h2>
@@ -65,28 +65,28 @@ that.&rdquo;<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
languages. Swig relies on a parser to read your source code and produce
additional source code files which can be compiled into a Python (or
Perl or Tcl) extension module. It has been successfully used to create
many Python extension modules. Like py_cpp, SWIG is trying to allow an
many Python extension modules. Like BPL, SWIG is trying to allow an
existing interface to be wrapped with little or no change to the
existing code. The documentation says &ldquo;SWIG parses a form of ANSI C
existing code. The documentation says ``SWIG parses a form of ANSI C
syntax that has been extended with a number of special directives. As a
result, interfaces are usually built by grabbing a header file and
tweaking it a little bit.&rdquo; For C++ interfaces, the tweaking has often
tweaking it a little bit.'' For C++ interfaces, the tweaking has often
proven to amount to more than just a little bit. One user
writes:
<blockquote> &ldquo;The problem with swig (when I used it) is that it
<blockquote> ``The problem with swig (when I used it) is that it
couldnt handle templates, didnt do func overloading properly etc. For
ANSI C libraries this was fine. But for usual C++ code this was a
problem. Simple things work. But for anything very complicated (or
realistic), one had to write code by hand. I believe py_cpp doesn't have
realistic), one had to write code by hand. I believe BPL doesn't have
this problem[<a href="#sic">sic</a>]... IMHO overloaded functions are very important to
wrap correctly.&rdquo;<br><i>-Prabhu Ramachandran</i>
wrap correctly.''<br><i>-Prabhu Ramachandran</i>
</blockquote>
<p>
By contrast, py_cpp doesn't attempt to parse C++ - the problem is simply
By contrast, BPL doesn't attempt to parse C++ - the problem is simply
too complex to do correctly. <a name="sic">Technically</a>, one does
write code by hand to use py_cpp. The goal, however, has been to make
write code by hand to use BPL. The goal, however, has been to make
that code nearly as simple as listing the names of the classes and
member functions you want to expose in Python.
@@ -95,7 +95,7 @@ that.&rdquo;<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
<a
href="http://www.thekompany.com/projects/pykde/background.php3?dhtml_ok=1">SIP</a>
is a system similar to SWIG, though seemingly more
C++-oriented. The author says that like py_cpp, SIP supports overriding
C++-oriented. The author says that like BPL, SIP supports overriding
extension class member functions in Python subclasses. It appears to
have been designed specifically to directly support some features of
PyQt/PyKDE, which is its primary client. Documentation is almost
@@ -113,7 +113,7 @@ that.&rdquo;<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
to a wide range of computer languages, including Common Lisp, C++, C,
Modula-3, and Python. ILU can parse the ISL to generate a C++ language
header file describing the interface, of which the user is expected to
provide an implementation. Unlike py_cpp, this means that the system
provide an implementation. Unlike BPL, this means that the system
imposes implementation details on your C++ code at the deepest level. It
is worth noting that some of the C++ names generated by ILU are supposed
to be reserved to the C++ implementation. It is unclear from the
@@ -124,7 +124,7 @@ that.&rdquo;<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
<a
href="http://www.python.org/workshops/1996-11/papers/GRAD/html/GRADcover.html">GRAD</a>
is another very ambitious project aimed at generating Python wrappers for
interfaces written in &ldquo;legacy languages&rdquo;, among which C++ is the first one
interfaces written in ``legacy languages'', among which C++ is the first one
implemented. Like SWIG, it aims to parse source code and automatically
generate wrappers, though it appears to take a more sophisticated approach
to parsing in general and C++ in particular, so it should do a much better
@@ -148,70 +148,70 @@ an inheritance relationship?
<h2>Zope ExtensionClasses</h2>
<p>
<a href="http:http://www.digicool.com/releases/ExtensionClass">
ExtensionClasses in Zope</a> use the same underlying mechanism as py_cpp
ExtensionClasses in Zope</a> use the same underlying mechanism as BPL
to support subclassing of extension types in Python, including
multiple-inheritance. Both systems support pickling/unpickling of
extension class instances in very similar ways. Both systems rely on the
same &ldquo;<a
same ``<a
href="http://www.python.org/workshops/1994-11/BuiltInClasses/Welcome.html">Don
Beaudry Hack</a>&rdquo; that also inspired Don's MESS System.
Beaudry Hack</a>'' that also inspired Don's MESS System.
<p>
The major differences are:
<ul>
<li>
py_cpp lifts the burden on the user to parse and convert function
BPL lifts the burden on the user to parse and convert function
argument types. Zope provides no such facility.
<li>
py_cpp lifts the burden on the user to maintain Python
BPL lifts the burden on the user to maintain Python
reference-counts.
<li>
py_cpp supports function overloading; Zope does not.
BPL supports function overloading; Zope does not.
<li>
py_cpp supplies a simple mechanism for exposing read-only and
BPL supplies a simple mechanism for exposing read-only and
read/write access to data members of the wrapped C++ type as Python
attributes.
<li>
Writing a Zope ExtensionClass is significantly more complex than
exposing a C++ class to python using py_cpp (mostly a summary of the
exposing a C++ class to python using BPL (mostly a summary of the
previous 4 items). <a href=
"http://www.digicool.com/releases/ExtensionClass/MultiMapping.html">A
Zope Example</a> illustrates the differences.
<li>
Zope's ExtensionClasses are specifically motivated by &ldquo;the need for a
C-based persistence mechanism&rdquo;. Py_cpp's are motivated by the desire
Zope's ExtensionClasses are specifically motivated by ``the need for a
C-based persistence mechanism''. BPL's are motivated by the desire
to simply reflect a C++ API into Python with as little modification as
possible.
<li>
The following Zope restriction does not apply to py_cpp: &ldquo;At most one
The following Zope restriction does not apply to BPL: ``At most one
base extension direct or indirect super class may define C data
members. If an extension subclass inherits from multiple base
extension classes, then all but one must be mix-in classes that
provide extension methods but no data.&rdquo;
provide extension methods but no data.''
<li>
Zope requires use of the somewhat funky inheritedAttribute (search for
&ldquo;inheritedAttribute&rdquo; on <a
``inheritedAttribute'' on <a
href="http://www.digicool.com/releases/ExtensionClass">this page</a>)
method to access base class methods. In py_cpp, base class methods can
method to access base class methods. In BPL, base class methods can
be accessed in the usual way by writing
&ldquo;<code>BaseClass.method</code>&rdquo;.
``<code>BaseClass.method</code>''.
<li>
Zope supplies some creative but esoteric idioms such as <a href=
"http://www.digicool.com/releases/ExtensionClass/Acquisition.html">
Acquisition</a>. No specific support for this is built into py_cpp.
Acquisition</a>. No specific support for this is built into BPL.
<li>
Zope's ComputedAttribute support is designed to be used from Python.
<a href="special.html#getter_setter">The analogous feature of
py_cpp</a> can be used from C++ or Python. The feature is arguably
easier to use in py_cpp.
BPL</a> can be used from C++ or Python. The feature is arguably
easier to use in BPL.
</ul>
<p>
Next: <a href="example1.html">A Simple Example Using BPL</a>
Previous: <a href="extending.html">A Brief Introduction to writing Python Extension Modules</a>
Next: <a href="example1.html">A Simple Example Using py_cpp</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &ldquo;as is&rdquo; without
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>

View File

@@ -0,0 +1,192 @@
Given a real Python class 'A', a wrapped C++ class 'B', and this definition:
class C(A, B):
def __init__(self):
B.__init__(self)
self.x = 1
...
c = C()
this diagram describes the internal structure of an instance of 'C', including
its inheritance relationships. Note that ExtensionClass<B> is derived from
Class<ExtensionInstance>, and is in fact identical for all intents and purposes.
MetaClass<ExtensionInstance>
+---------+ +---------+
types.ClassType: | | | |
| | | |
| | | |
+---------+ +---------+
^ ^ ^
PyClassObject | ExtensionClass<B> | |
A: +------------+ | B: +------------+ | |
| ob_type -+-+ | ob_type -+-----+ |
| | ()<--+- __bases__ | |
| | | __dict__ -+->{...} |
| | 'B'<-+- __name__ | |
+------------+ +------------+ |
^ ^ |
| | |
+-----+ +-------------+ |
| | |
| | Class<ExtensionInstance> |
| | C: +------------+ |
| | | ob_type -+------------+
tuple:(*, *)<--+- __bases__ |
| __dict__ -+->{__module__, <methods, etc.>}
'C' <-+- __name__ |
+------------+
^ (in case of inheritance from more than one
| extension class, this vector would contain
+---------------+ a pointer to an instance holder for the data
| of each corresponding C++ class)
| ExtensionInstance
| c: +---------------------+ std::vector<InstanceHolderBase>
+----+- __class__ | +---+--
| m_wrapped_objects -+->| * | ...
{'x': 1}<-+- __dict__ | +-|-+--
+---------------------+ | InstanceValueHolder<B>
| +--------------------------------+
+-->| (contains a C++ instance of B) |
+--------------------------------+
In our inheritance test cases in extclass_demo.cpp/test_extclass.py, we have the
following C++ inheritance hierarchy:
+-----+ +----+
| A1 | | A2 |
+-----+ +----+
^ ^ ^ ^ ^
| | | | |
+-----+ | +---------+-----+
| | | |
| +---+----------+
.......!...... | |
: A_callback : +-+--+ +-+--+
:............: | B1 | | B2 |
+----+ +----+
^
|
+-------+---------+
| |
+-+-+ ......!.......
| C | : B_callback :
+---+ :............:
A_callback and B_callback are used as part of the wrapping mechanism but not
represented in Python. C is also not represented in Python but is delivered
there polymorphically through a smart pointer.
This is the data structure in Python.
ExtensionClass<A1>
A1: +------------+
()<--+- __bases__ |
| __dict__ -+->{...}
+------------+
^
| ExtensionInstance
| a1: +---------------------+ vec InstanceValueHolder<A1,A_callback>
+---------+- __class__ | +---+ +---------------------+
| | m_wrapped_objects -+->| *-+-->| contains A_callback |
| +---------------------+ +---+ +---------------------+
|
| ExtensionInstance
| pa1_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ A1
| +---------------------+ +---+ +---+ | +---+
| +->| |
| ExtensionInstance +---+
| pb1_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ B1
| +---------------------+ +---+ +---+ | +---+
| +->| |
| ExtensionInstance +---+
| pb2_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ B2
| +---------------------+ +---+ +---+ | +---+
| +->| |
| +---+
| ExtensionClass<A1>
| A2: +------------+
| ()<--+- __bases__ |
| | __dict__ -+->{...}
| +------------+
| ^
| | ExtensionInstance
| a2: | +---------------------+ vec InstanceValueHolder<A2>
| +-+- __class__ | +---+ +-------------+
| | | m_wrapped_objects -+->| *-+-->| contains A2 |
| | +---------------------+ +---+ +-------------+
| |
| | ExtensionInstance
| pa2_a2: | +---------------------+ vec InstancePtrHolder<auto_ptr<A2>,A2>
| +-+- __class__ | +---+ +---+
| | | m_wrapped_objects -+->| *-+-->| *-+-+ A2
| | +---------------------+ +---+ +---+ | +---+
| | +->| |
| | ExtensionInstance +---+
| pb1_a2: | +---------------------+ vec InstancePtrHolder<auto_ptr<A2>,A2>
| +-+- __class__ | +---+ +---+
| | | m_wrapped_objects -+->| *-+-->| *-+-+ B1
| | +---------------------+ +---+ +---+ | +---+
| | +->| |
| | +---+
| |
| +---------------+------------------------------+
| | |
+------+-------------------------+-|----------------------------+ |
| | | | |
| Class<ExtensionInstance> | | ExtensionClass<B1> | | ExtensionClass<B1>
| DA1: +------------+ | | B1: +------------+ | | B2: +------------+
(*,)<---+- __bases__ | (*,*)<---+- __bases__ | (*,*)<---+- __bases__ |
| __dict__ -+->{...} | __dict__ -+->{...} | __dict__ -+->{...}
+------------+ +------------+ +------------+
^ ^ ^
| ExtensionInstance | |
| da1: +---------------------+ | vec InstanceValueHolder<A1,A_callback>
+-------+- __class__ | | +---+ +---------------------+ |
| m_wrapped_objects -+--|-->| *-+-->| contains A_callback | |
+---------------------+ | +---+ +---------------------+ |
+--------------------------------------+ |
| ExtensionInstance |
b1: | +---------------------+ vec InstanceValueHolder<B1,B_callback> |
+-+- __class__ | +---+ +---------------------+ |
| | m_wrapped_objects -+->| *-+-->| contains B_callback | |
| +---------------------+ +---+ +---------------------+ |
| |
| ExtensionInstance |
pb1_b1: | +---------------------+ vec InstancePtrHolder<auto_ptr<B1>,B1> |
+-+- __class__ | +---+ +---+ |
| | m_wrapped_objects -+->| *-+-->| *-+-+ B1 |
| +---------------------+ +---+ +---+ | +---+ |
| +->| | |
| ExtensionInstance +---+ |
pc_b1: | +---------------------+ vec InstancePtrHolder<auto_ptr<B1>,B1> |
+-+- __class__ | +---+ +---+ |
| | m_wrapped_objects -+->| *-+-->| *-+-+ C |
| +---------------------+ +---+ +---+ | +---+ |
| +->| | |
| +---+ |
| |
| Class<ExtensionInstance> +---------------------------------------+
| DB1: +------------+ | ExtensionInstance
(*,)<---+- __bases__ | a2: | +---------------------+ vec InstanceValueHolder<A2>
| __dict__ -+->{...} +-+- __class__ | +---+ +-------------+
+------------+ | m_wrapped_objects -+->| *-+-->| contains A2 |
^ +---------------------+ +---+ +-------------+
| ExtensionInstance
db1: | +---------------------+ vec InstanceValueHolder<B1,B_callback>
+-+- __class__ | +---+ +----------------------+
| m_wrapped_objects -+-->| *-+-->| contains B1_callback |
+---------------------+ +---+ +----------------------+

View File

@@ -8,31 +8,36 @@
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Wrapping enums
</h1>
<p>Because there is in general no way to deduce that a value of arbitrary type T
is an enumeration constant, py_cpp cannot automatically convert enum values to
and from Python. To handle this case, you need to decide how you want the enum
to show up in Python (since Python doesn't have enums). Once you have done that,
you can write some simple <code>from_python()</code> and
<code>to_python()</code> functions.
is an enumeration constant, the Boost Python Library cannot automatically
convert enum values to and from Python. To handle this case, you need to decide
how you want the enum to show up in Python (since Python doesn't have
enums). Once you have done that, you can write some simple
<code>from_python()</code> and <code>to_python()</code> functions.
<p>If you are satisfied with a Python int as a way to represent your enum
values, py_cpp provides a shorthand for these functions. You just need to
values, we provide a shorthand for these functions. You just need to
instantiate <code>boost::python::enum_as_int_converters&lt;EnumType&gt;</code> where
<code>EnumType</code> is your enumerated type. There are two convenient ways to do this:
<ol>
<li><blockquote>
<pre>
...
} // close my_namespace
// drop into namespace python and explicitly instantiate
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
template class enum_as_int_converters<extclass_demo::EnumOwner::enum_type>;
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace my_namespace { // re-open my_namespace
...
</pre>
</blockquote>
<li><blockquote><pre>
// instantiate as base class in any namespace
struct EnumTypeConverters
: boost::python::py_enum_as_int_converters<EnumType>
: boost::python::enum_as_int_converters&lt;EnumType&gt;
{
};
</blockquote></pre>
@@ -82,11 +87,15 @@ my_class.add(boost::python::to_python(enum_value_1), "enum_value_1");
my_class.add(boost::python::to_python(enum_value_2), "enum_value_2");
...
</pre></blockquote>
<p>
Next: <a href="pointers.html">Pointers</a>
Previous: <a href="building.html">Building an Extension Module</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &ldquo;as
is&rdquo; without express or implied warranty, and with no claim as to
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Nov 26, 2000

View File

@@ -1,7 +1,7 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
A Simple Example Using py_cpp
A Simple Example
</title>
<div>
<h1>
@@ -9,7 +9,7 @@
"c++boost.gif (8819 bytes)">
</h1>
<h1>
A Simple Example Using py_cpp
A Simple Example
</h1>
<p>
Suppose we have the following C++ API which we want to expose in
@@ -24,20 +24,20 @@ namespace hello {
   public:
      world(int);
      ~world();
      std::string get() const { return "hi, world"; }
      std::string greet() const { return "hi, world"; }
    ...
  };
  std::size_t length(const world&amp; x) { return std::strlen(x.get()); }
  std::size_t length(const world&amp; x) { return std::strlen(x.greet()); }
}
</pre>
</blockquote>
<p>
Here is the C++ code for a python module called <code>hello</code>
which exposes the API using py_cpp:
which exposes the API using:
<blockquote>
<pre>
#include <boost/python/class_builder.hpp>
#include &lt;boost/python/class_builder.hpp&gt;
// Python requires an exported function called init&lt;module-name&gt; in every
// extension module. This is where we build the module contents.
extern "C"
@@ -49,15 +49,15 @@ void inithello()
    try
    {
       // create an object representing this extension module
       boost::python::module_builder hello("hello");
       boost::python::module_builder m("hello");
       // Create the Python type object for our extension class
       boost::python::class_builder&lt;hello::world&gt; world_class(hello, "world");
       boost::python::class_builder&lt;hello::world&gt; world_class(m, "world");
       // Add the __init__ function
       world_class.def(boost::python::constructor&lt;int&gt;());
       // Add a regular member function
       world_class.def(&amp;hello::world::get, "get");
       // Add a regular function to the module
       hello.def(hello::length, "length");
       m.def(hello::length, "length");
    }
    catch(...)
    {
@@ -82,7 +82,7 @@ extern "C" BOOL WINAPI DllMain(HINSTANCE, DWORD, LPVOID)
<pre>
&gt;&gt;&gt; import hello
&gt;&gt;&gt; hi_world = hello.world(3)
&gt;&gt;&gt; hi_world.get()
&gt;&gt;&gt; hi_world.greet()
'hi, world'
&gt;&gt;&gt; hello.length(hi_world)
9
@@ -93,11 +93,11 @@ extern "C" BOOL WINAPI DllMain(HINSTANCE, DWORD, LPVOID)
<blockquote>
<pre>
&gt;&gt;&gt; class my_subclass(hello.world):
...     def get(self):
...     def greet(self):
...         return 'hello, world'
...
&gt;&gt;&gt; y = my_subclass(4)
&gt;&gt;&gt; y.get()
&gt;&gt;&gt; y.greet()
'hello, world'
</pre>
</blockquote>
@@ -115,7 +115,8 @@ extern "C" BOOL WINAPI DllMain(HINSTANCE, DWORD, LPVOID)
to have a <code>length()</code> of <code>12</code>? If so, <a href=
"overriding.html">read on</a>...
<p>
Previous: <a href="comparisons.html">Comparisons with other systems</a> Next: <a href="overriding.html">Overridable virtual functions</a> Up:
Next: <a href="overriding.html">Overridable virtual functions</a>
Previous: <a href="comparisons.html">Comparisons with other systems</a> Up:
<a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,

View File

@@ -38,11 +38,11 @@
</ul>
This last item typically occupies a great deal of code in an extension
module. Remember that Python is a completely dynamic language. A callable
object receives its arguments in a tuple; it is up to that object to
extract those arguments from the tuple, check their types, and raise
appropriate exceptions. There are numerous other tedious details that need
to be managed; too many to mention here. Py_cpp is designed to lift most of
that burden.<br>
object receives its arguments in a tuple; it is up to that object to extract
those arguments from the tuple, check their types, and raise appropriate
exceptions. There are numerous other tedious details that need to be
managed; too many to mention here. The Boost Python Library is designed to
lift most of that burden.<br>
<br>
<p>
@@ -56,10 +56,10 @@
sublcassing the extension type. Aside from being tedious, it's not really
the same as having a true class, because there's no way for the user to
override a method of the extension type which is called from the
extension module. Py_cpp solves this problem by taking advantage of <a
extension module. BPL solves this problem by taking advantage of <a
href="http://www.python.org/doc/essays/metaclasses/">Python's metaclass
feature</a> to provide objects which look, walk, and hiss almost exactly
like regular Python classes. Py_cpp classes are actually cleaner than
like regular Python classes. BPL classes are actually cleaner than
Python classes in some subtle ways; a more detailed discussion will
follow (someday).</p>
<p>Next: <a href="comparisons.html">Comparisons with Other Systems</a> Up: <a

View File

@@ -2,26 +2,22 @@
"http://www.w3.org/TR/REC-html40/strict.dtd">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
py_cpp Python/C++ binding documentation
The Boost Python Library (BPL)
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277"
align="center" height="86"> py_cpp<a href="#naming_contest">*</a>
align="center" height="86">The Boost Python Library (BPL)
</h1>
<p>
The source code for py_cpp, including a MSVC demo project is available <a
href="py_cpp_20001106.zip">here</a>.
<h2>Synopsis</h2>
<p>
py_cpp is a system for quickly and easily interfacing C++ code with <a
href="http:www.python.org">Python</a> such that the Python interface is
Use the Boost Python Library to quickly and easily export a C++ library to <a
href="http://www.pythonlabs.com/pub/www.python.org">Python</a> such that the Python interface is
very similar to the C++ interface. It is designed to be minimally
intrusive on your C++ design. In most cases, you should not have to alter
your C++ classes in any way in order to use them with py_cpp. The system
<em>should</em> simply &ldquo;reflect&rdquo; your C++ classes and functions into
Python. The major features of py_cpp include support for:
your C++ classes in any way in order to use them with BPL. The system
<em>should</em> simply ``reflect'' your C++ classes and functions into
Python. The major features of BPL include support for:
<ul>
<li><a href="inheritance.hml">Subclassing extension types in Python</a>
<li><a href="overriding.html">Overriding virtual functions in Python</a>
@@ -32,7 +28,7 @@ among others.
<h2>Supported Platforms</h2>
<p>py_cpp has been tested in the following configurations:
<p>BPL has been tested in the following configurations:
<ul>
<li>Against Python 1.5.2 using the following compiler/library:
@@ -56,7 +52,7 @@ among others.
href="mailto:rwgk@cci.lbl.gov">Ralf W. Grosse-Kunstleve</a>]
<li>An upcoming release of <a href="http://www.metrowerks.com/products/windows/">Metrowerks CodeWarrior
Pro6 for Windows</a> (the first release has a bug that's fatal to py_cpp)
Pro6 for Windows</a> (the first release has a bug that's fatal to BPL)
</ul>
<br>
<li>Against Python 2.0 using the following compiler/library combinations:
@@ -67,18 +63,13 @@ among others.
</ul>
</ul>
<p>Py_cpp requires the <a href="http://www.boost.org">boost</a> libraries, and is
has been accepted for inclusion into the boost libraries pending &ldquo;boostification&ldquo;
(completion of the documentation, change in some naming conventions and
resolution of some namespace issues).
<h2>Credits</h2>
<ul>
<li><a href="mailto:abrahams@mediaone.net">David Abrahams</a> originated
and wrote py_cpp.
<li><a href="../../../people/dave_abrahams.htm">David Abrahams</a> originated
and wrote the library.
<li><a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich Koethe</a>
had independently developed a similar system. When he discovered py_cpp,
had independently developed a similar system. When he discovered BPL,
he generously contributed countless hours of coding and much insight into
improving it. He is responsible for an early version of the support for <a
href="overloading.html">function overloading</a> and wrote the support for
@@ -88,13 +79,13 @@ among others.
exposing <a href="special.html#numeric">numeric operators</a>, including
a way to avoid explicit coercion by means of overloading.
<li>The members of the boost mailing list and the Python community supplied
invaluable early feedback. In particular, Ron Clarke, Mark Evans, Anton
Gluck, Ralf W. Grosse-Kunstleve, Prabhu Ramachandran, and Barry Scott took
the brave step of trying to use py_cpp while it was still in early stages
of development.
<li>The members of the boost mailing list and the Python community
supplied invaluable early feedback. In particular, Ron Clarke, Mark Evans,
Anton Gluck, Ralf W. Grosse-Kunstleve, Chuck Ingold, Prabhu Ramachandran,
and Barry Scott took the brave step of trying to use BPL while it was
still in early stages of development.
<li>The development of py_cpp wouldn't have been
<li>The development of BPL wouldn't have been
possible without the generous support of <a href="http://www.dragonsys.com/">Dragon Systems/Lernout and
Hauspie, Inc</a> who supported its development as an open-source project.
</ul>
@@ -105,10 +96,10 @@ among others.
<li><a href="extending.html">A Brief Introduction to writing Python
extension modules</a>
<li><a href="comparisons.html">Comparisons between py_cpp and other
<li><a href="comparisons.html">Comparisons between BPL and other
systems for extending Python</a>
<li><a href="example1.html">A Simple Example Using py_cpp</a>
<li><a href="example1.html">A Simple Example</a>
<li><a href="overriding.html">Overridable Virtual Functions</a>
@@ -120,11 +111,13 @@ among others.
<li><a href="under-the-hood.html">A Peek Under the Hood</a>
<li><a href="building.html">Building a Module with Py_cpp</a>
<li><a href="building.html">Building an Extension Module</a>
<li>Advanced Topics
<ol>
<li>Pickling
<li>class_builder&lt;&gt;
<li><a href="enums.html">enums</a>
@@ -138,72 +131,28 @@ among others.
<li>Other Extension Types
<li>Templates
<li><a href="data_structures.txt">Internal Data Structures</a>
</ol>
</ol>
<p>
More sophisticated examples are given in
<code>extclass_demo.cpp</code>, <code> extclass_demo.h</code>, and <code>
test_extclass.py</code> in the <a href="py_cpp.tgz">source code
archive</a>. There's much more here, and much more documentation to
come...
Documentation is a major ongoing project; assistance is greatly
appreciated! In the meantime, useful examples of every BPL feature should
be evident in the regression test files <code>test/comprehensive.[<a
href="../test/comprehensive.py">py</a>/<a
href="../test/comprehensive.hpp">hpp</a>/<a
href="../test/comprehensive.cpp">cpp</a>]</code>
<p>
Questions should be directed to <a href=
"http://www.egroups.com/list/boost">the boost mailing list</a>.
<h2>Naming Contest</h2>
<p>
Yes, I know py_cpp is a lousy name. Problem is, the best names my puny
imagination can muster (IDLE and GRAIL) are taken, so I'm holding a
naming contest. First prize? You get to pick the name&lt;0.2wink&gt; and
you will be credited in the documentation. Names that have been suggested
so far include:
<ul>
<li>
Py++
<li>
Python++
<li>
Coil
<li>
SnakeSkin
<li>
CCCP - <b>C</b>onvert <b>C</b>++ <b>
C</b>lasses to <b>P</b>ython
<li>
C<sup>3</sup>PO - <b>C</b>onvert <b>C</b>++
<b>C</b>lasses to <b>P</b>ython <b>
O</b>bjects
<li>
PALIN - <b>P</b>ython <b>
A</b>ugmented-<b>L</b>anguage <b>
IN</b>tegration
<li>
CLEESE - <b>C</b>++ <b>L</b>anguage <b>E</b>xtension <b>E</b>nvironment
<b>S</b>upremely <b>E</b>asy
<li>
JONES - <b>J</b>ust <b>O</b>bscenely <b>N</b>eat <b>E</b>xtension
<b>S</b>ystem
<li>
C-thru
<li>
SeamlessC
<li>
BorderCrossing
<li>
Perseus (because he solved a hairy problem involving snakes by using
reflection and was invisible most of the time).
</ul>
Please <a href="http://www.egroups.com/list/boost">post</a> or send <a
href="http:mailto:abrahams@mediaone.net">me</a> your suggestions!<br>
<br>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &ldquo;as is&rdquo; without
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>

View File

@@ -12,11 +12,11 @@
<h2>Inheritance in Python</h2>
<p>
Py_cpp extension classes support single and multiple-inheritance in
Python, just like regular Python classes. You can mix built-in Python
classes with py_cpp extension classes in a derived class' tuple of
bases. Whenever a py_cpp extension class is among the bases for a new
class in Python, the result is an extension class:
BPL extension classes support single and multiple-inheritance in
Python, just like regular Python classes. You can arbitrarily mix
built-in Python classes with extension classes in a derived class'
tuple of bases. Whenever a BPL extension class is among the bases for a
new class in Python, the result is an extension class:
<blockquote>
<pre>
&gt;&gt;&gt; class MyPythonClass:
@@ -37,7 +37,7 @@
<h2><a name="implicit_conversion">Reflecting C++ Inheritance Relationships</a></h2>
<p>
Py_cpp also allows us to represent C++ inheritance relationships so that
BPL also allows us to represent C++ inheritance relationships so that
wrapped derived classes may be passed where values, pointers, or
references to a base class are expected as arguments. The
<code>declare_base</code> member function of
@@ -71,7 +71,11 @@ int get_derived_x(const Derived& d) {
return d.x;
}
<hr>
#include <boost/python/class_builder.hpp>
#include &lt;boost/python/class_builder.hpp&gt;
// namespace alias for code brevity
namespace python = boost::python;
extern "C"
#ifdef _WIN32
__declspec(dllexport)
@@ -80,13 +84,13 @@ void initmy_module()
{
    try
    {
       boost::python::module_builder my_module("my_module");
       python::module_builder my_module("my_module");
       boost::python::class_builder&lt;Base&gt; base_class(my_module, "Base");
       base_class.def(boost::python::constructor&lt;void&gt;());
       python::class_builder&lt;Base&gt; base_class(my_module, "Base");
       base_class.def(python::constructor&lt;void&gt;());
       boost::python::class_builder&lt;Derived&gt; derived_class(my_module, "Derived");
       derived_class.def(boost::python::constructor&lt;void&gt;());
       python::class_builder&lt;Derived&gt; derived_class(my_module, "Derived");
       derived_class.def(python::constructor&lt;void&gt;());
<b>// Establish the inheritance relationship between Base and Derived
derived_class.declare_base(base_class);</b>
@@ -96,7 +100,7 @@ void initmy_module()
    }
    catch(...)
    {
       boost::python::handle_exception();    // Deal with the exception for Python
       python::handle_exception();    // Deal with the exception for Python
    }
}
</pre>
@@ -135,12 +139,12 @@ struct Base2 {};
struct Derived2 { int f(); };
<hr>
...
   boost::python::class_builder&lt;Base&gt; base2_class(my_module, "Base2");
   base2_class.def(boost::python::constructor&lt;void&gt;());
   python::class_builder&lt;Base&gt; base2_class(my_module, "Base2");
   base2_class.def(python::constructor&lt;void&gt;());
   boost::python::class_builder&lt;Derived2&gt; derived2_class(my_module, "Derived2");
   derived2_class.def(boost::python::constructor&lt;void&gt;());
derived_class.declare_base(base_class, <b>boost::python::without_downcast</b>);
   python::class_builder&lt;Derived2&gt; derived2_class(my_module, "Derived2");
   derived2_class.def(python::constructor&lt;void&gt;());
derived_class.declare_base(base_class, <b>python::without_downcast</b>);
</pre>
</blockquote>
@@ -150,8 +154,8 @@ struct Derived2 { int f(); };
references, or values.
<p>
Next: <a href="special.html">Special Method and Operator Support</a>
Previous: <a href="overloading.html">Function Overloading</a>
Next: <a href="special.html">Special Method Names</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,

View File

@@ -113,8 +113,7 @@ namespace scope as Python member functions.
<h2>Overload Resolution</h2>
<p>
The function overload resolution mechanism in py_cpp works as
follows:
The function overload resolution mechanism works as follows:
<ul>
@@ -124,7 +123,7 @@ namespace scope as Python member functions.
class is found which has a matching attribute, only functions overloaded
in the context of that class are candidates for overload resolution. In
this sense, overload resolution mirrors the C++ mechanism, where a name
in a derived class &ldquo;hides&rdquo; all functions with the same name from a base
in a derived class ``hides'' all functions with the same name from a base
class.
<p>
@@ -133,22 +132,22 @@ namespace scope as Python member functions.
<code>def()</code>ed. The first function whose signature can be made to
match each argument passed is the one which is ultimately called.
This means in particular that you cannot overload the same function on
both &ldquo;<code>int</code>&rdquo; and &ldquo;<code>float</code>&rdquo; because Python
both ``<code>int</code>'' and ``<code>float</code>'' because Python
automatically converts either of the two types into the other one.
If the &ldquo;<code>float</code>&rdquo; overload is found first, it is used
also used for arguments of type &ldquo;<code>int</code>&rdquo; as well, and the
&ldquo;<code>int</code>&rdquo; version of the function is never invoked.
If the ``<code>float</code>'' overload is found first, it is used
also used for arguments of type ``<code>int</code>'' as well, and the
``<code>int</code>'' version of the function is never invoked.
</ul>
<p>
Prev: <a href="overriding.html">Overridable Virtual Functions</a>
Next: <a href="inheritance.html">Special Method Names</a>
Next: <a href="inheritance.html">Inheritance</a>
Previous: <a href="overriding.html">Overridable Virtual Functions</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &ldquo;as
is&rdquo; without express or implied warranty, and with no claim as to
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Nov 26, 2000

View File

@@ -17,7 +17,7 @@
<h2><a name="overriding_example">Example</a></h2>
<p>In this example, it is assumed that <code>world::get()</code> is a virtual
<p>In this example, it is assumed that <code>world::greet()</code> is a virtual
member function:
<blockquote><pre>
@@ -26,7 +26,7 @@ class world
public:
   world(int);
    virtual ~world();
    <b>virtual</b> std::string get() const { return "hi, world"; }
    <b>virtual</b> std::string greet() const { return "hi, world"; }
};
</pre></blockquote>
@@ -65,11 +65,11 @@ struct world_callback : world
: world(x),
m_self(self) {}
std::string get() const // <a href="#derived_3">3</a>
std::string greet() const // <a href="#derived_3">3</a>
{ return boost::python::callback&lt;std::string&gt;::call_method(m_self, "get"); }
static std::string <a name= "default_implementation">default_get</a>(const hello::world& self) const // <a href="#derived_4">4</a>
{ return self.world::get(); }
{ return self.world::greet(); }
private:
PyObject* m_self; // <a href="#derived_1">1</a>
};
@@ -94,7 +94,7 @@ world_class.def(&amp;world::get, "get", &amp;<b>world_callback::default_get</b>)
<blockquote><pre>
&gt;&gt;&gt; class my_subclass(hello.world):
... def get(self):
... def greet(self):
... return 'hello, world'
...
&gt;&gt;&gt; hello.length(my_subclass())
@@ -181,9 +181,9 @@ break the <a
href="http://cs.calvin.edu/c++/C++Standard-Nov97/basic.html#basic.def.odr">ODR</a>).
<p>
Prev: <a href="example1.html">A Simple Example Using py_cpp</a> Next: <a
href="overloading.html">Function Overloading</a> Up: <a href=
"index.html">Top</a>
Next: <a href="overloading.html">Function Overloading</a>
Previous: <a href="example1.html">A Simple Example Using py_cpp</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright

View File

@@ -13,7 +13,7 @@
<p>
In general, raw pointers passed to or returned from functions are problematic
for py_cpp because pointers have too many potential meanings. Is it an iterator?
for BPL because pointers have too many potential meanings. Is it an iterator?
A pointer to a single element? An array? When used as a return value, is the
caller expected to manage (delete) the pointed-to object or is the pointer
really just a reference? If the latter, what happens to Python references to the
@@ -34,12 +34,10 @@ converted from/to Python strings.
<h3>Can you avoid the problem?</h3>
<p>My first piece of advice to anyone with a case not covered above is
&ldquo;find a way to avoid the problem.&rdquo; For example, if you have just one
or two functions returning a pointer to a single (not an array of) <code>const
T*</code> for some wrapped <code>T</code>, you may be able to write a &ldquo;thin
converting wrapper&rdquo; over those two functions as follows (Since py_cpp
converts <code>const T&</code> values <code>to_python</code> by copying the T
into a new extension instance, Foo must have a public copy constructor):
``find a way to avoid the problem.'' For example, if you have just one
or two functions that return a pointer to an individual <code>const
T</code>, and <code>T</code> is a wrapped class, you may be able to write a ``thin
converting wrapper'' over those two functions as follows:
<blockquote><pre>
const Foo* f(); // original function
@@ -47,6 +45,10 @@ const Foo& f_wrapper() { return *f(); }
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>
Foo must have a public copy constructor for this technique to work, since BPL
converts <code>const T&</code> values <code>to_python</code> by copying the <code>T</code>
value into a new extension instance.
<h2>Dealing with the problem</h2>
@@ -118,7 +120,7 @@ return value. You can handle this case by returning a Python tuple:
typedef unsigned ErrorCode;
const char* f(int* in_out_x); // original function
...
#include <boost/python/objects.hpp>
#include &lt;boost/python/objects.hpp&gt;
const boost::python::tuple f_wrapper(int in_x) {
const char* s = f(in_x);
return boost::python::tuple(s, in_x);
@@ -131,8 +133,9 @@ my_module.def(f_wrapper, "f");
&gt;&gt;&gt; str,out_x = f(3)
</pre></blockquote>
<p>
Previous: <a href="enums.html">Enums</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright

View File

@@ -1,11 +1,10 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<title>
Special Method and Operator Support
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center" src=
<img width="277" height="86" id="_x0000_i1025" align="middle" src=
"../../../c++boost.gif" alt="c++boost.gif (8819 bytes)">Special Method and
Operator Support
</h1>
@@ -13,7 +12,7 @@
Overview
</h2>
<p>
Py_cpp supports all of the standard <a href=
BPL supports all of the standard <a href=
"http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/specialnames.html">
special method names</a> supported by real Python class instances <em>
except</em> <code>__complex__</code> (more on the reasons <a href=
@@ -41,12 +40,17 @@
<b><tt class='method'>__init__</tt></b>(<i>self</i>)
<dd>
Initialize the class instance. For extension classes not subclassed in
Python, this is provided by the
<code>boost::python::constructor<...>()</code> construct and should <i>not</i> be explicitly <code>def</code>ed.
Python, <code> __init__</code> is defined by
<pre> my_class.def(boost::python::constructor<...>())</pre>
(see section <a href="example1.html">"A Simple Example Using BPL"</a>).<p>
<dt>
<b><tt class='method'>__del__</tt></b>(<i>self</i>)
<dd>
Called when the extension instance is about to be destroyed.
Called when the extension instance is about to be destroyed. For extension classes
not subclassed in Python, <code> __del__</code> is always defined automatically by
means of the class' destructor.
<dt>
<b><tt class='method'>__repr__</tt></b>(<i>self</i>)
<dd>
@@ -78,7 +82,7 @@
<dt>
<b><tt class='method'>__call__</tt></b> (<var>self</var><big>[</big><var>, args...</var><big>]</big>)
<dd>
Called when the instance is &ldquo;called&rdquo; as a function; if this method
Called when the instance is ``called'' as a function; if this method
is defined, <code><var>x</var>(arg1, arg2, ...)</code> is a shorthand for
<code><var>x</var>.__call__(arg1, arg2, ...)</code>.
</dl>
@@ -100,7 +104,7 @@ std::string to_string(Foo const&amp; f)
boost::python::class_builder&lt;Foo&gt; foo_class(my_module, "Foo");
foo_class.def(&amp;to_string, "__str__");
</pre></blockquote>
Note that py_cpp also supports <em>automatic wrapping</em> of
Note that BPL also supports <em>automatic wrapping</em> of
<code>__str__</code> and <code>__cmp__</code>. This is explained in the <a
href="#numeric">next section</a> and the <a href="#numeric_table">Table of
Automatically Wrapped Methods</a>.
@@ -111,9 +115,9 @@ foo_class.def(&amp;to_string, "__str__");
Numeric operators can be exposed manually, by <code>def</code>ing C++
[member] functions that support the standard Python <a
href="http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/numeric-types.html">numeric
protocols</a>. This is the basic same technique used to expose
protocols</a>. This is the same basic technique used to expose
<code>to_string()</code> as <code>__str__()</code> above, and is <a
href="#numeric_manual">covered in detail below</a>. Py_cpp also supports
href="#numeric_manual">covered in detail below</a>. BPL also supports
<i>automatic wrapping</i> of numeric operators whenever they have already
been defined in C++.
@@ -121,7 +125,7 @@ foo_class.def(&amp;to_string, "__str__");
<p>
Supose we wanted to expose a C++ class
<code>BigNum</code> which supports addition, so that we can write (in C++):
<code>BigNum</code> which supports addition. That is, in C++ we can write:
<blockquote><pre>
BigNum a, b, c;
...
@@ -143,7 +147,7 @@ bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;());
Since BigNum also supports subtraction, multiplication, and division, we
want to export those also. This can be done in a single command by
&ldquo;or&rdquo;ing the operator identifiers together (a complete list of these
``or''ing the operator identifiers together (a complete list of these
identifiers and the corresponding operators can be found in the <a href=
"#numeric_table">Table of Automatically Wrapped Methods</a>):
<blockquote><pre>
@@ -170,7 +174,7 @@ a = i + b;
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;(), boost::python::right_operand&lt;int&gt;());
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;(), boost::python::left_operand&lt;int&gt;());
</pre></blockquote>
Py_cpp uses overloading to register several variants of the same
BPL uses overloading to register several variants of the same
operation (more on this in the context of <a href="#coercion">
coercion</a>). Again, several operators can be exported at once:
<blockquote><pre>
@@ -181,7 +185,7 @@ bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::pyt
</pre></blockquote>
The type of the operand not mentioned is taken from the class being wrapped. In
our example, the class object is <code>bignum_class</code>, and thus the
other operand's type is &ldquo;<code>BigNum const&amp;</code>&rdquo;. You can override
other operand's type is ``<code>BigNum const&amp;</code>''. You can override
this default by explicitly specifying a type in the <code>
operators</code> template:
<blockquote><pre>
@@ -189,15 +193,18 @@ bignum_class.def(boost::python::operators&lt;boost::python::op_add, BigNum&gt;()
</pre></blockquote>
<p>
Note that automatic wrapping uses the <em>expression</em>
&ldquo;<code>left + right</code>&rdquo; and can be used uniformly
``<code>left + right</code>'' and can be used uniformly
regardless of whether the C++ operators are supplied as free functions
<blockquote><pre>
<blockquote><pre>
BigNum operator+(BigNum, BigNum)
</pre></blockquote>
or as member
functions <blockquote><pre>
or as member functions
<blockquote><pre>
BigNum::operator+(BigNum).
</blockquote></pre>
</pre></blockquote>
<p>
For the Python built-in functions <code>pow()</code> and
@@ -218,8 +225,7 @@ namespace boost { namespace python {
<p>
In some cases, automatic wrapping of operators may be impossible or
undesirable. Suppose, for example, that the modulo operation for BigNums
is defined by a set of functions <code>mod()</code> (for automatic
wrapping, we would need <code>operator%()</code>):
is defined by a set of functions called <code>mod()</code>:
<blockquote><pre>
BigNum mod(BigNum const&amp; left, BigNum const&amp; right);
@@ -228,8 +234,9 @@ BigNum mod(int left, BigNum const&amp; right);
</pre></blockquote>
<p>
In order to create the Python operator "__mod__" from these functions, we
have to wrap them manually:
For automatic wrapping of the modulo function, <code>operator%()</code> would be needed.
Therefore, the <code>mod()</code>-functions must be wrapped manually. That is, we have
to export them explicitly with the Python special name "__mod__":
<blockquote><pre>
bignum_class.def((BigNum (*)(BigNum const&amp;, BigNum const&amp;))&amp;mod, "__mod__");
@@ -237,8 +244,8 @@ bignum_class.def((BigNum (*)(BigNum const&amp;, int))&amp;mod, "__mod__");
</pre></blockquote>
<p>
The third form (with <code>int</code> as left operand) cannot be wrapped
this way. We must first create a function <code>rmod()</code> with the
The third form of <code>mod()</code> (with <code>int</code> as left operand) cannot
be wrapped directly. We must first create a function <code>rmod()</code> with the
operands reversed:
<blockquote><pre>
@@ -248,7 +255,7 @@ BigNum rmod(BigNum const&amp; right, int left)
}
</pre></blockquote>
This function must be wrapped under the name "__rmod__":
This function must be wrapped under the name "__rmod__" (standing for "reverse mod"):
<blockquote><pre>
bignum_class.def(&amp;rmod, "__rmod__");
@@ -261,9 +268,9 @@ bignum_class.def(&amp;rmod, "__rmod__");
<p>
Automatic and manual wrapping can be mixed arbitrarily. Note that you
cannot overload the same operator for a given extension class on both
&ldquo;<code>int</code>&rdquo; and &ldquo;<code>float</code>&rdquo;, because Python implicitly
``<code>int</code>'' and ``<code>float</code>'', because Python implicitly
converts these types into each other. Thus, the overloaded variant
found first (be it &ldquo;<code>int</code>&ldquo; or &ldquo;<code>float</code>&rdquo;) will be
found first (be it ``<code>int</code>`` or ``<code>float</code>'') will be
used for either of the two types.
<h3><a name="coercion">Coercion</a></h3>
@@ -271,18 +278,18 @@ bignum_class.def(&amp;rmod, "__rmod__");
Plain Python can only execute operators with identical types on the left
and right hand side. If it encounters an expression where the types of
the left and right operand differ, it tries to coerce these type to a
the left and right operand differ, it tries to coerce these types to a
common type before invoking the actual operator. Implementing good
coercion functions can be difficult if many type combinations must be
supported.
<p>
Py_cpp solves this problem the same way that C++ does: with <em><a
BPL solves this problem the same way that C++ does: with <em><a
href="overloading.html">overloading</a></em>. This technique drastically
simplifies the code neccessary to support operators: you just register
operators for all desired type combinations, and py_cpp automatically
operators for all desired type combinations, and BPL automatically
ensures that the correct function is called in each case; there is no
need for user-defined coercion functions. To enable operator
overloading, py_cpp provides a standard coercion which is <em>implicitly
overloading, BPL provides a standard coercion which is <em>implicitly
registered</em> whenever automatic operator wrapping is used.
<p>
If you wrap all operator functions manually, but still want to use
@@ -295,7 +302,7 @@ bignum_class.def_standard_coerce();
</pre></blockquote>
If you encounter a situation where you absolutely need a customized
coercion, you can overload the "__coerce__" operator itself. The signature
coercion, you can still define the "__coerce__" operator manually. The signature
of a coercion function should look like one of the following (the first is
the safest):
@@ -310,13 +317,22 @@ PyObject* custom_coerce(PyObject* left, PyObject* right);
converted to the same type. Such a function is wrapped as usual:
<blockquote><pre>
// this must be called before any use of automatic operator
// wrapping or a call to some_class.def_standard_coerce()
some_class.def(&amp;custom_coerce, "__coerce__");
</pre></blockquote>
Note that the later use of automatic operator wrapping on a
<code>class_builder</code> or a call to
&ldquo;<code>some_class.def_standard_coerce()</code>&rdquo; will cause any
custom coercion function to be replaced by the standard one.
Note that the standard coercion (defined by use of automatic
operator wrapping on a <code>class_builder</code> or a call to
<code>class_builder::def_standard_coerce()</code>) will never be applied if
a custom coercion function has been registered. Therefore, in
your coercion function you should call
<blockquote><pre>
boost::python::standard_coerce(left, right);
</pre></blockquote>
for all cases that you don't want to handle yourself.
<h3><a name="ternary_pow">The Ternary <code>pow()</code> Operator</a></h3>
@@ -330,7 +346,7 @@ some_class.def(&amp;custom_coerce, "__coerce__");
this is done as usual:
<blockquote><pre>
BigNum power(BigNum const&amp; first, BigNum const&amp; second, BigNum const&amp; module);
BigNum power(BigNum const&amp; first, BigNum const&amp; second, BigNum const&amp; modulus);
typedef BigNum (ternary_function1)(const BigNum&amp;, const BigNum&amp;, const BigNum&amp;);
...
bignum_class.def((ternary_function1)&amp;power, "__pow__");
@@ -353,19 +369,19 @@ bignum_class.def((ternary_function2)&amp;power, "__pow__");
</pre></blockquote>
In the second variant, however, <code>BigNum</code> appears only as second
argument, and in the last one it is the third argument. These functions
must be presented to py_cpp such that that the <code>BigNum</code>
argument, and in the last one it's the third argument. These functions
must be presented to BPL such that that the <code>BigNum</code>
argument appears in first position:
<blockquote><pre>
BigNum rpower(BigNum const&amp; second, int first, int modulus)
{
return power(first, second, third);
return power(first, second, modulus);
}
BigNum rrpower(BigNum const&amp; third, int first, int second)
BigNum rrpower(BigNum const&amp; modulus, int first, int second)
{
return power(first, second, third);
return power(first, second, modulus);
}
</pre></blockquote>
@@ -381,7 +397,7 @@ Note that "__rrpow__" is an extension not present in plain Python.
<h2><a name="numeric_table">Table of Automatically Wrapped Methods</a></h2>
<p>
Py_cpp can automatically wrap the following <a href=
BPL can automatically wrap the following <a href=
"http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/specialnames.html">
special methods</a>:
@@ -630,15 +646,16 @@ Note that "__rrpow__" is an extension not present in plain Python.
to Python's iteration and access protocols. These protocols differ
considerably from the ones found in C++. For example, Python's typical
iteration idiom looks like
<blockquote><pre>
for i in S:
</blockquote></pre>
</pre></blockquote>
while in C++ one writes
while in C++ one writes
<blockquote><pre>
for (iterator i = S.begin(), end = S.end(); i != end)
</blockquote></pre>
for (iterator i = S.begin(), end = S.end(); i != end; ++i)
</pre></blockquote>
<p>One could try to wrap C++ iterators in order to carry the C++ idiom into
Python. However, this does not work very well because
@@ -689,7 +706,7 @@ void throw_key_error_if_end(
// Define some simple wrapper functions which match the Python protocol
// for __getitem__, __setitem__, and __delitem__. Just as in Python, a
// free function with a &ldquo;self&rdquo; first parameter makes a fine class method.
// free function with a ``self'' first parameter makes a fine class method.
const std::string&amp; get_item(const StringMap&amp; self, std::size_t key)
{
@@ -755,13 +772,13 @@ KeyError: 2
<h2><a name="getter_setter">Customized Attribute Access</a></h2>
<p>
Just like built-in Python classes, py_cpp extension classes support <a
Just like built-in Python classes, BPL extension classes support <a
href="http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/attribute-access.html">special
the usual attribute access methods</a> <code>__getattr__</code>,
<code>__setattr__</code>, and <code>__delattr__</code>.
Because writing these functions can
be tedious in the common case where the attributes being accessed are
known statically, py_cpp checks the special names
known statically, BPL checks the special names
<ul>
<li>
@@ -774,10 +791,10 @@ KeyError: 2
to provide functional access to the attribute <em>&lt;name&gt;</em>. This
facility can be used from C++ or entirely from Python. For example, the
following shows how we can implement a &ldquo;computed attribute&rdquo; in Python:
following shows how we can implement a ``computed attribute'' in Python:
<blockquote>
<pre>
&gt;&gt;&gt; class Range(AnyPy_cppExtensionClass):
&gt;&gt;&gt; class Range(AnyBPLExtensionClass):
... def __init__(self, start, end):
... self.start = start
... self.end = end
@@ -793,7 +810,7 @@ KeyError: 2
Direct Access to Data Members
</h4>
<p>
Py_cpp uses the special <code>
BPL uses the special <code>
__xxxattr__<em>&lt;name&gt;</em>__</code> functionality described above
to allow direct access to data members through the following special
functions on <code>class_builder&lt;&gt;</code> and <code>
@@ -873,14 +890,14 @@ if (PyInstance_Check(r)) { ...
</pre>
</blockquote>
<p>
Previous: <a href="inheritance.html">Inheritance</a> Next: <a href=
"under-the-hood.html">A Peek Under the Hood</a> Up: <a href=
"index.html">Top</a>
Next: <a href="under-the-hood.html">A Peek Under the Hood</a>
Previous: <a href="inheritance.html">Inheritance</a>
Up: <a href= "index.html">Top</a>
<p>
&copy; Copyright David Abrahams and Ullrich K&ouml;the 2000.
Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This
document is provided &ldquo;as is&rdquo; without express or implied
document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any purpose.
<p>
Updated: Nov 26, 2000

View File

@@ -22,7 +22,7 @@
"example1.html#add_world_class">add it to the module</a> it goes into the
module's dictionary to be looked up under the name "world".
<p>
Py_cpp uses C++'s template argument deduction mechanism to determine the
BPL uses C++'s template argument deduction mechanism to determine the
types of arguments to functions (except constructors, for which we must
<a href="example1.html#Constructor_example">provide an argument list</a>
because they can't be named in C++). Then, it calls the appropriate
@@ -48,8 +48,8 @@
the top of your module's init function, then <code>def</code> the member
functions later to avoid problems with inter-class dependencies.
<p>
Previous: <a href="overriding.html">Function Overloading</a>
Next: <a href="building.html">Building a Module with Py_cpp</a>
Next: <a href="building.html">Building a Module with BPL</a>
Previous: <a href="special.html">Special Method and Operator Support</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,

View File

@@ -0,0 +1,41 @@
#include <string>
namespace { // Avoid cluttering the global namespace.
// A couple of simple C++ functions that we want to expose to Python.
std::string greet() { return "hello, world"; }
int square(int number) { return number * number; }
}
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
// Python requires an exported function called init<module-name> in every
// extension module. This is where we build the module contents.
extern "C"
#ifdef _WIN32
__declspec(dllexport)
#endif
void initrwgk1()
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("rwgk1");
// Add regular functions to the module.
this_module.def(greet, "greet");
this_module.def(square, "square");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
// Win32 DLL boilerplate
#if defined(_WIN32)
#include <windows.h>
extern "C" BOOL WINAPI DllMain(HINSTANCE, DWORD, LPVOID) { return 1; }
#endif // _WIN32

View File

@@ -0,0 +1,17 @@
r'''>>> import rwgk1
>>> print rwgk1.greet()
hello, world
>>> number = 11
>>> print number, '*', number, '=', rwgk1.square(number)
11 * 11 = 121
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_rwgk1
doctest.testmod(test_rwgk1)
if __name__ == '__main__':
run()

View File

@@ -0,0 +1,217 @@
2000-11-22 10:00
Ullrich fixed bug in operator_dispatcher<op_long>.
2000-11-21 10:00
Changed all class and function names into lower_case.
Ullrich updated documentation for operator wrapping.
2000-11-20 10:00
Ullrich renamed ExtensionClass:register_coerce() into
ExtensionClass:def_standard_coerce() and made it public
Ullrich improved shared_pod_manager.
2000-11-17 15:04
Changed allocation strategy of shared_pod_manager to make it portable.
Added pickling support + tests thanks to "Ralf W. Grosse-Kunstleve"
<rwgk@cci.lbl.gov>
Added a specialization of Callback<const char*> to prevent unsafe usage.
Fixed Ullrich's operator_dispatcher refcount bug
Removed const char* return values from virtual functions in tests; that
usage was unsafe.
Ullrich changed Module::add() so that it steals a reference (fix of refcount bug)
Ullrich added operator_dispatcher::create() optimization
Ullrich changed design and implementation of TypeObjectBase::enable() (to eliminate low-level
code) and added shared_pod_manager optimization.
2000-11-15 12:01
Fixed refcount bugs in operator calls.
Added callback_adjust_refcount(PyObject*, Type<T>) to account for different ownership
semantics of Callback's return types and Caller's arguments (which both use from_python())
This bug caused refcount errors during operator calls.
Moved operator_dispatcher into extclass.cpp
Gave it shared ownership of the objects it wraps
Introduced sequence points in extension_class_coerce for exception-safety
UPPER_CASE_MACRO_NAMES
MixedCase template type argument names
Changed internal error reporting to use Python exceptions so we don't force the
user to link in iostreams code
Changed error return value of call_cmp to -1
Moved unwrap_* functions out of operator_dispatcher. This was transitional: when
I realized they didn't need to be declared in extclass.h I moved them out, but
now that operator_dispatcher itself is in extclass.cpp they could go back in.
Numerous formatting tweaks
Updated the BoundFunction::create() optimization and enabled it so it could actually be used!
2000-11-15 00:26
Made Ullrich's operators support work with MSVC
Cleaned up operators.h such that invalid define_operator<0> is no longer needed.
Ullrich created operators.h to support wrapping of C++ operators (including the "__r*__" forms).
He added several auxiliary classes to extclass.h and extclass.cpp (most importantly,
py::detail::operator_dispatcher and py::operators)
2000-11-13 22:29
removed obsolete ExtensionClassFromPython for good.
removed unused class ExtensionType forward declaration
2000-11-12 13:08
Added enum_as_int_converters for easier enum wrapping
Introduced new conversion namespace macros:
PY_BEGIN_CONVERSION_NAMESPACE,
PY_END_CONVERSION_NAMESPACE,
PY_CONVERSION
callback.h, gen_callback.py:
Added call() function so that a regular python function (as opposed to
method or other function-as-attribute) can be called.
Added newlines for readability.
class_wrapper.h:
Fixed a bug in add(), which allows non-method class attributes
Ullrich has added def_raw for simple varargs and keyword support.
Fixed version number check for __MWERKS__
Added tests for enums and non-method class attributes
objects.h/objects.cpp:
Added py::String operator*= and operator* for repetition
Change Dict::items(), keys(), and values() to return a List
Added template versions of set_item, etc., methods so that users can optionally
use C++ types that have to_python() functions as parameters.
Changed various Ptr by-value parameters to const Ptr&
======= Release =======
2000-11-06 0:22
Lots of documentation updates
added 4-argument template constructor to py::Tuple
added "add" member function to ClassWrapper<> to allow arbitrary Python
objects to be added to an extension class.
gen_all.py now generates support for n argument member functions and n+1
argument member functions at the suggestion of "Ralf W. Grosse-Kunstleve"
<rwgk@cci.lbl.gov>
Added regression tests and re-ordered declare_base calls to verify that the
phantom base class issue is resolved.
2000-11-04 17:35
Integrated Ullrich Koethe's brilliant from_python_experiment for better
error-reporting in many cases.
extclass.h, gen_extclass.py:
removed special-case MSVC code
added much commentary
removed unused py_copy_to_new_value_holder
init_function.h, gen_init_function.py:
added missing 'template' keyword on type-dependent template member usage
removed special-case MSVC code
added much commentary
2000-11-04 0:36
Removed the need for the phantom base class that screwed up inheritance
hierarchies, introduced error-prone ordering dependencies, and complexified
logic in many places!
extclass.h: Added some explanatory comments, removed wasteful m_self member
of HeldInstance
extclass_demo.cpp: Added #pragmas which allow compilation in ansi strict
mode under Metrowerks
functions.h: Added virtual_function as part of phantom base class removal;
expanded commentary
pyptr.h: Added some missing 'typename's and a GCC workaround fix
subclass.cpp: Added missing string literal const_cast<>s.
2000-11-03 10:58
Fix friend function instantiation bug caught by Metrowerks (thanks
Metrowerks!)
Add proof-of-concept for one technique of wrapping function that return a
pointer
Worked around MSVC optimizer bug by writing to_python(double) and
to_python(float) out-of-line
2000-11-02 23:25
Add /Zm200 option to vc6_prj to deal with MSVC resource limitations
Remove conflicting /Ot option from vc6_prj release build
======= Release =======
2000-11-02 17:42
Added a fix for interactions between default virtual function
implementations and declare_base(). You still need to write your
declare_base() /after/ all member functions have been def()d for the two
classes concerned. Many, many thanks to Ullrich Koethe
<koethe@informatik.uni-hamburg.de> for all his work on this.
Added missing conversions:
to_python(float)
from_python(const char* const&)
from_python(const double&)
from_python(const float&)
Added a Regression test for a reference-counting bug thanks to Mark Evans
(<mark.evans@clarisay.com>)
const-ify ClassBase::getattr()
Add repr() function to Class<T>
Add to_python/from_python conversions for PyPtr<T>
Standardize set_item/get_item interfaces (instead of proxies) for Dict and List
Add Reprable<> template to newtypes.h
Fix a bug wherein the __module__ attribute would be lost for classes that have a
default virtual function implementation.
Remove extra ';' in module.cpp thanks to "Ralf W. Grosse-Kunstleve"
<rwgk@cci.lbl.gov>
Fix a bug in the code of example1.html

27
libs/python/src/Makefile Normal file
View File

@@ -0,0 +1,27 @@
include ../build/Makefile
LIBSRC = \
classes.cpp \
conversions.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
lib: $(TARGET_LIBFILENAME)
install: lib
@if [ ! -d $(TARGET_LIBDIR) ] ; then mkdir -p $(TARGET_LIBDIR) ; fi
cp $(TARGET_LIBFILENAME) $(TARGET_LIBDIR)
$(TARGET_LIBFILENAME): $(LIBOBJ)
rm -f $(TARGET_LIBFILENAME)
ar cq $(TARGET_LIBFILENAME) $(LIBOBJ)
clean:
rm -rf *.o *$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out

View File

@@ -840,7 +840,27 @@ namespace {
void add_current_module_name(dictionary& name_space)
{
static string module_key("__module__", string::interned);
name_space.set_item(module_key, module_builder::name());
// If the user didn't specify a __module__ attribute already
if (name_space.get_item(module_key).get() == 0)
{
if (module_builder::initializing())
{
// The global __name__ is not properly set in this case
name_space.set_item(module_key, module_builder::name());
}
else
{
// Get the module name from the global __name__
PyObject *globals = PyEval_GetGlobals();
if (globals != NULL)
{
PyObject *module_name = PyDict_GetItemString(globals, "__name__");
if (module_name != NULL)
name_space.set_item(module_key, module_name);
}
}
}
}
}

View File

@@ -46,24 +46,19 @@ BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
namespace detail {
tuple standard_coerce(ref l, ref r)
{
// Introduced sequence points for exception-safety.
ref first(detail::operator_dispatcher::create(l, l));
ref second(r->ob_type == &detail::operator_dispatcher::type_obj
? r
: ref(detail::operator_dispatcher::create(r, ref())));
tuple extension_class_coerce(ref l, ref r)
{
// Introduced sequence points for exception-safety.
ref first(operator_dispatcher::create(l, l));
ref second;
if(r->ob_type == &operator_dispatcher::type_obj)
{
second = r;
}
else
{
second = ref(operator_dispatcher::create(r, ref()));
}
return boost::python::tuple(first, second);
}
return tuple(first, second);
}
namespace detail {
enum { unwrap_exception_code = -1000 };

View File

@@ -707,8 +707,6 @@ class extension_instance : public instance
// Template function implementations
//
tuple extension_class_coerce(ref l, ref r);
template <class T, class U>
extension_class<T, U>::extension_class()
: extension_class_base(typeid(T).name())
@@ -729,7 +727,7 @@ void extension_class<T, U>::def_standard_coerce()
ref coerce_fct = dict().get_item(string("__coerce__"));
if(coerce_fct.get() == 0) // not yet defined
this->def(&extension_class_coerce, "__coerce__");
this->def(&standard_coerce, "__coerce__");
}
template <class T, class U>

View File

@@ -14,10 +14,15 @@ namespace {
ref name_holder;
}
bool module_builder::initializing()
{
return name_holder.get() != 0;
}
string module_builder::name()
{
// If this fails, you haven't created a module_builder object
assert(name_holder.get() != 0);
assert(initializing());
return string(name_holder);
}
@@ -29,6 +34,11 @@ module_builder::module_builder(const char* name)
name_holder = ref(PyObject_GetAttrString(m_module, const_cast<char*>("__name__")));
}
module_builder::~module_builder()
{
name_holder.reset();
}
void
module_builder::add(detail::function* x, const char* name)
{

19
libs/python/test/Makefile Normal file
View File

@@ -0,0 +1,19 @@
include ../build/Makefile
LIBBPL = ../src/$(TARGET_LIBFILENAME)
test: test_result
@if [ ! -f test_result -o -s test_result ] ; then \
echo "tests failed:" ; cat test_result ; exit 1; \
else echo "tests OK" ; fi
test_result: testmodule$(MODULE_EXTENSION) comprehensive.py
@rm -f test_result
python comprehensive.py > test_result
testmodule$(MODULE_EXTENSION): $(LIBBPL) comprehensive.o
$(CXX_SHARED_LINKER) -o testmodule$(MODULE_EXTENSION) comprehensive.o $(LIBBPL) $(LIBS)
clean:
rm -rf *.o *$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out test_result

View File

@@ -11,7 +11,7 @@
#include <math.h> // for pow()
#include <boost/rational.hpp>
namespace extclass_demo {
namespace bpl_test {
FooCallback::FooCallback(PyObject* self, int x)
: Foo(x), m_self(self)
@@ -714,12 +714,14 @@ const Record* get_record()
return &v;
}
template class boost::python::class_builder<Record>; // explicitly instantiate
} // namespace bpl_test
} // namespace extclass_demo
namespace boost { namespace python {
template class class_builder<bpl_test::Record>; // explicitly instantiate
}} // namespace boost::python
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
inline PyObject* to_python(const extclass_demo::Record* p)
inline PyObject* to_python(const bpl_test::Record* p)
{
return to_python(*p);
}
@@ -731,7 +733,7 @@ BOOST_PYTHON_END_CONVERSION_NAMESPACE
/* */
/************************************************************/
namespace extclass_demo {
namespace bpl_test {
struct EnumOwner
{
@@ -753,8 +755,8 @@ struct EnumOwner
}
namespace boost { namespace python {
template class enum_as_int_converters<extclass_demo::EnumOwner::enum_type>;
using extclass_demo::pow;
template class enum_as_int_converters<bpl_test::EnumOwner::enum_type>;
using bpl_test::pow;
}} // namespace boost::python
// This is just a way of getting the converters instantiated
@@ -763,7 +765,7 @@ namespace boost { namespace python {
//{
//};
namespace extclass_demo {
namespace bpl_test {
/************************************************************/
/* */
@@ -1036,7 +1038,7 @@ void init_module(boost::python::module_builder& m)
world_class.def(world_setstate, "__setstate__");
}
PyObject* raw(boost::python::tuple const& args, boost::python::dictionary const& keywords)
PyObject* raw(const boost::python::tuple& args, const boost::python::dictionary& keywords)
{
if(args.size() != 2 || keywords.size() != 2)
{
@@ -1055,21 +1057,21 @@ PyObject* raw(boost::python::tuple const& args, boost::python::dictionary const&
void init_module()
{
boost::python::module_builder demo("demo");
init_module(demo);
boost::python::module_builder test("test");
init_module(test);
// Just for giggles, add a raw metaclass.
demo.add(new boost::python::meta_class<boost::python::instance>);
test.add(new boost::python::meta_class<boost::python::instance>);
}
extern "C"
#ifdef _WIN32
__declspec(dllexport)
#endif
void initdemo()
void inittest()
{
try {
extclass_demo::init_module();
bpl_test::init_module();
}
catch(...) {
boost::python::handle_exception();
@@ -1083,7 +1085,7 @@ CompareIntPairPythonClass::CompareIntPairPythonClass(boost::python::module_build
def(&CompareIntPair::operator(), "__call__");
}
} // namespace extclass_demo
} // namespace bpl_test
#if defined(_WIN32)
@@ -1124,7 +1126,7 @@ BOOL WINAPI DllMain(
switch(fdwReason)
{
case DLL_PROCESS_DETACH:
assert(extclass_demo::total_Ints == 0);
assert(bpl_test::total_Ints == 0);
}
#endif

View File

@@ -6,8 +6,8 @@
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef EXTCLASS_DEMO_DWA052200_H_
# define EXTCLASS_DEMO_DWA052200_H_
#ifndef BPL_TEST_DWA052200_H_
# define BPL_TEST_DWA052200_H_
//
// Example code demonstrating extension class usage
//
@@ -21,7 +21,7 @@
# include <string>
# include <map>
namespace extclass_demo {
namespace bpl_test {
//
// example: Foo, Bar, and Baz are C++ classes we want to wrap.
@@ -226,6 +226,6 @@ struct CompareIntPairPythonClass
CompareIntPairPythonClass(boost::python::module_builder&);
};
} // namespace extclass_demo
} // namespace bpl_test
#endif // EXTCLASS_DEMO_DWA052200_H_
#endif // BPL_TEST_DWA052200_H_

View File

@@ -209,7 +209,7 @@ Polymorphism also works:
Pickling tests:
>>> world.__module__
'demo'
'test'
>>> world.__safe_for_unpickling__
1
>>> world.__reduce__()
@@ -1072,7 +1072,7 @@ test methodologies for wrapping functions that return a pointer
1
'''
from demo import *
from test import *
import string
import re
import sys
@@ -1080,8 +1080,8 @@ import sys
def run(args = None):
if args is not None:
sys.argv = args
import doctest, test_extclass
doctest.testmod(test_extclass)
import doctest, comprehensive
doctest.testmod(comprehensive)
if __name__ == '__main__':
run()

1112
libs/python/test/doctest.py Normal file

File diff suppressed because it is too large Load Diff

426
libs/python/todo.txt Normal file
View File

@@ -0,0 +1,426 @@
Check for const reference parameters in all from_python functions in py.h, including implementations.
Better python and C++ exception handling/error reporting.
long long support
use Python generic numeric coercion in from_python() for C++ numeric types
Rename PyPtr to Reference.
Report Cygwin linker memory issues
__init__ stuff
Make abstract classes non-instantiable (?)
Call default __init__ functions automatically where applicable (?)
Support for Python LONG types in Objects.h
Throw TypeError after asserting when objects from objects.cpp detect a type mismatch.
Figure out how to package everything as a shared library.
Unicode string support
Add read-only wrapper for __dict__ attribute
Objects.h support for generic objects, Sequence objects, etc.
empty() member functions for objects.hpp
Testing
Python 2.0
object revival in __del__
More thorough tests of objects.h/cpp classes
Better reference-count checking
Optimizations
Remove one level of indirection on type objects (no vtbl?).
Specializations of Caller<> for commmon combinations of argument types (?)
Replace uses of XXXable classes
Don't allocate instance __dict__ unless used.
Documentation:
differences between Python classes and ExtensionClasses
additional capabilities of ExtensionClasses
slice adjustment
Why special attributes other than __doc__ and __name__ are immutable.
An example of the problems with the built-in Python classes.
>>> class A:
... def __getattr__(self, name):
... return 'A.__getattr__'
...
>>> class B(A): pass
...
>>> class C(B): pass
...
>>> C().x
'A.__getattr__'
>>> B.__bases__ = ()
>>> C().x
'A.__getattr__'
Smart pointers
#ifndef PY_NO_INLINE_FRIENDS_IN_NAMESPACE
namespace py {
#endif
template <class T>
struct VtkConverters
{
typedef py::PyExtensionClassConverters<T> Converters;
friend vtk_ptr<T>& from_python(PyObject* p, py::Type<vtk_ptr<T>&>)
{ return Converters::ptr_from_python(p, py::Type<vtk_ptr<T> >()); }
friend vtk_ptr<T>& from_python(PyObject* p, py::Type<vtk_ptr<T> >)
{ return Converters::ptr_from_python(p, py::Type<vtk_ptr<T> >()); }
friend const vtk_ptr<T>& from_python(PyObject* p, py::Type<const vtk_ptr<T>&>)
{ return Converters::ptr_from_python(p, py::Type<vtk_ptr<T> >()); }
friend PyObject* to_python(vtk_ptr<T> x)
{ return Converters::ptr_to_python(x); }
};
#ifndef PY_NO_INLINE_FRIENDS_IN_NAMESPACE
}
#endif
template <class T>
struct VtkWrapper : py::ClassWrapper<T>, py::VtkConverters<T>
{
typedef py::ClassWrapper<T> Base;
VtkWrapper(Module& module, const char* name)
: Base(module, name) {}
};
exception handling
Advanced Topics:
Advanced Type Conversion
adding conversions for fundamental types
generic conversions for template types (with partial spec).
Interacting with built-in Python objects and types from C++
dealing with non-const reference/pointer parameters
extending multiple-argument support using gen_all.py
Fancy wrapping tricks
templates
Yes. If you look at the examples in extclass_demo.cpp you'll see that I have
exposed several template instantiations (e.g. std::pair<int,int>) in Python.
Keep in mind, however, that you can only expose a template instantiation,
not a template. In other words, MyTemplate<Foo> can be exposed. MyTemplate
itself cannot.
Well, that's not strictly true. Wow, this is more complicated to explain
than I thought.
You can't make an ExtensionClass<MyTemplate>, since after all MyTemplate is
not a type. You can only expose a concrete type to Python.
What you *can* do (if your compiler supports partial ordering of function
templates - MSVC is broken and does not) is to write appropriate
from_python() and to_python() functions for converting a whole class of
template instantiations to/from Python. That won't let you create an
instance of MyTemplate<SomePythonType> from Python, but it will let you
pass/return arbitrary MyTemplate<SomeCplusplusType> instances to/from your
wrapped C++ functions.
template <class T>
MyTemplate<T> from_python(PyObject* x, py::Type<MyTemplate<T> >)
{
// code to convert x into a MyTemplate<T>... that part is up to you
}
template <class T>
PyObject* from_python(const MyTemplate<T>&)
{
// code to convert MyTemplate<T> into a PyObject*... that part is up to
you
}
For example, you could use this to convert Python lists to/from
std::vector<T> automatically.
Pointer return values
Case 1:
> I am now also able to wrap the problematic TextRecordIterator for Python.
> However, one of its function compiles with this warning:
>
> d:\py_cpp/caller.h(33) : warning C4800: 'const class Record *const '
> : forcing value to bool 'true' or 'false' (performance warning)
> d:\py_cpp/functions.h(54) : see reference to function template
> instantiation 'struct _object *__cdecl py::Caller::call(const class Record
> *const (__thiscall TextRecordIterator::*)(void),struct _object *,struct
> _object *)' being compiled
>
> If you look at the offending code, you'll see that we really do need to
> get back that pointer:
>
> const Record* const TextRecordIterator::Next() {
> if (fStatus != RecordIterator::SUCCESS) {
> return 0;
> } else {
> return &fData;
> }
> }
>
> The point of the TextRecordIterator is to hand over one reord after
> another. A bool wouldn't do us much good here :-)
>
> Do you have any suggestions for fixing this?
In general, py_cpp doesn't automatically convert pointer return values
to_python because pointers have too many potential meanings. Is it an
iterator? A pointer to a single element? An array? Is ownership being passed
to Python or is the pointer really just a reference? If the latter, what
happens when some C++ code deletes the referent. The only exception to this
rule is const char*, since it has a generally accepted interpretation (could
be trouble with some generic code, though!)
If you have wrapped the Record class, you could add this to namespace py:
PyObject* to_python(const Record* p) {
return to_python(*p);
}
Of course, this will cause the Record class to be copied. If you can't live
with that (Record would have to be /really/ heavyweight to make this
worthwhile), you can follow one of these dangerous approaches:
1. Use the technique I described with dangerous_array in
http://www.egroups.com/message/boost/6196. You do not have to expose Record
explicitly in this case. Instead the class you expose will be more of a
Record_proxy
2. Wrap Record in the usual way, then add the following to namespace py:
PyObject* to_python(const Record* p)
{
return ExtensionClass<Record>::ptr_to_python(const_cast<Record*>(p));
}
This will cause the Record* to be treated as though it were an owning smart
pointer, even though it's not. Be sure you don't use the reference for
anything from Python once the pointer becomes invalid, though. Don't worry
too much about the const-correctness issue: Const-correctness is completely
lost to Python anyway!
3. As above, but instead wrap const Record rather than plain Record. Then
you can avoid the const_cast, but you obviously can't def() any non-const
member functions of Record.
Case 2:
> I have yet another question. This is more a general wrapper question.
> Let me say that there is a function that returns a float* which most
> probably is an array. Similarly if I have a function that takes a
> float* as an argument, what is the best way of wrapping this?
I think you have correctly perceived that it doesn't make sense for me to
automatically convert all pointers, since the ownership semantics are so
blurry.
> 1) If the array is small it makes sense to convert it to either a
> tuple or list. What is the easiest way to do this?? I am looking
> for a way that makes one write the least code. :)
How can you tell the length of the array from a single pointer?
Once you've answered that question, you can expose a wrapper function which
returns an instance of the py::Tuple or py::List class from objects.h. If
you are using a List, for example, you could write something like this:
py::List wrap_f()
{
T* start = f();
py::List x;
for (T* p = start; p != start + length_constant; ++p)
x.push_back(py::to_python(*p));
return x;
}
> 2) If the array is large it may not make sense to use a list/tuple
> esp. if the values are used for computationally intense programs.
In this case you can do one of several somewhat dangerous things. Why
dangerous? Because python can not control the lifetime of the data, so the
data in the array may be destroyed or become invalid before the last
reference to it disappears. The basic approach is to make a small C++ class
which contains the pointer, and expose that:
// UNTESTED
template <class T>
struct dangerous_array
{
dangerous_array(T* start, T* end)
: m_start(start), m_end(end) {}
// exposed as "__len__"
std::size_t length() {
return m_end - m_start;
}
// exposed as "__getitem__"
T get_item(std::size_t n) {
check_range(n);
return start[n];
}
// exposed as "__setitem__" if the array is mutable
void set_item(std::size_t n, const T& x) {
check_range(n);
start[n] = x;
}
private:
void check_range(std::size_t n) {
if (n >= m_end - m_start) {
PyErr_SetString(PyExc_IndexError, "array index out of range");
throw py::ErrorAlreadySet;
}
}
T* m_start;
T* m_end;
};
A reasonably safe approach would be to make a wrapper function for each
function that returns a T*, and expose that instead. If you're too lazy and
you really like to live on the edge, though, you can write to_python(T*) in
terms of to_python(const dangerous_array<T>&), and you'll automatically
convert all T* return values to a wrapped dangerous_array.
> 3) For an arbitrary class "class_A", say, can py_cpp handle
> references to class_A &instance, or class_A *instance?? i.e. will it
> wrap function calls to such objects? This question is obviously
> related to the earlier questions.
Yes, iff class_A has been exposed to python with a ClassWrapper<class_A>.
See http://people.ne.mediaone.net/abrahams/downloads/under-the-hood.html for
a few details.
raw C++ arrays
You could expose a function like this one to get the desired effect:
#include <py_cpp/objects.h>
void set_len(UnitCell& x, py::Tuple tuple)
{
double len[3];
for (std::size_t i =0; i < 3; ++i)
len[i] = py::from_python(tuple[i].get(), py::Type<double>());
x.set_len(len);
}
Types that are already wrapped by other libraries
It's not documented yet, but you should be able to use a raw PyObject* or a
py::Ptr as one parameter to your C++ function. Then you can manipulate it as
any other generic Python object.
Alternatively, If the NTL gives you a C/C++ interface, you can also write
your own converter function:
some_ntl_type& from_python(PyObject* p, py::Type<some_NTL_type&>)
{
// an Example implementation. Basically, you need
// to extract the NTL type from the PyObject*.
if (p->ob_type != NTL_long_type) {
PyErr_SetString(PyExc_TypeErr, "NTL long required");
throw py::ArgumentError();
}
return *static_cast<some_NTL_type*>(p);
}
then the C++ functions you're wrapping can take a some_NTL_type& parameter
directly.
"Thin converting wrappers" for constructors
hijack some of the functionality
described in the section on Overridable Virtual Functions (even though you
don't have any virtual functions). I suggest this workaround:
struct UnitCellWrapper : UnitCell
{
UnitCellWrapper(PyObject* self, py::Tuple x, py::Tuple y)
: UnitCell(from_python(x[1], py::Type<double>()),
from_python(x[2], py::Type<double>()),
from_python(x[3], py::Type<double>()),
from_python(y[1], py::Type<double>()),
from_python(y[2], py::Type<double>()),
from_python(y[3], py::Type<double>()))
{}
}
py::ClassWrapper<UnitCell, UnitCellWrapper> unit_cell_class;
unit_cell_class.def(py::Constructor<py::Tuple, py::Tuple>());
...
returning references to wrapped objects
the importance of declaration order of ClassWrappers/ExtensionInstances
out parameters and non-const pointers
Calling back into Python:
// caveat: UNTESTED!
#include <py_cpp/pyptr.h>
#include <py_cpp/callback.h>
#include <py_cpp/py.h>
#include <Python.h>
int main()
{
try {
py::Ptr module(PyImport_ImportModule("weapons"));
const int strength = 10;
const char* manufacturer = "Vordon Empire";
py::Ptr a_blaster(py::Callback<py::Ptr>::call_method(
module.get(), "Blaster", strength, manufacturer));
py::Callback<void>::call_method(a_blaster.get(), "Fire");
int old_strength = py::Callback<int>::call_method(a_blaster.get(), "get_strength");
py::Callback<void>::call_method(a_blaster.get(), "set_strength", 5);
}
catch(...)
{
}
}
Miscellaneous
About the vc6 project and the debug build
About doctest.py
Boost remarks:
> > One of us is completely nuts ;->. How can I move the test
> > (is_prefix(enablers[i].name + 2, name + 2)) outside the loop if it
depends
> > on the loop index, i?
> >
> name += 2;
> for()
> {
> if (is_prefix(enablers[i].name + 2, name))
> }
I see now. I guess I should stop pussyfooting and either go for optimization
or clarity here, eh?
------
> Re: Dict
> Why abbreviate this? Code is read 5 or 6 times for every time its
> written. The few extra characters don't affect compile time or program
> speed. It's part of my personal goal of write what you mean, name them
what
> they are.
I completely agree. Abbrevs rub me the wrong way, 2 ;->
-------
Later:
keyword and varargs?
Put explicit Type<> arguments at the beginnings of overloads, to make them look more like template instance specifications.
Known bugs
can't handle 'const void' return values
Who returns 'const void'? I did it once, by mistake ;)