2
0
mirror of https://github.com/boostorg/variant.git synced 2026-02-01 09:02:11 +00:00
Files
variant/doc/tutorial/advanced.xml
2003-08-29 16:29:25 +00:00

247 lines
9.7 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<section id="variant.tutorial.advanced">
<title>Advanced Topics</title>
<using-namespace name="boost"/>
<using-class name="boost::variant"/>
<para>This section discusses several features of the library often required
for advanced uses of <code>variant</code>. Unlike in the above section, each
feature presented below is largely independent of the others. Accordingly,
this section is not necessarily intended to be read linearly or in its
entirety.</para>
<section id="variant.tutorial.preprocessor">
<title>Preprocessor macros</title>
<para>While the <code>variant</code> class template's variadic parameter
list greatly simplifies use for specific instantiations of the template,
it significantly complicates use for generic instantiations. For instance,
while it is immediately clear how one might write a function accepting a
specific <code>variant</code> instantiation, say
<code>variant&lt;int, std::string&gt;</code>, it is less clear how one
might write a function accepting any given <code>variant</code>.</para>
<para>Due to the lack of support for true variadic template parameter lists
in the C++98 standard, the preprocessor is needed. While the
<libraryname>Preprocessor</libraryname> library provides a general and
powerful solution, the need to repeat
<code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code>
unnecessarily clutters otherwise simple code. Therefore, for common
use-cases, this library provides its own macro
<code><macroname>BOOST_VARIANT_ENUM_PARAMS</macroname></code>.</para>
<para>This macro simplifies for the user the process of declaring
<code>variant</code> types in function templates or explicit partial
specializations of class templates, as shown in the following:
<programlisting>// general cases
template &lt;typename T&gt; void some_func(const T &amp;);
template &lt;typename T&gt; class some_class;
// function template overload
template &lt;<emphasis role="bold">BOOST_VARIANT_ENUM_PARAMS(typename T)</emphasis>&gt;
void some_func(const <classname>boost::variant</classname>&lt;<emphasis role="bold">BOOST_VARIANT_ENUM_PARAMS(T)</emphasis>&gt; &amp;);
// explicit partial specialization
template &lt;<emphasis role="bold">BOOST_VARIANT_ENUM_PARAMS(typename T)</emphasis>&gt;
class some_class&lt; <classname>boost::variant</classname>&lt;<emphasis role="bold">BOOST_VARIANT_ENUM_PARAMS(T)</emphasis>&gt; &gt;;</programlisting>
</para>
</section>
<section id="variant.tutorial.type-sequence-syntax">
<title>Alternate declaration syntax:
<code>variant&lt; <emphasis>type-sequence</emphasis> &gt;</code></title>
<para>While convenient for typical uses, the <code>variant</code> class
template's variadic template parameter list is limiting in two significant
dimensions. First, due to the lack of support for true variadic template
parameter lists in C++, the number of parameters must be limited to some
implementation-defined maximum (namely,
<code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code>).
Second, the nature of parameter lists in general makes compile-time
manipulation of the lists (metaprogramming) excessively difficult.</para>
<para>To solve these problems <code>variant</code> offers the following
alternative declaration syntax:
<code>variant&lt; <emphasis>type-sequence</emphasis> &gt;</code>. More
precisely, if an <libraryname>MPL</libraryname>-compatible sequence is
provided as the first argument to <code>variant</code>, the types
exposed therein will constitute the set of bounded types for the
<code>variant</code>. For instance,
<programlisting>typedef mpl::vector&lt; std::string &gt; types_initial;
typedef mpl::push_front&lt; types_initial, int &gt;::type types;
<classname>boost::variant</classname>&lt; types &gt; v1;</programlisting>
behaves equivalently to
<programlisting><classname>boost::variant</classname>&lt; int, std::string &gt; v2;</programlisting>
</para>
<para><emphasis role="bold">Portability</emphasis>: Unfortunately, due to
standard conformance issues in several compilers, the alternate
declaration syntax described above is not universally available. On these
compilers the library indicates its lack of support for the syntax via the
definition of the preprocessor symbol
<code><macroname>BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT</macroname></code>.</para>
</section>
<section id="variant.tutorial.recursive-variant">
<title>Recursive types with <code>recursive_variant</code></title>
<para>Recursive types facilitate the construction of complex semantics from
simple snytax. For instance, nearly every programmer is familiar with the
canonical definition of a linked list implementation, whose simple
definition allows sequences of unlimited length:
<programlisting>template &lt;typename T&gt;
struct list_node
{
T data;
list_node * next;
};</programlisting>
</para>
<para>The nature of <code>variant</code> as a reusable class template
unfortunately precludes the straightforward construction of recursive
<code>variant</code> types. Consider for instance a likely initial attempt
at construction of a tree structure, which uses <code>std::vector</code>
to provide an unlimited number of branches:
<programlisting>typedef <classname>boost::variant</classname>&lt;
int
, std::vector&lt; /* ??? */ &gt;
&gt; int_tree_t;</programlisting>
</para>
<para>Unlike the <code>list_node</code> example above,
<code>int_tree_t</code> isn't in scope until the end of the declaration.
The <code>boost::recursive_variant</code> class template solves the
problem with clean, meaningful syntax:
<programlisting>typedef <classname>boost::recursive_variant</classname>&lt;
int
, std::vector&lt; <classname>boost::recursive_variant_</classname> &gt;
&gt;::type int_tree_t;</programlisting>
</para>
<para>Note the trailing <code>::type</code>, accessing the nested type of
<code>recursive_variant</code>. This less-than-ideal syntax is required
due to the lack of template typedefs in C++98. Once declared, however,
use of the resultant <code>variant</code> type is as expected:
<programlisting>std::vector&lt; int_tree_t &gt; subresult;
subresult.push_back(3);
subresult.push_back(5);
std::vector&lt; int_tree_t &gt; result;
result.push_back(1);
result.push_back(subresult);
result.push_back(7);
int_tree_t var(result);</programlisting>
</para>
<para>One might represent the resultant content of <code>var</code> as
<code>( 1 ( 3 5 ) 7 )</code>. The &quot;depth&quot; of this tree could
of course be greater, and is in fact limited only by available
memory.</para>
<para><emphasis role="bold">Portability</emphasis>: Unfortunately, due to
standard conformance issues in several compilers,
<code>recursive_variant</code> is not universally supported. On these
compilers the library indicates its lack of support for via the definition
of the preprocessor symbol
<code><macroname>BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT</macroname></code>.</para>
<!-- TODO: mention boost::incomplete workaround -->
</section>
<section id="variant.tutorial.binary-visitation">
<title>Binary visitation</title>
<para>As the tutorial above demonstrates, visitation is a powerful mechanism
for manipulating <code>variant</code> content. Binary visitation further
extends the power and flexibility of visitation by allowing simultaneous
visitation of the content of two different <code>variant</code>
objects.</para>
<para>Unfortunately, this feature requires that binary visitors are
incompatible with the visitor objects discussed in the tutorial above, as
they must operate on two arguments. The following demonstrates the
implementation of a binary visitor:
<programlisting>class are_strict_equals
: public <classname>boost::static_visitor</classname>&lt;bool&gt;
{
public:
template &lt;typename T, typename U&gt;
bool operator()( const T &amp;, const U &amp; )
{
return false; // cannot compare different types
}
template &lt;typename T&gt;
bool operator()( const T &amp; lhs, const T &amp; rhs )
{
return lhs == rhs;
}
};</programlisting>
</para>
<para>As expected, the visitor is applied to two <code>variant</code>
arguments by means of <code>apply_visitor</code>:
<programlisting><classname>boost::variant</classname>&lt; int, std::string &gt; v1( "hello" );
<classname>boost::variant</classname>&lt; double, std::string &gt; v2( "hello" );
assert( <functionname>boost::apply_visitor</functionname>(are_strict_equals(), v1, v2) );
<classname>boost::variant</classname>&lt; int, const char * &gt; v3( "hello" );
assert( !<functionname>boost::apply_visitor</functionname>(are_strict_equals(), v1, v3) );</programlisting>
</para>
<para>Finally, we must note that the function object returned from the
&quot;delayed&quot; form of
<code><functionname>apply_visitor</functionname></code> also supports
binary visitation, as the following demonstrates:
<programlisting>typedef <classname>boost::variant</classname>&lt;double, std::string&gt; my_variant;
std::vector&lt; my_variant &gt; seq1;
seq1.push_back("pi is close to ");
seq1.push_back(3.14);
std::list&lt; my_variant &gt; seq2;
seq2.push_back("pi is close to ");
seq2.push_back(3.14);
are_strict_equals visitor;
assert( std::equal(
v1.begin(), v1.end(), v2.begin()
, <functionname>boost::apply_visitor</functionname>( visitor )
) );</programlisting>
</para>
</section>
</section>