2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-21 15:32:12 +00:00

merged changes with the trunk after patch on assignment (only cosmetic changes)

[SVN r84594]
This commit is contained in:
David Bellot
2013-06-01 11:17:11 +00:00
parent 9e9f18e9de
commit ee2a384ab6
9 changed files with 1970 additions and 1940 deletions

View File

@@ -451,7 +451,7 @@ public:
* \endcode
* \sa begin2()
*/
BOOST_UBLAS_INLINE begin1_manip begin1() {
inline begin1_manip begin1() {
return begin1_manip();
}
@@ -495,7 +495,7 @@ public:
* \endcode
* \sa begin1() begin2_manip
*/
BOOST_UBLAS_INLINE begin2_manip begin2() {
inline begin2_manip begin2() {
return begin2_manip();
}
@@ -540,7 +540,7 @@ public:
* \endcode
* \sa next_column()
*/
BOOST_UBLAS_INLINE next_row_manip next_row() {
inline next_row_manip next_row() {
return next_row_manip();
}
@@ -584,7 +584,7 @@ public:
* \endcode
*
*/
BOOST_UBLAS_INLINE next_column_manip next_column() {
inline next_column_manip next_column() {
return next_column_manip();
}
@@ -885,27 +885,27 @@ namespace traverse_policy {
// Traverse policy namespace
namespace traverse_policy {
by_row_policy<DEFAULT_WRAP_POLICY> by_row() {
inline by_row_policy<DEFAULT_WRAP_POLICY> by_row() {
return by_row_policy<DEFAULT_WRAP_POLICY>();
}
by_row_policy<wrap> by_row_wrap() {
inline by_row_policy<wrap> by_row_wrap() {
return by_row_policy<wrap>();
}
by_row_policy<no_wrap> by_row_no_wrap() {
inline by_row_policy<no_wrap> by_row_no_wrap() {
return by_row_policy<no_wrap>();
}
by_column_policy<DEFAULT_WRAP_POLICY> by_column() {
inline by_column_policy<DEFAULT_WRAP_POLICY> by_column() {
return by_column_policy<DEFAULT_WRAP_POLICY>();
}
by_column_policy<wrap> by_column_wrap() {
inline by_column_policy<wrap> by_column_wrap() {
return by_column_policy<wrap>();
}
by_column_policy<no_wrap> by_column_no_wrap() {
inline by_column_policy<no_wrap> by_column_no_wrap() {
return by_column_policy<no_wrap>();
}

View File

@@ -1,6 +1,4 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
// Copyright (c) 2000-2011 Joerg Walter, Mathias Koch, David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
@@ -8,7 +6,6 @@
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_BLAS_
#define _BOOST_UBLAS_BLAS_
@@ -16,7 +13,7 @@
#include <boost/numeric/ublas/traits.hpp>
namespace boost { namespace numeric { namespace ublas {
/** Interface and implementation of BLAS level 1
* This includes functions which perform \b vector-vector operations.
@@ -26,12 +23,12 @@ namespace boost { namespace numeric { namespace ublas {
namespace blas_1 {
/** 1-Norm: \f$\sum_i |x_i|\f$ (also called \f$\mathcal{L}_1\f$ or Manhattan norm)
*
* \param v a vector or vector expression
* \return the 1-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
*
* \param v a vector or vector expression
* \return the 1-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
asum (const V &v) {
@@ -39,12 +36,12 @@ namespace boost { namespace numeric { namespace ublas {
}
/** 2-Norm: \f$\sum_i |x_i|^2\f$ (also called \f$\mathcal{L}_2\f$ or Euclidean norm)
*
* \param v a vector or vector expression
* \return the 2-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
*
* \param v a vector or vector expression
* \return the 2-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
nrm2 (const V &v) {
@@ -52,12 +49,12 @@ namespace boost { namespace numeric { namespace ublas {
}
/** Infinite-norm: \f$\max_i |x_i|\f$ (also called \f$\mathcal{L}_\infty\f$ norm)
*
* \param v a vector or vector expression
* \return the Infinite-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
*
* \param v a vector or vector expression
* \return the Infinite-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
amax (const V &v) {
@@ -65,14 +62,14 @@ namespace boost { namespace numeric { namespace ublas {
}
/** Inner product of vectors \f$v_1\f$ and \f$v_2\f$
*
* \param v1 first vector of the inner product
* \param v2 second vector of the inner product
* \return the inner product of the type of the most generic type of the 2 vectors
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
*
* \param v1 first vector of the inner product
* \param v2 second vector of the inner product
* \return the inner product of the type of the most generic type of the 2 vectors
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
dot (const V1 &v1, const V2 &v2) {
@@ -80,86 +77,86 @@ namespace boost { namespace numeric { namespace ublas {
}
/** Copy vector \f$v_2\f$ to \f$v_1\f$
*
* \param v1 target vector
* \param v2 source vector
* \return a reference to the target vector
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
*
* \param v1 target vector
* \param v2 source vector
* \return a reference to the target vector
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
V1 & copy (V1 &v1, const V2 &v2)
{
{
return v1.assign (v2);
}
/** Swap vectors \f$v_1\f$ and \f$v_2\f$
*
* \param v1 first vector
* \param v2 second vector
*
*
* \param v1 first vector
* \param v2 second vector
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
void swap (V1 &v1, V2 &v2)
{
{
v1.swap (v2);
}
/** scale vector \f$v\f$ with scalar \f$t\f$
*
* \param v vector to be scaled
* \param t the scalar
* \return \c t*v
*
* \tparam V type of the vector (not needed by default)
* \tparam T type of the scalar (not needed by default)
*/
*
* \param v vector to be scaled
* \param t the scalar
* \return \c t*v
*
* \tparam V type of the vector (not needed by default)
* \tparam T type of the scalar (not needed by default)
*/
template<class V, class T>
V & scal (V &v, const T &t)
{
{
return v *= t;
}
/** Compute \f$v_1= v_1 + t.v_2\f$
*
* \param v1 target and first vector
* \param t the scalar
* \param v2 second vector
* \return a reference to the first and target vector
*
* \tparam V1 type of the first vector (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam V2 type of the second vector (not needed by default)
*/
*
* \param v1 target and first vector
* \param t the scalar
* \param v2 second vector
* \return a reference to the first and target vector
*
* \tparam V1 type of the first vector (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam V2 type of the second vector (not needed by default)
*/
template<class V1, class T, class V2>
V1 & axpy (V1 &v1, const T &t, const V2 &v2)
{
{
return v1.plus_assign (t * v2);
}
/** Performs rotation of points in the plane and assign the result to the first vector
*
* Each point is defined as a pair \c v1(i) and \c v2(i), being respectively
* the \f$x\f$ and \f$y\f$ coordinates. The parameters \c t1 and \t2 are respectively
* the cosine and sine of the angle of the rotation.
* Results are not returned but directly written into \c v1.
*
* \param t1 cosine of the rotation
* \param v1 vector of \f$x\f$ values
* \param t2 sine of the rotation
* \param v2 vector of \f$y\f$ values
*
* \tparam T1 type of the cosine value (not needed by default)
* \tparam V1 type of the \f$x\f$ vector (not needed by default)
* \tparam T2 type of the sine value (not needed by default)
* \tparam V2 type of the \f$y\f$ vector (not needed by default)
*/
/** Performs rotation of points in the plane and assign the result to the first vector
*
* Each point is defined as a pair \c v1(i) and \c v2(i), being respectively
* the \f$x\f$ and \f$y\f$ coordinates. The parameters \c t1 and \t2 are respectively
* the cosine and sine of the angle of the rotation.
* Results are not returned but directly written into \c v1.
*
* \param t1 cosine of the rotation
* \param v1 vector of \f$x\f$ values
* \param t2 sine of the rotation
* \param v2 vector of \f$y\f$ values
*
* \tparam T1 type of the cosine value (not needed by default)
* \tparam V1 type of the \f$x\f$ vector (not needed by default)
* \tparam T2 type of the sine value (not needed by default)
* \tparam V2 type of the \f$y\f$ vector (not needed by default)
*/
template<class T1, class V1, class T2, class V2>
void rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2)
{
{
typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
vector<promote_type> vt (t1 * v1 + t2 * v2);
v2.assign (- t2 * v1 + t1 * v2);
@@ -176,74 +173,74 @@ namespace boost { namespace numeric { namespace ublas {
namespace blas_2 {
/** \brief multiply vector \c v with triangular matrix \c m
*
* \param v a vector
* \param m a triangular matrix
* \return the result of the product
*
* \tparam V type of the vector (not needed by default)
* \tparam M type of the matrix (not needed by default)
*
* \param v a vector
* \param m a triangular matrix
* \return the result of the product
*
* \tparam V type of the vector (not needed by default)
* \tparam M type of the matrix (not needed by default)
*/
template<class V, class M>
V & tmv (V &v, const M &m)
{
{
return v = prod (m, v);
}
/** \brief solve \f$m.x = v\f$ in place, where \c m is a triangular matrix
*
* \param v a vector
* \param m a matrix
* \param C (this parameter is not needed)
* \return a result vector from the above operation
*
* \tparam V type of the vector (not needed by default)
* \tparam M type of the matrix (not needed by default)
* \tparam C n/a
*
* \param v a vector
* \param m a matrix
* \param C (this parameter is not needed)
* \return a result vector from the above operation
*
* \tparam V type of the vector (not needed by default)
* \tparam M type of the matrix (not needed by default)
* \tparam C n/a
*/
template<class V, class M, class C>
V & tsv (V &v, const M &m, C)
{
{
return v = solve (m, v, C ());
}
/** \brief compute \f$ v_1 = t_1.v_1 + t_2.(m.v_2)\f$, a general matrix-vector product
*
* \param v1 a vector
* \param t1 a scalar
* \param t2 another scalar
* \param m a matrix
* \param v2 another vector
* \return the vector \c v1 with the result from the above operation
*
* \tparam V1 type of first vector (not needed by default)
* \tparam T1 type of first scalar (not needed by default)
* \tparam T2 type of second scalar (not needed by default)
* \tparam M type of matrix (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*
* \param v1 a vector
* \param t1 a scalar
* \param t2 another scalar
* \param m a matrix
* \param v2 another vector
* \return the vector \c v1 with the result from the above operation
*
* \tparam V1 type of first vector (not needed by default)
* \tparam T1 type of first scalar (not needed by default)
* \tparam T2 type of second scalar (not needed by default)
* \tparam M type of matrix (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class T1, class T2, class M, class V2>
V1 & gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2)
{
{
return v1 = t1 * v1 + t2 * prod (m, v2);
}
/** \brief Rank 1 update: \f$ m = m + t.(v_1.v_2^T)\f$
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
template<class M, class T, class V1, class V2>
M & gr (M &m, const T &t, const V1 &v1, const V2 &v2)
{
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, v2);
#else
@@ -252,19 +249,19 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief symmetric rank 1 update: \f$m = m + t.(v.v^T)\f$
*
* \param m a matrix
* \param t a scalar
* \param v a vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V type of vector (not needed by default)
*/
*
* \param m a matrix
* \param t a scalar
* \param v a vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V type of vector (not needed by default)
*/
template<class M, class T, class V>
M & sr (M &m, const T &t, const V &v)
{
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, v);
#else
@@ -273,19 +270,19 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief hermitian rank 1 update: \f$m = m + t.(v.v^H)\f$
*
* \param m a matrix
* \param t a scalar
* \param v a vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V type of vector (not needed by default)
*/
*
* \param m a matrix
* \param t a scalar
* \param v a vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V type of vector (not needed by default)
*/
template<class M, class T, class V>
M & hr (M &m, const T &t, const V &v)
{
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, conj (v));
#else
@@ -294,21 +291,21 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief symmetric rank 2 update: \f$ m=m+ t.(v_1.v_2^T + v_2.v_1^T)\f$
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
template<class M, class T, class V1, class V2>
M & sr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
{
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#else
@@ -317,21 +314,21 @@ namespace boost { namespace numeric { namespace ublas {
}
/** \brief hermitian rank 2 update: \f$m=m+t.(v_1.v_2^H) + v_2.(t.v_1)^H)\f$
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
template<class M, class T, class V1, class V2>
M & hr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
{
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#else
@@ -349,150 +346,150 @@ namespace boost { namespace numeric { namespace ublas {
namespace blas_3 {
/** \brief triangular matrix multiplication \f$m_1=t.m_2.m_3\f$ where \f$m_2\f$ and \f$m_3\f$ are triangular
*
* \param m1 a matrix for storing result
* \param t a scalar
* \param m2 a triangular matrix
* \param m3 a triangular matrix
* \return the matrix \c m1
*
* \tparam M1 type of the result matrix (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam M2 type of the first triangular matrix (not needed by default)
* \tparam M3 type of the second triangular matrix (not needed by default)
*
*
* \param m1 a matrix for storing result
* \param t a scalar
* \param m2 a triangular matrix
* \param m3 a triangular matrix
* \return the matrix \c m1
*
* \tparam M1 type of the result matrix (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam M2 type of the first triangular matrix (not needed by default)
* \tparam M3 type of the second triangular matrix (not needed by default)
*
*/
template<class M1, class T, class M2, class M3>
M1 & tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)
{
{
return m1 = t * prod (m2, m3);
}
/** \brief triangular solve \f$ m_2.x = t.m_1\f$ in place, \f$m_2\f$ is a triangular matrix
*
* \param m1 a matrix
* \param t a scalar
* \param m2 a triangular matrix
* \param C (not used)
* \return the \f$m_1\f$ matrix
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam M2 type of the triangular matrix (not needed by default)
* \tparam C (n/a)
*
* \param m1 a matrix
* \param t a scalar
* \param m2 a triangular matrix
* \param C (not used)
* \return the \f$m_1\f$ matrix
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam M2 type of the triangular matrix (not needed by default)
* \tparam C (n/a)
*/
template<class M1, class T, class M2, class C>
M1 & tsm (M1 &m1, const T &t, const M2 &m2, C)
{
{
return m1 = solve (m2, t * m1, C ());
}
/** \brief general matrix multiplication \f$m_1=t_1.m_1 + t_2.m_2.m_3\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return the matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return the matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 & gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
{
{
return m1 = t1 * m1 + t2 * prod (m2, m3);
}
/** \brief symmetric rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m_2^T)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \todo use opb_prod()
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 & srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
{
{
return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
}
/** \brief hermitian rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m2^H)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \todo use opb_prod()
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 & hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
{
{
return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
}
/** \brief generalized symmetric rank \a k update: \f$m_1=t_1.m_1+t_2.(m_2.m3^T)+t_2.(m_3.m2^T)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
* \todo use opb_prod()
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 & sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
{
{
return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
}
/** \brief generalized hermitian rank \a k update: * \f$m_1=t_1.m_1+t_2.(m_2.m_3^H)+(m_3.(t_2.m_2)^H)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
* \todo use opb_prod()
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 & hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
{
{
return m1 =
t1 * m1
+ t2 * prod (m2, herm (m3))
+ type_traits<T2>::conj (t2) * prod (m3, herm (m2));
t1 * m1
+ t2 * prod (m2, herm (m3))
+ type_traits<T2>::conj (t2) * prod (m3, herm (m2));
}
}

View File

@@ -123,6 +123,10 @@ namespace std {
#endif
// PGI compiler
#ifdef __PGIC__
#define BOOST_UBLAS_UNSUPPORTED_COMPILER 0
#endif
// HP aCC C++ compiler
#if defined (__HP_aCC) && ! defined (BOOST_STRICT_CONFIG)

View File

@@ -1,65 +1,58 @@
//
// Copyright (c) 2010
// David Bellot
// Copyright (c) 2010-2011 David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// And we acknowledge the support from all contributors.
/** \mainpage BOOST uBLAS: a Linear Algebra Library
*
* This is the API Reference Documentation.
*
* For introduction, documentations and tutorial, please refer
* to http://www.boost.org/doc/libs/1_44_0/libs/numeric/ublas/doc/index.htm
*
* \section main_classes Main classes
*
* \subsection listvector Vectors
* - \link #boost::numeric::ublas::vector vector \endlink
* - \link #boost::numeric::ublas::bounded_vector bounded_vector \endlink
* - \link #boost::numeric::ublas::zero_vector zero_vector \endlink
* - \link #boost::numeric::ublas::unit_vector unit_vector \endlink
* - \link #boost::numeric::ublas::scalar_vector scalar_vector \endlink
* - \link #boost::numeric::ublas::c_vector c_vector \endlink
* - \link #boost::numeric::ublas::vector_slice vector_slice \endlink
* - \link #boost::numeric::ublas::vector_range vector_range \endlink
* - \link #boost::numeric::ublas::vector_indirect vector_indirect \endlink
* - \link #boost::numeric::ublas::mapped_vector mapped_vector \endlink
* - \link #boost::numeric::ublas::compressed_vector compressed_vector \endlink
* - \link #boost::numeric::ublas::coordinate_vector coordinate_vector \endlink
* - \link #boost::numeric::ublas::matrix_row matrix_row \endlink
* - \link #boost::numeric::ublas::matrix_column matrix_column \endlink
* - \link #boost::numeric::ublas::vector vector \endlink
* - \link #boost::numeric::ublas::bounded_vector bounded_vector \endlink
* - \link #boost::numeric::ublas::zero_vector zero_vector \endlink
* - \link #boost::numeric::ublas::unit_vector unit_vector \endlink
* - \link #boost::numeric::ublas::scalar_vector scalar_vector \endlink
* - \link #boost::numeric::ublas::c_vector c_vector \endlink
* - \link #boost::numeric::ublas::vector_slice vector_slice \endlink
* - \link #boost::numeric::ublas::vector_range vector_range \endlink
* - \link #boost::numeric::ublas::vector_indirect vector_indirect \endlink
* - \link #boost::numeric::ublas::mapped_vector mapped_vector \endlink
* - \link #boost::numeric::ublas::compressed_vector compressed_vector \endlink
* - \link #boost::numeric::ublas::coordinate_vector coordinate_vector \endlink
* - \link #boost::numeric::ublas::matrix_row matrix_row \endlink
* - \link #boost::numeric::ublas::matrix_column matrix_column \endlink
*
* \subsection listmatrix Matrices
* - \link #boost::numeric::ublas::matrix matrix \endlink
* - \link #boost::numeric::ublas::banded_matrix banded_matrix \endlink
* - \link #boost::numeric::ublas::diagonal_matrix diagonal_matrix \endlink
* - \link #boost::numeric::ublas::banded_adaptor banded_adaptor \endlink
* - \link #boost::numeric::ublas::diagonal_adaptor diagonal_adaptor \endlink
* - \link #boost::numeric::ublas::hermitian_matrix hermitian_matrix \endlink
* - \link #boost::numeric::ublas::hermitian_adaptor hermitian_adaptor \endlink
* - \link #boost::numeric::ublas::symmetric_matrix symmetric_matrix \endlink
* - \link #boost::numeric::ublas::symmetric_adaptor symmetric_adaptor \endlink
* - \link #boost::numeric::ublas::triangular_matrix triangular_matrix \endlink
* - \link #boost::numeric::ublas::triangular_adaptor triangular_adaptor \endlink
* - \link #boost::numeric::ublas::vector_of_vector vector_of_vector \endlink
* - \link #boost::numeric::ublas::bounded_matrix bounded_matrix \endlink
* - \link #boost::numeric::ublas::zero_matrix zero_matrix \endlink
* - \link #boost::numeric::ublas::identity_matrix identity_matrix \endlink
* - \link #boost::numeric::ublas::scalar_matrix scalar_matrix \endlink
* - \link #boost::numeric::ublas::c_matrix c_matrix \endlink
* - \link #boost::numeric::ublas::matrix_vector_range matrix_vector_range \endlink
* - \link #boost::numeric::ublas::matrix_vector_slice matrix_vector_slice \endlink
* - \link #boost::numeric::ublas::matrix_vector_indirect matrix_vector_indirect \endlink
* - \link #boost::numeric::ublas::matrix_range matrix_range \endlink
* - \link #boost::numeric::ublas::matrix_slice matrix_slice \endlink
* - \link #boost::numeric::ublas::matrix_indirect matrix_indirect \endlink
* - \link #boost::numeric::ublas::mapped_matrix mapped_matrix \endlink
* - \link #boost::numeric::ublas::mapped_vector_of_mapped_vector mapped_vector_of_mapped_vector \endlink
* - \link #boost::numeric::ublas::compressed_matrix compressed_matrix \endlink
* - \link #boost::numeric::ublas::coordinate_matrix coordinate_matrix \endlink
* - \link #boost::numeric::ublas::generalized_vector_of_vector generalized_vector_of_vector \endlink
* - \link #boost::numeric::ublas::matrix matrix \endlink
* - \link #boost::numeric::ublas::banded_matrix banded_matrix \endlink
* - \link #boost::numeric::ublas::diagonal_matrix diagonal_matrix \endlink
* - \link #boost::numeric::ublas::banded_adaptor banded_adaptor \endlink
* - \link #boost::numeric::ublas::diagonal_adaptor diagonal_adaptor \endlink
* - \link #boost::numeric::ublas::hermitian_matrix hermitian_matrix \endlink
* - \link #boost::numeric::ublas::hermitian_adaptor hermitian_adaptor \endlink
* - \link #boost::numeric::ublas::symmetric_matrix symmetric_matrix \endlink
* - \link #boost::numeric::ublas::symmetric_adaptor symmetric_adaptor \endlink
* - \link #boost::numeric::ublas::triangular_matrix triangular_matrix \endlink
* - \link #boost::numeric::ublas::triangular_adaptor triangular_adaptor \endlink
* - \link #boost::numeric::ublas::vector_of_vector vector_of_vector \endlink
* - \link #boost::numeric::ublas::bounded_matrix bounded_matrix \endlink
* - \link #boost::numeric::ublas::zero_matrix zero_matrix \endlink
* - \link #boost::numeric::ublas::identity_matrix identity_matrix \endlink
* - \link #boost::numeric::ublas::scalar_matrix scalar_matrix \endlink
* - \link #boost::numeric::ublas::c_matrix c_matrix \endlink
* - \link #boost::numeric::ublas::matrix_vector_range matrix_vector_range \endlink
* - \link #boost::numeric::ublas::matrix_vector_slice matrix_vector_slice \endlink
* - \link #boost::numeric::ublas::matrix_vector_indirect matrix_vector_indirect \endlink
* - \link #boost::numeric::ublas::matrix_range matrix_range \endlink
* - \link #boost::numeric::ublas::matrix_slice matrix_slice \endlink
* - \link #boost::numeric::ublas::matrix_indirect matrix_indirect \endlink
* - \link #boost::numeric::ublas::mapped_matrix mapped_matrix \endlink
* - \link #boost::numeric::ublas::mapped_vector_of_mapped_vector mapped_vector_of_mapped_vector \endlink
* - \link #boost::numeric::ublas::compressed_matrix compressed_matrix \endlink
* - \link #boost::numeric::ublas::coordinate_matrix coordinate_matrix \endlink
* - \link #boost::numeric::ublas::generalized_vector_of_vector generalized_vector_of_vector \endlink
*/

View File

@@ -1,14 +1,8 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
// Copyright (c) 2000-2011 Joerg Walter, Mathias Koch, David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_EXCEPTION_
#define _BOOST_UBLAS_EXCEPTION_
@@ -32,7 +26,7 @@ namespace boost { namespace numeric { namespace ublas {
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::runtime_error
{
{
explicit divide_by_zero (const char *s = "divide by zero") :
std::runtime_error (s) {}
void raise () {

View File

@@ -1,5 +1,4 @@
//
// Copyright (c) 2000-2010
// Copyright (c) 2000-2013
// Joerg Walter, Mathias Koch. David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See

View File

@@ -116,30 +116,30 @@ namespace boost { namespace numeric {
// Construction and destruction
/// Default dense matrix constructor. Make a dense matrix of size (0,0)
BOOST_UBLAS_INLINE
matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ () {}
BOOST_UBLAS_INLINE
matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ () {}
/** Dense matrix constructor with defined size
* \param size1 number of rows
* \param size2 number of columns
*/
BOOST_UBLAS_INLINE
matrix (size_type size1, size_type size2):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2)) {
}
BOOST_UBLAS_INLINE
matrix (size_type size1, size_type size2):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2)) {
}
/** Dense matrix constructor with defined size a initial value for all the matrix elements
* \param size1 number of rows
* \param size2 number of columns
* \param init initial value assigned to all elements
*/
matrix (size_type size1, size_type size2, const value_type &init):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2), init) {
}
matrix (size_type size1, size_type size2, const value_type &init):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2), init) {
}
/** Dense matrix constructor with defined size and an initial data array
* \param size1 number of rows
@@ -225,29 +225,67 @@ namespace boost { namespace numeric {
}
// Element access
/** Access a matrix element. Here we return a const reference
* \param i the first coordinate of the element. By default it's the row
* \param j the second coordinate of the element. By default it's the column
* \return a const reference to the element
*/
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
return data () [layout_type::element (i, size1_, j, size2_)];
}
/** Access a matrix element. Here we return a reference
* \param i the first coordinate of the element. By default it's the row
* \param j the second coordinate of the element. By default it's the column
* \return a reference to the element
*/
BOOST_UBLAS_INLINE
reference at_element (size_type i, size_type j) {
return data () [layout_type::element (i, size1_, j, size2_)];
}
/** Access a matrix element. Here we return a reference
* \param i the first coordinate of the element. By default it's the row
* \param j the second coordinate of the element. By default it's the column
* \return a reference to the element
*/
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
return at_element (i, j);
}
// Element assignment
/** Change the value of a matrix element. Return back a reference to it
* \param i the first coordinate of the element. By default it's the row
* \param j the second coordinate of the element. By default it's the column
* \param t the new value of the element
* \return a reference to the newly changed element
*/
BOOST_UBLAS_INLINE
reference insert_element (size_type i, size_type j, const_reference t) {
return (at_element (i, j) = t);
}
/** Erase the element
* For most types (int, double, etc...) it means setting 0 (zero) the element at zero in fact.
* For user-defined types, it could be another value if you decided it. Your type in that case must
* contain a default null value.
* \param i the first coordinate of the element. By default it's the row
* \param j the second coordinate of the element. By default it's the column
*/
void erase_element (size_type i, size_type j) {
at_element (i, j) = value_type/*zero*/();
}
// Zeroing
/** Erase all elements in the matrix
* For most types (int, double, etc...) it means writing 0 (zero) everywhere.
* For user-defined types, it could be another value if you decided it. Your type in that case must
* contain a default null value.
*/
BOOST_UBLAS_INLINE
void clear () {
std::fill (data ().begin (), data ().end (), value_type/*zero*/());

View File

@@ -464,7 +464,12 @@ namespace boost { namespace numeric { namespace ublas {
private:
size_type size_;
// MSVC does not like arrays of size 0 in base classes. Hence, this conditionally changes the size to 1
#ifdef _MSC_VER
BOOST_UBLAS_BOUNDED_ARRAY_ALIGN value_type data_ [(N>0)?N:1];
#else
BOOST_UBLAS_BOUNDED_ARRAY_ALIGN value_type data_ [N];
#endif
};

File diff suppressed because it is too large Load Diff