2
0
mirror of https://github.com/boostorg/thread.git synced 2026-02-03 09:42:16 +00:00

Compare commits

..

1 Commits

Author SHA1 Message Date
nobody
ec824ccf29 This commit was manufactured by cvs2svn to create tag
'Version_1_25_1_BGL'.

[SVN r11635]
2001-11-08 17:13:50 +00:00
171 changed files with 9889 additions and 23728 deletions

49
build/Jamfile Normal file
View File

@@ -0,0 +1,49 @@
# (C) Copyright William E. Kempf 2001. Permission to copy, use, modify, sell and
# distribute this software is granted provided this copyright notice appears
# in all copies. This software is provided "as is" without express or implied
# warranty, and with no claim as to its suitability for any purpose.
#
# Boost.Threads build and test Jamfile
#
# Declares the following targets:
# 1. libboost_thread, a static link library.
# 1a. On Win32, a dynamic link library libboost_threadmon,
# which must be used in conjunction with libboost_thread.
# declare the location of this subproject relative to the root
subproject libs/thread/build ;
#######################
#
# Declare the Boost.Threads static link library.
#
# For Win32 we need to build a special DLL, libboost_threadmon, to handle
# TSS destruction.
if $(NT)
{
if $(PTW32)
{
PTW32_REQUIREMENTS = <define>BOOST_HAS_PTHREADS <define>PtW32NoCatchWarn ;
}
else
{
dll libboost_threadmon : ../src/threadmon.cpp
# requirements
: <include>$(BOOST_ROOT)
<threading>multi
: debug release ;
}
}
# Base names of the source files for libboost_thread
CPP_SOURCES =
condition mutex recursive_mutex thread tss xtime once exceptions ;
lib libboost_thread : ../src/$(CPP_SOURCES).cpp
# requirements
: <include>$(BOOST_ROOT)
$(PTW32_REQUIREMENTS)
<threading>multi
: debug release ;

View File

@@ -1,207 +0,0 @@
# $Id$
# Copyright 2006-2007 Roland Schwarz.
# Copyright 2007 Anthony Williams
# Distributed under the Boost Software License, Version 1.0. (See
# accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
#########################################################################
# The boost threading library can be built on top of different API's
# Currently this is the win32 API and the pthreads API.
# Pthread is native on unix variants.
# To get pthread on windows you need the pthread win32 library
# http://sourceware.org/pthreads-win32 which is available under LGPL.
#
# You need to provide the include path and lib path in the variables
# PTW32_INCLUDE and PTW32_LIB respectively. You can specify these
# paths in site-config.jam, user-config.jam or in the environment.
# A new feature is provided to request a specific API:
# <threadapi>win32 and <threadapi)pthread.
#
# The naming of the resulting libraries is mostly the same for the
# variant native to the build platform, i.e.
# boost_thread and the boost specific tagging.
# For the library variant that is not native on the build platform
# an additional tag is applied:
# boost_thread_pthread for the pthread variant on windows, and
# boost_thread_win32 for the win32 variant (likely when built on cygwin).
#
# To request the pthread variant on windows, from boost root you would
# say e.g:
# bjam msvc-8.0 --with-thread install threadapi=pthread
#########################################################################
import os ;
import feature ;
import indirect ;
import path ;
project boost/thread
: source-location ../src
: requirements <threading>multi
<link>static:<define>BOOST_THREAD_BUILD_LIB=1
<link>shared:<define>BOOST_THREAD_BUILD_DLL=1
-<tag>@$(BOOST_JAMROOT_MODULE)%$(BOOST_JAMROOT_MODULE).tag
<tag>@$(__name__).tag
<toolset>gcc:<cxxflags>-Wno-long-long
: default-build <threading>multi
;
local rule default_threadapi ( )
{
local api = pthread ;
if [ os.name ] = "NT" { api = win32 ; }
return $(api) ;
}
feature.feature threadapi : pthread win32 : propagated ;
feature.set-default threadapi : [ default_threadapi ] ;
rule tag ( name : type ? : property-set )
{
local result = $(name) ;
if $(type) in STATIC_LIB SHARED_LIB IMPORT_LIB
{
local api = [ $(property-set).get <threadapi> ] ;
# non native api gets additional tag
if $(api) != [ default_threadapi ] {
result = $(result)_$(api) ;
}
}
# forward to the boost tagging rule
return [ indirect.call $(BOOST_JAMROOT_MODULE)%$(BOOST_JAMROOT_MODULE).tag
$(result) : $(type) : $(property-set) ] ;
}
rule win32_pthread_paths ( properties * )
{
local result ;
local PTW32_INCLUDE ;
local PTW32_LIB ;
PTW32_INCLUDE = [ modules.peek : PTW32_INCLUDE ] ;
PTW32_LIB = [ modules.peek : PTW32_LIB ] ;
PTW32_INCLUDE ?= [ modules.peek user-config : PTW32_INCLUDE ] ;
PTW32_LIB ?= [ modules.peek user-config : PTW32_LIB ] ;
PTW32_INCLUDE ?= [ modules.peek site-config : PTW32_INCLUDE ] ;
PTW32_LIB ?= [ modules.peek site-config : PTW32_LIB ] ;
if ! ( $(PTW32_INCLUDE) && $(PTW32_LIB) )
{
if ! $(.notified)
{
echo "************************************************************" ;
echo "Trying to build Boost.Thread with pthread support." ;
echo "If you need pthread you should specify the paths." ;
echo "You can specify them in site-config.jam, user-config.jam" ;
echo "or in the environment." ;
echo "For example:" ;
echo "PTW32_INCLUDE=C:\\Program Files\\ptw32\\Pre-built2\\include" ;
echo "PTW32_LIB=C:\\Program Files\\ptw32\\Pre-built2\\lib" ;
echo "************************************************************" ;
.notified = true ;
}
}
else
{
local include_path = [ path.make $(PTW32_INCLUDE) ] ;
local lib_path = [ path.make $(PTW32_LIB) ] ;
local libname = pthread ;
if <toolset>msvc in $(properties)
{
libname = $(libname)VC2.lib ;
}
if <toolset>gcc in $(properties)
{
libname = lib$(libname)GC2.a ;
}
lib_path = [ path.glob $(lib_path) : $(libname) ] ;
if ! $(lib_path)
{
if ! $(.notified)
{
echo "************************************************************" ;
echo "Trying to build Boost.Thread with pthread support." ;
echo "But the library" $(libname) "could not be found in path" ;
echo $(PTW32_LIB) ;
echo "************************************************************" ;
.notified = true ;
}
}
else
{
result += <include>$(include_path) ;
result += <library>$(lib_path) ;
}
}
return $(result) ;
}
rule usage-requirements ( properties * )
{
local result ;
if <threadapi>pthread in $(properties)
{
result += <define>BOOST_THREAD_POSIX ;
if <target-os>windows in $(properties)
{
result += [ win32_pthread_paths $(properties) ] ;
# TODO: What is for static linking? Is the <library> also needed
# in that case?
}
}
return $(result) ;
}
rule requirements ( properties * )
{
local result ;
if <threadapi>pthread in $(properties)
{
result += <define>BOOST_THREAD_POSIX ;
if <target-os>windows in $(properties)
{
local paths = [ win32_pthread_paths $(properties) ] ;
if $(paths)
{
result += $(paths) ;
}
else
{
result = <build>no ;
}
}
}
return $(result) ;
}
alias thread_sources
: ## win32 sources ##
win32/thread.cpp
win32/tss_dll.cpp
win32/tss_pe.cpp
: ## requirements ##
<threadapi>win32
;
alias thread_sources
: ## pthread sources ##
pthread/thread.cpp
pthread/once.cpp
: ## requirements ##
<threadapi>pthread
;
explicit thread_sources ;
lib boost_thread
: thread_sources
: <conditional>@requirements
:
: <link>shared:<define>BOOST_THREAD_USE_DLL=1
<link>static:<define>BOOST_THREAD_USE_LIB=1
<conditional>@usage-requirements
;

View File

@@ -1,31 +0,0 @@
# (C) Copyright 2008 Anthony Williams
#
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
path-constant boost-images : ../../../doc/src/images ;
xml thread : thread.qbk ;
boostbook standalone
:
thread
:
# HTML options first:
# Use graphics not text for navigation:
<xsl:param>navig.graphics=1
# How far down we chunk nested sections, basically all of them:
<xsl:param>chunk.section.depth=3
# Don't put the first section on the same page as the TOC:
<xsl:param>chunk.first.sections=1
# How far down sections get TOC's
<xsl:param>toc.section.depth=10
# Max depth in each TOC:
<xsl:param>toc.max.depth=3
# How far down we go with TOC's
<xsl:param>generate.section.toc.level=10
# Path for links to Boost:
<xsl:param>boost.root=../../../..
;

77
doc/acknowledgements.html Normal file
View File

@@ -0,0 +1,77 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost.Threads Acknowledgements</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Acknowledgements</h2>
</td>
</tr>
</table>
<h2>Acknowledgments</h2>
<p><a href="../../../people/william_kempf.htm">William E. Kempf</a> was
the architect, designer, and implementor of <b>Boost.Threads</b>.</p>
<p>Important contributions were also made by Jeremy Siek (lots of input
on the design and on the implementation), Alexander Terekhov (lots of
input on the Win32 implementation, especially in regards to
boost::condition, as well as a lot of explanation of POSIX behavior),
Greg Colvin (lots of input on the design), and Paul Mclachlan, Thomas
Matelich and Iain Hanson (for help in trying to get the build to work
on other platforms).</p>
<p>The documentation was written by William E. Kempf. Beman Dawes
provided additional documentation material and editing.</p>
<p>Discussions on the boost.org mailing list were essential in the
development of <b>Boost.Threads</b>. As of August 1, 2001, participants
included Alan Griffiths, Albrecht Fritzsche, Aleksey Gurtovoy,
Alexander Terekhov, Andrew Green, Andy Sawyer, Asger Alstrup Nielsen,
Beman Dawes, Bill Klein, Bill Rutiser, Bill Wade, Branko &Egrave;ibej,
Brent Verner, Craig Henderson, Csaba Szepesvari, Dale Peakall, Damian
Dixon, Dan Nuffer, Darryl Green, Daryle Walker, David Abrahams, David
Allan Finch, Dejan Jelovic, Dietmar Kuehl, Doug Gregor, Douglas Gregor,
Duncan Harris, Ed Brey, Eric Swanson, Eugene Karpachov, Fabrice
Truillot, Frank Gerlach, Gary Powell, Gernot Neppert, Geurt Vos, Ghazi
Ramadan, Greg Colvin, Gregory Seidman, HYS, Iain Hanson, Ian Bruntlett,
J Panzer, Jeff Garland, Jeff Paquette, Jens Maurer, Jeremy Siek, Jesse
Jones, Joe Gottman, John (EBo) David, John Bandela, John Maddock, John
Max Skaller, John Panzer, Jon Jagger , Karl Nelson, Kevlin Henney, KG
Chandrasekhar, Levente Farkas, Lie-Quan Lee, Lois Goldthwaite, Luis
Pedro Coelho, Marc Girod, Mark A. Borgerding, Mark Rodgers, Marshall
Clow, Matthew Austern, Matthew Hurd, Michael D. Crawford, Michael H.
Cox , Mike Haller, Miki Jovanovic, Nathan Myers, Paul Moore, Pavel
Cisler, Peter Dimov, Petr Kocmid, Philip Nash, Rainer Deyke, Reid
Sweatman, Ross Smith, Scott McCaskill, Shalom Reich , Steve Cleary,
Steven Kirk, Thomas Holenstein, Thomas Matelich, Trevor Perrin,
Valentin Bonnard, Vesa Karvonen, Wayne Miller, and William Kempf.</p>
<p>Apologies for anyone inadvertently missed.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p>&copy; <i>Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001</i></p>
</body>
</html>

View File

@@ -1,23 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:acknowledgements Acknowledgments]
The original implementation of __boost_thread__ was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite __boost_thread__ to William Kempf's design with fresh code that could be
released under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a
thread library for C++, this library has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as
possible.
Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original __boost_thread__ library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.
Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on the
implementation details of the code.
[endsect]

View File

@@ -1,72 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:barriers Barriers]
A barrier is a simple concept. Also known as a ['rendezvous], it is a synchronization point between multiple threads. The barrier is
configured for a particular number of threads (`n`), and as threads reach the barrier they must wait until all `n` threads have
arrived. Once the `n`-th thread has reached the barrier, all the waiting threads can proceed, and the barrier is reset.
[section:barrier Class `barrier`]
#include <boost/thread/barrier.hpp>
class barrier
{
public:
barrier(unsigned int count);
~barrier();
bool wait();
};
Instances of __barrier__ are not copyable or movable.
[heading Constructor]
barrier(unsigned int count);
[variablelist
[[Effects:] [Construct a barrier for `count` threads.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[heading Destructor]
~barrier();
[variablelist
[[Precondition:] [No threads are waiting on `*this`.]]
[[Effects:] [Destroys `*this`.]]
[[Throws:] [Nothing.]]
]
[heading Member function `wait`]
bool wait();
[variablelist
[[Effects:] [Block until `count` threads have called `wait` on `*this`. When the `count`-th thread calls `wait`, all waiting threads
are unblocked, and the barrier is reset. ]]
[[Returns:] [`true` for exactly one thread from each batch of waiting threads, `false` otherwise.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[endsect]
[endsect]

222
doc/bibliography.html Normal file
View File

@@ -0,0 +1,222 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost.Threads Bibliography</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Bibliography</h2>
</td>
</tr>
</table>
<h2>Bibliography</h2>
<table summary="Bibliography" border="0" cellpadding="5" width="777">
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Andrews-83">Andrews 83</a>]</b></td>
<td width="645">
Gregory R. Andrews, Fred B. Schneider, <cite>Concepts and
Notations for Concurrent Programming</cite>, ACM Computing
Surveys, Vol. 15, No. 1, March, 1983. <a href=
"http://www.acm.org/pubs/citations/journals/surveys/1983-15-1/p3-andrews/">
http://www.acm.org/pubs/citations/journals/surveys/1983-15-1/p3-andrews/</a>
<p>Good general background reading. Includes descriptions
of Path Expressions, Message Passing, and Remote Procedure
Call in addition to the basics.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Boost">Boost</a>]</b></td>
<td width="645">
The <cite>Boost</cite> world-wide web site. <a href=
"http://www.boost.org">http://www.boost.org</a>
<p>Boost.Threads is one of many Boost libraries. The Boost
web site includes a great deal of documentation and general
information which applies to all Boost libraries. Current
copies of the libraries including documentation and test
programs may be downloaded from the web site.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Brinch-Hansen-73">Brinch Hansen 73</a>]</b></td>
<td width="645">
Per Brinch Hansen, <cite>Concurrent Programming
Concepts</cite>, ACM Computing Surveys, Vol. 5, No. 4,
December, 1973. <a href=
"http://www.acm.org/pubs/articles/journals/surveys/1973-5-4/p223-hansen/p223-hansen.pdf">
http://www.acm.org/pubs/articles/journals/surveys/1973-5-4/p223-hansen/</a>
<p>&quot;This paper describes the evolution of language
features for multiprogramming from event queues and
semaphores to critical regions and monitors.&quot; Includes
analysis of why <i>events</i> are considered error-prone.
Also noteworthy because of an introductory quotation from
Christopher Alexander; Brinch Hansen was years ahead of
others in recognizing pattern concepts applied to software
too.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>]<a name=
"Butenhof-97">Butenhof 97</a>]</b></td>
<td width="645">
<p>David R. Butenhof, <cite>Programming with POSIX
Threads</cite>, Addison-Wesley 1997, ISBN 0-201-63392-2 <a
href="http://cseng.aw.com/book/0,3828,0201633922,00.html">
http://cseng.aw.com/book/0,3828,0201633922,00.html</a></p>
<p>This is a very readable explanation of threads and how
to use them. Many of the insights given apply to all
multi-threaded programming, not just POSIX Threads.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Hoare-74">Hoare 74</a>]</b></td>
<td width="645">
<p>C.A.R Hoare, <cite>Monitors: An Operating System
Structuring Concept</cite>, Communications of the ACM, Vol.
17, No. 10. October 1974, pp. 549-557 <a href=
"http://www.acm.org/classics/feb96/">
http://www.acm.org/classics/feb96/</a></p>
<p>Hoare and Brinch Hansen&#39;s work on Monitors is the
basis for reliable multi-threading patterns. This is one of
the most often referenced papers in all of computer
science, and with good reason.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"ISO-98">ISO 98</a>]</b></td>
<td width="645">
<p>ISO/IEC 14882:1998(E) <cite>Programming Language
C++</cite> <a href="http://www.ansi.org">
http://www.ansi.org</a></p>
<p>This is the official C++ Standards document. Available
from the ANSI (American National Standards Institute)
Electronic Standards Store.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"McDowell-89">McDowell 89</a>]</b></td>
<td width="645">
Charles E McDowell, David P. Helmbold, <cite>Debugging
Concurrent Programs</cite>, ACM Computing Surveys, Vol. 21,
No. 2, December, 1989. <a href=
"http://www.acm.org/pubs/citations/journals/surveys/1989-21-4/p593-mcdowell/">
http://www.acm.org/pubs/citations/journals/surveys/1989-21-4/p593-mcdowell/</a>
<p>Identifies many of the unique failure modes and
debugging difficulties associated with concurrent
programs.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Schmidt">Schmidt</a>]</b> </td>
<td width="645">
<p>Douglas C. Schmidt and Irfan Pyarali, <cite>Strategies
for Implementing POSIX Condition Variables on Win32</cite>,
Department of Computer Science, Washington University, St.
Louis, Missouri. <a href=
"http://www.cs.wustl.edu/~schmidt/win32-cv-1.html">
http://www.cs.wustl.edu/~schmidt/win32-cv-1.html</a></p>
<p>Rationale for understanding Boost.Threads condition
variables. Note that Alexander Terekhov found some bugs in
the implementation given in this article, so pthreads-win32
and Boost.Threads are even more complicated yet.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Schmidt-00">Schmidt 00</a>]</b> </td>
<td width="645">
<p>Douglas C. Schmidt, Michael Stal, Hans Rohnert and Frank
Buschmann, <cite>Pattern-Oriented Software Architecture
Volume 2 - Patterns for Concurrent and Networked
Objects</cite>, Wiley 2000, ISBN 0-471-60695-2 <a href=
"http://www.wiley.com/Corporate/Website/Objects/Products/0,9049,104671,00.html">
http://www.wiley.com/Corporate/Website/Objects/Products/0,9049,104671,00.html</a></p>
<p>This is a very good explanation of how to apply several
patterns useful for concurrent programming. Among the
patterns documented is the Monitor Pattern mentioned
frequently in the <b>Boost.Threads</b> documentation.</p>
</td>
</tr>
<tr>
<td width="102" valign="top" align="left"><b>[<a name=
"Stroustrup-00">Stroustrup 00</a>]</b></td>
<td width="645">
Bjarne Stroustrup, <cite>The C++ Programming
Language</cite>, Special Edition, Addison-Wesley 2000, ISBN
0-201-70073-5 <a href=
"http://cseng.aw.com/book/0,3828,0201700735,00.html">
http://cseng.aw.com/book/0,3828,0201700735,00.html</a>
<p>The first book a C++ programmer should own. Note that
the 3rd edition (and subsequent editions like the Special
Edition) has been rewritten to cover the ISO standard
language and library.</p>
</td>
</tr>
</table>
<p>Note: The URL&#39;s above are provided in plain text form so that
they will be visible on printed copies of this document.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %b %Y" startspan -->05 Nov 2001<!--webbot bot="Timestamp" endspan i-checksum="15246" --></p>
<p>&copy; Copyright Beman Dawes, 2001</p>
</body>
</html>

132
doc/call_once.html Normal file
View File

@@ -0,0 +1,132 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content=
"threads, Boost.Threads, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, call_once</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">call_once</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <code>call_once</code> routine and <code>once_flag</code> type
can be used to run a routine exactly once. This can be used to
initialize data in a <a href="definitions.html#Thread-safe">
thread-safe</a> manner.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/once.hpp">&lt;boost/thread/once.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost {
typedef <i>[implementation defined]</i> once_flag;
const once_flag once_init = <i>[implementation defined]</i>;
void call_once(void (*func)(), once_flag&amp; flag);
} // namespace boost
</pre>
<h2><a name="Reference">Reference</a></h2>
<hr>
<h3>once_flag</h3>
<p>This implementation defined type is used as a flag to insure a
routine is called only once. Instances of this type should be
statically initialized to <code>once_init</code>.</p>
<hr>
<h3>once_init</h3>
<p>This is a constant value used to initialize <code>once_flag</code>
instances to indicate that the logically associated routine has not
been run yet.</p>
<hr>
<h3>call_once</h3>
<pre>
void call_once(void (*func)(), once_flag&amp; flag);
</pre>
<p><b>Requires:</b> The function <code>func</code> shall not throw
exceptions.</p>
<p><b>Effects:</b> As if (in an atomic fashion)</p>
<code>&nbsp;&nbsp;&nbsp;if (flag == once_init)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;func();</code>
<p><b>Postcondition:</b> <code>flag</code> != <code>
once_init</code></p>
<hr>
<h2><a name="Example">Example Usage</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
#include <a href=
"../../../boost/thread/tss.hpp">&lt;boost/thread/once.hpp&gt;</a>
#include &lt;cassert&gt;
int value=0;
boost::once_flag once = boost::once_init;
void init()
{
++value;
}
void thread_proc()
{
boost::call_once(&amp;init, once);
}
int main(int argc, char* argv[])
{
boost::thread_group threads;
for (int i=0; i&lt;5; ++i)
threads.create_thread(&amp;thread_proc);
threads.join_all();
assert(value == 1);
}
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -1,87 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:changes Changes since boost 1.40]
The 1.41.0 release of Boost adds futures to the thread library. There are also a few minor changes.
[heading Changes since boost 1.35]
The 1.36.0 release of Boost includes a few new features in the thread library:
* New generic __lock_multiple_ref__ and __try_lock_multiple_ref__ functions for locking multiple mutexes at once.
* Rvalue reference support for move semantics where the compilers supports it.
* A few bugs fixed and missing functions added (including the serious win32 condition variable bug).
* `scoped_try_lock` types are now backwards-compatible with Boost 1.34.0 and previous releases.
* Support for passing function arguments to the thread function by supplying additional arguments to the __thread__ constructor.
* Backwards-compatibility overloads added for `timed_lock` and `timed_wait` functions to allow use of `xtime` for timeouts.
[heading Changes since boost 1.34]
Almost every line of code in __boost_thread__ has been changed since the 1.34 release of boost. However, most of the interface
changes have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking
changes are described below.
[heading New Features]
* Instances of __thread__ and of the various lock types are now movable.
* Threads can be interrupted at __interruption_points__.
* Condition variables can now be used with any type that implements the __lockable_concept__, through the use of
`boost::condition_variable_any` (`boost::condition` is a `typedef` to `boost::condition_variable_any`, provided for backwards
compatibility). `boost::condition_variable` is provided as an optimization, and will only work with
`boost::unique_lock<boost::mutex>` (`boost::mutex::scoped_lock`).
* Thread IDs are separated from __thread__, so a thread can obtain it's own ID (using `boost::this_thread::get_id()`), and IDs can
be used as keys in associative containers, as they have the full set of comparison operators.
* Timeouts are now implemented using the Boost DateTime library, through a typedef `boost::system_time` for absolute timeouts, and
with support for relative timeouts in many cases. `boost::xtime` is supported for backwards compatibility only.
* Locks are implemented as publicly accessible templates `boost::lock_guard`, `boost::unique_lock`, `boost::shared_lock`, and
`boost::upgrade_lock`, which are templated on the type of the mutex. The __lockable_concept__ has been extended to include publicly
available __lock_ref__ and __unlock_ref__ member functions, which are used by the lock types.
[heading Breaking Changes]
The list below should cover all changes to the public interface which break backwards compatibility.
* __try_mutex__ has been removed, and the functionality subsumed into __mutex__. __try_mutex__ is left as a `typedef`,
but is no longer a separate class.
* __recursive_try_mutex__ has been removed, and the functionality subsumed into
__recursive_mutex__. __recursive_try_mutex__ is left as a `typedef`, but is no longer a separate class.
* `boost::detail::thread::lock_ops` has been removed. Code that relies on the `lock_ops` implementation detail will no longer work,
as this has been removed, as it is no longer necessary now that mutex types now have public __lock_ref__ and __unlock_ref__ member
functions.
* `scoped_lock` constructors with a second parameter of type `bool` are no longer provided. With previous boost releases,
``boost::mutex::scoped_lock some_lock(some_mutex,false);`` could be used to create a lock object that was associated with a mutex,
but did not lock it on construction. This facility has now been replaced with the constructor that takes a
`boost::defer_lock_type` as the second parameter: ``boost::mutex::scoped_lock some_lock(some_mutex,boost::defer_lock);``
* The `locked()` member function of the `scoped_lock` types has been renamed to __owns_lock_ref__.
* You can no longer obtain a __thread__ instance representing the current thread: a default-constructed __thread__ object is not
associated with any thread. The only use for such a thread object was to support the comparison operators: this functionality has
been moved to __thread_id__.
* The broken `boost::read_write_mutex` has been replaced with __shared_mutex__.
* __mutex__ is now never recursive. For Boost releases prior to 1.35 __mutex__ was recursive on Windows and not on POSIX platforms.
* When using a __recursive_mutex__ with a call to [cond_any_wait_link `boost::condition_variable_any::wait()`], the mutex is only
unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.
[endsect]

338
doc/condition.html Normal file
View File

@@ -0,0 +1,338 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, condition</title>
</head>
<body bgcolor="#ffffff" link="#0000ff" vlink="#800080" text="#000000">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img height="86" alt="C++ Boost" src=
"../../../c++boost.gif" width="277"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">condition</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>An object of class <code>condition</code> is a synchronization
primitive used to cause a thread to wait until a particular shared-data
condition (or time) is met. A <code>condition</code> object is always
used in conjunction with a mutex object modeling a <a href=
"mutex_concept.html">Mutex Concept</a>. The mutex must be locked prior
to waiting on the <code>condition</code>, which is ensured by passing a
lock object modeling a <a href="lock_concept.html">Lock Concept</a> to
the <code>condition</code> object&#39;s <code>wait</code> functions.
While the thread is waiting on the <code>condition</code> object, the
mutex associated with the lock is unlocked. When the thread returns
from a call to one of the <code>condition</code> object&#39;s <code>
wait</code> functions, the mutex is again locked. The tricky
lock/unlock/lock sequence is performed automatically by the <code>
condition</code> object&#39;s <code>wait</code> functions.</p>
<p>The <code>condition</code> type is often used to implement the <i>
Monitor Object</i> and other important patterns. See <a href=
"bibliography.html#Schmidt-00">[Schmidt-00]</a> and <a href=
"bibliography.html#Hoare-74">[Hoare 74]</a>. Monitors are one of the
most important patterns for creating reliable multithreaded
programs.</p>
<p>See <a href="definitions.html">Formal Definitions</a> for
definitions of thread states <a href="definitions.html#state">
blocked</a> and <a href="definitions.html#state">ready</a>. Note that
&quot;waiting&quot; is a synonym for blocked.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/condition.hpp">&lt;boost/thread/condition.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost {
class condition : private <a href=
"../../utility/utility.htm#Class noncopyable">boost::noncopyable</a> // Exposition only.
// Class condition meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
condition();
~condition();
void notify_one();
void notify_all();
template &lt;typename <a href="scoped_lock.html">ScopedLock</a>&gt;
void wait(<a href="scoped_lock.html">ScopedLock</a>&amp; lock);
template &lt;typename <a href="scoped_lock.html">ScopedLock</a>, typename <a
href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>&gt;
void wait(<a href="scoped_lock.html">ScopedLock</a>&amp; lock, <a href=
"http://www.sgi.com/tech/stl/Predicate.html">Predicate</a> pred);
template &lt;typename <a href="scoped_lock.html">ScopedLock</a>&gt;
bool timed_wait(<a href=
"scoped_lock.html">ScopedLock</a>&amp; lock, const xtime&amp; xt);
template &lt;typename <a href="scoped_lock.html">ScopedLock</a>, typename <a
href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>&gt;
bool timed_wait(<a href=
"scoped_lock.html">ScopedLock</a>&amp; lock, const xtime&amp; xt, <a href=
"http://www.sgi.com/tech/stl/Predicate.html">Predicate</a> pred);
};
} // namespace boost
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
condition();
</pre>
<p><b>Effects:</b> Constructs a <code>condition</code>.</p>
<hr>
<h3>Destructor</h3>
<pre>
~condition();
</pre>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<hr>
<h3>notify_one</h3>
<pre>
void notify_one();
</pre>
<p><b>Effects:</b> If there is a thread waiting on <code>*this</code>,
change that thread&#39;s state to ready. Otherwise there is no
effect.</p>
<p><b>Notes:</b> If more that one thread is waiting on the condition,
it is unspecified which is made ready.</p>
<hr>
<h3>notify_all</h3>
<pre>
void notify_all();
</pre>
<p><b>Effects:</b> Change the state of all threads waiting on <code>
*this</code> to ready. If there are no waiting threads, <code>
notify_all()</code> has no effect.</p>
<hr>
<h3>wait</h3>
<pre>
template &lt;typename ScopedLock&gt;
void wait(ScopedLock&amp; lock);
</pre>
<p><b>Requires:</b> ScopedLock meets the <a href=
"lock_concept.html#ScopedLock">ScopedLock</a> requirements.</p>
<p><b>Effects:</b> Releases the lock on the <a href=
"mutex_concept.html">mutex model</a> associated with <code>lock</code>,
blocks the current thread of execution until readied by a call to
<code>this-&gt;notify_one()</code> or <code>
this-&gt;notify_all()</code>, and then reacquires the lock. All effects
occur in an atomic fashion.</p>
<p><b>Throws:</b> <code><a href="lock_error.html">lock_error</a></code>
if <code>!lock.locked()</code></p>
<p><b>Danger:</b> This version should always be used within a loop
checking that the state logically associated with the <code>
condition</code> has become true. Without the loop, race conditions can
ensue due to possible &quot;spurious wake ups&quot;. The second version
encapsulates this loop idiom internally and is generally the preferred
method.</p>
<pre>
template &lt;typename ScopedLock, typename Pr&gt;
void wait(ScopedLock&amp; lock, Pr pred);
</pre>
<p><b>Requires:</b> ScopedLock meets the <a href=
"lock_concept.html#ScopedLock">ScopedLock</a> requirements, return from
<code>pred()</code> convertible to bool.</p>
<p><b>Effects:</b> As if:</p>
<code>&nbsp;&nbsp;&nbsp;while (!pred()) wait(lock)</code>
<p><b>Throws:</b> <code><a href="lock_error.html">lock_error</a></code>
if <code>!lock.locked()</code></p>
<hr>
<h3>timed_wait</h3>
<pre>
template &lt;typename ScopedLock&gt;
bool timed_wait(ScopedLock&amp; lock, const <a href=
"xtime.html">xtime</a>&amp; xt);
</pre>
<p><b>Requires:</b> ScopedLock meets the <a href=
"lock_concept.html#ScopedLock">ScopedLock</a>
requirements.</p>
<p><b>Effects:</b> Releases the lock on the <a href=
"mutex_concept.html">mutex model</a> associated with the <code>
lock</code>, blocks the current thread of execution until readied by a
call to <code>this-&gt;notify_one()</code> or <code>
this-&gt;notify_all()</code>, or until <code>xt</code>, and then
reacquires the lock. All effects occur in an atomic fashion.</p>
<p><b>Throws:</b> <code><a href="lock_error.html">lock_error</a></code>
if <code>!lock.locked()</code></p>
<p><b>Danger:</b> This version should always be used within a loop
checking that the state logically associated with the <code>
condition</code> has become true. Without the loop, race conditions can
ensue due to &quot;spurious wake ups&quot;. The second version
encapsulates this loop idiom internally and is generally the preferred
method.</p>
<p><b>Returns:</b> <code>false</code> if <code>xt</code> is reached,
otherwise <code>true</code>.</p>
<pre>
template &lt;typename ScopedLock, typename Pr&gt;
bool timed_wait(ScopedLock&amp; lock, const <a href=
"xtime.html">xtime</a>&amp; xt, Pr pred);
</pre>
<p><b>Requires:</b> ScopedLock meets the <a href=
"lock_concept.html#ScopedLock">ScopedLock</a> requirements,
return from <code>pred()</code> convertible to bool.</p>
<p><b>Effects:</b> As if:</p>
<code>&nbsp;&nbsp;&nbsp;while (!pred())<br>
&nbsp;&nbsp;&nbsp;{<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;if (!timed_wait(lock, xt))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return
false;<br>
&nbsp;&nbsp;&nbsp;}</code>
<p><b>Throws:</b> <code><a href="lock_error.html">lock_error</a></code>
if <code>!lock.locked()</code></p>
<p><b>Returns:</b> <code>false</code> if <code>xt</code> is reached,
otherwise <code>true</code>.</p>
<hr>
<h2><a name="Example">Example Usage</a></h2>
<pre>
#include &lt;iostream&gt;
#include &lt;vector&gt;
#include <a href="../../../boost/utility.hpp">&lt;boost/utility.hpp&gt;</a>
#include <a href=
"../../../boost/thread/condition.hpp">&lt;boost/thread/condition.hpp&gt;</a>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
class bounded_buffer : private boost::noncopyable
{
public:
typedef boost::mutex::scoped_lock lock;
bounded_buffer(int n) : begin(0), end(0), buffered(0), circular_buf(n) { }
void send (int m) {
lock lk(monitor);
while (buffered == circular_buf.size())
buffer_not_full.wait(lk);
circular_buf[end] = m;
end = (end+1) % circular_buf.size();
++buffered;
buffer_not_empty.notify_one();
}
int receive() {
lock lk(monitor);
while (buffered == 0)
buffer_not_empty.wait(lk);
int i = circular_buf[begin];
begin = (begin+1) % circular_buf.size();
--buffered;
buffer_not_full.notify_one();
return i;
}
private:
int begin, end, buffered;
std::vector&lt;int&gt; circular_buf;
boost::condition buffer_not_full, buffer_not_empty;
boost::mutex monitor;
};
bounded_buffer buf(2);
void sender() {
int n = 0;
while (n &lt; 100) {
buf.send(n);
std::cout &lt;&lt; &quot;sent: &quot; &lt;&lt; n &lt;&lt; std::endl;
++n;
}
buf.send(-1);
}
void receiver() {
int n;
do {
n = buf.receive();
std::cout &lt;&lt; &quot;received: &quot; &lt;&lt; n &lt;&lt; std::endl;
} while (n != -1); // -1 indicates end of buffer
}
int main(int, char*[])
{
boost::thread thrd1(&amp;sender);
boost::thread thrd2(&amp;receiver);
thrd1.join();
thrd2.join();
return 0;
}
</pre>
<p>Typical output (dependent on scheduling policies) is:</p>
<pre>
sent: 0
sent: 1
received: 0
received: 1
sent: 2
sent: 3
received: 2
received: 3
sent: 4
received: 4
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -1,513 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:condvar_ref Condition Variables]
[heading Synopsis]
The classes `condition_variable` and `condition_variable_any` provide a
mechanism for one thread to wait for notification from another thread that a
particular condition has become true. The general usage pattern is that one
thread locks a mutex and then calls `wait` on an instance of
`condition_variable` or `condition_variable_any`. When the thread is woken from
the wait, then it checks to see if the appropriate condition is now true, and
continues if so. If the condition is not true, then the thread then calls `wait`
again to resume waiting. In the simplest case, this condition is just a boolean
variable:
boost::condition_variable cond;
boost::mutex mut;
bool data_ready;
void process_data();
void wait_for_data_to_process()
{
boost::unique_lock<boost::mutex> lock(mut);
while(!data_ready)
{
cond.wait(lock);
}
process_data();
}
Notice that the `lock` is passed to `wait`: `wait` will atomically add the
thread to the set of threads waiting on the condition variable, and unlock the
mutex. When the thread is woken, the mutex will be locked again before the call
to `wait` returns. This allows other threads to acquire the mutex in order to
update the shared data, and ensures that the data associated with the condition
is correctly synchronized.
In the mean time, another thread sets the condition to `true`, and then calls
either `notify_one` or `notify_all` on the condition variable to wake one
waiting thread or all the waiting threads respectively.
void retrieve_data();
void prepare_data();
void prepare_data_for_processing()
{
retrieve_data();
prepare_data();
{
boost::lock_guard<boost::mutex> lock(mut);
data_ready=true;
}
cond.notify_one();
}
Note that the same mutex is locked before the shared data is updated, but that
the mutex does not have to be locked across the call to `notify_one`.
This example uses an object of type `condition_variable`, but would work just as
well with an object of type `condition_variable_any`: `condition_variable_any`
is more general, and will work with any kind of lock or mutex, whereas
`condition_variable` requires that the lock passed to `wait` is an instance of
`boost::unique_lock<boost::mutex>`. This enables `condition_variable` to make
optimizations in some cases, based on the knowledge of the mutex type;
`condition_variable_any` typically has a more complex implementation than
`condition_variable`.
[section:condition_variable Class `condition_variable`]
#include <boost/thread/condition_variable.hpp>
namespace boost
{
class condition_variable
{
public:
condition_variable();
~condition_variable();
void notify_one();
void notify_all();
void wait(boost::unique_lock<boost::mutex>& lock);
template<typename predicate_type>
void wait(boost::unique_lock<boost::mutex>& lock,predicate_type predicate);
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time);
template<typename duration_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time);
template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time,predicate_type predicate);
template<typename duration_type,typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time,predicate_type predicate);
// backwards compatibility
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time);
template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time,predicate_type predicate);
};
}
[section:constructor `condition_variable()`]
[variablelist
[[Effects:] [Constructs an object of class `condition_variable`.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[endsect]
[section:destructor `~condition_variable()`]
[variablelist
[[Precondition:] [All threads waiting on `*this` have been notified by a call to
`notify_one` or `notify_all` (though the respective calls to `wait` or
`timed_wait` need not have returned).]]
[[Effects:] [Destroys the object.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_one `void notify_one()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks one of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_all `void notify_all()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks all of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:wait `void wait(boost::unique_lock<boost::mutex>& lock)`]
[variablelist
[[Precondition:] [`lock` is locked by the current thread, and either no other
thread is currently waiting on `*this`, or the execution of the `mutex()` member
function on the `lock` objects supplied in the calls to `wait` or `timed_wait`
in all the threads currently waiting on `*this` would return the same value as
`lock->mutex()` for this call to `wait`.]]
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:wait_predicate `template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
wait(lock);
}
``]]
]
[endsect]
[section:timed_wait `bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)`]
[variablelist
[[Precondition:] [`lock` is locked by the current thread, and either no other
thread is currently waiting on `*this`, or the execution of the `mutex()` member
function on the `lock` objects supplied in the calls to `wait` or `timed_wait`
in all the threads currently waiting on `*this` would return the same value as
`lock->mutex()` for this call to `wait`.]]
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, when the time as reported by `boost::get_system_time()`
would be equal to or later than the specified `abs_time`, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by
invoking `lock.lock()` before the call to `wait` returns. The lock is also
reacquired by invoking `lock.lock()` if the function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time specified by
`abs_time` was reached, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:timed_wait_rel `template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)`]
[variablelist
[[Precondition:] [`lock` is locked by the current thread, and either no other
thread is currently waiting on `*this`, or the execution of the `mutex()` member
function on the `lock` objects supplied in the calls to `wait` or `timed_wait`
in all the threads currently waiting on `*this` would return the same value as
`lock->mutex()` for this call to `wait`.]]
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, after the period of time indicated by the `rel_time`
argument has elapsed, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time period specified
by `rel_time` has elapsed, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[note The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred in most cases.]
[endsect]
[section:timed_wait_predicate `template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
if(!timed_wait(lock,abs_time))
{
return pred();
}
}
return true;
``]]
]
[endsect]
[endsect]
[section:condition_variable_any Class `condition_variable_any`]
#include <boost/thread/condition_variable.hpp>
namespace boost
{
class condition_variable_any
{
public:
condition_variable_any();
~condition_variable_any();
void notify_one();
void notify_all();
template<typename lock_type>
void wait(lock_type& lock);
template<typename lock_type,typename predicate_type>
void wait(lock_type& lock,predicate_type predicate);
template<typename lock_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time);
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time);
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time,predicate_type predicate);
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time,predicate_type predicate);
// backwards compatibility
template<typename lock_type>
bool timed_wait(lock_type>& lock,boost::xtime const& abs_time);
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::xtime const& abs_time,predicate_type predicate);
};
}
[section:constructor `condition_variable_any()`]
[variablelist
[[Effects:] [Constructs an object of class `condition_variable_any`.]]
[[Throws:] [__thread_resource_error__ if an error occurs.]]
]
[endsect]
[section:destructor `~condition_variable_any()`]
[variablelist
[[Precondition:] [All threads waiting on `*this` have been notified by a call to
`notify_one` or `notify_all` (though the respective calls to `wait` or
`timed_wait` need not have returned).]]
[[Effects:] [Destroys the object.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_one `void notify_one()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks one of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:notify_all `void notify_all()`]
[variablelist
[[Effects:] [If any threads are currently __blocked__ waiting on `*this` in a call
to `wait` or `timed_wait`, unblocks all of those threads.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:wait `template<typename lock_type> void wait(lock_type& lock)`]
[variablelist
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:wait_predicate `template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
wait(lock);
}
``]]
]
[endsect]
[section:timed_wait `template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)`]
[variablelist
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, when the time as reported by `boost::get_system_time()`
would be equal to or later than the specified `abs_time`, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by
invoking `lock.lock()` before the call to `wait` returns. The lock is also
reacquired by invoking `lock.lock()` if the function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time specified by
`abs_time` was reached, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[endsect]
[section:timed_wait_rel `template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)`]
[variablelist
[[Effects:] [Atomically call `lock.unlock()` and blocks the current thread. The
thread will unblock when notified by a call to `this->notify_one()` or
`this->notify_all()`, after the period of time indicated by the `rel_time`
argument has elapsed, or spuriously. When the thread is unblocked (for whatever
reason), the lock is reacquired by invoking `lock.lock()` before the call to
`wait` returns. The lock is also reacquired by invoking `lock.lock()` if the
function exits with an exception.]]
[[Returns:] [`false` if the call is returning because the time period specified
by `rel_time` has elapsed, `true` otherwise.]]
[[Postcondition:] [`lock` is locked by the current thread.]]
[[Throws:] [__thread_resource_error__ if an error
occurs. __thread_interrupted__ if the wait was interrupted by a call to
__interrupt__ on the __thread__ object associated with the current thread of execution.]]
]
[note The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred in most cases.]
[endsect]
[section:timed_wait_predicate `template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)`]
[variablelist
[[Effects:] [As-if ``
while(!pred())
{
if(!timed_wait(lock,abs_time))
{
return pred();
}
}
return true;
``]]
]
[endsect]
[endsect]
[section:condition Typedef `condition`]
#include <boost/thread/condition.hpp>
typedef condition_variable_any condition;
The typedef `condition` is provided for backwards compatibility with previous boost releases.
[endsect]
[endsect]

97
doc/config.html Normal file
View File

@@ -0,0 +1,97 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, Configuration Information</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Configuration Information</h2>
</td>
</tr>
</table>
<hr>
<p><b>Boost.Threads</b> uses several configuration macros in <a href=
"../../config/config.htm">&lt;boost/config.hpp&gt;</a>. These macros
are documented here. Most of the macros are of interest only to
developers attempting to provide new implementations of <b>
Boost.Threads</b>. The one exception to this is BOOST_HAS_THREADS.</p>
<table summary="macros" cellspacing="10" width="100%">
<tr>
<td valign="top"><b>Macro</b> </td>
<td valign="top"><b>Meaning</b> </td>
</tr>
<tr>
<td valign="top">BOOST_HAS_THREADS</td>
<td valign="top">Indicates that threading support is available.
This means both that there is a platform specific
implementation for <b>Boost.Threads</b> and that threading
support has been enabled in a platform specific manner. For
instance, on the Win32 platform there&#39;s an implementation
for <b>Boost.Threads</b> but unless the program is compiled
against one of the multi-threading runtimes (often determined
by the compiler predefining the macro _MT) the
BOOST_HAS_THREADS macro remains undefined.</td>
</tr>
<tr>
<td valign="top">BOOST_HAS_WINTHREADS</td>
<td valign="top">Indicates that the platform has the Microsoft
Win32 threading libraries, and that they should be used to
implement <b>Boost.Threads</b>.</td>
</tr>
<tr>
<td valign="top">BOOST_HAS_PTHREADS</td>
<td valign="top">Indicates that the platform has the POSIX
pthreads libraries, and that they should be used to implement
<b>Boost.Threads</b>.</td>
</tr>
<tr>
<td valign="top">BOOST_HAS_FTIME</td>
<td valign="top">Indicates that the implementation should use
GetSystemTimeAsFileTime() and the FILETIME type to calculate
the current time. This is an implementation detail used by
boost::detail::getcurtime().</td>
</tr>
<tr>
<td valign="top">BOOST_HAS_GETTTIMEOFDAY</td>
<td valign="top">Indicates that the implementation should use
gettimeofday() to calculate the current time. This is an
implementation detail used by boost::detail::getcurtime().</td>
</tr>
</table>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

348
doc/definitions.html Normal file
View File

@@ -0,0 +1,348 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content=
"text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost.Threads Definitions</title>
</head>
<body bgcolor="#FFFFFF">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Definitions</h2>
</td>
</tr>
</table>
<h2>Introduction</h2>
<p>The definitions are given in terms of the <a href=
"bibliography.html#ISO-98">C++ Standard</a>. References to the standard
are in the form [1.2.3/4], which represents the section number, with
the paragraph number following the &quot;/&quot;.</p>
<p>Because the definitions are written in something akin to
&quot;standardese&quot;, they can be difficult to understand. The
intent isn&#39;t to confuse, but rather to clarify the additional
requirements Boost.Threads places on a C++ implementation as defined by
the C++ Standard.</p>
<h2>Definitions</h2>
<h3>Thread</h3>
<p>Thread is short for &quot;thread of execution&quot;. A thread of
execution is an execution environment [1.9/7] within the execution
environment of a C++ program [1.9]. The main() function [3.6.1] of the
program is the initial function of the initial thread. A program in a
multi-threading environment always has an initial thread even if the
program explicitly creates no additional threads.</p>
<p>Unless otherwise specified, each thread shares all aspects of its
execution environment with other threads in the program. Shared aspects
of the execution environment include, but are not limited to, the
following:</p>
<ul>
<li>Static storage duration (static, extern) objects [3.7.1].</li>
</ul>
<ul>
<li>Dynamic storage duration (heap) objects [3.7.3]. Thus each
memory allocation will return a unique addresses, regardless of the
thread making the allocation request.</li>
</ul>
<ul>
<li>Automatic storage duration (stack) objects [3.7.2] accessed via
pointer or reference from another thread.</li>
</ul>
<ul>
<li>Resources provided by the operating system. For example,
files.</li>
</ul>
<ul>
<li>The program itself. In other words, each thread is executing
some function of the same program, not a totally different
program.</li>
</ul>
<p>Each thread has its own:</p>
<ul>
<li>Registers and current execution sequence (program counter)
[1.9/5].</li>
</ul>
<ul>
<li>Automatic storage duration (stack) objects [3.7.2].</li>
</ul>
<h3><a name="Thread-safe">Thread-safe</a></h3>
<p>A program is thread-safe if it has no <a href="#Race condition">race
conditions</a>, does not <a href="#Deadlock">deadlock</a>, and has no
<a href="#Priority failure">priority failures</a>.</p>
<p>Note that thread-safety does not necessarily imply efficiency, and
than while some thread-safety violations can be determined statically
at compile time, many thread-safety errors can only only be detected at
runtime.</p>
<h3>Thread <a name="State">State</a></h3>
<p>During the lifetime of a thread, it shall be in one of the following
states:</p>
<table summary="thread states" border="1" cellpadding="5">
<tr>
<td><b>State</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td>Ready</td>
<td>Ready to run, but waiting for a processor.</td>
</tr>
<tr>
<td>Running</td>
<td>Currently executing on a processor. Zero or more threads
may be running at any time, with a maximum equal to the number
of processors.</td>
</tr>
<tr>
<td>Blocked</td>
<td>Waiting for some resource other than a processor which is
not currently available, or for the completion of calls to
library functions [1.9/6]. The term &quot;waiting&quot; is
synonymous for &quot;blocked&quot;</td>
</tr>
<tr>
<td>Terminated</td>
<td>Finished execution but not yet detached or joined.</td>
</tr>
</table>
<p>Thread state transitions shall occur only as specified:</p>
<table summary="state transitions" border="1" cellpadding="5">
<tr>
<td><b>From</b></td>
<td><b>To</b></td>
<td><b>Cause</b></td>
</tr>
<tr>
<td>
<p align="left">[none]</p>
</td>
<td>Ready</td>
<td>Thread is created by a call to a library function. In the
case of the initial thread, creation is implicit and occurs
during the startup of the main() function [3.6.1].</td>
</tr>
<tr>
<td>Ready</td>
<td>Running</td>
<td>Processor becomes available.</td>
</tr>
<tr>
<td>Running</td>
<td>Ready</td>
<td>Thread preempted.</td>
</tr>
<tr>
<td>Running</td>
<td>Blocked</td>
<td>Thread calls a library function which waits for a resource
or for the completion of I/O.</td>
</tr>
<tr>
<td>Running</td>
<td>Terminated</td>
<td>Thread returns from its initial function, calls a thread
termination library function, or is cancelled by some other
thread calling a thread termination library function.</td>
</tr>
<tr>
<td>Blocked</td>
<td>Ready</td>
<td>The resource being waited for becomes available, or the
blocking library function completes.</td>
</tr>
<tr>
<td>Terminated</td>
<td>[none]</td>
<td>Thread is detached or joined by some other thread calling
the appropriate library function, or by program termination
[3.6.3].</td>
</tr>
</table>
<p>[Note: if a suspend() function is added to the threading library,
additional transitions to the blocked state will have to be added to
the above table.]</p>
<h3><a name="Race condition">Race condition</a></h3>
<p>A race condition is what occurs when multiple threads read and write
to the same memory without proper synchronization, resulting in an
incorrect value being read or written. The result of a race condition
may be a bit pattern which isn&#39;t even a valid value for the data
type. A race condition results in undefined behavior [1.3.12].</p>
<p>Race conditions can be prevented by serializing memory access using
the tools provided by Boost.Threads.</p>
<h3><a name="Deadlock">Deadlock</a></h3>
<p>Deadlock is an execution state where for some set of threads, each
thread in the set is blocked waiting for some action by one of the
other threads in the set. Since each is waiting on the others, none
will ever become ready again.</p>
<h3><a name="Priority failure">Priority failure</a></h3>
<p>A priority failure (such as priority inversion or infinite
overtaking) occurs when threads executed in such a sequence that
required work is not performed in time to be useful.</p>
<h2>Memory visibility between threads</h2>
<p>An address [1.7] shall always point to the same memory byte,
regardless of the thread or processor dereferencing the address.</p>
<p>An object [1.8, 1.9] is accessible from multiple threads if it is of
static storage duration (static, extern) [3.7.1], or if a pointer or
reference to it is explicitly or implicitly dereferenced in multiple
threads.</p>
<p>For an object accessible from multiple threads, the value of the
object accessed from one thread may be indeterminate or different than
the value accessed from another thread, except under the conditions
specified in the following table. For the same row of the table, the
value of an object accessible at the indicated sequence point in thread
A will be determinate and the same if accessed at or after the
indicated sequence point in thread B, provided the object is not
otherwise modified. In the table, the &quot;sequence point at a
call&quot; is the sequence point after the evaluation of all function
arguments [1.9/17], while the &quot;sequence point after a call&quot;
is the sequence point after the copying of the returned value...&quot;
[1.9/17].</p>
<table summary="memory visibility" border="1" cellpadding="5">
<tr>
<td align="center"><b>Thread A</b></td>
<td align="center"><b>Thread B</b></td>
</tr>
<tr>
<td>The sequence point at a call to a library thread-creation
function.</td>
<td>The first sequence point of the initial function in the new
thread created by the Thread A call.</td>
</tr>
<tr>
<td>The sequence point at a call to a library function which
locks a mutex, directly or by waiting for a condition
variable.</td>
<td>The sequence point after a call to a library function which
unlocks the same mutex.</td>
</tr>
<tr>
<td>The last sequence point before thread termination.</td>
<td>The sequence point after a call to a library function which
joins the terminated thread.</td>
</tr>
<tr>
<td>The sequence point at a call to a library function which
signals or broadcasts a condition variable.</td>
<td>The sequence point after the call to the library function
which was waiting on that same condition variable or
signal.</td>
</tr>
</table>
<p>The architecture of the execution environment and the observable
behavior of the abstract machine [1.9] shall be the same on all
processors.</p>
<p>The latitude granted by the C++ standard for an implementation to
alter the definition of observable behavior of the abstract machine to
include additional library I/O functions [1.9/6] is extended to include
threading library functions.</p>
<p>When an exception is thrown and there is no matching exception
handler in the same thread, behavior is undefined. The preferred
behavior is the same as when there is no matching exception handler in
a program [15.3/9]. That is, terminate() is called, and it is
implementation defined whether or not the stack is unwound.</p>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>This document has been much improved by the incorporation of
comments from William Kempf.</p>
<p>The visibility rules are based on <a href=
"bibliography.html#Butenhof-97">[Butenhof 97]</a>.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %b %Y" startspan -->05 Nov 2001<!--webbot bot="Timestamp" endspan i-checksum="15246" --></p>
<p>&copy; Copyright Beman Dawes, 2001</p>
</body>
</html>

193
doc/faq.html Normal file
View File

@@ -0,0 +1,193 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, FAQ</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width="277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Frequently Asked Questions</h2>
</td>
</tr>
</table>
<hr>
<h2>1. Are lock objects <a href="definitions.html#Thread-safe">
thread-safe</a>?</h2>
<p><b>No!</b> Lock objects are not meant to be shared between threads.
They are meant to be short lived objects created on automatic storage
within a code block. Any other usage is just likely to lead to errors
and won&#39;t really be of actual benefit any way. Share <a href=
"mutex_concept.html">mutexes</a>, not locks. For more information see
the <a href="rationale.html#lock_objects">rationale</a> behind the
design for lock objects.</p>
<h2>2a. Why was Boost.Threads modeled after (specific library
name)?</h2>
<p>It wasn&#39;t. Boost.Threads was designed from scratch. Extensive
design discussions involved numerous people representing a wide range
of experience across many platforms. To ensure portability, the initial
implements were done in parallel using POSIX Threads and theWin32
threading API. But the Boost.Threads design is very much in the spirit
of C++, and thus doesn&#39;t model such C based APIs.</p>
<h2>2b. Why wasn&#39;t Boost.Threads modeled after (specific library
name)?</h2>
<p>Existing C++ libraries either seemed dangerous (often failing to
take advantage of prior art to reduce errors) or had excessive
dependencies on library components unrelated to threading. Existing C
libraries couldn&#39;t meet our C++ requirements, and were also missing
certain features. For instance, the WIN32 thread API lacks condition
variables, even though these are critical for the important Monitor
pattern <a href="bibliography.html#Schmidt-00">[Schmidt 00]</a>.</p>
<h2>3. Why do <a href="mutex_concept.html">Mutexes</a> have noncopyable
semantics?</h2>
<p>To ensure that <a href="definitions.html#Deadlock">deadlocks</a>
don&#39;t occur. The only logical form of copy would be to use some
sort of shallow copy semantics in which multiple mutex objects could
refer to the same mutex state. This means that if ObjA has a mutex
object as part of its state and ObjB is copy constructed from it, then
when ObjB::foo() locks the mutex it has effectively locked ObjA as
well. This behavior can result in deadlock. Other copy semantics result
in similar problems (if you think you can prove this to be wrong then
supply us with an alternative and we&#39;ll reconsider).</p>
<h2>4. How can you prevent <a href="definitions.html#Deadlock">
deadlock</a> from occurring when a thread must lock multiple
mutexes?</h2>
<p>Always lock them in the same order. One easy way of doing this is to
use each mutex&#39;s address to determine the order in which they are
locked. A future Boost.Threads concept may wrap this pattern up in a
reusable class.</p>
<h2>5. Don&#39;t noncopyable <a href="mutex_concept.html">mutex</a>
semantics mean that a class with a mutex member will be noncopyable as
well?</h2>
<p>No, but what it does mean is that the compiler can&#39;t generate a
copy constructor and assignment operator, so they will have to be coded
explicitly. This is a <b>good thing</b>, however, since the compiler
generated operations would not be <a href=
"definitions.html#Thread-safe">thread-safe</a>. The following is a
simple example of a class with copyable semantics and internal
synchronization through a mutex member.</p>
<pre>
class counter
{
public:
// Doesn't need synchronization since there can be no references to *this
// until after it's constructed!
explicit counter(int initial_value)
: m_value(initial_value)
{
}
// We only need to syncronize other for the same reason we don't have to
// synchronize on construction!
counter(const counter&amp; other)
{
boost::mutex::scoped_lock scoped_lock(other.m_mutex);
m_value = other.m_value;
}
// For assignment we need to synchronize both objects!
const counter&amp; operator=(const counter&amp; other)
{
if (this == &amp;other)
return *this;
boost::mutex::scoped_lock lock1(&amp;m_mutex &lt; &amp;other.m_mutex ? m_mutex : other.m_mutex);
boost::mutex::scoped_lock lock2(&amp;m_mutex &gt; &amp;other.m_mutex ? m_mutex : other.m_mutex);
m_value = other.m_value;
return *this;
}
int value() const
{
boost::mutex::scoped_lock scoped_lock(m_mutex);
return m_value;
}
int increment()
{
boost::mutex::scoped_lock scoped_lock(m_mutex);
return ++m_value;
}
private:
mutable boost::mutex m_mutex;
int m_value;
};
</pre>
<h2>6. How can you lock a <a href="mutex_concept.html">mutex</a> member
in a const member function, in order to implement the Monitor
Pattern?</h2>
<p>The Monitor Pattern mutex <a href="bibliography.html#Schmidt-00">
[Schmidt 00]</a> should simply be declared as mutable. See the example
code above. The internal state of mutex types could have been made
mutable, with all lock calls made via const functions, but this does a
poor job of documenting the actual semantics. Declaring a mutex member
as mutable clearly documentations the intended semantics.</p>
<h2>7. Why supply <a href="condition.html">condition variables</a>
rather than <a href="rationale.html#Events">event variables</a>?</h2>
<p>Condition variables result in user code much less prone to <a href=
"definitions.html#Race condition">race conditions</a> than event
variables. See <a href="rationale.html#Events">Rationale</a> for
analysis. Also see <a href="bibliography.html#Hoare-74">[Hoare74]</a>
and <a href="bibliography.html#Schmidt-00">[Schmidt 00]</a>.</p>
<h2>8. Why isn&#39;t thread cancellation or termination provided?</h2>
<p>There&#39;s a valid need for thread termination, so at some point
Boost.Threads probably will include it, but only after we can find a
truly safe (and portable) mechanism for this concept.</p>
<h2>9. Is it safe for threads to share automatic storage duration
(stack) objects via pointers or references?</h2>
<p>Only if you can guarantee that the lifetime of the stack object will
not end while other threads might still access the object. Thus the
safest practice is to avoid sharing stack objects, particularly in
designs where threads are created and destroyed dynamically. Restrict
sharing of stack objects to simple designs with very clear and
unchanging function and thread lifetimes. (Suggested by Darryl
Green).</p>
<h2>10. Why has class semaphore disappeared?</h2>
<p>Semaphore was removed as too error prone. The same effect can be
achieved with greater safety by the combination of a mutex and a
condition variable.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -1,968 +0,0 @@
[/
(C) Copyright 2008-9 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:reference Futures Reference]
[section:future_state `state` enum]
namespace future_state
{
enum state {uninitialized, waiting, ready};
}
[endsect]
[section:unique_future `unique_future` class template]
template <typename R>
class unique_future
{
unique_future(unique_future & rhs);// = delete;
unique_future& operator=(unique_future& rhs);// = delete;
public:
typedef future_state::state state;
unique_future();
~unique_future();
// move support
unique_future(unique_future && other);
unique_future& operator=(unique_future && other);
void swap(unique_future& other);
// retrieving the value
R&& get();
// functions to check state
state get_state() const;
bool is_ready() const;
bool has_exception() const;
bool has_value() const;
// waiting for the result to be ready
void wait() const;
template<typename Duration>
bool timed_wait(Duration const& rel_time) const;
bool timed_wait_until(boost::system_time const& abs_time) const;
};
[section:default_constructor Default Constructor]
unique_future();
[variablelist
[[Effects:] [Constructs an uninitialized future.]]
[[Postconditions:] [[unique_future_is_ready_link `this->is_ready`] returns `false`. [unique_future_get_state_link
`this->get_state()`] returns __uninitialized__.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:destructor Destructor]
~unique_future();
[variablelist
[[Effects:] [Destroys `*this`.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:move_constructor Move Constructor]
unique_future(unique_future && other);
[variablelist
[[Effects:] [Constructs a new future, and transfers ownership of the asynchronous result associated with `other` to `*this`.]]
[[Postconditions:] [[unique_future_get_state_link `this->get_state()`] returns the value of `other->get_state()` prior to the
call. `other->get_state()` returns __uninitialized__. If `other` was associated with an asynchronous result, that result is now
associated with `*this`. `other` is not associated with any asynchronous result.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:move_assignment Move Assignment Operator]
unique_future& operator=(unique_future && other);
[variablelist
[[Effects:] [Transfers ownership of the asynchronous result associated with `other` to `*this`.]]
[[Postconditions:] [[unique_future_get_state_link `this->get_state()`] returns the value of `other->get_state()` prior to the
call. `other->get_state()` returns __uninitialized__. If `other` was associated with an asynchronous result, that result is now
associated with `*this`. `other` is not associated with any asynchronous result. If `*this` was associated with an asynchronous
result prior to the call, that result no longer has an associated __unique_future__ instance.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:swap Member function `swap()`]
void swap(unique_future & other);
[variablelist
[[Effects:] [Swaps ownership of the asynchronous results associated with `other` and `*this`.]]
[[Postconditions:] [[unique_future_get_state_link `this->get_state()`] returns the value of `other->get_state()` prior to the
call. `other->get_state()` returns the value of `this->get_state()` prior to the call. If `other` was associated with an
asynchronous result, that result is now associated with `*this`, otherwise `*this` has no associated result. If `*this` was
associated with an asynchronous result, that result is now associated with `other`, otherwise `other` has no associated result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get Member function `get()`]
R&& get();
R& unique_future<R&>::get();
void unique_future<void>::get();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready as-if by a call to
__unique_future_wait__, and retrieves the result (whether that is a value or an exception).]]
[[Returns:] [If the result type `R` is a reference, returns the stored reference. If `R` is `void`, there is no return
value. Otherwise, returns an rvalue-reference to the value stored in the asynchronous result.]]
[[Postconditions:] [[unique_future_is_ready_link `this->is_ready()`] returns `true`. [unique_future_get_state_link
`this->get_state()`] returns __ready__.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception stored in the
asynchronous result in place of a value.]]
[[Notes:] [`get()` is an ['interruption point].]]
]
[endsect]
[section:wait Member function `wait()`]
void wait();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready. If the result is not ready on
entry, and the result has a ['wait callback] set, that callback is invoked prior to waiting.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [[unique_future_is_ready_link `this->is_ready()`] returns `true`. [unique_future_get_state_link
`this->get_state()`] returns __ready__.]]
[[Notes:] [`wait()` is an ['interruption point].]]
]
[endsect]
[section:timed_wait_duration Member function `timed_wait()`]
template<typename Duration>
bool timed_wait(Duration const& wait_duration);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time specified by
`wait_duration` has elapsed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is
invoked prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
elapsed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [unique_future_is_ready_link `this->is_ready()`] returns `true` and
[unique_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point]. `Duration` must be a type that meets the Boost.DateTime time duration requirements.]]
]
[endsect]
[section:timed_wait_absolute Member function `timed_wait()`]
bool timed_wait(boost::system_time const& wait_timeout);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time point specified by
`wait_timeout` has passed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is invoked
prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
passed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [unique_future_is_ready_link `this->is_ready()`] returns `true` and
[unique_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point].]]
]
[endsect]
[section:is_ready Member function `is_ready()`]
bool is_ready();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready for retrieval, `false`
otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_value Member function `has_value()`]
bool has_value();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with a value rather than an exception.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored value, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_exception Member function `has_exception()`]
bool has_exception();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with an exception rather than a value.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored exception, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_state Member function `get_state()`]
future_state::state get_state();
[variablelist
[[Effects:] [Determine the state of the asynchronous result associated with `*this`, if any.]]
[[Returns:] [__uninitialized__ if `*this` is not associated with an asynchronous result. __ready__ if the asynchronous result
associated with `*this` is ready for retrieval, __waiting__ otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:shared_future `shared_future` class template]
template <typename R>
class shared_future
{
public:
typedef future_state::state state;
shared_future();
~shared_future();
// copy support
shared_future(shared_future const& other);
shared_future& operator=(shared_future const& other);
// move support
shared_future(shared_future && other);
shared_future(unique_future<R> && other);
shared_future& operator=(shared_future && other);
shared_future& operator=(unique_future<R> && other);
void swap(shared_future& other);
// retrieving the value
R get();
// functions to check state, and wait for ready
state get_state() const;
bool is_ready() const;
bool has_exception() const;
bool has_value() const;
// waiting for the result to be ready
void wait() const;
template<typename Duration>
bool timed_wait(Duration const& rel_time) const;
bool timed_wait_until(boost::system_time const& abs_time) const;
};
[section:default_constructor Default Constructor]
shared_future();
[variablelist
[[Effects:] [Constructs an uninitialized future.]]
[[Postconditions:] [[shared_future_is_ready_link `this->is_ready`] returns `false`. [shared_future_get_state_link
`this->get_state()`] returns __uninitialized__.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get Member function `get()`]
const R& get();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready as-if by a call to
__shared_future_wait__, and returns a `const` reference to the result.]]
[[Returns:] [If the result type `R` is a reference, returns the stored reference. If `R` is `void`, there is no return
value. Otherwise, returns a `const` reference to the value stored in the asynchronous result.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the
result associated with `*this` is not ready at the point of the call, and the current thread is interrupted.]]
[[Notes:] [`get()` is an ['interruption point].]]
]
[endsect]
[section:wait Member function `wait()`]
void wait();
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready. If the result is not ready on
entry, and the result has a ['wait callback] set, that callback is invoked prior to waiting.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [[shared_future_is_ready_link `this->is_ready()`] returns `true`. [shared_future_get_state_link
`this->get_state()`] returns __ready__.]]
[[Notes:] [`wait()` is an ['interruption point].]]
]
[endsect]
[section:timed_wait_duration Member function `timed_wait()`]
template<typename Duration>
bool timed_wait(Duration const& wait_duration);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time specified by
`wait_duration` has elapsed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is
invoked prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
elapsed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [shared_future_is_ready_link `this->is_ready()`] returns `true` and
[shared_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point]. `Duration` must be a type that meets the Boost.DateTime time duration requirements.]]
]
[endsect]
[section:timed_wait_absolute Member function `timed_wait()`]
bool timed_wait(boost::system_time const& wait_timeout);
[variablelist
[[Effects:] [If `*this` is associated with an asynchronous result, waits until the result is ready, or the time point specified by
`wait_timeout` has passed. If the result is not ready on entry, and the result has a ['wait callback] set, that callback is invoked
prior to waiting.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready before the specified time has
passed, `false` otherwise.]]
[[Throws:] [__future_uninitialized__ if `*this` is not associated with an asynchronous result. __thread_interrupted__ if the result
associated with `*this` is not ready at the point of the call, and the current thread is interrupted. Any exception thrown by the
['wait callback] if such a callback is called.]]
[[Postconditions:] [If this call returned `true`, then [shared_future_is_ready_link `this->is_ready()`] returns `true` and
[shared_future_get_state_link `this->get_state()`] returns __ready__.]]
[[Notes:] [`timed_wait()` is an ['interruption point].]]
]
[endsect]
[section:is_ready Member function `is_ready()`]
bool is_ready();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, and that result is ready for retrieval, `false`
otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_value Member function `has_value()`]
bool has_value();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with a value rather than an exception.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored value, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:has_exception Member function `has_exception()`]
bool has_exception();
[variablelist
[[Effects:] [Checks to see if the asynchronous result associated with `*this` is set with an exception rather than a value.]]
[[Returns:] [`true` if `*this` is associated with an asynchronous result, that result is ready for retrieval, and the result is a
stored exception, `false` otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_state Member function `get_state()`]
future_state::state get_state();
[variablelist
[[Effects:] [Determine the state of the asynchronous result associated with `*this`, if any.]]
[[Returns:] [__uninitialized__ if `*this` is not associated with an asynchronous result. __ready__ if the asynchronous result
associated with `*this` is ready for retrieval, __waiting__ otherwise.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:promise `promise` class template]
template <typename R>
class promise
{
promise(promise & rhs);// = delete;
promise & operator=(promise & rhs);// = delete;
public:
// template <class Allocator> explicit promise(Allocator a);
promise();
~promise();
// Move support
promise(promise && rhs);
promise & operator=(promise&& rhs);
void swap(promise& other);
// Result retrieval
unique_future<R> get_future();
// Set the value
void set_value(R& r);
void set_value(R&& r);
void set_exception(boost::exception_ptr e);
template<typename F>
void set_wait_callback(F f);
};
[section:default_constructor Default Constructor]
promise();
[variablelist
[[Effects:] [Constructs a new __promise__ with no associated result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:move_constructor Move Constructor]
promise(promise && other);
[variablelist
[[Effects:] [Constructs a new __promise__, and transfers ownership of the result associated with `other` to `*this`, leaving `other`
with no associated result.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:move_assignment Move Assignment Operator]
promise& operator=(promise && other);
[variablelist
[[Effects:] [Transfers ownership of the result associated with `other` to `*this`, leaving `other` with no associated result. If there
was already a result associated with `*this`, and that result was not ['ready], sets any futures associated with that result to
['ready] with a __broken_promise__ exception as the result. ]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:destructor Destructor]
~promise();
[variablelist
[[Effects:] [Destroys `*this`. If there was a result associated with `*this`, and that result is not ['ready], sets any futures
associated with that task to ['ready] with a __broken_promise__ exception as the result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_future Member Function `get_future()`]
unique_future<R> get_future();
[variablelist
[[Effects:] [If `*this` was not associated with a result, allocate storage for a new asynchronous result and associate it with
`*this`. Returns a __unique_future__ associated with the result associated with `*this`. ]]
[[Throws:] [__future_already_retrieved__ if the future associated with the task has already been retrieved. `std::bad_alloc` if any
memory necessary could not be allocated.]]
]
[endsect]
[section:set_value Member Function `set_value()`]
void set_value(R&& r);
void set_value(const R& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();
[variablelist
[[Effects:] [If `*this` was not associated with a result, allocate storage for a new asynchronous result and associate it with
`*this`. Store the value `r` in the asynchronous result associated with `*this`. Any threads blocked waiting for the asynchronous
result are woken.]]
[[Postconditions:] [All futures waiting on the asynchronous result are ['ready] and __unique_future_has_value__ or
__shared_future_has_value__ for those futures shall return `true`.]]
[[Throws:] [__promise_already_satisfied__ if the result associated with `*this` is already ['ready]. `std::bad_alloc` if the memory
required for storage of the result cannot be allocated. Any exception thrown by the copy or move-constructor of `R`.]]
]
[endsect]
[section:set_exception Member Function `set_exception()`]
void set_exception(boost::exception_ptr e);
[variablelist
[[Effects:] [If `*this` was not associated with a result, allocate storage for a new asynchronous result and associate it with
`*this`. Store the exception `e` in the asynchronous result associated with `*this`. Any threads blocked waiting for the asynchronous
result are woken.]]
[[Postconditions:] [All futures waiting on the asynchronous result are ['ready] and __unique_future_has_exception__ or
__shared_future_has_exception__ for those futures shall return `true`.]]
[[Throws:] [__promise_already_satisfied__ if the result associated with `*this` is already ['ready]. `std::bad_alloc` if the memory
required for storage of the result cannot be allocated.]]
]
[endsect]
[section:set_wait_callback Member Function `set_wait_callback()`]
template<typename F>
void set_wait_callback(F f);
[variablelist
[[Preconditions:] [The expression `f(t)` where `t` is a lvalue of type __packaged_task__ shall be well-formed. Invoking a copy of
`f` shall have the same effect as invoking `f`]]
[[Effects:] [Store a copy of `f` with the asynchronous result associated with `*this` as a ['wait callback]. This will replace any
existing wait callback store alongside that result. If a thread subsequently calls one of the wait functions on a __unique_future__
or __shared_future__ associated with this result, and the result is not ['ready], `f(*this)` shall be invoked.]]
[[Throws:] [`std::bad_alloc` if memory cannot be allocated for the required storage.]]
]
[endsect]
[endsect]
[section:packaged_task `packaged_task` class template]
template<typename R>
class packaged_task
{
packaged_task(packaged_task&);// = delete;
packaged_task& operator=(packaged_task&);// = delete;
public:
// construction and destruction
template <class F>
explicit packaged_task(F const& f);
explicit packaged_task(R(*f)());
template <class F>
explicit packaged_task(F&& f);
// template <class F, class Allocator>
// explicit packaged_task(F const& f, Allocator a);
// template <class F, class Allocator>
// explicit packaged_task(F&& f, Allocator a);
~packaged_task()
{}
// move support
packaged_task(packaged_task&& other);
packaged_task& operator=(packaged_task&& other);
void swap(packaged_task& other);
// result retrieval
unique_future<R> get_future();
// execution
void operator()();
template<typename F>
void set_wait_callback(F f);
};
[section:task_constructor Task Constructor]
template<typename F>
packaged_task(F const &f);
packaged_task(R(*f)());
template<typename F>
packaged_task(F&&f);
[variablelist
[[Preconditions:] [`f()` is a valid expression with a return type convertible to `R`. Invoking a copy of `f` shall behave the same
as invoking `f`.]]
[[Effects:] [Constructs a new __packaged_task__ with a copy of `f` stored as the associated task.]]
[[Throws:] [Any exceptions thrown by the copy (or move) constructor of `f`. `std::bad_alloc` if memory for the internal data
structures could not be allocated.]]
]
[endsect]
[section:move_constructor Move Constructor]
packaged_task(packaged_task && other);
[variablelist
[[Effects:] [Constructs a new __packaged_task__, and transfers ownership of the task associated with `other` to `*this`, leaving `other`
with no associated task.]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:move_assignment Move Assignment Operator]
packaged_task& operator=(packaged_task && other);
[variablelist
[[Effects:] [Transfers ownership of the task associated with `other` to `*this`, leaving `other` with no associated task. If there
was already a task associated with `*this`, and that task has not been invoked, sets any futures associated with that task to
['ready] with a __broken_promise__ exception as the result. ]]
[[Throws:] [Nothing.]]
[[Notes:] [If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.]]
]
[endsect]
[section:destructor Destructor]
~packaged_task();
[variablelist
[[Effects:] [Destroys `*this`. If there was a task associated with `*this`, and that task has not been invoked, sets any futures
associated with that task to ['ready] with a __broken_promise__ exception as the result.]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:get_future Member Function `get_future()`]
unique_future<R> get_future();
[variablelist
[[Effects:] [Returns a __unique_future__ associated with the result of the task associated with `*this`. ]]
[[Throws:] [__task_moved__ if ownership of the task associated with `*this` has been moved to another instance of
__packaged_task__. __future_already_retrieved__ if the future associated with the task has already been retrieved.]]
]
[endsect]
[section:call_operator Member Function `operator()()`]
void operator()();
[variablelist
[[Effects:] [Invoke the task associated with `*this` and store the result in the corresponding future. If the task returns normally,
the return value is stored as the asynchronous result, otherwise the exception thrown is stored. Any threads blocked waiting for the
asynchronous result associated with this task are woken.]]
[[Postconditions:] [All futures waiting on the asynchronous result are ['ready]]]
[[Throws:] [__task_moved__ if ownership of the task associated with `*this` has been moved to another instance of
__packaged_task__. __task_already_started__ if the task has already been invoked.]]
]
[endsect]
[section:set_wait_callback Member Function `set_wait_callback()`]
template<typename F>
void set_wait_callback(F f);
[variablelist
[[Preconditions:] [The expression `f(t)` where `t` is a lvalue of type __packaged_task__ shall be well-formed. Invoking a copy of
`f` shall have the same effect as invoking `f`]]
[[Effects:] [Store a copy of `f` with the task associated with `*this` as a ['wait callback]. This will replace any existing wait
callback store alongside that task. If a thread subsequently calls one of the wait functions on a __unique_future__ or
__shared_future__ associated with this task, and the result of the task is not ['ready], `f(*this)` shall be invoked.]]
[[Throws:] [__task_moved__ if ownership of the task associated with `*this` has been moved to another instance of
__packaged_task__.]]
]
[endsect]
[endsect]
[section:wait_for_any Non-member function `wait_for_any()`]
template<typename Iterator>
Iterator wait_for_any(Iterator begin,Iterator end);
template<typename F1,typename F2>
unsigned wait_for_any(F1& f1,F2& f2);
template<typename F1,typename F2,typename F3>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3);
template<typename F1,typename F2,typename F3,typename F4>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4);
template<typename F1,typename F2,typename F3,typename F4,typename F5>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5);
[variablelist
[[Preconditions:] [The types `Fn` shall be specializations of
__unique_future__ or __shared_future__, and `Iterator` shall be a
forward iterator with a `value_type` which is a specialization of
__unique_future__ or __shared_future__.]]
[[Effects:] [Waits until at least one of the specified futures is ['ready].]]
[[Returns:] [The range-based overload returns an `Iterator` identifying the first future in the range that was detected as
['ready]. The remaining overloads return the zero-based index of the first future that was detected as ['ready] (first parameter =>
0, second parameter => 1, etc.).]]
[[Throws:] [__thread_interrupted__ if the current thread is interrupted. Any exception thrown by the ['wait callback] associated
with any of the futures being waited for. `std::bad_alloc` if memory could not be allocated for the internal wait structures.]]
[[Notes:] [`wait_for_any()` is an ['interruption point].]]
]
[endsect]
[section:wait_for_all Non-member function `wait_for_all()`]
template<typename Iterator>
void wait_for_all(Iterator begin,Iterator end);
template<typename F1,typename F2>
void wait_for_all(F1& f1,F2& f2);
template<typename F1,typename F2,typename F3>
void wait_for_all(F1& f1,F2& f2,F3& f3);
template<typename F1,typename F2,typename F3,typename F4>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4);
template<typename F1,typename F2,typename F3,typename F4,typename F5>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5);
[variablelist
[[Preconditions:] [The types `Fn` shall be specializations of
__unique_future__ or __shared_future__, and `Iterator` shall be a
forward iterator with a `value_type` which is a specialization of
__unique_future__ or __shared_future__.]]
[[Effects:] [Waits until all of the specified futures are ['ready].]]
[[Throws:] [Any exceptions thrown by a call to `wait()` on the specified futures.]]
[[Notes:] [`wait_for_all()` is an ['interruption point].]]
]
[endsect]
[endsect]

View File

@@ -1,187 +0,0 @@
[/
(C) Copyright 2008-9 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:futures Futures]
[template future_state_link[link_text] [link thread.synchronization.futures.reference.future_state [link_text]]]
[def __uninitialized__ [future_state_link `boost::future_state::uninitialized`]]
[def __ready__ [future_state_link `boost::future_state::ready`]]
[def __waiting__ [future_state_link `boost::future_state::waiting`]]
[def __future_uninitialized__ `boost::future_uninitialized`]
[def __broken_promise__ `boost::broken_promise`]
[def __future_already_retrieved__ `boost::future_already_retrieved`]
[def __task_moved__ `boost::task_moved`]
[def __task_already_started__ `boost::task_already_started`]
[def __promise_already_satisfied__ `boost::promise_already_satisfied`]
[def __thread_interrupted__ `boost::thread_interrupted`]
[template unique_future_link[link_text] [link thread.synchronization.futures.reference.unique_future [link_text]]]
[def __unique_future__ [unique_future_link `boost::unique_future`]]
[template unique_future_get_link[link_text] [link thread.synchronization.futures.reference.unique_future.get [link_text]]]
[def __unique_future_get__ [unique_future_get_link `boost::unique_future<R>::get()`]]
[template unique_future_wait_link[link_text] [link thread.synchronization.futures.reference.unique_future.wait [link_text]]]
[def __unique_future_wait__ [unique_future_wait_link `boost::unique_future<R>::wait()`]]
[template unique_future_is_ready_link[link_text] [link thread.synchronization.futures.reference.unique_future.is_ready [link_text]]]
[def __unique_future_is_ready__ [unique_future_is_ready_link `boost::unique_future<R>::is_ready()`]]
[template unique_future_has_value_link[link_text] [link thread.synchronization.futures.reference.unique_future.has_value [link_text]]]
[def __unique_future_has_value__ [unique_future_has_value_link `boost::unique_future<R>::has_value()`]]
[template unique_future_has_exception_link[link_text] [link thread.synchronization.futures.reference.unique_future.has_exception [link_text]]]
[def __unique_future_has_exception__ [unique_future_has_exception_link `boost::unique_future<R>::has_exception()`]]
[template unique_future_get_state_link[link_text] [link thread.synchronization.futures.reference.unique_future.get_state [link_text]]]
[def __unique_future_get_state__ [unique_future_get_state_link `boost::unique_future<R>::get_state()`]]
[template shared_future_link[link_text] [link thread.synchronization.futures.reference.shared_future [link_text]]]
[def __shared_future__ [shared_future_link `boost::shared_future`]]
[template shared_future_get_link[link_text] [link thread.synchronization.futures.reference.shared_future.get [link_text]]]
[def __shared_future_get__ [shared_future_get_link `boost::shared_future<R>::get()`]]
[template shared_future_wait_link[link_text] [link thread.synchronization.futures.reference.shared_future.wait [link_text]]]
[def __shared_future_wait__ [shared_future_wait_link `boost::shared_future<R>::wait()`]]
[template shared_future_is_ready_link[link_text] [link thread.synchronization.futures.reference.shared_future.is_ready [link_text]]]
[def __shared_future_is_ready__ [shared_future_is_ready_link `boost::shared_future<R>::is_ready()`]]
[template shared_future_has_value_link[link_text] [link thread.synchronization.futures.reference.shared_future.has_value [link_text]]]
[def __shared_future_has_value__ [shared_future_has_value_link `boost::shared_future<R>::has_value()`]]
[template shared_future_has_exception_link[link_text] [link thread.synchronization.futures.reference.shared_future.has_exception [link_text]]]
[def __shared_future_has_exception__ [shared_future_has_exception_link `boost::shared_future<R>::has_exception()`]]
[template shared_future_get_state_link[link_text] [link thread.synchronization.futures.reference.shared_future.get_state [link_text]]]
[def __shared_future_get_state__ [shared_future_get_state_link `boost::shared_future<R>::get_state()`]]
[template promise_link[link_text] [link thread.synchronization.futures.reference.promise [link_text]]]
[def __promise__ [promise_link `boost::promise`]]
[template packaged_task_link[link_text] [link thread.synchronization.futures.reference.packaged_task [link_text]]]
[def __packaged_task__ [packaged_task_link `boost::packaged_task`]]
[template wait_for_any_link[link_text] [link thread.synchronization.futures.reference.wait_for_any [link_text]]]
[def __wait_for_any__ [wait_for_any_link `boost::wait_for_any()`]]
[template wait_for_all_link[link_text] [link thread.synchronization.futures.reference.wait_for_all [link_text]]]
[def __wait_for_all__ [wait_for_all_link `boost::wait_for_all()`]]
[section:overview Overview]
The futures library provides a means of handling synchronous future values, whether those values are generated by another thread, or
on a single thread in response to external stimuli, or on-demand.
This is done through the provision of four class templates: __unique_future__ and __shared_future__ which are used to retrieve the
asynchronous results, and __promise__ and __packaged_task__ which are used to generate the asynchronous results.
An instance of __unique_future__ holds the one and only reference to a result. Ownership can be transferred between instances using
the move constructor or move-assignment operator, but at most one instance holds a reference to a given asynchronous result. When
the result is ready, it is returned from __unique_future_get__ by rvalue-reference to allow the result to be moved or copied as
appropriate for the type.
On the other hand, many instances of __shared_future__ may reference the same result. Instances can be freely copied and assigned,
and __shared_future_get__ returns a `const` reference so that multiple calls to __shared_future_get__ are safe. You can move an
instance of __unique_future__ into an instance of __shared_future__, thus transferring ownership of the associated asynchronous
result, but not vice-versa.
You can wait for futures either individually or with one of the __wait_for_any__ and __wait_for_all__ functions.
[endsect]
[section:creating Creating asynchronous values]
You can set the value in a future with either a __promise__ or a __packaged_task__. A __packaged_task__ is a callable object that
wraps a function or callable object. When the packaged task is invoked, it invokes the contained function in turn, and populates a
future with the return value. This is an answer to the perennial question: "how do I return a value from a thread?": package the
function you wish to run as a __packaged_task__ and pass the packaged task to the thread constructor. The future retrieved from the
packaged task can then be used to obtain the return value. If the function throws an exception, that is stored in the future in
place of the return value.
int calculate_the_answer_to_life_the_universe_and_everything()
{
return 42;
}
boost::packaged_task<int> pt(calculate_the_answer_to_life_the_universe_and_everything);
boost::unique_future<int> fi=pt.get_future();
boost::thread task(boost::move(pt)); // launch task on a thread
fi.wait(); // wait for it to finish
assert(fi.is_ready());
assert(fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert(fi.get()==42);
A __promise__ is a bit more low level: it just provides explicit functions to store a value or an exception in the associated
future. A promise can therefore be used where the value may come from more than one possible source, or where a single operation may
produce multiple values.
boost::promise<int> pi;
boost::unique_future<int> fi;
fi=pi.get_future();
pi.set_value(42);
assert(fi.is_ready());
assert(fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert(fi.get()==42);
[endsect]
[section:lazy_futures Wait Callbacks and Lazy Futures]
Both __promise__ and __packaged_task__ support ['wait callbacks] that are invoked when a thread blocks in a call to `wait()` or
`timed_wait()` on a future that is waiting for the result from the __promise__ or __packaged_task__, in the thread that is doing the
waiting. These can be set using the `set_wait_callback()` member function on the __promise__ or __packaged_task__ in question.
This allows ['lazy futures] where the result is not actually computed until it is needed by some thread. In the example below, the
call to `f.get()` invokes the callback `invoke_lazy_task`, which runs the task to set the value. If you remove the call to
`f.get()`, the task is not ever run.
int calculate_the_answer_to_life_the_universe_and_everything()
{
return 42;
}
void invoke_lazy_task(boost::packaged_task<int>& task)
{
try
{
task();
}
catch(boost::task_already_started&)
{}
}
int main()
{
boost::packaged_task<int> task(calculate_the_answer_to_life_the_universe_and_everything);
task.set_wait_callback(invoke_lazy_task);
boost::unique_future<int> f(task.get_future());
assert(f.get()==42);
}
[endsect]
[include future_ref.qbk]
[endsect]

View File

@@ -1,12 +1,138 @@
<!-- Copyright (c) 2002-2003 Beman Dawes, William E. Kempf.
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
-->
<html>
<head>
<meta http-equiv="refresh" content="0; URL=../../../doc/html/thread.html">
</head>
<body>
Automatic redirection failed, please go to <a href="../../../doc/html/thread.html">../../../doc/html/thread.html</a>
</body>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, Index</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Documentation Map</h2>
</td>
</tr>
</table>
<hr>
<h2>Contents</h2>
<ul>
<li><a href="overview.html">Overview</a></li>
<li>
<a href="mutex_concept.html">Mutex Concepts</a>
<ul>
<li><a href="mutex_concept.html#Mutex">Mutex</a></li>
<li><a href="mutex_concept.html#TryMutex">TryMutex</a></li>
<li><a href="mutex_concept.html#TimedMutex">
TimedMutex</a></li>
</ul>
</li>
<li>
Mutex Classes
<ul>
<li><a href="mutex.html">mutex / try_mutex /
timed_mutex</a></li>
<li><a href="recursive_mutex.html">recursive_mutex /
recursive_try_mutex / recursive_timed_mutex</a></li>
</ul>
</li>
<li>
<a href="lock_concept.html">Lock Concepts</a>
<ul>
<li><a href="lock_concept.html#Lock">Lock</a></li>
<li><a href="lock_concept.html#ScopedLock">
ScopedLock</a></li>
<li><a href="lock_concept.html#ScopedTryLock">
ScopedTryLock</a></li>
<li><a href="lock_concept.html#ScopedTimedLock">
ScopedTimedLock</a></li>
</ul>
</li>
<li>
Lock Classes
<ul>
<li><a href="scoped_lock.html">scoped_lock</a></li>
<li><a href="scoped_try_lock.html">scoped_try_lock</a></li>
<li><a href="scoped_timed_lock.html">
scoped_timed_lock</a></li>
</ul>
</li>
<li>Class <a href="condition.html">condition</a></li>
<li>Class <a href="thread_specific_ptr.html">
thread_specific_ptr</a></li>
<li>Class <a href="thread.html">thread</a></li>
<li>Class <a href="thread_group.html">thread_group</a></li>
<li>Class <a href="xtime.html">xtime</a></li>
<li>Class <a href="lock_error.html">lock_error</a></li>
<li>Class <a href="thread_resource_error.html">
thread_resource_error</a></li>
<li>Routine <a href="call_once.html">call_once</a></li>
<li><a href="config.html">Configuration Information</a></li>
<li><a href="introduction.html">Introduction to design</a></li>
<li><a href="rationale.html">Rationale for design
decisions</a></li>
<li><a href="definitions.html">Definitions</a></li>
<li><a href="faq.html">Frequently Asked Questions</a></li>
<li><a href="bibliography.html">Bibliography</a></li>
<li><a href="acknowledgements.html">Acknowledgements</a></li>
</ul>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p>&copy; <i>Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001</i></p>
<p>Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation. William E. Kempf makes no representations
about the suitability of this software for any purpose. It is provided
&quot;as is&quot; without express or implied warranty.</p>
</body>
</html>

194
doc/introduction.html Normal file
View File

@@ -0,0 +1,194 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, Introduction</title>
</head>
<body bgcolor="#ffffff" link="#0000ff" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img height="86" alt="C++ Boost" src=
"../../../c++boost.gif" width="277"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Introduction</h2>
</td>
</tr>
</table>
<hr>
<h3>Motivation</h3>
<p>With client/server and three-tier architectures becoming common
place in today&#39;s world, it&#39;s becoming increasingly important
for programs to be able to handle parallel processing. Modern day
operating systems usually provide some support for this through native
thread APIs. Unfortunately, writing portable code that makes use of
parallel processing in C++ is made very difficult by a lack of a
standard interface for these native APIs. Further, these APIs are
almost universally C APIs and fail to take advantage of C++&#39;s
strengths, or to address C++&#39;s issues.</p>
<p>The <b>Boost.Threads</b> library is an attempt to define a portable
interface for writing parallel processes in C++.</p>
<h3>Goals</h3>
<p>The <b>Boost.Threads</b> library has several goals that should help
to set it apart from other solutions. These goals are listed in order
of precedence with full descriptions below.</p>
<ul>
<li>
<b>Portability</b>
<p><b>Boost.Threads</b> was designed to be highly portable. The
goal is for the interface to be easily implemented on any
platform that supports threads, and possibly even on platforms
without native thread support.</p>
</li>
<li>
<b>Safety</b>
<p><b>Boost.Threads</b> was designed to be as safe as possible.
Writing <a href="definitions.html#Thread-safe">thread-safe</a>
code is very difficult and successful libraries must strive to
insulate the programmer from dangerous constructs as much as
possible. This is accomplished in several ways:</p>
<ul>
<li>
<p align="left">C++ language features are used make
correct usage easy (if possible, the default) and
error-prone impossible or at least more difficult. For
example, see the <a href="mutex_concept.html">Mutex</a>
and <a href="lock_concept.html">Lock</a> designs, and
how note how they interact.</p>
</li>
<li>
<p align="left">Certain traditional concurrent
programming features are considered so error-prone that
they are not provided at all. For example, see the <a
href="rationale.html#Events">Events Not Provided</a>
rationale.</p>
</li>
<li>
<p align="left">Dangerous features, or features which
may be misused, are identified as such in the
documentation to make users aware of potential
pitfalls.</p>
</li>
</ul>
</li>
<li>
<b>Flexibility</b>
<p><b>Boost.Threads</b> was designed to be flexible. This goal
is often at odds with <i>safety</i>. When functionality might
be compromised by the desire to keep the interface safe, <b>
Boost.Threads</b> has been designed to provide the
functionality, but to make it&#39;s use prohibitive for general
use.</p>
</li>
<li>
<b>Efficiency</b>
<p><b>Boost.Threads</b> was designed to be as efficient as
possible. When building a library on top of another library
there is always a danger that the result will be so much slower
than the &quot;native&quot; API that programmers are inclined
to ignore the higher level API. <b>Boost.Threads</b> was
designed to minimize the chances of this occurring. The
interfaces have been crafted to allow an implementation the
greatest chance of being as efficient as possible. This goal is
often at odds with the goal for <i>safety</i>. Every effort was
made to ensure efficient implementations, but when in conflict
<i>safety</i> has always taken precedence.</p>
</li>
</ul>
<h3>Iterative Phases</h3>
<p>Another goal of <b>Boost.Threads</b> was to take a dynamic,
iterative approach in its development. The computing industry is still
exploring the concepts of parallel programming. Most thread libraries
supply only simple primitive concepts for thread synchronization. These
concepts are very simple, but they are very difficult to use safely or
to provide formal proofs for constructs built on top of them. Until
recently, these primitives were &quot;state of the art&quot; and the
only concepts available to programmers. Recently there has been a lot
of research in other concepts, such as in &quot;Communicating
Sequential Processes.&quot; <b>Boost.Threads</b> was designed in
iterative steps, providing the building blocks necessary for the next
step, and giving the researcher the tools necessary to explore new
concepts in a portable manner.</p>
<p>Given the goal of following a dynamic, iterative approach <b>
Boost.Threads</b> shall go through several growth cycles. Each phase in
its development shall be roughly documented here.</p>
<h4>Phase 1, Synchronization Primitives</h4>
<p>Boost is all about providing high quality libraries with
implementations for many platforms. Unfortunately, there&#39;s a big
problem faced by developers wishing to supply such high quality
libraries, namely thread-safety. The C++ standard doesn&#39;t address
threads at all, but real world programs often make use of native
threading support. A portable library that doesn&#39;t address the
issue of thread-safety is there for not much help to a programmer who
wants to use the library in his multi-threaded application. So
there&#39;s a very great need for portable primitives that will allow
the library developer to create <a href="definitions.html#Thread-safe">
thread-safe</a> implementations. This need far out weighs the need for
portable methods to create and manage threads.</p>
<p>Because of this need, the first phase of <b>Boost.Threads</b>
focuses solely on providing portable primitive concepts for thread
synchronization. Types provided in this phase include the <a href="mutex.html">
mutex/try_mutex/timed_mutex</a>, <a href="recursive_mutex.html">
recursive_mutex/recursive_try_mutex/recursive_timed_mutex</a>, <a href=
"scoped_lock.html">scoped_lock</a>, <a href="scoped_try_lock.html">
scoped_try_lock</a>, <a href="scoped_timed_lock.html">
scoped_timed_lock</a> and <a href="lock_error.html">lock_error</a>.
These are considered the &quot;core&quot; synchronization primitives,
though there are others that will be added in later phases.</p>
<h4>Phase 2, Thread Management and Thread Specific Storage</h4>
<p>This phase addresses the creation and management of threads and
provides a mechanism for thread specific storage (data associated with
a thread instance). Thread management is a tricky issue in C++, so this
phase addresses only the basic needs of multi-threaded program. Later
phases are likely to add additional functionality in this area. This
phase of <b>Boost.Threads</b> adds the <a href="thread.html">thread</a>
and <a href="thread_specific_ptr.html">thread_specific_ptr</a> types.
With these additions the <b>Boost.Threads</b> library can be considered
minimal but complete.</p>
<h4>The Next Phase</h4>
<p>The next phase will address more advanced synchronization concepts,
such as read/write mutexes and barriers.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

300
doc/lock_concept.html Normal file
View File

@@ -0,0 +1,300 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, Lock Concept</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Lock Concepts</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Requirements">Concept Requirements</a><br>
<a href="#Lock">Lock Concept</a><br>
<a href="#ScopedLock">ScopedLock Concept</a><br>
<a href="#ScopedTryLock">ScopedTryLock Concept</a><br>
<a href="#ScopedTimedLock">ScopedTimedLock Concept</a><br>
<a href="#Models">Models</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The lock concepts provide exception safe means for locking and
unlocking a <a href="mutex_concept.html">mutex model</a>. In other
words they are an implementation of the <i>Scoped Locking</i> <a href=
"bibliography.html#Schmidt 00">[Schmidt 00]</a> pattern. The <a href=
"#ScopedLock">ScopedLock</a> concept, with <a href="#ScopedTryLock">
ScopedTryLock</a> and <a href="#ScopedTimedLock">ScopedTimedLock</a>
refinements, formalize the requirements.</p>
<p>Lock models are constructed with a reference to a <a href=
"mutex_concept.html">mutex model</a> and typically acquire ownership of
the <a href="mutex_concept.html">mutex model</a> by setting its state
to locked. They also ensure ownership is relinquished in the
destructor. Lock models also expose functions to query the lock status
and to manually lock and unlock the <a href="mutex_concept.html">mutex
model</a>.</p>
<p>Instances of lock models are meant to be short lived, expected to be
used at block scope only. The lock models are not <a href=
"definitions.html#Thread-safe">thread-safe</a>. Lock models must
maintain state to indicate whether or not they&#39;ve been locked and
this state is not protected by any synchronization concepts. For this
reason an instance of a lock model should never be shared between
multiple threads.</p>
<h2>Concept <a name="Requirements">Requirements</a></h2>
<p>[For documentation purposes, portions of the concept requirements
are repeated in the documentation for specific lock classes. Those
copies need to be kept in sync with the requirements here.]</p>
<h3><a name="Lock">Lock</a> Concept</h3>
<p>For a <a href="#ScopedLock">ScopedLock</a>, <a href=
"#ScopedTryLock">ScopedTryLock</a>, or <a href="#ScopedTimedLock">
ScopedTimedLock</a> type <code>L</code> and an object <code>lk</code>
and const object <code>clk</code> of that type, the following
expressions must be well-formed and have the indicated effects.</p>
<p>The Lock concept is used as a base for the <a href="#ScopedLock">
ScopedLock</a>, <a href="#ScopedTryLock">ScopedTryLock</a>, and <a
href="#ScopedTimedLock">ScopedTimedLock</a> refinements. The associated
mutex type is as specified for each of those refinements
respectively.</p>
<table summary="Lock expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td valign="top"><code>(&amp;lk)-&gt;~L();</code></td>
<td><code>if (locked()) unlock();</code></td>
</tr>
<tr>
<td valign="top"><code>(&amp;clk)-&gt;operator const
void*()</code></td>
<td>Returns type void*, non-zero if if the associated mutex has
been locked by <code>clk</code>, otherwise 0.</td>
</tr>
<tr>
<td valign="top"><code>clk.locked()</code></td>
<td>Returns a <code>bool</code>, <code>(&amp;clk)-&gt;operator
const void*() != 0</code></td>
</tr>
<tr>
<td valign="top"><code>lk.lock()</code></td>
<td>Throws lock_error if locked(). If the associated mutex is
already locked by some other thread, places the current thread
in the <a href="definitions.html#State">Blocked</a> state until
the associated mutex is unlocked, after which the current
thread is placed in the <a href="definitions.html#State">
Ready</a> state, eventually to be returned to the <a href=
"definitions.html#State">Running</a> state.<br>
Postcondition: locked()</td>
</tr>
<tr>
<td valign="top"><code>lk.unlock()</code></td>
<td>If !locked(), throws lock_error, otherwise unlocks the
associated mutex.<br>
Postcondition: !locked()</td>
</tr>
</table>
<h3><a name="ScopedLock">ScopedLock</a> Concept</h3>
<p>A ScopedLock must meet the <a href="#Lock">Lock</a> requirements.
For a ScopedLock type <code>L</code> and an object <code>lk</code> of
that type, and an object <code>m</code> of a type meeting the <a href=
"mutex_concept.html#Mutex">Mutex</a> requirements, and an object <code>
b</code> of type <code>bool</code>, the following expressions must be
well-formed and have the indicated effects.</p>
<table summary="ScopedLock expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td valign="top"><code>L lk(m);</code></td>
<td>Constructs an object <code>lk</code>, and associates mutex
<code>m</code> with it, then calls <code>lock()</code></td>
</tr>
<tr>
<td valign="top"><code>L lk(m,b);</code></td>
<td>Constructs an object <code>lk</code>, and associates mutex
<code>m</code> with it, then if <code>b</code>, calls <code>
lock()</code></td>
</tr>
</table>
<h3><a name="ScopedTryLock">ScopedTryLock</a> Concept</h3>
<p>A ScopedTryLock must meet the <a href="#Lock">Lock</a> requirements.
For a ScopedTryLock type <code>L</code> and an object <code>lk</code>
of that type, and an object <code>m</code> of a type meeting the <a
href="mutex_concept.html#TryMutex">TryMutex</a> requirements, and an
object <code>b</code> of type <code>bool</code>, the following
expressions must be well-formed and have the indicated effects.</p>
<table summary="ScopedTryLock expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td valign="top"><code>L lk(m);</code></td>
<td>Constructs an object <code>lk</code>, and associates mutex
<code>m</code> with it, then calls <code>try_lock()</code></td>
</tr>
<tr>
<td valign="top"><code>L lk(m,b);</code></td>
<td>Constructs an object <code>lk</code>, and associates mutex
<code>m</code> with it, then if <code>b</code>, calls <code>
lock()</code></td>
</tr>
<tr>
<td valign="top"><code>lk.try_lock()</code></td>
<td>If locked(), throws <code>lock_error</code>. Makes a
non-blocking attempt to lock the associated mutex, returning
<code>true</code> if the lock attempt is successful, otherwise
<code>false</code>.</td>
</tr>
</table>
<h3><a name="ScopedTimedLock">ScopedTimedLock</a> Concept</h3>
<p>A ScopedTimedLock must meet the <a href="#Lock">Lock</a>
requirements. For a ScopedTimedLock type <code>L</code> and an object
<code>lk</code> of that type, and an object <code>m</code> of a type
meeting the <a href="mutex_concept.html#TimedMutex">TimedMutex</a>
requirements, and an object <code>b</code> of type <code>bool</code>,
and an object <code>t</code> of type <code><a href="xtime.html">
xtime</a></code>, the following expressions must be well-formed and
have the indicated effects.</p>
<table summary="ScopedTimedLock expressions" border="1" cellpadding=
"5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td valign="top"><code>L lk(m,t);</code></td>
<td>Constructs an object <code>lk</code>, and associates mutex
<code>m</code> with it, then calls <code>
timed_lock(t)</code></td>
</tr>
<tr>
<td valign="top"><code>L lk(m,b);</code></td>
<td>Constructs an object <code>lk</code>, and associates mutex
<code>m</code> with it, then if <code>b</code>, calls <code>
lock()</code></td>
</tr>
<tr>
<td valign="top"><code>lk.timed_lock(t)</code></td>
<td>If locked(), throws lock_error. Makes a blocking attempt to
lock the associated mutex, and returns <code>true</code> if
successful within the specified time <code>t</code>, otherwise
<code>false</code>.</td>
</tr>
</table>
<h2><a name="Models">Models</a></h2>
<p><b>Boost.Threads</b> currently supplies three classes which model
lock concepts.</p>
<p>These classes are normally accessed via typedefs of the same name
supplied by a <a href="mutex_concept.html">mutex model</a>.</p>
<table summary="Lock concept classes" border="1" cellpadding="5">
<tr>
<td><b>Concept</b></td>
<td><b>Refines</b></td>
<td><b>Classes Modeling the Concept</b></td>
</tr>
<tr>
<td><a href="#ScopedLock">ScopedLock</a></td>
<td>&nbsp;</td>
<td><a href="scoped_lock.html">scoped_lock</a></td>
</tr>
<tr>
<td><a href="#ScopedTryLock">ScopedTryLock</a></td>
<td><a href="#ScopedLock">ScopedLock</a></td>
<td><a href="scoped_try_lock.html">scoped_try_lock</a> </td>
</tr>
<tr>
<td><a href="#ScopedTimedLock">ScopedTimedLock</a></td>
<td><a href="#ScopedLock">ScopedLock</a></td>
<td><a href="scoped_timed_lock.html">scoped_timed_lock</a></td>
</tr>
</table>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

110
doc/lock_error.html Normal file
View File

@@ -0,0 +1,110 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, lock_error</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">lock_error</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <tt>lock_error</tt> class defines an exception type thrown to
indicate a locking related error has been detected. Examples of such
errors include a lock operation which can be determined to result in a
deadlock, or unlock operations attempted by a thread that does not own
the lock.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost
class lock_error : public std::runtime_error
{
public:
lock_error();
};
}
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
lock_error();
</pre>
<p>Constructs a <tt>lock_error</tt> object.</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<pre>
#include <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
#include &lt;iostream&gt;
int main(int, char*[])
{
boost::mutex mutex;
boost::mutex::scoped_lock scoped_lock(mutex);
try
{
boost::mutex::scoped_lock deadlock(mutex);
std::cout &lt;&lt; &quot;lock succeeded&quot; &lt;&lt; std::endl;
}
catch (boost::lock_error&amp; err)
{
std::cout &lt;&lt; err.what() &lt;&lt; &quot; - deadlock occurred.&quot; &lt;&lt; std::endl;
}
return 0;
}
</pre>
<p>The output is:</p>
<pre>
thread lock error - deadlock occurred.
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

359
doc/mutex.html Normal file
View File

@@ -0,0 +1,359 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, mutex</title>
</head>
<body bgcolor="#ffffff" link="#0000ff" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img alt="C++ Boost" src="../../../c++boost.gif" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">mutex<br>
try_mutex<br>
timed_mutex</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#mutex Synopsis">Class mutex Synopsis</a><br>
<a href="#mutex Members">Class mutex Members</a><br>
<a href="#try_mutex Synopsis">Class try_mutex Synopsis</a><br>
<a href="#try_mutex Members">Class try_mutex Members</a><br>
<a href="#timed_mutex Synopsis">Class timed_mutex Synopsis</a><br>
<a href="#timed_mutex Members">Class timed_mutex Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <tt><a href="#mutex Synopsis">mutex</a></tt>, <tt><a href=
"#try_mutex Synopsis">try_mutex</a></tt> and <tt><a href=
"#timed_mutex Synopsis">timed_mutex</a></tt> classes define full
featured models of the <a href="mutex_concept.html#Mutex">Mutex</a>, <a
href="mutex_concept.html#TryMutex">TryMutex</a>, and <a href=
"mutex_concept.html#TimedMutex">TimedMutex</a> concepts. These types
should be used to non-recursively synchronize access to shared
resources. For recursive locking mechanics, see <a href=
"recursive_mutex.html">recursive mutexes</a>.</p>
<p>Each class supplies one or more typedefs for lock types which model
matching lock concepts. For the best possible performance you should
use the mutex class that supports the minimum set of lock types that
you need.</p>
<table summary="lock types" border="1" cellpadding="5">
<tr>
<td><b>Mutex Class</b></td>
<td><b>Lock name</b></td>
<td><b>Implementation defined Lock Type</b></td>
<td><b>Lock Concept</b></td>
</tr>
<tr>
<td valign="top"><a href="#mutex Synopsis"><code>
mutex</code></a></td>
<td valign="middle"><code>scoped_lock</code></td>
<td valign="middle"><code><a href="scoped_lock.html">
boost::</a></code><a href=
"scoped_lock.html"><code>detail::thread::scoped_lock&lt;mutex&gt;</code></a></td>
<td valign="middle"><a href="lock_concept.html#ScopedLock">
ScopedLock</a></td>
</tr>
<tr>
<td valign="top"><tt><a href="#try_mutex Synopsis">
try_mutex</a></tt> </td>
<td valign="middle"><code>scoped_lock<br>
scoped_try_lock</code></td>
<td valign="middle"><code><a href="scoped_lock.html">
boost::</a></code><a href=
"scoped_lock.html"><code>detail::thread::scoped_lock&lt;try_mutex&gt;<br>
</code></a> <code><a href="scoped_try_lock.html">
boost::detail::thread::scoped_try_lock&lt;try_mutex&gt;</a></code></td>
<td valign="middle"><a href="lock_concept.html#ScopedLock">
ScopedLock</a><br>
<a href="lock_concept.html#ScopedTryLock">
ScopedTryLock</a></td>
</tr>
<tr>
<td valign="top"><code><a href="#timed_mutex Synopsis">
timed_mutex</a></code> </td>
<td valign="middle"><code>scoped_lock<br>
scoped_try_lock<br>
scoped_timed_lock</code></td>
<td valign="middle"><code><a href="scoped_lock.html">
boost::</a></code><a href=
"scoped_lock.html"><code>detail::thread::scoped_lock&lt;timed_mutex&gt;</code></a><br>
<code><a href="scoped_try_lock.html">boost::</a></code><a
href=
"scoped_try_lock.html"><code>detail::thread::scoped_try_lock&lt;timed_mutex&gt;</code></a><br>
<code><a href="scoped_timed_lock.html">boost::</a></code><a
href=
"scoped_timed_lock.html"><code>detail::thread::scoped_timed_lock&lt;timed_mutex&gt;</code></a></td>
<td valign="middle"><a href="lock_concept.html#ScopedLock">
ScopedLock</a><br>
<a href="lock_concept.html#ScopedTryLock">
ScopedTryLock</a><br>
<a href="lock_concept.html#ScopedTimedLock">
ScopedTimedLock</a></td>
</tr>
</table>
<p>The <tt>mutex</tt>, <tt>try_mutex</tt> and <tt>timed_mutex</tt>
classes use an <tt>Unspecified</tt> <a href=
"mutex_concept.html#LockingStrategies">locking strategy</a>, so
attempts to recursively lock them or attempts to unlock them by threads
that don&#39;t own a lock on them result in <b>undefined behavior</b>.
This strategy allows implementations to be as efficient as possible on
any given platform. It is, however, recommended that implementations
include debugging support to detect misuse when <tt>NDEBUG</tt> is not
defined.</p>
<p>Like all the <b>Boost.Threads</b> <a href="mutex_concept.html">mutex
models</a>, the <tt>mutex</tt>, <tt>try_mutex</tt> and <tt>
timed_mutex</tt> leave the <a href=
"mutex_concept.html#SchedulingPolicies">scheduling policy</a> as <tt>
Unspecified</tt>. Programmers should assume that threads waiting for a
lock on objects of these types acquire the lock in a random order, even
though the specific behavior for a given platform may be different.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a>
</pre>
<h2>Class <a name="mutex Synopsis">mutex Synopsis</a></h2>
<pre>
namespace boost
{
class mutex : private <a href=
"../../utility/utility.htm">boost::noncopyable</a> // Exposition only.
// Class mutex meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_lock;
mutex();
~mutex();
};
}
</pre>
<h2>Class <a name="mutex Members">mutex Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
mutex();
</pre>
<p><b>Postconditions:</b> <code>*this</code> is in the unlocked
state.</p>
<hr>
<h3>Destructor</h3>
<pre>
~mutex();
</pre>
<p><b>Requires:</b> <code>*this</code> is in the unlocked state.</p>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<p><b>Dangers:</b> Destruction of a locked mutex is a serious
programming error resulting in undefined behavior such as a program
crash.</p>
<hr>
<h2>Class <a name="try_mutex Synopsis">try_mutex Synopsis</a></h2>
<pre>
namespace boost
{
class try_mutex : private boost::noncopyable // Exposition only.
// Class try_mutex meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_lock;
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_try_lock;
try_mutex();
~try_mutex();
};
}
</pre>
<h2>Class <a name="try_mutex Members">try_mutex Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
try_mutex();
</pre>
<p><b>Postconditions:</b> <code>*this</code> is in the unlocked
state.</p>
<hr>
<h3>Destructor</h3>
<pre>
~try_mutex();
</pre>
<p><b>Requires:</b> <code>*this</code> is in the unlocked state.</p>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<p><b>Dangers:</b> Destruction of a locked mutex is a serious
programming error resulting in undefined behavior such as a program
crash.</p>
<hr>
<h2>Class <a name="timed_mutex Synopsis">timed_mutex Synopsis</a></h2>
<pre>
namespace boost
{
class timed_mutex : private boost::noncopyable // Exposition only.
// Class timed_mutex meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_lock;
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_try_lock;
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_timed_lock;
timed_mutex();
~timed_mutex();
};
}
</pre>
<h2>Class <a name="timed_mutex Members">timed_mutex Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
timed_mutex();
</pre>
<p><b>Postconditions:</b> <code>*this</code> is in the unlocked
state.</p>
<hr>
<h3>Destructor</h3>
<pre>
~timed_mutex();
</pre>
<p><b>Requires:</b> <code>*this</code> is in the unlocked state.</p>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<p><b>Dangers:</b> Destruction of a locked mutex is a serious
programming error resulting in undefined behavior such as a program
crash.</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<pre>
#include <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
#include &lt;iostream&gt;
boost::mutex io_mutex; // The iostreams are not guaranteed to be <a href=
"definitions.html#Thread-safe">thread-safe</a>!
class counter
{
public:
counter() : count(0) { }
int increment() {
boost::mutex::scoped_lock scoped_lock(mutex);
return ++count;
}
private:
boost::mutex mutex;
int count;
};
counter c;
void change_count(void*)
{
int i = c.increment();
boost::mutex::scoped_lock scoped_lock(io_mutex);
std::cout &lt;&lt; &quot;count == &quot; &lt;&lt; i &lt;&lt; std::endl;
}
int main(int, char*[])
{
const int num_threads = 4;
boost::thread_group thrds;
for (int i=0; i &lt; num_threads; ++i)
thrds.create_thread(&amp;change_count, 0);
thrds.join_all();
return 0;
}
</pre>
<p>The output is:</p>
<pre>
count == 1
count == 2
count == 3
count == 4
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

337
doc/mutex_concept.html Normal file
View File

@@ -0,0 +1,337 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, Mutex Concept</title>
</head>
<body bgcolor="#ffffff" link="#0000ff" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img height="86" alt="C++ Boost" src=
"../../../c++boost.gif" width="277"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Mutex Concepts</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#LockingStrategies">Locking Strategies</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Recursive">Recursive</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#CheckedStrategy">Checked</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#UncheckedStrategy">Unchecked</a><br>
&nbsp;&nbsp;&nbsp;&nbsp; <a href="#UnspecifiedStrategy">
Unspecified</a><br>
<a href="#SchedulingPolicies">Scheduling Policies</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#FIFO">FIFO</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Priority Driven">Priority
Driven</a><br>
&nbsp;&nbsp;&nbsp;&nbsp; <a href="#UndefinedScheduling">
Undefined</a><br>
&nbsp;&nbsp;&nbsp;&nbsp; <a href="#UnspecifiedScheduling">
Unspecified</a><br>
<a href="#Requirements">Concept Requirements</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Mutex">Mutex Concept</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#TryMutex">TryMutex Concept</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#TimedMutex">TimedMutex
Concept</a><br>
<a href="#Models">Models</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>A mutex (short for mutual-exclusion) concept serializes access to a
resource shared between multiple threads. The <a href="#Mutex">
Mutex</a> concept, with <a href="#TryMutex">TryMutex</a> and <a href=
"#TimedMutex">TimedMutex</a> refinements, formalize the requirements. A
model that implements Mutex and its refinements has two states: <b>
locked</b> and <b>unlocked</b>. Before using a shared resource, a
thread locks a Boost.Threads mutex model object, insuring <a href=
"definitions.html#Thread-safe">thread-safe</a> access to the shared
resource. When use of the shared resource is complete, the thread
unlocks the mutex model object, allowing another thread to acquire the
lock and use the shared resource.</p>
<p>Traditional C thread APIs, like Pthreads or the Windows thread APIs,
expose functions to lock and unlock a mutex model. This is dangerous
since it&#39;s easy to forget to unlock a locked mutex. When the flow
of control is complex, with multiple return points, the likelihood of
forgetting to unlock a mutex model would become even greater. When
exceptions are thrown, it becomes nearly impossible to ensure that the
mutex is unlocked properly when using these traditional API&#39;s. The
result is <a href="definitions.html#Deadlock">deadlock</a>.</p>
<p>Many C++ threading libraries use a pattern known as <i>Scoped
Locking</i> <a href="bibliography.html#Schmidt 00">[Schmidt 00]</a> to
free the programmer from the need to explicitly lock and unlock
mutexes. With this pattern, a <a href="lock_concept.html">lock
concept</a> is employed where the lock model&#39;s constructor locks
the associated mutex model and the destructor automatically does the
unlocking. The <b>Boost.Threads</b> library takes this pattern to the
extreme in that lock concepts are the only way to lock and unlock a
mutex model: lock and unlock functions are not exposed by any <b>
Boost.Threads</b> mutex models. This helps to ensure safe usage
patterns, especially when code throws exceptions.</p>
<h2><a name="LockingStrategies">Locking Strategies</a></h2>
<p>Every mutex model follows one of several locking strategies. These
strategies define the semantics for the locking operation when the
calling thread already owns a lock on the mutex model.</p>
<h3><a name="Recursive">Recursive</a></h3>
<p>With a recursive locking strategy when a thread attempts to acquire
a lock on the mutex model for which it already owns a lock, the
operation is successful. Note the distinction between a thread, which
may have multiple locks outstanding on a recursive mutex, and a lock
object, which even for a recursive mutex cannot have its lock()
function called multiple times without first calling unlock().</p>
<p>Internally a lock count is maintained and the owning thread must
unlock the mutex model the same number of times that it&#39;s locked it
before the mutex model&#39;s state returns to unlocked. Since mutex
models in <b>Boost.Threads</b> expose locking functionality only
through lock concepts, a thread will always unlock a mutex model the
same number of times that it locked it. This helps to eliminate a whole
set of errors typically found in traditional C style thread APIs.</p>
<p>Classes <a href="recursive_mutex.html">recursive_mutex</a>, <a href=
"recursive_mutex.html">recursive_try_mutex</a> and <a href=
"recursive_mutex.html">recursive_timed_mutex</a> use this locking
strategy.</p>
<h3><a name="CheckedStrategy">Checked</a></h3>
<p>With a checked locking strategy when a thread attempts to acquire a
lock on the mutex model for which the thread already owns a lock, the
operation will fail with some sort of error indication. Further,
attempts by a thread to unlock a mutex that was not locked by the
thread will also return some sort of error indication. In <b>
Boost.Threads</b>, an exception of type <a href="lock_error.html">
lock_error</a> would be thrown in these cases.</p>
<p><b>Boost.Threads</b> does not currently provide any mutex models
that use this strategy.</p>
<h3><a name="UncheckedStrategy">Unchecked</a></h3>
<p>With an unchecked locking strategy when a thread attempts to acquire
a lock on the mutex model for which the thread already owns a lock the
operation will <a href="definitions.html#Deadlock">deadlock</a>. In
general this locking strategy is less safe than a checked or recursive
strategy, but it&#39;s also a faster strategy and so is employed by
many libraries.</p>
<p><b>Boost.Threads</b> does not currently provide any mutex models
that use this strategy.</p>
<h3><a name="UnspecifiedStrategy">Unspecified</a></h3>
<p>With an unspecified locking strategy, when a thread attempts to
acquire a lock on a mutex model for which the thread already owns a
lock the operation results in <b>undefined behavior</b>. When a mutex
model has an unspecified locking strategy the programmer must assume
that the mutex model instead uses an unchecked strategy.</p>
<p>In general a mutex model with an unspecified locking strategy is
unsafe, and it requires programmer discipline to use the mutex model
properly. However, this strategy allows an implementation to be as fast
as possible with no restrictions on its implementation. This is
especially true for portable implementations that wrap the native
threading support of a platform. For this reason, the classes <a href=
"mutex.html">mutex</a>, <a href="mutex.html">try_mutex</a> and <a href=
"mutex.html">timed_mutex</a> use this locking strategy despite the lack
of safety.</p>
<h2><a name="SchedulingPolicies">Scheduling Policies</a></h2>
<p>Every mutex model follows one of several scheduling policies. These
policies define the semantics when the mutex model is unlocked and
there is more than one thread waiting to acquire a lock. In other
words, the policy defines which waiting thread shall acquire the
lock.</p>
<h3><a name="FIFO">FIFO</a></h3>
<p>With a FIFO scheduling policy, threads waiting for the lock will
acquire it in a first come first serve order (or First In First Out).
This can help prevent a high priority thread from starving lower
priority threads that are also waiting on the mutex lock.</p>
<h3><a name="Priority Driven">Priority Driven</a></h3>
<p>With a Priority Driven scheduling policy, the thread with the
highest priority acquires the lock. Note that this means that
low-priority threads may never acquire the lock if the mutex model has
high contention and there is always at least one high-priority thread
waiting. This is known as thread starvation. When multiple threads of
the same priority are waiting on the mutex lock one of the other
scheduling priorities will determine which thread shall acquire the
lock.</p>
<h3><a name="UndefinedScheduling">Undefined</a></h3>
<p>Threads acquire the lock in no particular order. Users should assume
that low-priority threads may wait indefinitely, and that threads of
the same priority acquire the lock in essentially random order.</p>
<h3><a name="UnspecifiedScheduling">Unspecified</a></h3>
<p>The mutex model does not specify which scheduling policy is used.
The programmer must assume that an undefined scheduling policy is used.
In order to ensure portability, all <b>Boost.Threads</b> mutex models
use an unspecified scheduling policy.</p>
<h2>Concept <a name="Requirements">Requirements</a></h2>
<h3><a name="Mutex">Mutex</a> Concept</h3>
<p>A Mutex object has two states: locked and unlocked. Mutex object
state can only be determined by an object meeting the <a href=
"lock_concept.html#ScopedLock">ScopedLock</a> requirements and
constructed for the Mutex object.</p>
<p>A Mutex is <a href="../../utility/utility.htm#Class noncopyable">
noncopyable</a>.</p>
<p>For a Mutex type M and an object m of that type, the following
expressions must be well-formed and have the indicated effects.</p>
<table summary="Mutex expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td><code>M m;</code></td>
<td>Constructs a mutex object m. Post-condition: m is
unlocked.</td>
</tr>
<tr>
<td><code>(&amp;m)-&gt;~M();</code></td>
<td>Precondition: m is unlocked. Destroys a mutex object
m.</td>
</tr>
<tr>
<td><code>M::scoped_lock</code></td>
<td>A type meeting the <a href="lock_concept.html#ScopedLock">
ScopedLock</a> requirements.</td>
</tr>
</table>
<h3><a name="TryMutex">TryMutex</a> Concept</h3>
<p>A TryMutex must meet the <a href="#Mutex">Mutex</a> requirements. In
addition, for a TryMutex type M and an object m of that type, the
following expressions must be well-formed and have the indicated
effects.</p>
<table summary="TryMutex expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td><code>M::scoped_try_lock</code></td>
<td>A type meeting the <a href=
"lock_concept.html#ScopedTryLock">ScopedTryLock</a>
requirements.</td>
</tr>
</table>
<h3><a name="TimedMutex">TimedMutex</a> Concept</h3>
<p>A TimedMutex must meet the <a href="#TryMutex">TryMutex</a>
requirements. In addition, for a TimedMutex type M and an object m of
that type, the following expressions must be well-formed and have the
indicated effects.</p>
<table summary="TimedMutex expressions" border="1" cellpadding="5">
<tr>
<td><b>Expression</b></td>
<td><b>Effects</b></td>
</tr>
<tr>
<td><code>M::scoped_timed_lock</code></td>
<td>A type meeting the <a href=
"lock_concept.html#ScopedTimedLock">ScopedTimedLock</a>
requirements.</td>
</tr>
</table>
<h2><a name="Models">Models</a></h2>
<p><b>Boost.Threads</b> currently supplies six classes which model
mutex concepts.</p>
<table summary="Mutex concept classes" border="1" cellpadding="5">
<tr>
<td><b>Concept</b></td>
<td><b>Refines</b></td>
<td><b>Classes Modeling the Concept</b></td>
</tr>
<tr>
<td valign="top"><a href="#Mutex">Mutex</a></td>
<td valign="top">&nbsp;</td>
<td><a href="mutex.html">mutex</a><br>
<a href="recursive_mutex.html">recursive_mutex</a></td>
</tr>
<tr>
<td valign="top"><a href="#TryMutex">TryMutex</a></td>
<td valign="top"><a href="#Mutex">Mutex</a></td>
<td><a href="mutex.html">try_mutex<br>
</a> <a href="recursive_mutex.html">recursive_try_mutex</a>
</td>
</tr>
<tr>
<td valign="top"><a href="#TimedMutex">TimedMutex</a></td>
<td valign="top"><a href="#TryMutex">TryMutex</a></td>
<td><a href="mutex.html">timed_mutex<br>
</a> <a href="recursive_mutex.html">
recursive_timed_mutex</a></td>
</tr>
</table>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@@ -1,224 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:mutex_types Mutex Types]
[section:mutex Class `mutex`]
#include <boost/thread/mutex.hpp>
class mutex:
boost::noncopyable
{
public:
mutex();
~mutex();
void lock();
bool try_lock();
void unlock();
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
};
__mutex__ implements the __lockable_concept__ to provide an exclusive-ownership mutex. At most one thread can own the lock on a given
instance of __mutex__ at any time. Multiple concurrent calls to __lock_ref__, __try_lock_ref__ and __unlock_ref__ shall be permitted.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:try_mutex Typedef `try_mutex`]
#include <boost/thread/mutex.hpp>
typedef mutex try_mutex;
__try_mutex__ is a `typedef` to __mutex__, provided for backwards compatibility with previous releases of boost.
[endsect]
[section:timed_mutex Class `timed_mutex`]
#include <boost/thread/mutex.hpp>
class timed_mutex:
boost::noncopyable
{
public:
timed_mutex();
~timed_mutex();
void lock();
void unlock();
bool try_lock();
bool timed_lock(system_time const & abs_time);
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
__timed_mutex__ implements the __timed_lockable_concept__ to provide an exclusive-ownership mutex. At most one thread can own the
lock on a given instance of __timed_mutex__ at any time. Multiple concurrent calls to __lock_ref__, __try_lock_ref__,
__timed_lock_ref__, __timed_lock_duration_ref__ and __unlock_ref__ shall be permitted.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:recursive_mutex Class `recursive_mutex`]
#include <boost/thread/recursive_mutex.hpp>
class recursive_mutex:
boost::noncopyable
{
public:
recursive_mutex();
~recursive_mutex();
void lock();
bool try_lock();
void unlock();
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<recursive_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
};
__recursive_mutex__ implements the __lockable_concept__ to provide an exclusive-ownership recursive mutex. At most one thread can
own the lock on a given instance of __recursive_mutex__ at any time. Multiple concurrent calls to __lock_ref__, __try_lock_ref__ and
__unlock_ref__ shall be permitted. A thread that already has exclusive ownership of a given __recursive_mutex__ instance can call
__lock_ref__ or __try_lock_ref__ to acquire an additional level of ownership of the mutex. __unlock_ref__ must be called once for
each level of ownership acquired by a single thread before ownership can be acquired by another thread.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[section:recursive_try_mutex Typedef `recursive_try_mutex`]
#include <boost/thread/recursive_mutex.hpp>
typedef recursive_mutex recursive_try_mutex;
__recursive_try_mutex__ is a `typedef` to __recursive_mutex__, provided for backwards compatibility with previous releases of boost.
[endsect]
[section:recursive_timed_mutex Class `recursive_timed_mutex`]
#include <boost/thread/recursive_mutex.hpp>
class recursive_timed_mutex:
boost::noncopyable
{
public:
recursive_timed_mutex();
~recursive_timed_mutex();
void lock();
bool try_lock();
void unlock();
bool timed_lock(system_time const & abs_time);
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
typedef unique_lock<recursive_timed_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_lock scoped_timed_lock;
};
__recursive_timed_mutex__ implements the __timed_lockable_concept__ to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of __recursive_timed_mutex__ at any time. Multiple concurrent calls to __lock_ref__,
__try_lock_ref__, __timed_lock_ref__, __timed_lock_duration_ref__ and __unlock_ref__ shall be permitted. A thread that already has
exclusive ownership of a given __recursive_timed_mutex__ instance can call __lock_ref__, __timed_lock_ref__,
__timed_lock_duration_ref__ or __try_lock_ref__ to acquire an additional level of ownership of the mutex. __unlock_ref__ must be
called once for each level of ownership acquired by a single thread before ownership can be acquired by another thread.
[section:nativehandle Member function `native_handle()`]
typedef platform-specific-type native_handle_type;
native_handle_type native_handle();
[variablelist
[[Effects:] [Returns an instance of `native_handle_type` that can be used with platform-specific APIs to manipulate the underlying
implementation. If no such instance exists, `native_handle()` and `native_handle_type` are not present.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[include shared_mutex_ref.qbk]
[endsect]

View File

@@ -1,65 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:once One-time Initialization]
`boost::call_once` provides a mechanism for ensuring that an initialization routine is run exactly once without data races or deadlocks.
[section:once_flag Typedef `once_flag`]
#include <boost/thread/once.hpp>
typedef platform-specific-type once_flag;
#define BOOST_ONCE_INIT platform-specific-initializer
Objects of type `boost::once_flag` shall be initialized with `BOOST_ONCE_INIT`:
boost::once_flag f=BOOST_ONCE_INIT;
[endsect]
[section:call_once Non-member function `call_once`]
#include <boost/thread/once.hpp>
template<typename Callable>
void call_once(once_flag& flag,Callable func);
[variablelist
[[Requires:] [`Callable` is `CopyConstructible`. Copying `func` shall have no side effects, and the effect of calling the copy shall
be equivalent to calling the original. ]]
[[Effects:] [Calls to `call_once` on the same `once_flag` object are serialized. If there has been no prior effective `call_once` on
the same `once_flag` object, the argument `func` (or a copy thereof) is called as-if by invoking `func()`, and the invocation of
`call_once` is effective if and only if `func()` returns without exception. If an exception is thrown, the exception is
propagated to the caller. If there has been a prior effective `call_once` on the same `once_flag` object, the `call_once` returns
without invoking `func`. ]]
[[Synchronization:] [The completion of an effective `call_once` invocation on a `once_flag` object, synchronizes with
all subsequent `call_once` invocations on the same `once_flag` object. ]]
[[Throws:] [`thread_resource_error` when the effects cannot be achieved. or any exception propagated from `func`.]]
[[Note:] [The function passed to `call_once` must not also call
`call_once` passing the same `once_flag` object. This may cause
deadlock, or invoking the passed function a second time. The
alternative is to allow the second call to return immediately, but
that assumes the code knows it has been called recursively, and can
proceed even though the call to `call_once` didn't actually call the
function, in which case it could also avoid calling `call_once`
recursively.]]
]
void call_once(void (*func)(),once_flag& flag);
This second overload is provided for backwards compatibility. The effects of `call_once(func,flag)` shall be the same as those of
`call_once(flag,func)`.
[endsect]
[endsect]

224
doc/overview.html Normal file
View File

@@ -0,0 +1,224 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost.Threads Overview</title>
</head>
<body>
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img height="86" alt="C++ Boost" src=
"../../../c++boost.gif" width="277"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Overview</h2>
</td>
</tr>
</table>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Dangers">Dangers</a><br>
<a href="#Library">C++ Standard Library usage</a><br>
<a href="#Common">Common requirements</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>Boost.Threads allows C++ programs to execute as multiple,
asynchronous, independent, threads-of-execution. Each thread has its
own machine state including program instruction counter and registers.
Programs which execute as multiple threads are called multi-threaded
programs to distinguish them from traditional single-threaded programs.
<a href="definitions.html">Definitions</a> gives a more complete
description of the multi-threading execution environment.</p>
<p>Multi-threading provides several advantages:</p>
<ul>
<li>Programs which would otherwise block waiting for some external
event can continue to respond if the blocking operation is placed
in a separate thread. Multi-threading is usually an absolute
requirement for these programs.</li>
</ul>
<ul>
<li>Well-designed multi-threaded programs may execute faster than
single-threaded programs, particularly on multi-processor hardware.
Note, however, that poorly-designed multi-threaded programs are
often slower that single-threaded programs.</li>
</ul>
<ul>
<li>Some program designs may be easier to formulate using a
multi-threaded approach. After all, the real world is
asynchronous!</li>
</ul>
<h2><a name="Dangers">Dangers</a></h2>
<p>Beyond the errors which can occur in single-threaded programs,
multi-threaded programs are subject to additional errors:</p>
<ul>
<li><a href="definitions.html#Race condition">Race
conditions</a>.</li>
<li><a href="definitions.html#Deadlock">Deadlock</a> (sometimes
called &quot;deadly embrace&quot;)</li>
<li><a href="definitions.html#Priority failure">Priority
failures</a> (priority inversion, infinite overtaking, starvation,
etc.)</li>
</ul>
<p>Every multi-threaded program must be designed carefully to avoid
race conditions and deadlock. These aren&#39;t rare or exotic failures
- they are virtually guaranteed to occur unless multi-threaded code is
designed to avoid them. Priority failures are somewhat less common, but
are none-the-less serious.</p>
<p>The <a href="introduction.html">Boost.Threads design</a> attempts to
minimize these errors, but they will still occur unless the programmer
proactively designs to avoid them.</p>
<h3>Testing and debugging considerations</h3>
<p>Multi-threaded programs are non-deterministic. In other words, the
same program with the same input data may follow different execution
paths each time it is invoked. That can make testing and debugging a
nightmare:</p>
<ul>
<li>Failures are often not repeatable.</li>
<li>Probe effect causes debuggers to produce very different results
from non-debug uses.</li>
<li>Debuggers require special support to show thread state.</li>
<li>Tests on a single processor system may give no indication of
serious errors which would appear on multiprocessor systems, and
visa versa. Thus test cases should include a varying number of
processors.</li>
<li>For programs which create a varying number of threads according
to workload, tests which don&#39;t span the full range of
possibilities may miss serious errors.</li>
</ul>
<h3>Getting a head start</h3>
<p>Although it might appear that multi-threaded programs are inherently
unreliable, many reliable multi-threaded programs do exist.
Multi-threading techniques are known which lead to reliable
programs.</p>
<p>Design patterns for reliable multi-threaded programs, including the
important <i>monitor</i> pattern, are presented in <cite>
Pattern-Oriented Software Architecture Volume 2 - Patterns for
Concurrent and Networked Objects</cite> [<a href=
"bibliography.html#Schmidt-00">Schmidt 00</a>]. Many important
multi-threading programming considerations (independent of threading
library) are discussed in <cite>Programming with POSIX Threads</cite>
[<a href="bibliography.html#Butenhof-97">Butenhof 97</a>].</p>
<p>Doing some reading before attempting multi-threaded designs will give
you a head start toward reliable multi-threaded programs.</p>
<h2><a name="Library">C++ Standard Library usage in multi-threaded
programs</a></h2>
<h3>Runtime libraries</h3>
<p><b>Warning:</b> Multi-threaded programs such as those using <b>
Boost.Threads</b> must link to <a href="definitions.html#Thread-safe">
thread-safe</a> versions of all runtime libraries used by the program,
including the runtime library for the C++ Standard Library. Otherwise
<a href="definitions.html#Race condition">race conditions</a> will
occur when multiple threads simultaneously execute runtime library
functions for <i>new</i>, <i>delete</i>, or other language features
which imply shared state.</p>
<h3>Potentially non-thread-safe functions</h3>
<p>Certain C++ Standard Library functions inherited from C are
particular problems because they hold internal state between calls:</p>
<ul>
<li>rand</li>
<li>strtok</li>
<li>asctime</li>
<li>ctime</li>
<li>gmtime</li>
<li>localtime</li>
</ul>
<p>It is possible to write thread-safe implementations of these by
using <a href="thread_specific_ptr.html">thread-specific storage</a>,
and several C++ compiler vendors do just that. The technique is
well-know and is explained in [<a href=
"bibliography.html#Butenhof-97">Buttenhof-97</a>].</p>
<p>But at least one vendor (HP-UX) does not provide thread-safe
implementations of the above functions in their otherwise thread-safe
runtime library. Instead they provide replacement functions with
different names and arguments.</p>
<p><b>Recommendation:</b> For the most portable, yet thread-safe code,
use Boost replacements for the problem functions. See the <a href=
"../../random/index.html">Boost Random Number Library</a> and <a href=
"../../tokenizer/index.htm">Boost Tokenizer Library</a>.</p>
<h2><a name="Common">Common</a> requirements for all Boost.Threads
components</h2>
<h3>Exceptions</h3>
<p><b>Boost.Threads</b> destructors never throw exceptions. Unless
otherwise specified, other <b>Boost.Threads</b> functions that do not
have an exception-specification may throw implementation-defined
exceptions.</p>
<p>In particular, <b>Boost.Threads</b> reports failure to allocate
storage by throwing an exception of type std::bad_alloc, or a class
derived from std::bad_alloc, failure to obtain thread resources other
than memory by throwing an exception of type <a href=
"thread_resource_error.html">boost::thread_resource_error</a>, and
certain lock related failures by throwing an exception of type <a href=
"lock_error.html">boost::lock_error</a></p>
<p><b>Rationale:</b> Follows the C++ Standard Library practice of
allowing all functions except destructors or other specified functions
to throw exceptions on errors.</p>
<h3><a name="NonCopyable">NonCopyable</a> requirement</h3>
<p><b>Boost.Threads</b> classes documented as meeting the NonCopyable
requirement disallow copy construction and copy assignment. For the
sake of exposition, the synopsis of such classes show private
derivation from <a href="../../utility/utility.htm">
boost::noncopyable</a>. Users should not depend on this derivation,
however, as implementations are free to meet the NonCopyable
requirement in other ways.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p>&copy; Copyright 2001 Beman Dawes</p>
</body>
</html>

View File

@@ -1,30 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:overview Overview]
__boost_thread__ enables the use of multiple threads of execution with shared data in portable C++ code. It provides classes and
functions for managing the threads themselves, along with others for synchronizing data between the threads or providing separate
copies of data specific to individual threads.
The __boost_thread__ library was originally written and designed by William E. Kempf. This version is a major rewrite designed to
closely follow the proposals presented to the C++ Standards Committee, in particular
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html N2497],
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html N2320],
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html N2184],
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html N2139], and
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html N2094]
In order to use the classes and functions described here, you can
either include the specific headers specified by the descriptions of
each class or function, or include the master thread library header:
#include <boost/thread.hpp>
which includes all the other headers in turn.
[endsect]

481
doc/rationale.html Normal file
View File

@@ -0,0 +1,481 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, rationale</title>
</head>
<body bgcolor="#ffffff" link="#0000ff" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img height="86" alt="C++ Boost" src=
"../../../c++boost.gif" width="277"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Rationale</h2>
</td>
</tr>
</table>
<hr>
<p>This page explains the rationale behind various design decisions in
the <b>Boost.Threads</b> library. Having the rationale documented here
should explain how we arrived at the current design as well as prevent
future rehashing of discussions and thought processes that have already
occurred. It can also give users a lot of insight into the design
process required for this library.</p>
<h2><a name="library">Rationale for the Creation of
Boost.Threads</a></h2>
<p>Processes often have a degree of &quot;potential parallelism&quot;
and it can often be more intuitive to design systems with this in mind.
Further, these parallel processes can result in more responsive
programs. The benefits for multi-threaded programming are quite well
known to most modern programmers, yet the C++ language doesn&#39;t
directly support this concept.</p>
<p>Many platforms support multi-threaded programming despite the fact
that the language doesn&#39;t support it. They do this through external
libraries, which are, unfortunately, platform specific. POSIX has tried
to address this problem through the standardization of a
&quot;pthread&quot; library. However, this is a standard only on POSIX
platforms, so its portability is limited.</p>
<p>Another problem with POSIX and other platform specific thread
libraries is that they are almost universally C based libraries. This
leaves several C++ specific issues unresolved, such as what happens
when an exception is thrown in a thread. Further, there are some C++
concepts, such as destructors, that can make usage much easier than
what&#39;s available in a C library.</p>
<p>What&#39;s truly needed is C++ language support for threads.
However, the C++ standards committee needs existing practice or a good
proposal as a starting point for adding this to the standard.</p>
<p>The Boost.Threads library was developed to provide a C++ developer
with a portable interface for writing multi-threaded programs on
numerous platforms. There&#39;s a hope that the library can be the
basis for a more detailed proposal for the C++ standards committee to
consider for inclusion in the next C++ standard.</p>
<h2><a name="primitives">Rationale for the Low Level Primitives
Supported in Boost.Threads</a></h2>
<p>The Boost.Threads library supplies a set of low level primitives for
writing multi-threaded programs, such as mutexes and condition variables.
In fact, the first release of Boost.Threads supports only these low level
primitives. However, computer science research has shown that use of these
primitives is difficult since there&#39;s no way to mathematically prove
that a usage pattern is correct, meaning it doesn&#39;t result in race
conditions or deadlocks. There are several algebras (such as CSP, CCS and
Join calculus) that have been developed to help write provably correct
parallel processes. In order to prove the correctness these processes must
be coded using higher level abstractions. So why does Boost.Threads support
the lower level concepts?</p>
<p>The reason is simple: the higher level concepts need to be
implemented using at least some of the lower level concepts. So having
portable lower level concepts makes it easier to develop the higher
level concepts and will allow researchers to experiment with various
techniques.</p>
<p>Beyond this theoretical application of higher level concepts,
however, the fact remains that many multi-threaded programs are written
using only the lower level concepts, so they are useful in and of
themselves, even if it&#39;s hard to prove that their usage is correct.
Since many users will be familiar with these lower level concepts but
be unfamiliar with any of the higher level concepts there&#39;s also an
argument for accessibility.</p>
<h2><a name="lock_objects">Rationale for the Lock Design</a></h2>
<p>Programmers who are used to multi-threaded programming issues will
quickly note that the Boost.Thread&#39;s design for mutex lock concepts
is not <a href="definitions.html#Thread-safe">thread-safe</a> (this is
clearly documented as well). At first this may seem like a serious
design flaw. Why have a multi-threading primitive that&#39;s not
thread-safe itself?</p>
<p>A lock object is not a synchronization primitive. A lock
object&#39;s sole responsibility is to ensure that a mutex is both
locked and unlocked in a manner that won&#39;t result in the common
error of locking a mutex and then forgetting to unlock it. This means
that instances of a lock object are only going to be created, at least
in theory, within block scope and won&#39;t be shared between threads.
Only the mutex objects will be created outside of block scope and/or
shared between threads. Though it&#39;s possible to create a lock
object outside of block scope and to share it between threads to do so
would not be a typical usage. Nor are there any cases when such usage
would be required.</p>
<p>Lock objects must maintain some state information. In order to allow
a program to determine if a try_lock or timed_lock was successful the
lock object must retain state indicating the success or failure of the
call made in its constructor. If a lock object were to have such state
and remain thread-safe it would need to synchronize access to the state
information which would result in roughly doubling the time of most
operations. Worse, since checking the state can occur only by a call
after construction we&#39;d have a race condition if the lock object
were shared between threads.</p>
<p>So, to avoid the overhead of synchronizing access to the state
information and to avoid the race condition the Boost.Threads library
simply does nothing to make lock objects thread-safe. Instead, sharing
a lock object between threads results in undefined behavior. Since the
only proper usage of lock objects is within block scope this isn&#39;t
a problem, and so long as the lock object is properly used there&#39;s
no danger of any multi-threading issues.</p>
<h2><a name="thread">Rationale for Non-copyable Thread Type</a></h2>
<p>Programmers who are used to C libraries for multi-threaded
programming are likely to wonder why Boost.Threads uses a non-copyable
design for <a href="thread.html">boost::thread</a>. After all, the C
thread types are copyable, and you often have a need for copying them
within user code. However, careful comparison of C designs to C++
designs shows a flaw in this logic.</p>
<p>All C types are copyable. It is, in fact, not possible to make a
non-copyable type in C. For this reason types that represent system
resources in C are often designed to behave very similarly to a pointer
to dynamic memory. There&#39;s an API for acquiring the resource and an
API for releasing the resources. For memory we have pointers as the
type and alloc/free for the acquisition and release APIs. For files we
have FILE* as the type and fopen/fclose for the acquisition and release
APIs. You can freely copy instances of the types but must manually
manage the lifetime of the actual resource through the acquisition and
release APIs.</p>
<p>C++ designs recognize that the acquisition and release APIs are
error prone and try to eliminate possible errors by acquiring the
resource in the constructor and releasing it in the destructor. The
best example of such a design is the std::iostream set of classes which
can represent the same resource as the FILE* type in C. A file is
opened in the std::fstream&#39;s constructor and closed in its
destructor. However, if an iostream were copyable it could lead to a
file being closed twice, an obvious error, so the std::iostream types
are noncopyable by design. This is the same design used by
boost::thread, which is a simple and easy to understand design
that&#39;s consistent with other C++ standard types.</p>
<p>During the design of boost::thread it was pointed out that it would
be possible to allow it to be a copyable type if some form of
&quot;reference management&quot; were used, such as ref-counting or
ref-lists, and many argued for a boost::thread_ref design instead. The
reasoning was that copying &quot;thread&quot; objects was a typical
need in the C libraries, and so presumably would be in the C++
libraries as well. It was also thought that implementations could
provide more efficient reference management then wrappers (such as
boost::shared_ptr) around a noncopyable thread concept. Analysis of
whether or not these arguments would hold true don&#39;t appear to bear
them out. To illustrate the analysis we&#39;ll first provide
pseudo-code illustrating the six typical usage patterns of a thread
object.</p>
<h3>1. Simple creation of a thread.</h3>
<pre>
void foo()
{
create_thread(&amp;bar);
}
</pre>
<h3>2. Creation of a thread that&#39;s later joined.</h3>
<pre>
void foo()
{
thread = create_thread(&amp;bar);
join(thread);
}
</pre>
<h3>3. Simple creation of several threads in a loop.</h3>
<pre>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
create_thread(&amp;bar);
}
</pre>
<h3>4. Creation of several threads in a loop which are later
joined.</h3>
<pre>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = create_thread(&amp;bar);
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i].join();
}
</pre>
<h3>5. Creation of a thread whose ownership is passed to another
object/method.</h3>
<pre>
void foo()
{
thread = create_thread(&amp;bar);
manager.owns(thread);
}
</pre>
<h3>6. Creation of a thread whose ownership is shared between multiple
objects.</h3>
<pre>
void foo()
{
thread = create_thread(&amp;bar);
manager1.add(thread);
manager2.add(thread);
}
</pre>
<p>Of these usage patterns there&#39;s only one that requires reference
management (number 6). Hopefully it&#39;s fairly obvious that this
usage pattern simply won&#39;t occur as often as the other usage
patterns. So there really isn&#39;t a &quot;typical need&quot; for a
thread concept, though there is some need.</p>
<p>Since the need isn&#39;t typical we must use different criteria for
deciding on either a thread_ref or thread design. Possible criteria
include ease of use and performance. So let&#39;s analyze both of these
carefully.</p>
<p>With ease of use we can look at existing experience. The standard
C++ objects that represent a system resource, such as std::iostream,
are noncopyable, so we know that C++ programmers must at least be
experienced with this design. Most C++ developers are also used to
smart pointers such as boost::shared_ptr, so we know they can at least
adapt to a thread_ref concept with little effort. So existing
experience isn&#39;t going to lead us to a choice.</p>
<p>The other thing we can look at is how difficult it is to use both
types for the six usage patterns above. If we find it overly difficult
to use a concept for any of the usage patterns there would be a good
argument for choosing the other design. So we&#39;ll code all six usage
patterns using both designs.</p>
<h3>1.</h3>
<pre>
void foo()
{
thread thrd(&amp;bar);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
}
</pre>
<h3>2.</h3>
<pre>
void foo()
{
thread thrd(&amp;bar);
thrd.join();
}
void foo()
{
thread_ref thrd =
create_thread(&amp;bar);thrd-&gt;join();
}
</pre>
<h3>3.</h3>
<pre>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
thread thrd(&amp;bar);
}
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
thread_ref thrd = create_thread(&amp;bar);
}
</pre>
<h3>4.</h3>
<pre>
void foo()
{
std::auto_ptr&lt;thread&gt; threads[NUM_THREADS];
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = std::auto_ptr&lt;thread&gt;(new thread(&amp;bar));
for (int i= 0; i&lt;NUM_THREADS;
++i)threads[i]-&gt;join();
}
void foo()
{
thread_ref threads[NUM_THREADS];
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = create_thread(&amp;bar);
for (int i= 0; i&lt;NUM_THREADS;
++i)threads[i]-&gt;join();
}
</pre>
<h3>5.</h3>
<pre>
void foo()
{
thread thrd* = new thread(&amp;bar);
manager.owns(thread);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
manager.owns(thrd);
}
</pre>
<h3>6.</h3>
<pre>
void foo()
{
boost::shared_ptr&lt;thread&gt; thrd(new thread(&amp;bar));
manager1.add(thrd);
manager2.add(thrd);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
manager1.add(thrd);
manager2.add(thrd);
}
</pre>
<p>This shows the usage patterns being nearly identical in complexity
for both designs. The only actual added complexity occurs because of
the use of operator new in (4), (5) and (6) and the use of
std::auto_ptr and boost::shared_ptr in (4) and (6) respectively.
However, that&#39;s not really much added complexity, and C++
programmers are used to using these idioms any way. Some may dislike
the presence of operator new in user code, but this can be eliminated
by proper design of higher level concepts, such as the
boost::thread_group class that simplifies example (4) down to:</p>
<pre>
void foo()
{
thread_group threads;
for (int i=0; i&lt;NUM_THREADS; ++i)
threads.create_thread(&amp;bar);
threads.join_all();
}
</pre>
<p>So ease of use is really a wash and not much help in picking a
design.</p>
<p>So what about performance? If you look at the above code examples we
can analyze the theoretical impact to performance that both designs
have. For (1) we can see that platforms that don&#39;t have a
ref-counted native thread type (POSIX, for instance) will be impacted
by a thread_ref design. Even if the native thread type is ref-counted
there may be an impact if more state information has to be maintained
for concepts foreign to the native API, such as clean up stacks for
Win32 implementations. For (2) the performance impact will be identical
to (1). The same for (3). For (4) things get a little more interesting
and we find that theoretically at least the thread_ref may perform
faster since the thread design requires dynamic memory
allocation/deallocation. However, in practice there may be dynamic
allocation for the thread_ref design as well, it will just be hidden
from the user. As long as the implementation has to do dynamic
allocations the thread_ref loses again because of the reference
management. For (5) we see the same impact as we do for (4). For (6) we
still have a possible impact to the thread design because of dynamic
allocation but thread_ref no longer suffers because of it&#39;s
reference management, and in fact, theoretically at least, the
thread_ref may do a better job of managing the references. All of this
indicates that thread wins for (1), (2) and (3), with (4) and (5) the
winner depends on the implementation and the platform but the thread
design probably has a better chance, and with (6) it will again depend
on the implementation and platform but this time we favor thread_ref
slightly. Given all of this it&#39;s a narrow margin, but the thread
design prevails.</p>
<p>Given this analysis, and the fact that noncopyable objects for
system resources are the normal designs that C++ programmers are used
to dealing with, the Boost.Threads library has gone with a noncopyable
design.</p>
<h2>Rationale for not providing <i><a name="Events">Event</a>
Variables</i></h2>
<p><i>Event variables</i> are simply far too error-prone. <a href=
"condition.html">Condition variables</a> are a much safer
alternative.</p>
<p>[Note that Graphical User Interface <i>events</i> are a different
concept, and are not what is being discussed here.]</p>
<p>Event variables were one of the first synchronization primitives.
They are still used today, for example, in the native Windows
multithreading API.</p>
<p>Yet both respected computer science researchers and experienced
multithreading practitioners believe event variables are so inherently
error-prone that they should never be used, and thus should not be part
of a multithreading library.</p>
<p>Per Brinch Hansen <a href="bibliography.html#Brinch-Hansen-73">
[Brinch Hansen 73]</a> analyzed event variables in some detail,
pointing out [emphasis his] that &quot;<i>event operations force the
programmer to be aware of the relative speeds of the sending and
receiving processes</i>&quot;. His summary:</p>
<blockquote>
<p>We must therefore conclude that event variables of the previous
type are impractical for system design. <i>The effect of an
interaction between two processes must be independent of the speed
at which it is carried out.</i></p>
</blockquote>
<p>Experienced programmers using the Windows platform today report that
event variables are a continuing source of errors, even after previous
bad experiences caused them to be very careful in their use of event
variables. Overt problems can be avoided, for example, by teaming the
event variable with a mutex, but that may just convert a <a href=
"definitions.html#Race condition">race condition</a> into another
problem, such as excessive resource use. One of the most distressing
aspects of the experience reports is the claim that many defects are
latent. That is, the programs appear to work correctly, but contain
hidden timing dependencies which will cause them to fail when
environmental factors or usage patterns change, altering relative
thread timings.</p>
<p>The decision to exclude event variables from Boost.Threads has been
surprising to some Windows programmers. They have written programs
which work using event variables, and wonder what the problem is. It
seems similar to the &quot;goto considered harmful&quot; controversy of
30 years ago. It isn&#39;t that events, like gotos, can&#39;t be made
to work, but rather that virtually all programs using alternatives will
be easier to write, debug, read, maintain, and be less likely to
contain latent defects.</p>
<p>[Rationale provided by Beman Dawes]</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

368
doc/recursive_mutex.html Normal file
View File

@@ -0,0 +1,368 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, recursive_mutex</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0" width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">recursive_mutex<br>
recursive_try_mutex<br>
recursive_timed_mutex</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#recursive_mutex Synopsis">Class recursive_mutex
Synopsis</a><br>
<a href="#recursive_mutex Members">Class recursive_mutex
Members</a><br>
<a href="#recursive_try_mutex Synopsis">Class recursive_try_mutex
Synopsis</a><br>
<a href="#recursive_try_mutex Members">Class recursive_try_mutex
Members</a><br>
<a href="#recursive_timed_mutex Synopsis">Class recursive_timed_mutex
Synopsis</a><br>
<a href="#recursive_timed_mutex Members">Class recursive_timed_mutex
Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <code>recursive_mutex</code>, <code>recursive_try_mutex</code>
and <code>recursive_timed_mutex</code> classes define full featured
models of the <a href="mutex_concept.html#Mutex">Mutex</a>, <a href=
"mutex_concept.html#TryMutex">TryMutex</a> and <a href=
"mutex_concept.html#TimedMutex">TimedMutex</a> concepts with recursive
locking semantics. These types should be used to synchronize access to
shared resources when recursive locking by a single thread is likely to
occur. A good example for this is when a class supplies &quot;internal
synchronization&quot; to ensure <a href="definitions.html#Thread-safe">
thread-safety</a> and a function of the class may have to call other
functions of the class which also attempt to lock the mutex. For
recursive locking mechanics, see <a href="mutex.html">mutexes</a>.</p>
<p>Each class supplies one or more typedefs for lock types which model
matching lock concepts. For the best possible performance you should
use the mutex class that supports the minimum set of lock types that
you need.</p>
<table summary="lock types" border="1" cellpadding="5">
<tr>
<td><b>Mutex Class</b></td>
<td><b>Lock name</b></td>
<td><b>Implementation defined Lock Type</b></td>
<td><b>Lock Concept</b></td>
</tr>
<tr>
<td valign="top"><a href="#recursive_mutex Synopsis"><code>
recursive_mutex</code></a></td>
<td valign="middle"><code>scoped_lock</code></td>
<td valign="middle"><a href="scoped_lock.html"><code>
detail::thread::scoped_lock&lt;recursive_mutex&gt;</code></a></td>
<td valign="middle"><a href="lock_concept.html#ScopedLock">
ScopedLock</a></td>
</tr>
<tr>
<td valign="top"><code><a href="#recursive_try_mutex Synopsis">
recursive_try_mutex</a></code></td>
<td valign="middle"><code>scoped_lock<br>
scoped_try_lock</code></td>
<td valign="middle"><a href="scoped_lock.html"><code>
detail::thread::scoped_lock&lt;recursive_try_mutex&gt;<br>
</code></a> <code><a href="scoped_try_lock.html">
detail::thread::scoped_try_lock&lt;recursive_try_mutex&gt;</a></code></td>
<td valign="middle"><a href="lock_concept.html#ScopedLock">
ScopedLock</a><br>
<a href="lock_concept.html#ScopedTryLock">
ScopedTryLock</a></td>
</tr>
<tr>
<td valign="top"><code><a href=
"#recursive_timed_mutex Synopsis">
recursive_timed_mutex</a></code> </td>
<td valign="middle"><code>scoped_lock<br>
scoped_try_lock<br>
scoped_timed_lock</code></td>
<td valign="middle"><a href="scoped_lock.html"><code>
detail::thread::scoped_lock&lt;recursive_timed_mutex&gt;</code></a><br>
<a href="scoped_try_lock.html"><code>
detail::thread::scoped_try_lock&lt;recursive_timed_mutex&gt;</code></a><br>
<a href="scoped_timed_lock.html"><code>
detail::thread::scoped_timed_lock&lt;recursive_timed_mutex&gt;</code></a></td>
<td valign="middle"><a href="lock_concept.html#ScopedLock">
ScopedLock</a><br>
<a href="lock_concept.html#ScopedTryLock">
ScopedTryLock</a><br>
<a href="lock_concept.html#ScopedTimedLock">
ScopedTimedLock</a></td>
</tr>
</table>
<p>The <code>recursive_mutex</code>, <code>recursive_try_mutex</code>
and <code>recursive_timed_mutex</code> employ a <code>Recursive</code>
<a href="mutex_concept.html#LockingStrategies">locking strategy</a>, so
attempts to recursively lock them succeed and an internal &quot;lock
count&quot; is maintained. Attempts to unlock them by a thread that
does not own a lock on them will result in a <a href="lock_error.html">
lock_error</a> exception being thrown.</p>
<p>The <code>recursive_mutex</code>, <code>recursive_try_mutex</code>
and <code>recursive_timed_mutex</code> leave the <a href=
"mutex_concept.html#SchedulingPolicies">scheduling policy</a> as <code>
Unspecified</code>. Programmers should assume that threads waiting for
a lock on objects of these types acquire the lock in a random order,
even though the specific behavior for a given platform may be
different.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/recursive_mutex.hpp">&lt;boost/thread/recursive_mutex.hpp&gt;</a>
</pre>
<h2>Class <a name="recursive_mutex Synopsis">recursive_mutex
Synopsis</a></h2>
<hr>
<pre>
namespace boost
{
class recursive_mutex : private <a href=
"../../utility/utility.htm">boost::noncopyable</a> // Exposition only.
// Class recursive_mutex meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_lock;
recursive_mutex();
~recursive_mutex();
};
}
</pre>
<h2>Class <a name="recursive_mutex Members">recursive_mutex
Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
recursive_mutex();
</pre>
<p><b>Postconditions:</b> <code>*this</code> is in the unlocked
state.</p>
<hr>
<h3>Destructor</h3>
<pre>
~recursive_mutex();
</pre>
<p><b>Requires:</b> <code>*this</code> is in the unlocked state.</p>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<p><b>Dangers:</b> Destruction of a locked mutex is a serious
programming error resulting in undefined behavior such as a program
crash..</p>
<hr>
<h2>Class <a name="recursive_try_mutex Synopsis">recursive_try_mutex
Synopsis</a></h2>
<pre>
namespace boost
{
class recursive_try_mutex : private boost::noncopyable // Exposition only.
// Class recursive_try_mutex meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_lock;
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_try_lock;
recursive_try_mutex();
~recursive_try_mutex();
};
}
</pre>
<h2>Class <a name="recursive_try_mutex Members">recursive_try_mutex
Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
recursive_try_mutex();
</pre>
<p><b>Postconditions:</b> <code>*this</code> is in the unlocked
state.</p>
<hr>
<h3>Destructor</h3>
<pre>
~recursive_try_mutex();
</pre>
<p><b>Requires:</b> <code>*this</code> is in the unlocked state.</p>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<p><b>Dangers:</b> Destruction of a locked mutex is a serious
programming error resulting in undefined behavior such as a program
crash..</p>
<hr>
<h2>Class <a name="recursive_timed_mutex Synopsis">
recursive_timed_mutex Synopsis</a></h2>
<pre>
namespace boost
{
class recursive_timed_mutex : private boost::noncopyable // Exposition only.
// Class recursive_timed_mutex meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_lock;
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_try_lock;
typedef <i>[implementation defined; see <a href=
"#Introduction">Introduction</a>]</i> scoped_timed_lock;
recursive_timed_mutex();
~recursive_timed_mutex();
};
}
</pre>
<h2>Class <a name="recursive_timed_mutex Members">recursive_timed_mutex
Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
recursive_timed_mutex();
</pre>
<p><b>Postconditions:</b> <code>*this</code> is in the unlocked
state.</p>
<hr>
<h3>Destructor</h3>
<pre>
~recursive_timed_mutex();
</pre>
<p><b>Requires:</b> <code>*this</code> is in the unlocked state.</p>
<p><b>Effects:</b> Destroys <code>*this</code>.</p>
<p><b>Dangers:</b> Destruction of a locked mutex is a serious
programming error resulting in undefined behavior such as a program
crash..</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<pre>
#include <a href=
"../../../boost/thread/recursive_mutex.hpp">&lt;boost/thread/recursive_mutex.hpp&gt;</a>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
#include &lt;iostream&gt;
class counter
{
public:
counter() : count(0) { }
int add(int val) {
boost::recursive_mutex::scoped_lock scoped_lock(mutex);
count += val;
return count;
}
int increment() {
boost::recursive_mutex::scoped_lock scoped_lock(mutex);
return add(1);
}
private:
boost::recursive_mutex mutex;
int count;
};
counter c;
void change_count(void*)
{
std::cout &lt;&lt; &quot;count == &quot; &lt;&lt; c.increment() &lt;&lt; std::endl;
}
int main(int, char*[])
{
const int num_threads=4;
boost::thread_group threads;
for (int i=0; i &lt; num_threads; ++i)
threads.create_thread(&amp;change_count, 0);
threads.join_all();
return 0;
}
</pre>
<p>The output is:</p>
<pre>
count == 1
count == 2
count == 3
count == 4
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

134
doc/removed_atomic_t.html Normal file
View File

@@ -0,0 +1,134 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<title>Boost.Threads, atomic_t</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width="277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">atomic_t</h2>
</td>
</tr>
</table>
<hr>
<h2>Header</h2>
<p>The <tt>atomic_t</tt> class defines an "atomic integer" type. This class should be used
to perform thread safe operations on an integral type with out the overhead of locks. Only
a limited set of integer operations are available with an <tt>atomic_t</tt> instance.</p>
<pre>
#include &lt;boost/thread/atomic.hpp&gt;
</pre>
<h2>Public Interface</h2>
<pre>
class atomic_t
{
public:
typedef <b>implementation defined</b> value_type;
explicit atomic_t(value_type val=0);
};
atomic_t::value_type read(const atomic_t&amp; x);
atomic_t::value_type increment(atomic_t&amp; x);
atomic_t::value_type decrement(atomic_t&amp; x);
atomic_t::value_type swap(atomic_t&amp; x, atomic_t::value_type y);
atomic_t::value_type compare_swap(atomic_t&amp; x, atomic_t::value_type y, atomic_t::value_type z);
</pre>
<h3>Constructor</h3>
<pre>
atomic_t(atomic_t::value_type val=0);
</pre>
<p>Constructs an <tt>atomic_t</tt> and sets its value to <tt>val</tt>.</p>
<h3>read</h3>
<pre>
atomic_t::value_type read(const atomic_t&amp; x);
</pre>
<p>Gets the current value of <tt>x</tt>.</p>
<h3>increment</h3>
<pre>
atomic_t::value_type increment(atomic_t&amp; x);
</pre>
<p>Increments <tt>x</tt> and returns a value <tt>&lt; 0</tt> if the result is less than 0,
<tt>&gt; 0</tt> if the result is greater than 0 and <tt>== 0</tt> if the result is equal to
0.</p>
<h3>decrement</h3>
<pre>
atomic_t::value_type decrement(atomic_t&amp; x);
</pre>
<p>Decrements <tt>x</tt> and returns a value <tt>&lt; 0</tt> if the result is less than 0,
<tt>&gt; 0</tt> if the result is greater than 0 and <tt>== 0</tt> if the result is equal to
0.</p>
<h3>swap</h3>
<pre>
atomic_t::value_type swap(atomic_t&amp; x, atomic_t::value_type y);
</pre>
<p>Assigns the value of <tt>y</tt> to <tt>x</tt> and returns the value of <tt>x</tt> prior
to the swap.</p>
<h3>compare_swap</h3>
<pre>
atomic_t::value_type compare_swap(atomic_t&amp; x, atomic_t::value_type y, atomic_t::value_type z);
</pre>
<p>Compares the value of <tt>z</tt> to the value of <tt>x</tt> and if equal sets the value of
<tt>x</tt> to the value of <tt>y</tt> and returns the value of <tt>x</tt> prior to the swap.</p>
<h2>Example Usage</h2>
<pre>
#include &lt;boost/thread/atomic.hpp&gt;
#include &lt;boost/test/test_tools.hpp&gt;
int test_main(int, char*[])
{
boost::atomic_t a;
BOOST_TEST_VERIFY(boost::read(a) == 0);
BOOST_TEST_VERIFY(boost::increment(a) &gt; 0);
BOOST_TEST_VERIFY(boost::decrement(a) == 0);
BOOST_TEST_VERIFY(boost::swap(a, 1) == 0);
BOOST_TEST_VERIFY(boost::swap(a, 2, 0) == 1);
BOOST_TEST_VERIFY(boost::read(a) == 1);
}
</pre>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>© Copyright <a href="mailto:williamkempf@hotmail.com">William E. Kempf</a>
2001 all rights reserved.</i></p>
</body>
</html>

227
doc/scoped_lock.html Normal file
View File

@@ -0,0 +1,227 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, scoped_lock</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">scoped_lock</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>This class template defines a generic lock type which meets the <a
href="lock_concept.html#ScopedLock">ScopedLock</a> requirements. The <a
href="mutex.html">mutex</a>, <a href="mutex.html">try_mutex</a>, <a
href="mutex.html">timed_mutex</a>, <a href="recursive_mutex.html">
recursive_mutex</a>, <a href="recursive_mutex.html">
recursive_try_mutex</a> and <a href="recursive_mutex.html">
recursive_timed_mutex</a> classes all use this template to define their
<code>scoped_lock</code> types.</p>
<p>Like all the <b>Boost.Threads</b> <a href="lock_concept.html">lock
models</a>, <code>scoped_lock</code> objects are meant to be
short-lived. Objects of the class are not <a href=
"definitions.html#thread-safe">thread-safe</a>, and so should not be
shared between threads.</p>
<p>Class <code>scoped_lock</code> follows the &quot;resource
acquisition is initialization&quot; idiom <a href=
"bibliography.html#Stroustrup-00">[Stroustrup 00 14.4.1]</a> and is a
realization of the &quot;Scoped Locking Pattern&quot; <a href=
"bibliography.html#Schmidt-00">[Schmidt-00]</a>. Thus the usage is to
let the constructor do the locking, and then let the destructor do the
unlocking automatically at the end of the enclosing scope. The lock()
and unlock() members are usually not explicitly called, but are
provided to allow for complex overlapping locks of multiple
mutexes.</p>
<p>The type used to instantiate the class must meet the <a href=
"mutex_concept.html#Mutex">Mutex</a> requirements.</p>
<p>Although this class is an implementation detail, it is publicly
documented here because of its importance.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/detail/lock.hpp">&lt;boost/thread/detail/lock.hpp&gt;</a>
<i>This header is usually not included directly by programmers
because it is supplied by <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a> or
<a href=
"../../../boost/thread/recursive_mutex.hpp">&lt;boost/thread/recursive_mutex.hpp&gt;</a></i>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost { namespace detail { namespace thread {
template &lt;typename Mutex&gt;
class scoped_lock : private <a href=
"../../utility/utility.htm#Class noncopyable">boost::noncopyable</a> // Exposition only.
// Class scoped_lock meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef Mutex mutex_type;
explicit scoped_lock(Mutex&amp; mx, bool initially_locked=true);
~scoped_lock();
void lock();
void unlock();
operator const void*() const;
bool locked() const;
};
} // namespace thread
} // namespace detail
} // namespace boost
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
explicit scoped_lock(Mutex&amp; mx, bool initially_locked=true);
</pre>
<p><b>Effects:</b> Associates mutex <code>mx</code> with <code>
*this</code>. If <code>initially_locked</code> is <code>true,</code>
calls <code>lock()</code>.</p>
<hr>
<h3>Destructor</h3>
<pre>
~scoped_lock();
</pre>
<p><b>Effects:</b> If <code>locked()</code>, calls <code>
unlock()</code>. Destroys <code>*this</code>.</p>
<hr>
<h3>lock</h3>
<pre>
void lock();
</pre>
<p><b>Effects:</b> If the associated mutex is already locked by another
lock in the current thread, the effects depend on the locking strategy
of the associated mutex, as shown in the following table:</p>
<table summary="lock effects" border="1" cellpadding="5">
<tr>
<td><i><a href="mutex_concept.html#LockingStrategies">Locking
Strategy</a><br>
of associated mutex</i></td>
<td><i>Effect if associated mutex is already locked by the
current thread</i></td>
</tr>
<tr>
<td>Recursive</td>
<td>As if an additional lock were added to the mutex.</td>
</tr>
<tr>
<td>Checked</td>
<td>Throws <a href="lock_error.html">lock_error</a>.</td>
</tr>
<tr>
<td>Unchecked</td>
<td>Undefined behavior [<a href="bibliography.html#ISO">ISO</a>
1.3.12] (but typically, <a href="definitions.html#Deadlock">
deadlock</a>.)</td>
</tr>
</table>
<p>If the associated mutex is already locked by some other thread,
places the current thread in the <a href="definitions.html#State">
Blocked</a> state until the associated mutex is unlocked, after which
the current thread is placed in the <a href="definitions.html#State">
Ready</a> state, eventually to be returned to the <a href=
"definitions.html#State">Running</a> state.</p>
<p><b>Postcondition:</b> locked()</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
locked()</code> or as indicated in <b>Effects</b>.</p>
<hr>
<h3>unlock</h3>
<pre>
void unlock();
</pre>
<p><b>Effects:</b> Unlocks the associated mutex.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
!locked()</code>.</p>
<hr>
<h3>const void* Conversion</h3>
<pre>
operator const void*() const;
</pre>
<p><b>Returns:</b> If the associated mutex is currently locked, a value
convertible to <code>true</code>, else a value convertible to <code>
false</code>.</p>
<p><b>Rationale:</b> A <code>const void*</code> conversion is
considered safer than a conversion to <code>bool</code>.</p>
<hr>
<h3>locked</h3>
<pre>
bool locked() const;
</pre>
<p><b>Returns:</b> <code>this-&gt;operator const void*() !=
0</code>.</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<p>See the example given in the documentation for the <a href=
"mutex.html">mutex</a> class.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

267
doc/scoped_timed_lock.html Normal file
View File

@@ -0,0 +1,267 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, scoped_timed_lock</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">scoped_timed_lock</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>This class template defines a generic lock type which meets the <a
href="lock_concept.html#ScopedTimedLock">ScopedTimedLock</a>
requirements. The <a href="mutex.html">timed_mutex</a> and <a href=
"recursive_mutex.html">recursive_timed_mutex</a> classes use this
template to define their <code>scoped_timed_lock</code> types.</p>
<p>Like all the <b>Boost.Threads</b> <a href="lock_concept.html">lock
models</a>, <code>scoped_timed_lock</code> objects are meant to be
short-lived. Objects of the class are not <a href=
"definitions.html#thread-safe">thread-safe</a>, and so should not be
shared between threads.</p>
<p>Class <code>scoped_timed_lock</code> follows the &quot;resource
acquisition is initialization&quot; idiom <a href=
"bibliography.html#Stroustrup-00">[Stroustrup 00 14.4.1]</a> and is a
realization of the &quot;Scoped Locking Pattern&quot; <a href=
"bibliography.html#Schmidt-00">[Schmidt-00]</a>. Thus the usage is to
let the constructor do the locking, and then let the destructor do the
unlocking automatically at the end of the enclosing scope. The lock()
and unlock() members are usually not explicitly called, but are
provided to allow for complex overlapping locks of multiple
mutexes.</p>
<p>The type used to instantiate the class must meet the <a href=
"mutex_concept.html#TimedMutex">TimedMutex</a> requirements.</p>
<p>Although this class is an implementation detail, it is publicly
documented here because of its importance.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/detail/lock.hpp">&lt;boost/thread/detail/lock.hpp&gt;</a>
<i>This header is usually not included directly by programmers
because it is supplied by <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a> or
<a href=
"../../../boost/thread/recursive_mutex.hpp">&lt;boost/thread/recursive_mutex.hpp&gt;</a></i>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost { namespace detail { namespace thread {
template &lt;typename TimedMutex&gt;
class scoped_timed_lock : private <a href=
"../../utility/utility.htm#Class noncopyable">boost::noncopyable</a> // Exposition only.
// Class scoped_timed_lock meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef TimedMutex mutex_type;
scoped_timed_lock(TimedMutex&amp; mx, const boost::xtime&amp; xt);
scoped_timed_lock(TimedMutex&amp; mx, bool initially_locked);
~scoped_timed_lock();
void lock();
bool timed_lock(const xtime&amp; xt);
void unlock();
operator const void*() const;
};
} // namespace thread
} // namesapce detail
} // namespace boost
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
scoped_timed_lock(TimedMutex&amp; mx, const <a href=
"xtime.html">xtime</a>&amp; xt);
</pre>
<p><b>Effects:</b> Associates mutex <code>mx</code> with <code>
*this</code>. Calls <code>timed_lock</code>( <code>xt</code>)</p>
<hr>
<pre>
scoped_timed_lock(TimedMutex&amp; mx, bool initially_locked);
</pre>
<p><b>Effects:</b> Associates mutex <code>mx</code> with <code>
*this</code>. If <code>initially_locked</code> is <code>true</code>,
calls <code>lock()</code>.</p>
<hr>
<h3>Destructor</h3>
<pre>
~scoped_timed_lock();
</pre>
<p><b>Effects:</b> If <code>locked()</code>, calls <code>
unlock()</code>. Destroys <code>*this</code>.</p>
<hr>
<h3>lock</h3>
<pre>
void lock();
</pre>
<p><b>Effects:</b> If the associated mutex is already locked by another
lock in the current thread, the effects depend on the locking strategy
of the associated mutex, as shown in the following table:</p>
<table summary="lock effects" border="1" cellpadding="5">
<tr>
<td><i><a href="mutex_concept.html#LockingStrategies">Locking
Strategy</a><br>
of associated mutex</i></td>
<td><i>Effect if associated mutex is already locked by the
current thread</i></td>
</tr>
<tr>
<td>Recursive</td>
<td>As if an additional lock were added to the mutex.</td>
</tr>
<tr>
<td>Checked</td>
<td>Throws <a href="lock_error.html">lock_error</a>.</td>
</tr>
<tr>
<td>Unchecked</td>
<td>Undefined behavior [<a href="bibliography.html#ISO">ISO</a>
1.3.12] (but typically, <a href="definitions.html#Deadlock">
deadlock</a>.)</td>
</tr>
</table>
<p>If the associated mutex is already locked by some other thread,
places the current thread in the <a href="definitions.html#State">
Blocked</a> state until the associated mutex is unlocked, after which
the current thread is placed in the <a href="definitions.html#State">
Ready</a> state, eventually to be returned to the <a href=
"definitions.html#State">Running</a> state. Places the associated mutex
in the locked state.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
locked()</code> or as indicated in <b>Effects</b>.</p>
<hr>
<h3>timed_lock</h3>
<pre>
bool timed_lock(const <a href="xtime.html">xtime</a>&amp; xt);
</pre>
<p><b>Effects:</b> Same as <code>lock()</code>, except that if xt is
reached, places the current thread in the <a href=
"definitions.html#State">Ready</a> state without further ado.</p>
<p><b>Returns:</b> <code>locked()</code>.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
locked()</code> or as indicated in <b>Effects</b>.</p>
<hr>
<h3>unlock</h3>
<pre>
void unlock();
</pre>
<p><b>Effects:</b> Unlocks the associated mutex.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
!locked()</code>.</p>
<hr>
<h3>const void* Conversion</h3>
<pre>
operator const void*() const;
</pre>
<p><b>Returns:</b> If the associated mutex is currently locked, a value
convertible to <code>true</code>, else a value convertible to <code>
false</code>.</p>
<p><b>Rationale:</b> A <code>const void*</code> conversion is
considered safer than a conversion to <code>bool</code>.</p>
<hr>
<h3>locked</h3>
<pre>
bool locked() const;
</pre>
<p><b>Returns:</b> <code>this-&gt;operator const void*() !=
0</code>.</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<pre>
#include &lt;boost/thread/mutex.hpp&gt;
#include &lt;iostream&gt;
int main(int, char*[])
{
boost::timed_mutex mutex;
boost::xtime xt;
boost::get_xtime(&amp;xt, boost::TIME_UTC);
xt.sec += 1;
boost::mutex::scoped_timed_lock scope_timed_lock(mutex, xt);
if (scope_timed_lock.locked())
std::cout &lt;&lt; &quot;locked&quot; &lt;&lt; std::endl;
else
std::cout &lt;&lt; &quot;unlocked&quot; &lt;&lt; std::endl;
return 0;
}
</pre>
<p>The output is:</p>
<pre>
locked
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%B %d, %Y" startspan -->November 05, 2001<!--webbot bot="Timestamp" endspan i-checksum="39585" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

305
doc/scoped_try_lock.html Normal file
View File

@@ -0,0 +1,305 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, scoped_try_lock</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">scoped_try_lock</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>This class template defines a generic lock type which meets the <a
href="lock_concept.html#ScopedTryLock">ScopedTryLock</a> requirements.
The <a href="mutex.html">try_mutex</a>, <a href="mutex.html">
timed_mutex</a>, <a href="recursive_mutex.html">recursive_try_mutex</a>
and <a href="recursive_mutex.html">recursive_timed_mutex</a> classes
use this template to define their <code>scoped_try_lock</code>
types.</p>
<p>Like all the <b>Boost.Threads</b> <a href="lock_concept.html">lock
models</a>, <code>scoped_try_lock</code> objects are meant to be
short-lived. Objects of the class are not <a href=
"definitions.html#thread-safe">thread-safe</a>, and so should not be
shared between threads.</p>
<p>Class <code>scoped_try_lock</code> follows the &quot;resource
acquisition is initialization&quot; idiom <a href=
"bibliography.html#Stroustrup-00">[Stroustrup 00 14.4.1]</a> and is a
realization of the &quot;Scoped Locking Pattern&quot; <a href=
"bibliography.html#Schmidt-00">[Schmidt-00]</a>. Thus the usage is to
let the constructor do the locking, and then let the destructor do the
unlocking automatically at the end of the enclosing scope. The lock()
and unlock() members are usually not explicitly called, but are
provided to allow for complex overlapping locks of multiple
mutexes.</p>
<p>Although this class is an implementation detail, it is publicly
documented here because of its importance.</p>
<p>The type used to instantiate the class must meet the <a href=
"mutex_concept.html#TryMutex">TryMutex</a> requirements.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/detail/lock.hpp">&lt;boost/thread/detail/lock.hpp&gt;</a>
<i>This header is usually not included directly by programmers
because it is supplied by <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a> or
<a href=
"../../../boost/thread/recursive_mutex.hpp">&lt;boost/thread/recursive_mutex.hpp&gt;</a></i>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost { namespace detail { namespace thread {
template &lt;typename TryMutex&gt;
class scoped_try_lock : private <a href=
"../../utility/utility.htm#Class noncopyable">boost::noncopyable</a> // Exposition only.
// Class scoped_try_lock meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
typedef TryMutex mutex_type;
explicit scoped_try_lock(TryMutex&amp; mx);
scoped_try_lock(TryMutex&amp; mx, bool initially_locked);
~scoped_try_lock();
void lock();
bool try_lock();
void unlock();
operator const void*() const;
};
} // namespace thread
} // namespace detail
} // namespace boost
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructors</h3>
<pre>
explicit scoped_try_lock(TryMutex&amp; mx);
</pre>
<p><b>Effects:</b> Associates mutex <code>mx</code> with <code>
*this</code>. Calls <code>try_lock()</code>.</p>
<hr>
<pre>
scoped_try_lock(TryMutex&amp; mx, bool initially_locked);
</pre>
<p><b>Effects:</b> Associates mutex <code>mx</code> with <code>
*this</code>. If <code>initially_locked</code> is <code>true,</code>
calls <code>lock()</code>.</p>
<hr>
<h3>Destructor</h3>
<pre>
~scoped_try_lock();
</pre>
<p><b>Effects:</b> If <code>locked()</code>, calls <code>
unlock()</code>. Destroys <code>*this</code>.</p>
<hr>
<h3>lock</h3>
<pre>
void lock();
</pre>
<p><b>Effects:</b> If the associated mutex is already locked by another
lock in the current thread, the effects depend on the locking strategy
of the associated mutex, as shown in the following table:</p>
<table summary="lock effects" border="1" cellpadding="5" height="147">
<tr>
<td height="34"><i><a href=
"mutex_concept.html#LockingStrategies">Locking Strategy</a><br>
of associated mutex</i></td>
<td height="34"><i>Effect if associated mutex is already locked
by the current thread</i></td>
</tr>
<tr>
<td height="19">Recursive</td>
<td height="19">As if an additional lock were added to the
mutex.</td>
</tr>
<tr>
<td height="19">Checked</td>
<td height="19">Throws <a href="lock_error.html">
lock_error</a>.</td>
</tr>
<tr>
<td height="19">Unchecked</td>
<td height="19">Undefined behavior [<a href=
"bibliography.html#ISO">ISO</a> 1.3.12] (but typically, <a
href="definitions.html#Deadlock">deadlock</a>.)</td>
</tr>
</table>
<p>If the associated mutex is already locked by some other thread,
places the current thread in the <a href="definitions.html#State">
Blocked</a> state until the associated mutex is unlocked, after which
the current thread is placed in the <a href="definitions.html#State">
Ready</a> state, eventually to be returned to the <a href=
"definitions.html#State">Running</a> state. Places the associated mutex
in the locked state.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
locked()</code> or as indicated in <b>Effects</b>.</p>
<hr>
<h3>try_lock</h3>
<pre>
bool try_lock();
</pre>
<p><b>Effects:</b> If the associated mutex is already locked by another
lock in the current thread, the effects depend on the locking strategy
of the associated mutex, as shown in the following table:</p>
<table summary="try_lock effects" border="1" cellpadding="5" height=
"147">
<tr>
<td height="34"><i><a href=
"mutex_concept.html#LockingStrategies">Locking Strategy</a><br>
of associated mutex</i></td>
<td height="34"><i>Effect if associated mutex is already locked
by the current thread</i></td>
</tr>
<tr>
<td height="19">Recursive</td>
<td height="19">As if an additional lock were added to the
mutex.</td>
</tr>
<tr>
<td height="19">Checked</td>
<td height="19">Throws <a href="lock_error.html">
lock_error</a>.</td>
</tr>
<tr>
<td height="19">Unspecified</td>
<td height="19">Undefined behavior [<a href=
"bibliography.html#ISO">ISO</a> 1.3.12] (but typically, <a
href="definitions.html#Deadlock">deadlock</a>.)</td>
</tr>
</table>
<p>If the associated mutex is not already locked by some other thread,
locks the associated mutex and returns true, else returns false.</p>
<p><b>Returns:</b> See effects.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
locked()</code> or as indicated in <b>Effects</b>.</p>
<hr>
<h3>unlock</h3>
<pre>
void unlock();
</pre>
<p><b>Effects:</b> Unlocks the associated mutex.</p>
<p><b>Throws:</b> <a href="lock_error.html">lock_error</a> if <code>
!locked()</code>.</p>
<hr>
<h3>const void* Conversion</h3>
<pre>
operator const void*() const;
</pre>
<p><b>Returns:</b> If the associated mutex is currently locked, a value
convertible to <code>true</code>, else a value convertible to <code>
false</code>.</p>
<p><b>Rationale:</b> A <code>const void*</code> conversion is
considered safer than a conversion to <code>bool</code>.</p>
<hr>
<h3>locked</h3>
<pre>
bool locked() const;
</pre>
<p><b>Returns:</b> <code>this-&gt;operator const void*() !=
0</code>.</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<pre>
#include <a href=
"../../../boost/thread/mutex.hpp">&lt;boost/thread/mutex.hpp&gt;</a>
#include &lt;iostream&gt;
int main(int, char*[])
{
boost::mutex mutex;
boost::mutex::try_lock lock(mutex);
if (lock)
std::cout &lt;&lt; &quot;locked&quot; &lt;&lt; std::endl;
else
std::cout &lt;&lt; &quot;unlocked&quot; &lt;&lt; std::endl;
return 0;
}
</pre>
<p>The output is:</p>
<pre>
locked
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -1,44 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:shared_mutex Class `shared_mutex`]
#include <boost/thread/shared_mutex.hpp>
class shared_mutex
{
public:
shared_mutex();
~shared_mutex();
void lock_shared();
bool try_lock_shared();
bool timed_lock_shared(system_time const& timeout);
void unlock_shared();
void lock();
bool try_lock();
bool timed_lock(system_time const& timeout);
void unlock();
void lock_upgrade();
void unlock_upgrade();
void unlock_upgrade_and_lock();
void unlock_and_lock_upgrade();
void unlock_and_lock_shared();
void unlock_upgrade_and_lock_shared();
};
The class `boost::shared_mutex` provides an implementation of a multiple-reader / single-writer mutex. It implements the
__upgrade_lockable_concept__.
Multiple concurrent calls to __lock_ref__, __try_lock_ref__, __timed_lock_ref__, __lock_shared_ref__, __try_lock_shared_ref__ and
__timed_lock_shared_ref__ shall be permitted.
[endsect]

4
doc/styles.css Normal file
View File

@@ -0,0 +1,4 @@
PRE
{
BACKGROUND-COLOR: lightcyan
}

261
doc/thread.html Normal file
View File

@@ -0,0 +1,261 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content=
"threads, Boost.Threads, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, thread</title>
</head>
<body bgcolor="#ffffff" link="#0000ff" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img height="86" alt="C++ Boost" src=
"../../../c++boost.gif" width="277"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Class thread</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <code>thread</code> class represents threads of execution, and
provides the functionality to create and manage threads within the <b>
Boost.Threads</b> library. See <a href="definitions.html">
Definitions</a> for a precise description of &quot;thread of
execution&quot;, and for definitions of threading related terms and of
thread states such as &quot;blocked&quot;.</p>
<p>A thread of execution has an initial function. For the program&#39;s
initial thread, the initial function is <code>main()</code>. For other
threads, the initial function is <code>operator()</code> of the
function object passed to the class <code>thread</code>
constructor.</p>
<p>A thread of execution is said to be &quot;finished&quot; or
&quot;finished execution&quot; when its initial function returns or is
terminated. This includes completion of all thread cleanup handlers,
and completion of the normal C++ function return behaviors, such as
destruction of automatic storage (stack) objects and releasing any
associated implementation resources.</p>
<p>A thread object has an associated state which is either
&quot;joinable&quot; or &quot;non-joinable&quot;.</p>
<p>Except as described below, the policy used by an implementation of
<b>Boost.Threads</b> to schedule transitions between thread states is
unspecified.</p>
<p><b>Note:</b> Just as the lifetime of a file may be different from
the lifetime of an iostream object which represents the file, the
lifetime of a thread of execution may be different from the <code>
thread</code> object which represents the thread of execution. In
particular, after a call to <code>join()</code>, the thread of
execution will no longer exist even though the <code>thread</code>
object continues to exist until the end of its normal lifetime. The
converse is also possible; if a <code>thread</code> object is destroyed
without <code>join()</code> having first been called, the thread of
execution continues until its initial function completes.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost {
class thread : <a href=
"../../utility/utility.htm#noncopyable">boost::noncopyable</a> // Exposition only.
// Class thread meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
thread();
explicit thread(const boost::function0&lt;void&gt;&amp; threadfunc);
~thread();
bool operator==(const thread&amp; rhs) const;
bool operator!=(const thread&amp; rhs) const;
void join();
static void sleep(const xtime&amp; xt);
static void yield();
};
} // namespace boost
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructors</h3>
<pre>
thread();
</pre>
<p><b>Effects:</b> Constructs a <code>thread</code> object representing
the current thread of execution.</p>
<p><b>Postcondition:</b> <code>*this</code> is non-joinable.</p>
<p><b>Danger:</b> <code>*this</code> is valid only within the current
thread.</p>
<pre>
thread(const <a href=
"../../function/index.html">boost::function0</a>&lt;void&gt;&amp; threadfunc);
</pre>
<p><b>Effects:</b> Starts a new thread of execution and constructs a
<code>thread</code> object representing it. Copies <code>
threadfunc</code> (which in turn copies the function object wrapped by
<code>threadfunc</code>) to an internal location which persists for the
lifetime of the new thread of execution. Calls <code>operator()</code>
on the copy of the <code>threadfunc</code> function object in the new
thread of execution.</p>
<p><b>Postcondition:</b> <code>*this</code> is joinable.</p>
<p><b>Throws:</b> <code>boost::thread_resource_error</code> if a new
thread of execution cannot be started.</p>
<hr>
<h3>Destructor</h3>
<pre>
~thread();
</pre>
<p><b>Effects:</b> Destroys <code>*this</code>. The actual thread of
execution may continue to execute after the <code>thread</code> object
has been destroyed.</p>
<p><b>Notes:</b> If <code>*this</code> is joinable the actual thread of
execution becomes &quot;detached&quot;. Any resources used by the
thread will be reclaimed when the thread of execution completes. To
ensure such a thread of execution runs to completion before the <code>
thread</code> object is destroyed, call <code>join()</code>.</p>
<hr>
<h3>Comparison Operators</h3>
<pre>
bool operator==(const thread&amp; rhs);
</pre>
<p><b>Requires:</b> The thread is non-terminated or <code>*this</code>
is joinable.</p>
<p><b>Returns:</b> <code>true</code> if <code>*this</code> and <code>
rhs</code> represent the same thread of execution.</p>
<pre>
bool operator!=(const thread&amp; rhs);
</pre>
<p><b>Returns:</b> <code>!(*this==rhs)</code>.</p>
<hr>
<h3>join</h3>
<pre>
void join();
</pre>
<p><b>Requires:</b> <code>*this</code> is joinable.</p>
<p><b>Effects:</b> The current thread of execution blocks until the
initial function of the thread of execution represented by <code>
*this</code> finishes and all resources are reclaimed.</p>
<p><b>Postcondition:</b> <code>*this</code> is non-joinable.</p>
<p><b>Note:</b> If <code>*this == thread()</code> the result is
implementation defined. If the implementation doesn&#39;t detect this
the result will be <a href="definitions.html#Deadlock">
deadlock</a>.</p>
<hr>
<h3>sleep</h3>
<pre>
static void sleep(const <a href="xtime.html">xtime</a>&amp; xt);
</pre>
<p><b>Effects:</b> The current thread of execution blocks until <code>
xt</code> is reached.</p>
<hr>
<h3>yield</h3>
<pre>
static void yield();
</pre>
<p><b>Effects:</b> The current thread of execution is placed in the
&quot;ready&quot; state.</p>
<p><b>Notes:</b> Allow the current thread to give up the rest of its
time slice (or other scheduling quota) to another thread. Particularly
useful in non-preemptive implementations.</p>
<hr>
<h2><a name="Example">Example Usage</a></h2>
<pre>
#include &lt;boost/thread/thread.hpp&gt;
#include &lt;iostream&gt;
struct thread_alarm
{
thread_alarm(int secs) : m_secs(secs) { }
void operator()()
{
boost::xtime xt;
boost::xtime_get(&amp;xt, boost::TIME_UTC);
xt.sec += m_secs;
boost::thread::sleep(xt);
std::cout &lt;&lt; &quot;alarm sounded...&quot; &lt;&lt; std::endl;
}
int m_secs;
};
int main(int argc, char* argv[])
{
int secs = 5;
std::cout &lt;&lt; &quot;setting alarm for 5 seconds...&quot; &lt;&lt; std::endl;
boost::thread thrd(thread_alarm(secs));
thrd.join();
}
</pre>
<p>The output is:</p>
<pre>
setting alarm for 5 seconds...
alarm sounded...
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -1,168 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[article Thread
[quickbook 1.4]
[authors [Williams, Anthony]]
[copyright 2007-8 Anthony Williams]
[purpose C++ Library for launching threads and synchronizing data between them]
[category text]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[template lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.lockable [link_text]]]
[def __lockable_concept__ [lockable_concept_link `Lockable` concept]]
[def __lockable_concept_type__ [lockable_concept_link `Lockable`]]
[template timed_lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.timed_lockable [link_text]]]
[def __timed_lockable_concept__ [timed_lockable_concept_link `TimedLockable` concept]]
[def __timed_lockable_concept_type__ [timed_lockable_concept_link `TimedLockable`]]
[template shared_lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable [link_text]]]
[def __shared_lockable_concept__ [shared_lockable_concept_link `SharedLockable` concept]]
[def __shared_lockable_concept_type__ [shared_lockable_concept_link `SharedLockable`]]
[template upgrade_lockable_concept_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable [link_text]]]
[def __upgrade_lockable_concept__ [upgrade_lockable_concept_link `UpgradeLockable` concept]]
[def __upgrade_lockable_concept_type__ [upgrade_lockable_concept_link `UpgradeLockable`]]
[template lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.lockable.lock [link_text]]]
[def __lock_ref__ [lock_ref_link `lock()`]]
[template lock_multiple_ref_link[link_text] [link thread.synchronization.lock_functions.lock_multiple [link_text]]]
[def __lock_multiple_ref__ [lock_multiple_ref_link `lock()`]]
[template try_lock_multiple_ref_link[link_text] [link thread.synchronization.lock_functions.try_lock_multiple [link_text]]]
[def __try_lock_multiple_ref__ [try_lock_multiple_ref_link `try_lock()`]]
[template unlock_ref_link[link_text] [link thread.synchronization.mutex_concepts.lockable.unlock [link_text]]]
[def __unlock_ref__ [unlock_ref_link `unlock()`]]
[template try_lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.lockable.try_lock [link_text]]]
[def __try_lock_ref__ [try_lock_ref_link `try_lock()`]]
[template timed_lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.timed_lockable.timed_lock [link_text]]]
[def __timed_lock_ref__ [timed_lock_ref_link `timed_lock()`]]
[template timed_lock_duration_ref_link[link_text] [link thread.synchronization.mutex_concepts.timed_lockable.timed_lock_duration [link_text]]]
[def __timed_lock_duration_ref__ [timed_lock_duration_ref_link `timed_lock()`]]
[template lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.lock_shared [link_text]]]
[def __lock_shared_ref__ [lock_shared_ref_link `lock_shared()`]]
[template unlock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.unlock_shared [link_text]]]
[def __unlock_shared_ref__ [unlock_shared_ref_link `unlock_shared()`]]
[template try_lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.try_lock_shared [link_text]]]
[def __try_lock_shared_ref__ [try_lock_shared_ref_link `try_lock_shared()`]]
[template timed_lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.timed_lock_shared [link_text]]]
[def __timed_lock_shared_ref__ [timed_lock_shared_ref_link `timed_lock_shared()`]]
[template timed_lock_shared_duration_ref_link[link_text] [link thread.synchronization.mutex_concepts.shared_lockable.timed_lock_shared_duration [link_text]]]
[def __timed_lock_shared_duration_ref__ [timed_lock_shared_duration_ref_link `timed_lock_shared()`]]
[template lock_upgrade_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.lock_upgrade [link_text]]]
[def __lock_upgrade_ref__ [lock_upgrade_ref_link `lock_upgrade()`]]
[template unlock_upgrade_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_upgrade [link_text]]]
[def __unlock_upgrade_ref__ [unlock_upgrade_ref_link `unlock_upgrade()`]]
[template unlock_upgrade_and_lock_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_upgrade_and_lock [link_text]]]
[def __unlock_upgrade_and_lock_ref__ [unlock_upgrade_and_lock_ref_link `unlock_upgrade_and_lock()`]]
[template unlock_and_lock_upgrade_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_and_lock_upgrade [link_text]]]
[def __unlock_and_lock_upgrade_ref__ [unlock_and_lock_upgrade_ref_link `unlock_and_lock_upgrade()`]]
[template unlock_upgrade_and_lock_shared_ref_link[link_text] [link thread.synchronization.mutex_concepts.upgrade_lockable.unlock_upgrade_and_lock_shared [link_text]]]
[def __unlock_upgrade_and_lock_shared_ref__ [unlock_upgrade_and_lock_shared_ref_link `unlock_upgrade_and_lock_shared()`]]
[template owns_lock_ref_link[link_text] [link thread.synchronization.locks.unique_lock.owns_lock [link_text]]]
[def __owns_lock_ref__ [owns_lock_ref_link `owns_lock()`]]
[template owns_lock_shared_ref_link[link_text] [link thread.synchronization.locks.shared_lock.owns_lock [link_text]]]
[def __owns_lock_shared_ref__ [owns_lock_shared_ref_link `owns_lock()`]]
[template mutex_func_ref_link[link_text] [link thread.synchronization.locks.unique_lock.mutex [link_text]]]
[def __mutex_func_ref__ [mutex_func_ref_link `mutex()`]]
[def __boost_thread__ [*Boost.Thread]]
[def __not_a_thread__ ['Not-a-Thread]]
[def __interruption_points__ [link interruption_points ['interruption points]]]
[def __mutex__ [link thread.synchronization.mutex_types.mutex `boost::mutex`]]
[def __try_mutex__ [link thread.synchronization.mutex_types.try_mutex `boost::try_mutex`]]
[def __timed_mutex__ [link thread.synchronization.mutex_types.timed_mutex `boost::timed_mutex`]]
[def __recursive_mutex__ [link thread.synchronization.mutex_types.recursive_mutex `boost::recursive_mutex`]]
[def __recursive_try_mutex__ [link thread.synchronization.mutex_types.recursive_try_mutex `boost::recursive_try_mutex`]]
[def __recursive_timed_mutex__ [link thread.synchronization.mutex_types.recursive_timed_mutex `boost::recursive_timed_mutex`]]
[def __shared_mutex__ [link thread.synchronization.mutex_types.shared_mutex `boost::shared_mutex`]]
[template unique_lock_link[link_text] [link thread.synchronization.locks.unique_lock [link_text]]]
[def __lock_guard__ [link thread.synchronization.locks.lock_guard `boost::lock_guard`]]
[def __unique_lock__ [unique_lock_link `boost::unique_lock`]]
[def __shared_lock__ [link thread.synchronization.locks.shared_lock `boost::shared_lock`]]
[def __upgrade_lock__ [link thread.synchronization.locks.upgrade_lock `boost::upgrade_lock`]]
[def __upgrade_to_unique_lock__ [link thread.synchronization.locks.upgrade_to_unique_lock `boost::upgrade_to_unique_lock`]]
[def __thread__ [link thread.thread_management.thread `boost::thread`]]
[def __thread_id__ [link thread.thread_management.thread.id `boost::thread::id`]]
[template join_link[link_text] [link thread.thread_management.thread.join [link_text]]]
[def __join__ [join_link `join()`]]
[template timed_join_link[link_text] [link thread.thread_management.thread.timed_join [link_text]]]
[def __timed_join__ [timed_join_link `timed_join()`]]
[def __detach__ [link thread.thread_management.thread.detach `detach()`]]
[def __interrupt__ [link thread.thread_management.thread.interrupt `interrupt()`]]
[def __sleep__ [link thread.thread_management.this_thread.sleep `boost::this_thread::sleep()`]]
[def __interruption_enabled__ [link thread.thread_management.this_thread.interruption_enabled `boost::this_thread::interruption_enabled()`]]
[def __interruption_requested__ [link thread.thread_management.this_thread.interruption_requested `boost::this_thread::interruption_requested()`]]
[def __interruption_point__ [link thread.thread_management.this_thread.interruption_point `boost::this_thread::interruption_point()`]]
[def __disable_interruption__ [link thread.thread_management.this_thread.disable_interruption `boost::this_thread::disable_interruption`]]
[def __restore_interruption__ [link thread.thread_management.this_thread.restore_interruption `boost::this_thread::restore_interruption`]]
[def __thread_resource_error__ `boost::thread_resource_error`]
[def __thread_interrupted__ `boost::thread_interrupted`]
[def __barrier__ [link thread.synchronization.barriers.barrier `boost::barrier`]]
[template cond_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable.wait [link_text]]]
[def __cond_wait__ [cond_wait_link `wait()`]]
[template cond_timed_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable.timed_wait [link_text]]]
[def __cond_timed_wait__ [cond_timed_wait_link `timed_wait()`]]
[template cond_any_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable_any.wait [link_text]]]
[def __cond_any_wait__ [cond_any_wait_link `wait()`]]
[template cond_any_timed_wait_link[link_text] [link thread.synchronization.condvar_ref.condition_variable_any.timed_wait [link_text]]]
[def __cond_any_timed_wait__ [cond_any_timed_wait_link `timed_wait()`]]
[def __blocked__ ['blocked]]
[include overview.qbk]
[include changes.qbk]
[include thread_ref.qbk]
[section:synchronization Synchronization]
[include mutex_concepts.qbk]
[include mutexes.qbk]
[include condition_variables.qbk]
[include once.qbk]
[include barrier.qbk]
[include futures.qbk]
[endsect]
[include tss.qbk]
[include time.qbk]
[include acknowledgements.qbk]

182
doc/thread_group.html Normal file
View File

@@ -0,0 +1,182 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, thread_group</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">thread_group</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <tt>thread_group</tt> class provides a container for easy
grouping of threads to simplify several common thread creation and
management idioms.</p>
<p>All <tt>thread_group</tt> member functions are <a href=
"definitions.html#thread-safe">thread-safe</a>, except destruction.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost
{
class thread_group : <a href=
"../../utility/utility.htm#noncopyable">boost::noncopyable</a>
{
public:
thread_group();
~thread_group();
thread* create_thread(const boost::function0&lt;void&gt;&amp; threadfunc);
void add_thread(thread* thrd);
void remove_thread(thread* thrd);
void join_all();
};
}
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
thread_group();
</pre>
<p><b>Effects:</b> Constructs an empty <tt>thread_group</tt>
container.</p>
<hr>
<h3>Destructor</h3>
<pre>
~thread_group();
</pre>
<p><b>Effects:</b> Destroys each contained thread object. Destroys
<code>*this</code>.</p>
<p><b>Notes:</b> Behavior is undefined if another thread references
*this during the execution of the destructor.</p>
<hr>
<h3>create_thread</h3>
<pre>
thread* create_thread(const boost::function0&lt;void&gt;&amp; threadfunc);
</pre>
<p><b>Effects:</b> Creates a new <tt>thread</tt> object that executes
<tt>threadfunc</tt> and adds it to the <tt>thread_group</tt> container
object&#39;s list of managed <tt>thread</tt> objects.</p>
<p><b>Returns:</b> Pointer to the newly created thread.</p>
<hr>
<h3>add_thread</h3>
<pre>
void add_thread(thread* thrd);
</pre>
<p><b>Effects:</b> Adds <tt>thrd</tt> to the <tt>thread_group</tt>
object&#39;s list of managed <tt>thread</tt> objects. The <tt>thrd</tt>
object must have been allocated via operator new and will be deleted
when the group is destroyed.</p>
<hr>
<h3>remove_thread</h3>
<pre>
void remove_thread(thread* thrd);
</pre>
<p><b>Effects:</b> Removes <code>*this</code>&#39;s list of managed
<tt>thread</tt> objects.</p>
<p><b>Throws:</b> ? if <tt>thrd</tt> is not it <code>*this</code>&#39;s
list of managed <tt>thread</tt> objects.</p>
<hr>
<h3>join_all</h3>
<pre>
void join_all();
</pre>
<p><b>Effects:</b> Calls <code>join()</code> on each of the managed
<tt>thread</tt> objects.</p>
<hr>
<h2><a name="Example">Example</a> Usage</h2>
<pre>
#include &lt;boost/thread/thread.hpp&gt;
#include &lt;iostream&gt;
int count = 0;
boost::mutex mutex;
void increment_count()
{
boost::mutex::lock lock(mutex);
std::cout &lt;&lt; &quot;count = &quot; &lt;&lt; ++count &lt;&lt; std::endl;
}
int main(int argc, char* argv[])
{
boost::thread_group threads;
for (int i = 0; i &lt; 10; ++i)
threads.create_thread(&amp;increment_count);
threads.join_all();
}
</pre>
<p>The output is:</p>
<pre>
count = 1
count = 2
count = 3
count = 4
count = 5
count = 6
count = 7
count = 8
count = 9
count = 10
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,78 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content="threads, BTL, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, thread_resource_error</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0" width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">thread_resource_error</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <code>thread_resource_error</code> class defines an exception
type that is thrown by constructors in the <b>Boost.Threads</b> library
when thread related resources can not be acquired. This does not
include memory allocation failures which instead throw
std::bad_alloc.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/exceptions.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost
{
class thread_resource_error : public std::runtime_error
{
public:
thread_resource_error();
};
}
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
thread_resource_error();
</pre>
<p>Constructs a <code>thread_resource_error</code> object.</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -0,0 +1,223 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content=
"threads, Boost.Threads, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, thread_specific_ptr</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">thread_specific_ptr</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <code>thread_specific_ptr</code> class defines an interface for
using thread specific storage. Thread specific storage is data
associated with individual threads and is often used to make operations
<a href="definitions.html#Thread-safe">thread-safe</a> that rely on
global data.</p>
<p>Template <code>thread_specific_ptr</code> stores a pointer to an
object obtained via <code>new</code> on a thread-by-thread basis and
calls delete on the contained pointer when the thread terminates. Each
thread initially stores the null pointer in each <code>
thread_specific_ptr</code> instance.</p>
<p>The template <code>thread_specific_ptr</code> is useful in the
following cases:</p>
<ul>
<li>An interface was original written assuming a single thread of
control and is being ported to a multi-threaded environment.</li>
<li>Each thread of control invokes sequences of methods that share
data that must be logically accessed through a globally visible
access point, but are physically unique for each thread, instead of
being explicitly passed.</li>
</ul>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/tss.hpp">&lt;boost/thread/tss.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost {
template &lt;typename T&gt;
class thread_specific_ptr : private boost::noncopyable // Exposition only.
// Class thread_specific_ptr meets the <a href=
"overview.html#NonCopyable">NonCopyable</a> requirement.
{
public:
thread_specific_ptr();
~thread_specific_ptr();
T* get() const;
T* operator-&gt;() const;
T&amp; operator*() const;
T* release();
void reset(T* p=0);
};
} // namespace boost
</pre>
<h2><a name="Members">Members</a></h2>
<hr>
<h3>Constructor</h3>
<pre>
thread_specific_ptr();
</pre>
<p><b>Postconditions:</b> A thread specific storage has been reserved
for use by *this in all threads, with each thread initially storing a
null pointer.</p>
<p><b>Requires:</b> The expression <code>delete get()</code> is well
formed.</p>
<p><b>Throws:</b> <code>boost::thread_resource_error</code> if the
necessary resources can not be obtained.</p>
<p><b>Notes:</b> There is an implementation specific limit to the
number of thread specific storage objects that can be created, and this
limit may be small.</p>
<hr>
<h3>Destructor</h3>
<pre>
~thread_specific_ptr();
</pre>
<p><b>Notes:</b> Does not destroy any data that may be stored in any
thread&#39;s thread specific storage. For this reason you should not
destroy a <code>thread_specific_ptr</code> object until you are certain
there are no threads running that have made use of its thread specific
storage.</p>
<hr>
<h3>get</h3>
<pre>
T* get() const;
</pre>
<p><b>Returns:</b> The object stored in thread specific storage for the
current thread for *this.</p>
<p><b>Notes:</b> Each thread initially returns 0.</p>
<hr>
<h3>Smart Pointer Operations</h3>
<pre>
T* operator-&gt;() const;
</pre>
<p><b>Returns:</b> <code>get()</code></p>
<pre>
T&amp; operator*() const;
</pre>
<p><b>Returns:</b> <code>get()</code></p>
<p><b>Requires:</b> <code>get() != 0</code></p>
<hr>
<h3>Release</h3>
<pre>
T* release();
</pre>
<p><b>Returns:</b> <code>get()</code></p>
<p><b>Postcondition:</b> *this holds the null pointer for the current
thread.</p>
<hr>
<h3>Reset</h3>
<pre>
void reset(T* p=0);
</pre>
<p><b>Effects:</b> If <code>get()!= p</code> then <code>delete
get()</code>.</p>
<p><b>Postconditions:</b> <code>*this</code> holds the pointer <code>
p</code> for the current thread.</p>
<p><b>Notes:</b> The pointer will be deleted when the thread
terminates.</p>
<hr>
<h2><a name="Example">Example Usage</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
#include <a href=
"../../../boost/thread/tss.hpp">&lt;boost/thread/tss.hpp&gt;</a>
#include &lt;cassert&gt;
boost::thread_specific_ptr&lt;int&gt; value;
void increment()
{
int* p = value.get();
++*p;
}
void thread_proc()
{
value.reset(new int(0)); // initialize the thread&#39;s storage
for (int i=0; i&lt;10; ++i)
{
increment();
int* p = value.get();
assert(*p == i+1);
}
}
int main(int argc, char* argv[])
{
boost::thread_group threads;
for (int i=0; i&lt;5; ++i)
threads.create_thread(&amp;thread_proc);
threads.join_all();
}
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

View File

@@ -1,75 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:time Date and Time Requirements]
As of Boost 1.35.0, the __boost_thread__ library uses the [link date_time Boost.Date_Time] library for all operations that require a
time out. These include (but are not limited to):
* __sleep__
* __timed_join__
* __cond_timed_wait__
* __timed_lock_ref__
For the overloads that accept an absolute time parameter, an object of type [link thread.time.system_time `boost::system_time`] is
required. Typically, this will be obtained by adding a duration to the current time, obtained with a call to [link
thread.time.get_system_time `boost::get_system_time()`]. e.g.
boost::system_time const timeout=boost::get_system_time() + boost::posix_time::milliseconds(500);
extern bool done;
extern boost::mutex m;
extern boost::condition_variable cond;
boost::unique_lock<boost::mutex> lk(m);
while(!done)
{
if(!cond.timed_wait(lk,timeout))
{
throw "timed out";
}
}
For the overloads that accept a ['TimeDuration] parameter, an object of any type that meets the [link
date_time.posix_time.time_duration Boost.Date_Time Time Duration requirements] can be used, e.g.
boost::this_thread::sleep(boost::posix_time::milliseconds(25));
boost::mutex m;
if(m.timed_lock(boost::posix_time::nanoseconds(100)))
{
// ...
}
[section:system_time Typedef `system_time`]
#include <boost/thread/thread_time.hpp>
typedef boost::posix_time::ptime system_time;
See the documentation for [link date_time.posix_time.ptime_class `boost::posix_time::ptime`] in the Boost.Date_Time library.
[endsect]
[section:get_system_time Non-member function `get_system_time()`]
#include <boost/thread/thread_time.hpp>
system_time get_system_time();
[variablelist
[[Returns:] [The current time.]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]

View File

@@ -1,184 +0,0 @@
[/
(C) Copyright 2007-8 Anthony Williams.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section Thread Local Storage]
[heading Synopsis]
Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a
multi-threaded application. One example is the C `errno` variable, used for storing the error code related to functions from the
Standard C library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide
a separate instance of `errno` for each thread, in order to avoid different threads competing to read or update the value.
Though compilers often provide this facility in the form of extensions to the declaration syntax (such as `__declspec(thread)` or
`__thread` annotations on `static` or namespace-scope variable declarations), such support is non-portable, and is often limited in
some way, such as only supporting POD types.
[heading Portable thread-local storage with `boost::thread_specific_ptr`]
`boost::thread_specific_ptr` provides a portable mechanism for thread-local storage that works on all compilers supported by
__boost_thread__. Each instance of `boost::thread_specific_ptr` represents a pointer to an object (such as `errno`) where each
thread must have a distinct value. The value for the current thread can be obtained using the `get()` member function, or by using
the `*` and `->` pointer deference operators. Initially the pointer has a value of `NULL` in each thread, but the value for the
current thread can be set using the `reset()` member function.
If the value of the pointer for the current thread is changed using `reset()`, then the previous value is destroyed by calling the
cleanup routine. Alternatively, the stored value can be reset to `NULL` and the prior value returned by calling the `release()`
member function, allowing the application to take back responsibility for destroying the object.
[heading Cleanup at thread exit]
When a thread exits, the objects associated with each `boost::thread_specific_ptr` instance are destroyed. By default, the object
pointed to by a pointer `p` is destroyed by invoking `delete p`, but this can be overridden for a specific instance of
`boost::thread_specific_ptr` by providing a cleanup routine to the constructor. In this case, the object is destroyed by invoking
`func(p)` where `func` is the cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified
order. If a cleanup routine sets the value of associated with an instance of `boost::thread_specific_ptr` that has already been
cleaned up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of
`boost::thread_specific_ptr` with values.
[section:thread_specific_ptr Class `thread_specific_ptr`]
#include <boost/thread/tss.hpp>
template <typename T>
class thread_specific_ptr
{
public:
thread_specific_ptr();
explicit thread_specific_ptr(void (*cleanup_function)(T*));
~thread_specific_ptr();
T* get() const;
T* operator->() const;
T& operator*() const;
T* release();
void reset(T* new_value=0);
};
[section:default_constructor `thread_specific_ptr();`]
[variablelist
[[Requires:] [`delete this->get()` is well-formed.]]
[[Effects:] [Construct a `thread_specific_ptr` object for storing a pointer to an object of type `T` specific to each thread. The
default `delete`-based cleanup function will be used to destroy any thread-local objects when `reset()` is called, or the thread
exits.]]
[[Throws:] [`boost::thread_resource_error` if an error occurs.]]
]
[endsect]
[section:constructor_with_custom_cleanup `explicit thread_specific_ptr(void (*cleanup_function)(T*));`]
[variablelist
[[Requires:] [`cleanup_function(this->get())` does not throw any exceptions.]]
[[Effects:] [Construct a `thread_specific_ptr` object for storing a pointer to an object of type `T` specific to each thread. The
supplied `cleanup_function` will be used to destroy any thread-local objects when `reset()` is called, or the thread exits.]]
[[Throws:] [`boost::thread_resource_error` if an error occurs.]]
]
[endsect]
[section:destructor `~thread_specific_ptr();`]
[variablelist
[[Effects:] [Calls `this->reset()` to clean up the associated value for the current thread, and destroys `*this`.]]
[[Throws:] [Nothing.]]
]
[note Care needs to be taken to ensure that any threads still running after an instance of `boost::thread_specific_ptr` has been
destroyed do not call any member functions on that instance.]
[endsect]
[section:get `T* get() const;`]
[variablelist
[[Returns:] [The pointer associated with the current thread.]]
[[Throws:] [Nothing.]]
]
[note The initial value associated with an instance of `boost::thread_specific_ptr` is `NULL` for each thread.]
[endsect]
[section:operator_arrow `T* operator->() const;`]
[variablelist
[[Returns:] [`this->get()`]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:operator_star `T& operator*() const;`]
[variablelist
[[Requires:] [`this->get` is not `NULL`.]]
[[Returns:] [`*(this->get())`]]
[[Throws:] [Nothing.]]
]
[endsect]
[section:reset `void reset(T* new_value=0);`]
[variablelist
[[Effects:] [If `this->get()!=new_value` and `this->get()` is non-`NULL`, invoke `delete this->get()` or
`cleanup_function(this->get())` as appropriate. Store `new_value` as the pointer associated with the current thread.]]
[[Postcondition:] [`this->get()==new_value`]]
[[Throws:] [`boost::thread_resource_error` if an error occurs.]]
]
[endsect]
[section:release `T* release();`]
[variablelist
[[Effects:] [Return `this->get()` and store `NULL` as the pointer associated with the current thread without invoking the cleanup
function.]]
[[Postcondition:] [`this->get()==0`]]
[[Throws:] [Nothing.]]
]
[endsect]
[endsect]
[endsect]

147
doc/xtime.html Normal file
View File

@@ -0,0 +1,147 @@
<html>
<head>
<meta http-equiv="Content-Type" content=
"text/html; charset=iso-8859-1">
<meta name="keywords" content=
"threads, Boost.Threads, thread library, C++">
<link rel="stylesheet" type="text/css" href="styles.css">
<title>Boost.Threads, xtime</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<table summary="header" border="0" cellpadding="7" cellspacing="0"
width="100%">
<tr>
<td valign="top" width="300">
<h3><img src="../../../c++boost.gif" alt="C++ Boost" width=
"277" height="86"></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">xtime</h2>
</td>
</tr>
</table>
<hr>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Header">Header</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Reference">Reference</a><br>
<a href="#Example">Example</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <code>xtime</code> type is used to represent a point on some
time scale or a duration in time. This type may be proposed for the C
standard by Markus Kuhn. <b>Boost.Threads</b> provides only a very
minimal implementation of this proposal and it&#39;s expected that a
full implementation will be provided in Boost as a separate library, at
which time <b>Boost.Threads</b> will deprecate its implementation.</p>
<h2><a name="Header">Header</a></h2>
<pre>
#include <a href=
"../../../boost/thread/xtime.hpp">&lt;boost/thread/xtime.hpp&gt;</a>
</pre>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>
namespace boost {
enum
{
TIME_UTC=1,
};
struct xtime
{
#if defined(BOOST_NO_INT64_T)
int_fast32_t sec;
#else
int_fast64_t sec;
#endif
int_fast32_t nsec;
};
int xtime_get(struct xtime* xtp, int clock_type);
} // namespace boost
</pre>
<h2><a name="Reference">Reference</a></h2>
<hr>
<h3>TIME_UTC</h3>
<p>The clock type for Coordinated Universal Time (UTC). The epoch for
this clock type is 1970-01-01 00:00:00. This is the only clock type
supported by <b>Boost.Threads</b>.</p>
<hr>
<h3>xtime</h3>
<pre>
struct xtime
{
#if defined(BOOST_NO_INT64_T)
int_fast32_t sec;
#else
int_fast64_t sec;
#endif
int_fast32_t nsec;
};
</pre>
<p><b>sec</b> represents the whole seconds that have passed since the
epoch.</p>
<p><b>nsec</b> represents the nanoseconds since <code>sec.</code></p>
<hr>
<h3>xtime_get</h3>
<pre>
int xtime_get(struct xtime* xtp, int clock_type);
</pre>
<p><b>Postcondition:</b> <code>xtp</code> represents the current point
in time as a duration since the epoch specified by the <code>
clock_type</code>.</p>
<p><b>Returns:</b> <code>clock_type</code> if successful, otherwise
0.</p>
<p><b>Notes:</b> The resolution is implementation specific. For many
implementations the best resolution of time is far more than one
nanosecond, and even when the resolution is reasonably good, the
latency of a call to <code>xtime_get()</code> may be significant. For
maximum portability, avoid durations of less than one second.</p>
<hr>
<h2><a name="Example">Example Usage</a></h2>
<pre>
#include <a href=
"../../../boost/thread/thread.hpp">&lt;boost/thread/thread.hpp&gt;</a>
#include <a href=
"../../../boost/thread/tss.hpp">&lt;boost/thread/xtime.hpp&gt;</a>
int main(int argc, char* argv[])
{
boost::xtime xt;
boost::xtime_get(&amp;xt, boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt); // Sleep for 1 second
}
</pre>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->05 November, 2001<!--webbot bot="Timestamp" endspan i-checksum="39359" --></p>
<p><i>&copy; Copyright <a href="mailto:williamkempf@hotmail.com">
William E. Kempf</a> 2001 all rights reserved.</i></p>
</body>
</html>

66
example/Jamfile Normal file
View File

@@ -0,0 +1,66 @@
# (C) Copyright William E. Kempf 2001. Permission to copy, use, modify, sell and
# distribute this software is granted provided this copyright notice appears
# in all copies. This software is provided "as is" without express or implied
# warranty, and with no claim as to its suitability for any purpose.
#
# Boost.Threads build and test Jamfile
#
# Declares the following targets:
# 1. monitor, an example program.
# 2. starvephil, an example program.
# 3. tennis, an example program.
# declare the location of this subproject relative to the root
subproject libs/thread/example ;
# Do some OS-specific setup
if $(NT)
{
BOOST_THREADMON_LIB = <lib>../build/libboost_threadmon ;
}
else
{
BOOST_THREADMON_LIB = ;
}
#######################
#
# Declare the Boost.Threads monitor example program.
#
exe monitor : monitor/monitor.cpp
<lib>../build/libboost_thread
$(BOOST_THREADMON_LIB)
# requirements
: <include>$(BOOST_ROOT)
<threading>multi
: debug release ;
#######################
#
# Declare the Boost.Threads starvephil example program.
#
exe starvephil : starvephil/starvephil.cpp
<lib>../build/libboost_thread
$(BOOST_THREADMON_LIB)
# requirements
: <include>$(BOOST_ROOT)
<threading>multi
: debug release ;
#######################
#
# Declare the Boost.Threads tennis example program.
#
exe tennis : tennis/tennis.cpp
<lib>../build/libboost_thread
$(BOOST_THREADMON_LIB)
# requirements
: <include>$(BOOST_ROOT)
<threading>multi
: debug release ;

View File

@@ -1,23 +0,0 @@
# Copyright (C) 2001-2003
# William E. Kempf
#
# Distributed under the Boost Software License, Version 1.0. (See accompanying
# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
project boost/thread/example
: requirements <library>../build//boost_thread <threading>multi
;
exe monitor : monitor.cpp ;
exe starvephil : starvephil.cpp ;
exe tennis : tennis.cpp ;
exe condition : condition.cpp ;
exe mutex : mutex.cpp ;
exe once : once.cpp ;
exe recursive_mutex : recursive_mutex.cpp ;
exe thread : thread.cpp ;
exe thread_group : thread_group.cpp ;
exe tss : tss.cpp ;
exe xtime : xtime.cpp ;

View File

@@ -1,89 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
#include <vector>
#include <boost/utility.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
class bounded_buffer : private boost::noncopyable
{
public:
typedef boost::mutex::scoped_lock lock;
bounded_buffer(int n) : begin(0), end(0), buffered(0), circular_buf(n) { }
void send (int m) {
lock lk(monitor);
while (buffered == circular_buf.size())
buffer_not_full.wait(lk);
circular_buf[end] = m;
end = (end+1) % circular_buf.size();
++buffered;
buffer_not_empty.notify_one();
}
int receive() {
lock lk(monitor);
while (buffered == 0)
buffer_not_empty.wait(lk);
int i = circular_buf[begin];
begin = (begin+1) % circular_buf.size();
--buffered;
buffer_not_full.notify_one();
return i;
}
private:
int begin, end, buffered;
std::vector<int> circular_buf;
boost::condition buffer_not_full, buffer_not_empty;
boost::mutex monitor;
};
bounded_buffer buf(2);
boost::mutex io_mutex;
void sender() {
int n = 0;
while (n < 1000000) {
buf.send(n);
if(!(n%10000))
{
boost::mutex::scoped_lock io_lock(io_mutex);
std::cout << "sent: " << n << std::endl;
}
++n;
}
buf.send(-1);
}
void receiver() {
int n;
do {
n = buf.receive();
if(!(n%10000))
{
boost::mutex::scoped_lock io_lock(io_mutex);
std::cout << "received: " << n << std::endl;
}
} while (n != -1); // -1 indicates end of buffer
buf.send(-1);
}
int main(int, char*[])
{
boost::thread thrd1(&sender);
boost::thread thrd2(&receiver);
boost::thread thrd3(&receiver);
boost::thread thrd4(&receiver);
thrd1.join();
thrd2.join();
thrd3.join();
thrd4.join();
return 0;
}

View File

@@ -1,9 +1,3 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <vector>
#include <iostream>
#include <boost/thread/condition.hpp>
@@ -12,21 +6,21 @@
#include <boost/thread/thread.hpp>
namespace {
const int ITERS = 100;
boost::mutex io_mutex;
} // namespace
const int ITERS = 100;
boost::mutex io_mutex;
};
template <typename M>
class buffer_t
{
public:
typedef typename M::scoped_lock scoped_lock;
buffer_t(int n)
: p(0), c(0), full(0), buf(n)
{
}
void send(int m)
{
scoped_lock lk(mutex);
@@ -35,7 +29,7 @@ public:
buf[p] = m;
p = (p+1) % buf.size();
++full;
cond.notify_one();
cond.notify_all();
}
int receive()
{
@@ -45,40 +39,41 @@ public:
int i = buf[c];
c = (c+1) % buf.size();
--full;
cond.notify_one();
cond.notify_all();
return i;
}
static buffer_t& get_buffer()
{
static buffer_t buf(2);
return buf;
}
static void do_sender_thread()
{
for (int n = 0; n < ITERS; ++n)
{
get_buffer().send(n);
{
boost::mutex::scoped_lock lock(io_mutex);
std::cout << "sending: " << n << std::endl;
std::cout << "sent: " << n << std::endl;
}
get_buffer().send(n);
}
}
static void do_receiver_thread()
{
for (int x=0; x < (ITERS/2); ++x)
int n;
do
{
int n = get_buffer().receive();
n = get_buffer().receive();
{
boost::mutex::scoped_lock lock(io_mutex);
std::cout << "received: " << n << std::endl;
}
}
} while (n < ITERS - 1);
}
private:
M mutex;
boost::condition cond;
@@ -91,12 +86,10 @@ void do_test(M* dummy=0)
{
typedef buffer_t<M> buffer_type;
buffer_type::get_buffer();
boost::thread thrd1(&buffer_type::do_receiver_thread);
boost::thread thrd1(&buffer_type::do_sender_thread);
boost::thread thrd2(&buffer_type::do_receiver_thread);
boost::thread thrd3(&buffer_type::do_sender_thread);
thrd1.join();
thrd2.join();
thrd3.join();
}
void test_buffer()

View File

@@ -1,47 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <iostream>
boost::mutex io_mutex; // The iostreams are not guaranteed to be thread-safe!
class counter
{
public:
counter() : count(0) { }
int increment() {
boost::mutex::scoped_lock scoped_lock(mutex);
return ++count;
}
private:
boost::mutex mutex;
int count;
};
counter c;
void change_count()
{
int i = c.increment();
boost::mutex::scoped_lock scoped_lock(io_mutex);
std::cout << "count == " << i << std::endl;
}
int main(int, char*[])
{
const int num_threads = 4;
boost::thread_group thrds;
for (int i=0; i < num_threads; ++i)
thrds.create_thread(&change_count);
thrds.join_all();
return 0;
}

View File

@@ -1,31 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/thread/once.hpp>
#include <cassert>
int value=0;
boost::once_flag once = BOOST_ONCE_INIT;
void init()
{
++value;
}
void thread_proc()
{
boost::call_once(&init, once);
}
int main(int argc, char* argv[])
{
boost::thread_group threads;
for (int i=0; i<5; ++i)
threads.create_thread(&thread_proc);
threads.join_all();
assert(value == 1);
}

View File

@@ -1,49 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/thread.hpp>
#include <iostream>
class counter
{
public:
counter() : count(0) { }
int add(int val) {
boost::recursive_mutex::scoped_lock scoped_lock(mutex);
count += val;
return count;
}
int increment() {
boost::recursive_mutex::scoped_lock scoped_lock(mutex);
return add(1);
}
private:
boost::recursive_mutex mutex;
int count;
};
counter c;
void change_count()
{
std::cout << "count == " << c.increment() << std::endl;
}
int main(int, char*[])
{
const int num_threads=4;
boost::thread_group threads;
for (int i=0; i < num_threads; ++i)
threads.create_thread(&change_count);
threads.join_all();
return 0;
}

View File

@@ -1,185 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include <iostream>
#include <time.h>
namespace
{
boost::mutex iomx;
} // namespace
class canteen
{
public:
canteen() : m_chickens(0) { }
void get(int id)
{
boost::mutex::scoped_lock lock(m_mutex);
while (m_chickens == 0)
{
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << id <<
": wot, no chickens? I'll WAIT ..." << std::endl;
}
m_condition.wait(lock);
}
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << id <<
": those chickens look good ... one please ..." << std::endl;
}
m_chickens--;
}
void put(int value)
{
boost::mutex::scoped_lock lock(m_mutex);
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock()
<< ") Chef: ouch ... make room ... this dish is "
<< "very hot ..." << std::endl;
}
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 3;
boost::thread::sleep(xt);
m_chickens += value;
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() <<
") Chef: more chickens ... " << m_chickens <<
" now available ... NOTIFYING ..." << std::endl;
}
m_condition.notify_all();
}
private:
boost::mutex m_mutex;
boost::condition m_condition;
int m_chickens;
};
canteen g_canteen;
void chef()
{
const int chickens = 4;
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Chef: starting ..." << std::endl;
}
for (;;)
{
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Chef: cooking ..." << std::endl;
}
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 2;
boost::thread::sleep(xt);
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Chef: " << chickens
<< " chickens, ready-to-go ..." << std::endl;
}
g_canteen.put(chickens);
}
}
struct phil
{
phil(int id) : m_id(id) { }
void run() {
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << m_id
<< ": starting ..." << std::endl;
}
for (;;)
{
if (m_id > 0)
{
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 3;
boost::thread::sleep(xt);
}
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << m_id
<< ": gotta eat ..." << std::endl;
}
g_canteen.get(m_id);
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << m_id
<< ": mmm ... that's good ..." << std::endl;
}
}
}
static void do_thread(void* param) {
static_cast<phil*>(param)->run();
}
int m_id;
};
struct thread_adapt
{
thread_adapt(void (*func)(void*), void* param)
: _func(func), _param(param)
{
}
int operator()() const
{
_func(_param);
return 0;
}
void (*_func)(void*);
void* _param;
};
class thread_adapter
{
public:
thread_adapter(void (*func)(void*), void* param)
: _func(func), _param(param)
{
}
void operator()() const { _func(_param); }
private:
void (*_func)(void*);
void* _param;
};
int main(int argc, char* argv[])
{
boost::thread thrd_chef(&chef);
phil p[] = { phil(0), phil(1), phil(2), phil(3), phil(4) };
boost::thread thrd_phil0(thread_adapter(&phil::do_thread, &p[0]));
boost::thread thrd_phil1(thread_adapter(&phil::do_thread, &p[1]));
boost::thread thrd_phil2(thread_adapter(&phil::do_thread, &p[2]));
boost::thread thrd_phil3(thread_adapter(&phil::do_thread, &p[3]));
boost::thread thrd_phil4(thread_adapter(&phil::do_thread, &p[4]));
thrd_chef.join();
thrd_phil0.join();
thrd_phil1.join();
thrd_phil2.join();
thrd_phil3.join();
thrd_phil4.join();
return 0;
}

View File

@@ -0,0 +1,171 @@
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include <iostream>
#include <time.h>
namespace
{
boost::mutex iomx;
};
class canteen
{
public:
canteen() : m_chickens(0) { }
void get(int id)
{
boost::mutex::scoped_lock lock(m_mutex);
while (m_chickens == 0)
{
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << id <<
": wot, no chickens? I'll WAIT ..." << std::endl;
}
m_condition.wait(lock);
}
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << id <<
": those chickens look good ... one please ..." << std::endl;
}
m_chickens--;
}
void put(int value)
{
boost::mutex::scoped_lock lock(m_mutex);
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() <<
") Chef: ouch ... make room ... this dish is very hot ..." << std::endl;
}
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 3;
boost::thread::sleep(xt);
m_chickens += value;
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() <<
") Chef: more chickens ... " << m_chickens <<
" now available ... NOTIFYING ..." << std::endl;
}
m_condition.notify_all();
}
private:
boost::mutex m_mutex;
boost::condition m_condition;
int m_chickens;
};
canteen g_canteen;
void chef()
{
const int chickens = 4;
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Chef: starting ..." << std::endl;
}
for (;;)
{
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Chef: cooking ..." << std::endl;
}
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 2;
boost::thread::sleep(xt);
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Chef: " << chickens
<< " chickens, ready-to-go ..." << std::endl;
}
g_canteen.put(chickens);
}
}
struct phil
{
phil(int id) : m_id(id) { }
void run() {
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << m_id << ": starting ..." << std::endl;
}
for (;;)
{
if (m_id > 0)
{
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 3;
boost::thread::sleep(xt);
}
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << m_id
<< ": gotta eat ..." << std::endl;
}
g_canteen.get(m_id);
{
boost::mutex::scoped_lock lock(iomx);
std::cout << "(" << clock() << ") Phil" << m_id
<< ": mmm ... that's good ..." << std::endl;
}
}
}
static void do_thread(void* param) {
static_cast<phil*>(param)->run();
}
int m_id;
};
struct thread_adapt
{
thread_adapt(void (*func)(void*), void* param) : _func(func), _param(param) { }
int operator()() const
{
_func(_param);
return 0;
}
void (*_func)(void*);
void* _param;
};
class thread_adapter
{
public:
thread_adapter(void (*func)(void*), void* param) : _func(func), _param(param) { }
void operator()() const { _func(_param); }
private:
void (*_func)(void*);
void* _param;
};
int main(int argc, char* argv[])
{
boost::thread thrd_chef(&chef);
phil p[] = { phil(0), phil(1), phil(2), phil(3), phil(4) };
boost::thread thrd_phil0(thread_adapter(&phil::do_thread, &p[0]));
boost::thread thrd_phil1(thread_adapter(&phil::do_thread, &p[1]));
boost::thread thrd_phil2(thread_adapter(&phil::do_thread, &p[2]));
boost::thread thrd_phil3(thread_adapter(&phil::do_thread, &p[3]));
boost::thread thrd_phil4(thread_adapter(&phil::do_thread, &p[4]));
thrd_chef.join();
thrd_phil0.join();
thrd_phil1.join();
thrd_phil2.join();
thrd_phil3.join();
thrd_phil4.join();
return 0;
}

View File

@@ -1,9 +1,3 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
@@ -11,8 +5,8 @@
#include <iostream>
#if defined(BOOST_HAS_WINTHREADS)
# include <windows.h>
# include <process.h>
# include <windows.h>
# include <process.h>
#endif
enum game_state
@@ -55,10 +49,7 @@ void player(void* param)
{
cond.wait(lock);
if (state == other)
{
std::cout << "---" << player_name(active)
<< ": Spurious wakeup!" << std::endl;
}
std::cout << "---" << player_name(active) << ": Spurious wakeup!" << std::endl;
} while (state == other);
}
@@ -69,10 +60,7 @@ void player(void* param)
struct thread_adapt
{
thread_adapt(void (*func)(void*), void* param)
: _func(func), _param(param)
{
}
thread_adapt(void (*func)(void*), void* param) : _func(func), _param(param) { }
int operator()() const
{
_func(_param);
@@ -86,10 +74,7 @@ struct thread_adapt
class thread_adapter
{
public:
thread_adapter(void (*func)(void*), void* param)
: _func(func), _param(param)
{
}
thread_adapter(void (*func)(void*), void* param) : _func(func), _param(param) { }
void operator()() const { _func(_param); }
private:
void (*_func)(void*);
@@ -112,7 +97,7 @@ int main(int argc, char* argv[])
std::cout << "---Noise ON..." << std::endl;
}
for (int i = 0; i < 1000000000; ++i)
for (int i = 0; i < 1000000; ++i)
cond.notify_all();
{

View File

@@ -1,35 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include <iostream>
struct thread_alarm
{
thread_alarm(int secs) : m_secs(secs) { }
void operator()()
{
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += m_secs;
boost::thread::sleep(xt);
std::cout << "alarm sounded..." << std::endl;
}
int m_secs;
};
int main(int argc, char* argv[])
{
int secs = 5;
std::cout << "setting alarm for 5 seconds..." << std::endl;
thread_alarm alarm(secs);
boost::thread thrd(alarm);
thrd.join();
}

View File

@@ -1,25 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <iostream>
int count = 0;
boost::mutex mutex;
void increment_count()
{
boost::mutex::scoped_lock lock(mutex);
std::cout << "count = " << ++count << std::endl;
}
int main(int argc, char* argv[])
{
boost::thread_group threads;
for (int i = 0; i < 10; ++i)
threads.create_thread(&increment_count);
threads.join_all();
}

View File

@@ -1,36 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/thread/tss.hpp>
#include <cassert>
boost::thread_specific_ptr<int> value;
void increment()
{
int* p = value.get();
++*p;
}
void thread_proc()
{
value.reset(new int(0)); // initialize the thread's storage
for (int i=0; i<10; ++i)
{
increment();
int* p = value.get();
assert(*p == i+1);
}
}
int main(int argc, char* argv[])
{
boost::thread_group threads;
for (int i=0; i<5; ++i)
threads.create_thread(&thread_proc);
threads.join_all();
}

View File

@@ -1,16 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
int main(int argc, char* argv[])
{
boost::xtime xt;
boost::xtime_get(&xt, boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt); // Sleep for 1 second
}

View File

@@ -1,26 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
// (C) Copyright 2008-9 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See www.boost.org/libs/thread for documentation.
#if !defined(BOOST_THREAD_WEK01082003_HPP)
#define BOOST_THREAD_WEK01082003_HPP
#include <boost/thread/thread.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/thread/future.hpp>
#endif

View File

@@ -1,64 +0,0 @@
// Copyright (C) 2002-2003
// David Moore, William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_BARRIER_JDM030602_HPP
#define BOOST_BARRIER_JDM030602_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <string>
#include <stdexcept>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class barrier
{
public:
barrier(unsigned int count)
: m_threshold(count), m_count(count), m_generation(0)
{
if (count == 0)
boost::throw_exception(std::invalid_argument("count cannot be zero."));
}
bool wait()
{
boost::mutex::scoped_lock lock(m_mutex);
unsigned int gen = m_generation;
if (--m_count == 0)
{
m_generation++;
m_count = m_threshold;
m_cond.notify_all();
return true;
}
while (gen == m_generation)
m_cond.wait(lock);
return false;
}
private:
mutex m_mutex;
condition_variable m_cond;
unsigned int m_threshold;
unsigned int m_count;
unsigned int m_generation;
};
} // namespace boost
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,16 +1,159 @@
#ifndef BOOST_THREAD_CONDITION_HPP
#define BOOST_THREAD_CONDITION_HPP
// (C) Copyright 2007 Anthony Williams
// Copyright (C) 2001
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#include <boost/thread/condition_variable.hpp>
namespace boost
{
typedef condition_variable_any condition;
}
#ifndef BOOST_CONDITION_WEK070601_HPP
#define BOOST_CONDITION_WEK070601_HPP
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
# error Thread support is unavailable!
#endif
#include <boost/thread/exceptions.hpp>
#include <boost/utility.hpp>
#include <boost/thread/detail/lock.hpp>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#endif
namespace boost {
struct xtime;
class condition : private noncopyable
{
public:
condition();
~condition();
void notify_one();
void notify_all();
template <typename L>
void wait(L& lock)
{
if (!lock)
throw lock_error();
do_wait(lock.m_mutex);
}
template <typename L, typename Pr>
void wait(L& lock, Pr pred)
{
if (!lock)
throw lock_error();
while (!pred())
do_wait(lock.m_mutex);
}
template <typename L>
bool timed_wait(L& lock, const xtime& xt)
{
if (!lock)
throw lock_error();
return do_timed_wait(lock.m_mutex, xt);
}
template <typename L, typename Pr>
bool timed_wait(L& lock, const xtime& xt, Pr pred)
{
if (!lock)
throw lock_error();
while (!pred())
{
if (!do_timed_wait(lock.m_mutex, xt))
return false;
}
return true;
}
private:
template <typename M>
void do_wait(M& mutex)
{
#if defined(BOOST_HAS_WINTHREADS)
enter_wait();
#endif
typedef typename detail::thread::lock_ops<M> lock_ops;
lock_ops::lock_state state;
lock_ops::unlock(mutex, state);
#if defined(BOOST_HAS_PTHREADS)
do_wait(state.pmutex);
#elif defined(BOOST_HAS_WINTHREADS)
do_wait();
#endif
lock_ops::lock(mutex, state);
}
template <typename M>
bool do_timed_wait(M& mutex, const xtime& xt)
{
#if defined(BOOST_HAS_WINTHREADS)
enter_wait();
#endif
typedef typename detail::thread::lock_ops<M> lock_ops;
lock_ops::lock_state state;
lock_ops::unlock(mutex, state);
bool ret = false;
#if defined(BOOST_HAS_PTHREADS)
ret = do_timed_wait(xt, state.pmutex);
#elif defined(BOOST_HAS_WINTHREADS)
ret = do_timed_wait(xt);
#endif
lock_ops::lock(mutex, state);
return ret;
}
#if defined(BOOST_HAS_WINTHREADS)
void enter_wait();
void do_wait();
bool do_timed_wait(const xtime& xt);
#elif defined(BOOST_HAS_PTHREADS)
void do_wait(pthread_mutex_t* pmutex);
bool do_timed_wait(const xtime& xt, pthread_mutex_t* pmutex);
#endif
#if defined(BOOST_HAS_WINTHREADS)
void* m_gate;
void* m_queue;
void* m_mutex;
unsigned m_gone; // # threads that timed out and never made it to the m_queue
unsigned long m_blocked; // # threads m_blocked m_waiting for the condition
unsigned m_waiting; // # threads m_waiting no longer m_waiting for the condition but still
// m_waiting to be removed from the m_queue
#elif defined(BOOST_HAS_PTHREADS)
pthread_cond_t m_condition;
#endif
};
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs.
// 23 May 01 WEKEMPF Removed "duration" timed_waits, as they are too difficult
// to use with spurious wakeups.
#endif // BOOST_CONDITION_WEK070601_HPP

View File

@@ -1,21 +0,0 @@
#ifndef BOOST_THREAD_CONDITION_VARIABLE_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_HPP
// condition_variable.hpp
//
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/condition_variable.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/condition_variable.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#endif

View File

@@ -0,0 +1,100 @@
// Copyright (C) 2001
// William E. Kempf
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
// This file is used to configure Boost.Threads during development
// in order to decouple dependency on any Boost release. Once
// accepted into Boost these contents will be moved to <boost/config>
// or some other appropriate build configuration and all
// #include <boost/thread/config.hpp> statements will be changed
// accordingly.
#ifndef BOOST_THREAD_CONFIG_WEK070601_HPP
#define BOOST_THREAD_CONFIG_WEK070601_HPP
#include <boost/config.hpp>
#error "Included <boost/thread/config.hpp>"
/*// Define if threading support is enabled for the toolset.
#undef BOOST_HAS_THREADS
// Define if threading should be implemented in terms of Win32 threads.
#undef BOOST_HAS_WINTHREADS
// Define if threading should be implemented in terms of POSIX threads.
#undef BOOST_HAS_PTHREADS
// Define if BOOST_HAS_PTHREADS and pthread_delay_np() exists.
#undef BOOST_HAS_PTHREAD_DELAY_NP
// Define if BOOST_HAS_PTHREADS and not BOOST_HAS_PTHREAD_DELAY_NP
// but nanosleep can be used instead.
#undef BOOST_HAS_NANOSLEEP
// Define if BOOST_HAS_PTHREADS and pthread_yield() exists.
#undef BOOST_HAS_PTHREAD_YIELD
// Define if BOOST_HAS_PTHREADS and not BOOST_HAS_PTHREAD_YIELD and
// sched_yield() exists.
#undef BOOST_HAS_SCHED_YIELD
// Define if gettimeofday() exists.
#undef BOOST_HAS_GETTIMEOFDAY
// Define if not BOOST_HAS_GETTIMEOFDAY and clock_gettime() exists.
#undef BOOST_HAS_CLOCK_GETTIME
// Define if not BOOST_HAS_GETTIMEOFDAY and not BOOST_HAS_CLOCK_GETTIME and
// GetSystemTimeAsFileTime() can be called with an FTIME structure.
#undef BOOST_HAS_FTIME
// Define if pthread_mutexattr_settype and pthread_mutexattr_gettype exist.
#undef BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
// Here we'll set up known compiler options.
#if defined(BOOST_MSVC)
# if defined(_MT)
# define BOOST_HAS_THREADS
# endif
# define BOOST_HAS_WINTHREADS // comment out this to test pthreads-win32.
# if !defined(BOOST_HAS_WINTHREADS)
# define BOOST_HAS_PTHREADS
# define BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
# define PtW32NoCatchWarn
# pragma comment(lib, "pthreadVCE.lib")
# endif
# define BOOST_HAS_FTIME
// pdm: this is for linux - is there a better #define to #if on?
// wek: not sure how else to do this, but GNU CC on Win32 should probably
// use BOOST_HAS_WINTHREADS, and I expect there will be other
// platform specific variations for this compiler toolset. Need
// to decide how to handle this.
#elif defined( __GNUC__ )
# define BOOST_HAS_THREADS
# define BOOST_HAS_PTHREADS
# define BOOST_HAS_NANOSLEEP
# define BOOST_HAS_GETTIMEOFDAY
// pdm: From the pthread.h header, one of these macros
// must be defined for this stuff to exist.
// wek: This seems like a harmless enough method to determine these
// switches, but one should note that some implementations may not
// use these. Notably, pthreads-win32 doesn't define either
// __USE_UNIX98 or __USE_GNU.
# if defined( __USE_UNIX98 )
# define BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
# elif defined( __USE_GNU )
# define BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
# define BOOST_HAS_PTHREAD_YIELD
# endif
#endif*/
#endif // BOOST_THREAD_CONFIG_WEK070601_HPP

View File

@@ -1,100 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_THREAD_CONFIG_WEK01032003_HPP
#define BOOST_THREAD_CONFIG_WEK01032003_HPP
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#if BOOST_WORKAROUND(__BORLANDC__, < 0x600)
# pragma warn -8008 // Condition always true/false
# pragma warn -8080 // Identifier declared but never used
# pragma warn -8057 // Parameter never used
# pragma warn -8066 // Unreachable code
#endif
#include "platform.hpp"
// provided for backwards compatibility, since this
// macro was used for several releases by mistake.
#if defined(BOOST_THREAD_DYN_DLL)
# define BOOST_THREAD_DYN_LINK
#endif
// compatibility with the rest of Boost's auto-linking code:
#if defined(BOOST_THREAD_DYN_LINK) || defined(BOOST_ALL_DYN_LINK)
# undef BOOST_THREAD_USE_LIB
# define BOOST_THREAD_USE_DLL
#endif
#if defined(BOOST_THREAD_BUILD_DLL) //Build dll
#elif defined(BOOST_THREAD_BUILD_LIB) //Build lib
#elif defined(BOOST_THREAD_USE_DLL) //Use dll
#elif defined(BOOST_THREAD_USE_LIB) //Use lib
#else //Use default
# if defined(BOOST_THREAD_PLATFORM_WIN32)
# if defined(BOOST_MSVC) || defined(BOOST_INTEL_WIN)
//For compilers supporting auto-tss cleanup
//with Boost.Threads lib, use Boost.Threads lib
# define BOOST_THREAD_USE_LIB
# else
//For compilers not yet supporting auto-tss cleanup
//with Boost.Threads lib, use Boost.Threads dll
# define BOOST_THREAD_USE_DLL
# endif
# else
# define BOOST_THREAD_USE_LIB
# endif
#endif
#if defined(BOOST_HAS_DECLSPEC)
# if defined(BOOST_THREAD_BUILD_DLL) //Build dll
# define BOOST_THREAD_DECL __declspec(dllexport)
# elif defined(BOOST_THREAD_USE_DLL) //Use dll
# define BOOST_THREAD_DECL __declspec(dllimport)
# else
# define BOOST_THREAD_DECL
# endif
#else
# define BOOST_THREAD_DECL
#endif // BOOST_HAS_DECLSPEC
//
// Automatically link to the correct build variant where possible.
//
#if !defined(BOOST_ALL_NO_LIB) && !defined(BOOST_THREAD_NO_LIB) && !defined(BOOST_THREAD_BUILD_DLL) && !defined(BOOST_THREAD_BUILD_LIB)
//
// Tell the autolink to link dynamically, this will get undef'ed by auto_link.hpp
// once it's done with it:
//
#if defined(BOOST_THREAD_USE_DLL)
# define BOOST_DYN_LINK
#endif
//
// Set the name of our library, this will get undef'ed by auto_link.hpp
// once it's done with it:
//
#if defined(BOOST_THREAD_LIB_NAME)
# define BOOST_LIB_NAME BOOST_THREAD_LIB_NAME
#else
# define BOOST_LIB_NAME boost_thread
#endif
//
// If we're importing code from a dll, then tell auto_link.hpp about it:
//
// And include the header that does the work:
//
#include <boost/config/auto_link.hpp>
#endif // auto-linking disabled
#endif // BOOST_THREAD_CONFIG_WEK1032003_HPP
// Change Log:
// 22 Jan 05 Roland Schwarz (speedsnail)
// Usage of BOOST_HAS_DECLSPEC macro.
// Default again is static lib usage.
// BOOST_DYN_LINK only defined when autolink included.

View File

@@ -1,39 +0,0 @@
// Copyright (C) 2001-2003
// Mac Murrett
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org for most recent version including documentation.
#ifndef BOOST_FORCE_CAST_MJM012402_HPP
#define BOOST_FORCE_CAST_MJM012402_HPP
#include <boost/thread/detail/config.hpp>
namespace boost {
namespace detail {
namespace thread {
// force_cast will convert anything to anything.
// general case
template<class Return_Type, class Argument_Type>
inline Return_Type &force_cast(Argument_Type &rSrc)
{
return(*reinterpret_cast<Return_Type *>(&rSrc));
}
// specialization for const
template<class Return_Type, class Argument_Type>
inline const Return_Type &force_cast(const Argument_Type &rSrc)
{
return(*reinterpret_cast<const Return_Type *>(&rSrc));
}
} // namespace thread
} // namespace detail
} // namespace boost
#endif // BOOST_FORCE_CAST_MJM012402_HPP

View File

@@ -0,0 +1,207 @@
// Copyright (C) 2001
// William E. Kempf
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#ifndef BOOST_XLOCK_WEK070601_HPP
#define BOOST_XLOCK_WEK070601_HPP
#include <boost/utility.hpp>
#include <boost/thread/exceptions.hpp>
namespace boost {
class condition;
struct xtime;
namespace detail { namespace thread {
template <typename Mutex>
class lock_ops : private noncopyable
{
private:
lock_ops() { }
public:
typedef typename Mutex::cv_state lock_state;
static void lock(Mutex& m)
{
m.do_lock();
}
static bool trylock(Mutex& m)
{
return m.do_trylock();
}
static bool timedlock(Mutex& m, const xtime& xt)
{
return m.do_timedlock(xt);
}
static void unlock(Mutex& m)
{
m.do_unlock();
}
static void lock(Mutex& m, lock_state& state)
{
m.do_lock(state);
}
static void unlock(Mutex& m, lock_state& state)
{
m.do_unlock(state);
}
};
template <typename Mutex>
class scoped_lock : private noncopyable
{
public:
typedef Mutex mutex_type;
explicit scoped_lock(Mutex& mx, bool initially_locked=true)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<Mutex>::lock(m_mutex);
m_locked = true;
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<Mutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
Mutex& m_mutex;
bool m_locked;
};
template <typename TryMutex>
class scoped_try_lock : private noncopyable
{
public:
typedef TryMutex mutex_type;
explicit scoped_try_lock(TryMutex& mx)
: m_mutex(mx), m_locked(false)
{
try_lock();
}
scoped_try_lock(TryMutex& mx, bool initially_locked)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_try_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<TryMutex>::lock(m_mutex);
m_locked = true;
}
bool try_lock()
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TryMutex>::trylock(m_mutex));
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<TryMutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
TryMutex& m_mutex;
bool m_locked;
};
template <typename TimedMutex>
class scoped_timed_lock : private noncopyable
{
public:
typedef TimedMutex mutex_type;
scoped_timed_lock(TimedMutex& mx, const xtime& xt)
: m_mutex(mx), m_locked(false)
{
timed_lock(xt);
}
scoped_timed_lock(TimedMutex& mx, bool initially_locked)
: m_mutex(mx), m_locked(false)
{
if (initially_locked) lock();
}
~scoped_timed_lock()
{
if (m_locked) unlock();
}
void lock()
{
if (m_locked) throw lock_error();
lock_ops<TimedMutex>::lock(m_mutex);
m_locked = true;
}
bool timed_lock(const xtime& xt)
{
if (m_locked) throw lock_error();
return (m_locked = lock_ops<TimedMutex>::timedlock(m_mutex, xt));
}
void unlock()
{
if (!m_locked) throw lock_error();
lock_ops<TimedMutex>::unlock(m_mutex);
m_locked = false;
}
bool locked() const { return m_locked; }
operator const void*() const { return m_locked ? this : 0; }
private:
friend class boost::condition;
TimedMutex& m_mutex;
bool m_locked;
};
} // namespace thread
} // namespace detail
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs.
// 30 Jul 01 WEKEMPF Moved lock types into boost::detail::thread. Renamed some types.
// Added locked() methods.
#endif // BOOST_XLOCK_WEK070601_HPP

View File

@@ -1,60 +0,0 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#ifndef BOOST_THREAD_MOVE_HPP
#define BOOST_THREAD_MOVE_HPP
#ifndef BOOST_NO_SFINAE
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
template<typename T>
struct thread_move_t
{
T& t;
explicit thread_move_t(T& t_):
t(t_)
{}
T& operator*() const
{
return t;
}
T* operator->() const
{
return &t;
}
private:
void operator=(thread_move_t&);
};
}
#ifndef BOOST_NO_SFINAE
template<typename T>
typename enable_if<boost::is_convertible<T&,detail::thread_move_t<T> >, detail::thread_move_t<T> >::type move(T& t)
{
return detail::thread_move_t<T>(t);
}
#endif
template<typename T>
detail::thread_move_t<T> move(detail::thread_move_t<T> t)
{
return t;
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,71 +0,0 @@
// Copyright 2006 Roland Schwarz.
// (C) Copyright 2007 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// This work is a reimplementation along the design and ideas
// of William E. Kempf.
#ifndef BOOST_THREAD_RS06040501_HPP
#define BOOST_THREAD_RS06040501_HPP
// fetch compiler and platform configuration
#include <boost/config.hpp>
// insist on threading support being available:
#include <boost/config/requires_threads.hpp>
// choose platform
#if defined(linux) || defined(__linux) || defined(__linux__)
# define BOOST_THREAD_LINUX
#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
# define BOOST_THREAD_BSD
#elif defined(sun) || defined(__sun)
# define BOOST_THREAD_SOLARIS
#elif defined(__sgi)
# define BOOST_THREAD_IRIX
#elif defined(__hpux)
# define BOOST_THREAD_HPUX
#elif defined(__CYGWIN__)
# define BOOST_THREAD_CYGWIN
#elif (defined(_WIN32) || defined(__WIN32__) || defined(WIN32)) && !defined(BOOST_DISABLE_WIN32)
# define BOOST_THREAD_WIN32
#elif defined(__BEOS__)
# define BOOST_THREAD_BEOS
#elif defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)
# define BOOST_THREAD_MACOS
#elif defined(__IBMCPP__) || defined(_AIX)
# define BOOST_THREAD_AIX
#elif defined(__amigaos__)
# define BOOST_THREAD_AMIGAOS
#elif defined(__QNXNTO__)
# define BOOST_THREAD_QNXNTO
#elif defined(unix) || defined(__unix) || defined(_XOPEN_SOURCE) || defined(_POSIX_SOURCE)
# if defined(BOOST_HAS_PTHREADS) && !defined(BOOST_THREAD_POSIX)
# define BOOST_THREAD_POSIX
# endif
#endif
// For every supported platform add a new entry into the dispatch table below.
// BOOST_THREAD_POSIX is tested first, so on platforms where posix and native
// threading is available, the user may choose, by defining BOOST_THREAD_POSIX
// in her source. If a platform is known to support pthreads and no native
// port of boost_thread is available just specify "pthread" in the
// dispatcher table. If there is no entry for a platform but pthreads is
// available on the platform, pthread is choosen as default. If nothing is
// available the preprocessor will fail with a diagnostic message.
#if defined(BOOST_THREAD_POSIX)
# define BOOST_THREAD_PLATFORM_PTHREAD
#else
# if defined(BOOST_THREAD_WIN32)
# define BOOST_THREAD_PLATFORM_WIN32
# elif defined(BOOST_HAS_PTHREADS)
# define BOOST_THREAD_PLATFORM_PTHREAD
# else
# error "Sorry, no boost threads are available for this platform."
# endif
#endif
#endif // BOOST_THREAD_RS06040501_HPP

View File

@@ -1,59 +0,0 @@
// Copyright (C) 2001-2003
// Mac Murrett
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org for most recent version including documentation.
#ifndef BOOST_SINGLETON_MJM012402_HPP
#define BOOST_SINGLETON_MJM012402_HPP
#include <boost/thread/detail/config.hpp>
namespace boost {
namespace detail {
namespace thread {
// class singleton has the same goal as all singletons: create one instance of
// a class on demand, then dish it out as requested.
template <class T>
class singleton : private T
{
private:
singleton();
~singleton();
public:
static T &instance();
};
template <class T>
inline singleton<T>::singleton()
{
/* no-op */
}
template <class T>
inline singleton<T>::~singleton()
{
/* no-op */
}
template <class T>
/*static*/ T &singleton<T>::instance()
{
// function-local static to force this to work correctly at static
// initialization time.
static singleton<T> s_oT;
return(s_oT);
}
} // namespace thread
} // namespace detail
} // namespace boost
#endif // BOOST_SINGLETON_MJM012402_HPP

View File

@@ -1,532 +0,0 @@
#ifndef BOOST_THREAD_THREAD_COMMON_HPP
#define BOOST_THREAD_THREAD_COMMON_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-10 Anthony Williams
#include <boost/thread/exceptions.hpp>
#ifndef BOOST_NO_IOSTREAM
#include <ostream>
#endif
#include <boost/thread/detail/move.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/thread/detail/thread_heap_alloc.hpp>
#include <boost/utility.hpp>
#include <boost/assert.hpp>
#include <list>
#include <algorithm>
#include <boost/ref.hpp>
#include <boost/cstdint.hpp>
#include <boost/bind.hpp>
#include <stdlib.h>
#include <memory>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4251)
#endif
namespace boost
{
namespace detail
{
template<typename F>
class thread_data:
public detail::thread_data_base
{
public:
#ifndef BOOST_NO_RVALUE_REFERENCES
thread_data(F&& f_):
f(static_cast<F&&>(f_))
{}
thread_data(F& f_):
f(f_)
{}
#else
thread_data(F f_):
f(f_)
{}
thread_data(detail::thread_move_t<F> f_):
f(f_)
{}
#endif
void run()
{
f();
}
private:
F f;
void operator=(thread_data&);
thread_data(thread_data&);
};
template<typename F>
class thread_data<boost::reference_wrapper<F> >:
public detail::thread_data_base
{
private:
F& f;
void operator=(thread_data&);
thread_data(thread_data&);
public:
thread_data(boost::reference_wrapper<F> f_):
f(f_)
{}
void run()
{
f();
}
};
template<typename F>
class thread_data<const boost::reference_wrapper<F> >:
public detail::thread_data_base
{
private:
F& f;
void operator=(thread_data&);
thread_data(thread_data&);
public:
thread_data(const boost::reference_wrapper<F> f_):
f(f_)
{}
void run()
{
f();
}
};
}
class BOOST_THREAD_DECL thread
{
private:
thread(thread&);
thread& operator=(thread&);
void release_handle();
detail::thread_data_ptr thread_info;
void start_thread();
explicit thread(detail::thread_data_ptr data);
detail::thread_data_ptr get_thread_info BOOST_PREVENT_MACRO_SUBSTITUTION () const;
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename F>
static inline detail::thread_data_ptr make_thread_info(F&& f)
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<typename boost::remove_reference<F>::type> >(static_cast<F&&>(f)));
}
static inline detail::thread_data_ptr make_thread_info(void (*f)())
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<void(*)()> >(static_cast<void(*&&)()>(f)));
}
#else
template<typename F>
static inline detail::thread_data_ptr make_thread_info(F f)
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<F> >(f));
}
template<typename F>
static inline detail::thread_data_ptr make_thread_info(boost::detail::thread_move_t<F> f)
{
return detail::thread_data_ptr(detail::heap_new<detail::thread_data<F> >(f));
}
#endif
struct dummy;
public:
#if BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100)
thread(const volatile thread&);
#endif
thread();
~thread();
#ifndef BOOST_NO_RVALUE_REFERENCES
#ifdef BOOST_MSVC
template <class F>
explicit thread(F f,typename disable_if<boost::is_convertible<F&,detail::thread_move_t<F> >, dummy* >::type=0):
thread_info(make_thread_info(static_cast<F&&>(f)))
{
start_thread();
}
#else
template <class F>
thread(F&& f):
thread_info(make_thread_info(static_cast<F&&>(f)))
{
start_thread();
}
#endif
thread(thread&& other)
{
thread_info.swap(other.thread_info);
}
thread& operator=(thread&& other)
{
thread_info=other.thread_info;
other.thread_info.reset();
return *this;
}
thread&& move()
{
return static_cast<thread&&>(*this);
}
#else
#ifdef BOOST_NO_SFINAE
template <class F>
explicit thread(F f):
thread_info(make_thread_info(f))
{
start_thread();
}
#else
template <class F>
explicit thread(F f,typename disable_if<boost::is_convertible<F&,detail::thread_move_t<F> >, dummy* >::type=0):
thread_info(make_thread_info(f))
{
start_thread();
}
#endif
template <class F>
explicit thread(detail::thread_move_t<F> f):
thread_info(make_thread_info(f))
{
start_thread();
}
thread(detail::thread_move_t<thread> x)
{
thread_info=x->thread_info;
x->thread_info.reset();
}
#if BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100)
thread& operator=(thread x)
{
swap(x);
return *this;
}
#else
thread& operator=(detail::thread_move_t<thread> x)
{
thread new_thread(x);
swap(new_thread);
return *this;
}
#endif
operator detail::thread_move_t<thread>()
{
return move();
}
detail::thread_move_t<thread> move()
{
detail::thread_move_t<thread> x(*this);
return x;
}
#endif
template <class F,class A1>
thread(F f,A1 a1):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1)))
{
start_thread();
}
template <class F,class A1,class A2>
thread(F f,A1 a1,A2 a2):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2)))
{
start_thread();
}
template <class F,class A1,class A2,class A3>
thread(F f,A1 a1,A2 a2,A3 a3):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6,class A7>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6,A7 a7):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6,a7)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6,class A7,class A8>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6,A7 a7,A8 a8):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6,a7,a8)))
{
start_thread();
}
template <class F,class A1,class A2,class A3,class A4,class A5,class A6,class A7,class A8,class A9>
thread(F f,A1 a1,A2 a2,A3 a3,A4 a4,A5 a5,A6 a6,A7 a7,A8 a8,A9 a9):
thread_info(make_thread_info(boost::bind(boost::type<void>(),f,a1,a2,a3,a4,a5,a6,a7,a8,a9)))
{
start_thread();
}
void swap(thread& x)
{
thread_info.swap(x.thread_info);
}
class id;
id get_id() const;
bool joinable() const;
void join();
bool timed_join(const system_time& wait_until);
template<typename TimeDuration>
inline bool timed_join(TimeDuration const& rel_time)
{
return timed_join(get_system_time()+rel_time);
}
void detach();
static unsigned hardware_concurrency();
typedef detail::thread_data_base::native_handle_type native_handle_type;
native_handle_type native_handle();
// backwards compatibility
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;
static inline void yield()
{
this_thread::yield();
}
static inline void sleep(const system_time& xt)
{
this_thread::sleep(xt);
}
// extensions
void interrupt();
bool interruption_requested() const;
};
inline void swap(thread& lhs,thread& rhs)
{
return lhs.swap(rhs);
}
#ifndef BOOST_NO_RVALUE_REFERENCES
inline thread&& move(thread& t)
{
return static_cast<thread&&>(t);
}
inline thread&& move(thread&& t)
{
return static_cast<thread&&>(t);
}
#else
inline detail::thread_move_t<thread> move(detail::thread_move_t<thread> t)
{
return t;
}
#endif
namespace this_thread
{
thread::id BOOST_THREAD_DECL get_id();
void BOOST_THREAD_DECL interruption_point();
bool BOOST_THREAD_DECL interruption_enabled();
bool BOOST_THREAD_DECL interruption_requested();
inline void sleep(xtime const& abs_time)
{
sleep(system_time(abs_time));
}
}
class thread::id
{
private:
detail::thread_data_ptr thread_data;
id(detail::thread_data_ptr thread_data_):
thread_data(thread_data_)
{}
friend class thread;
friend id BOOST_THREAD_DECL this_thread::get_id();
public:
id():
thread_data()
{}
bool operator==(const id& y) const
{
return thread_data==y.thread_data;
}
bool operator!=(const id& y) const
{
return thread_data!=y.thread_data;
}
bool operator<(const id& y) const
{
return thread_data<y.thread_data;
}
bool operator>(const id& y) const
{
return y.thread_data<thread_data;
}
bool operator<=(const id& y) const
{
return !(y.thread_data<thread_data);
}
bool operator>=(const id& y) const
{
return !(thread_data<y.thread_data);
}
#ifndef BOOST_NO_IOSTREAM
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x)
{
if(x.thread_data)
{
return os<<x.thread_data;
}
else
{
return os<<"{Not-any-thread}";
}
}
#else
template<class charT, class traits>
std::basic_ostream<charT, traits>&
print(std::basic_ostream<charT, traits>& os)
{
if(thread_data)
{
return os<<thread_data;
}
else
{
return os<<"{Not-any-thread}";
}
}
#endif
#endif
};
#if !defined(BOOST_NO_IOSTREAM) && defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template<class charT, class traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const thread::id& x)
{
return x.print(os);
}
#endif
inline bool thread::operator==(const thread& other) const
{
return get_id()==other.get_id();
}
inline bool thread::operator!=(const thread& other) const
{
return get_id()!=other.get_id();
}
namespace detail
{
struct thread_exit_function_base
{
virtual ~thread_exit_function_base()
{}
virtual void operator()()=0;
};
template<typename F>
struct thread_exit_function:
thread_exit_function_base
{
F f;
thread_exit_function(F f_):
f(f_)
{}
void operator()()
{
f();
}
};
void BOOST_THREAD_DECL add_thread_exit_function(thread_exit_function_base*);
}
namespace this_thread
{
template<typename F>
void at_thread_exit(F f)
{
detail::thread_exit_function_base* const thread_exit_func=detail::heap_new<detail::thread_exit_function<F> >(f);
detail::add_thread_exit_function(thread_exit_func);
}
}
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,108 +0,0 @@
#ifndef BOOST_THREAD_DETAIL_THREAD_GROUP_HPP
#define BOOST_THREAD_DETAIL_THREAD_GROUP_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-9 Anthony Williams
#include <list>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4251)
#endif
namespace boost
{
class thread_group
{
private:
thread_group(thread_group const&);
thread_group& operator=(thread_group const&);
public:
thread_group() {}
~thread_group()
{
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
delete *it;
}
}
template<typename F>
thread* create_thread(F threadfunc)
{
boost::lock_guard<shared_mutex> guard(m);
std::auto_ptr<thread> new_thread(new thread(threadfunc));
threads.push_back(new_thread.get());
return new_thread.release();
}
void add_thread(thread* thrd)
{
if(thrd)
{
boost::lock_guard<shared_mutex> guard(m);
threads.push_back(thrd);
}
}
void remove_thread(thread* thrd)
{
boost::lock_guard<shared_mutex> guard(m);
std::list<thread*>::iterator const it=std::find(threads.begin(),threads.end(),thrd);
if(it!=threads.end())
{
threads.erase(it);
}
}
void join_all()
{
boost::shared_lock<shared_mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->join();
}
}
void interrupt_all()
{
boost::shared_lock<shared_mutex> guard(m);
for(std::list<thread*>::iterator it=threads.begin(),end=threads.end();
it!=end;
++it)
{
(*it)->interrupt();
}
}
size_t size() const
{
boost::shared_lock<shared_mutex> guard(m);
return threads.size();
}
private:
std::list<thread*> threads;
mutable shared_mutex m;
};
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,23 +0,0 @@
#ifndef BOOST_THREAD_THREAD_HEAP_ALLOC_HPP
#define BOOST_THREAD_THREAD_HEAP_ALLOC_HPP
// thread_heap_alloc.hpp
//
// (C) Copyright 2008 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/thread_heap_alloc.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/thread_heap_alloc.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#endif

View File

@@ -1,35 +0,0 @@
#ifndef BOOST_THREAD_DETAIL_THREAD_INTERRUPTION_HPP
#define BOOST_THREAD_DETAIL_THREAD_INTERRUPTION_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-9 Anthony Williams
namespace boost
{
namespace this_thread
{
class BOOST_THREAD_DECL disable_interruption
{
disable_interruption(const disable_interruption&);
disable_interruption& operator=(const disable_interruption&);
bool interruption_was_enabled;
friend class restore_interruption;
public:
disable_interruption();
~disable_interruption();
};
class BOOST_THREAD_DECL restore_interruption
{
restore_interruption(const restore_interruption&);
restore_interruption& operator=(const restore_interruption&);
public:
explicit restore_interruption(disable_interruption& d);
~restore_interruption();
};
}
}
#endif

View File

@@ -1,65 +0,0 @@
// (C) Copyright Michael Glassford 2004.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_TLS_HOOKS_HPP)
#define BOOST_TLS_HOOKS_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/config/abi_prefix.hpp>
#if defined(BOOST_HAS_WINTHREADS)
namespace boost
{
BOOST_THREAD_DECL void __cdecl on_process_enter(void);
//Function to be called when the exe or dll
//that uses Boost.Threads first starts
//or is first loaded.
//Should be called only before the first call to
//on_thread_enter().
//Called automatically by Boost.Threads when
//a method for doing so has been discovered.
//May be omitted; may be called multiple times.
BOOST_THREAD_DECL void __cdecl on_process_exit(void);
//Function to be called when the exe or dll
//that uses Boost.Threads first starts
//or is first loaded.
//Should be called only after the last call to
//on_exit_thread().
//Called automatically by Boost.Threads when
//a method for doing so has been discovered.
//Must not be omitted; may be called multiple times.
BOOST_THREAD_DECL void __cdecl on_thread_enter(void);
//Function to be called just after a thread starts
//in an exe or dll that uses Boost.Threads.
//Must be called in the context of the thread
//that is starting.
//Called automatically by Boost.Threads when
//a method for doing so has been discovered.
//May be omitted; may be called multiple times.
BOOST_THREAD_DECL void __cdecl on_thread_exit(void);
//Function to be called just be fore a thread ends
//in an exe or dll that uses Boost.Threads.
//Must be called in the context of the thread
//that is ending.
//Called automatically by Boost.Threads when
//a method for doing so has been discovered.
//Must not be omitted; may be called multiple times.
void tss_cleanup_implemented();
//Dummy function used both to detect whether tss cleanup
//cleanup has been implemented and to force
//it to be linked into the Boost.Threads library.
}
#endif //defined(BOOST_HAS_WINTHREADS)
#include <boost/config/abi_suffix.hpp>
#endif //!defined(BOOST_TLS_HOOKS_HPP)

View File

@@ -1,182 +1,39 @@
// Copyright (C) 2001-2003
// Copyright (C) 2001
// William E. Kempf
// Copyright (C) 2007-9 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#ifndef BOOST_THREAD_EXCEPTIONS_PDM070801_H
#define BOOST_THREAD_EXCEPTIONS_PDM070801_H
#include <boost/thread/detail/config.hpp>
// pdm: Sorry, but this class is used all over the place & I end up
// with recursive headers if I don't separate it
// wek: Not sure why recursive headers would cause compilation problems
// given the include guards, but regardless it makes sense to
// seperate this out any way.
#include <string>
#include <stdexcept>
#include <boost/config/abi_prefix.hpp>
namespace boost {
namespace boost
class lock_error : public std::runtime_error
{
public:
lock_error();
};
class thread_interrupted
{};
class thread_exception:
public std::exception
{
protected:
thread_exception():
m_sys_err(0)
{}
thread_exception(int sys_err_code):
m_sys_err(sys_err_code)
{}
public:
~thread_exception() throw()
{}
int native_error() const
{
return m_sys_err;
}
private:
int m_sys_err;
};
class condition_error:
public std::exception
{
public:
const char* what() const throw()
{
return "Condition error";
}
};
class lock_error:
public thread_exception
{
public:
lock_error()
{}
lock_error(int sys_err_code):
thread_exception(sys_err_code)
{}
~lock_error() throw()
{}
virtual const char* what() const throw()
{
return "boost::lock_error";
}
};
class thread_resource_error:
public thread_exception
{
public:
thread_resource_error()
{}
thread_resource_error(int sys_err_code):
thread_exception(sys_err_code)
{}
~thread_resource_error() throw()
{}
virtual const char* what() const throw()
{
return "boost::thread_resource_error";
}
};
class unsupported_thread_option:
public thread_exception
{
public:
unsupported_thread_option()
{}
unsupported_thread_option(int sys_err_code):
thread_exception(sys_err_code)
{}
~unsupported_thread_option() throw()
{}
virtual const char* what() const throw()
{
return "boost::unsupported_thread_option";
}
};
class invalid_thread_argument:
public thread_exception
{
public:
invalid_thread_argument()
{}
invalid_thread_argument(int sys_err_code):
thread_exception(sys_err_code)
{}
~invalid_thread_argument() throw()
{}
virtual const char* what() const throw()
{
return "boost::invalid_thread_argument";
}
};
class thread_permission_error:
public thread_exception
{
public:
thread_permission_error()
{}
thread_permission_error(int sys_err_code):
thread_exception(sys_err_code)
{}
~thread_permission_error() throw()
{}
virtual const char* what() const throw()
{
return "boost::thread_permission_error";
}
};
class thread_resource_error : public std::runtime_error
{
public:
thread_resource_error();
};
} // namespace boost
#include <boost/config/abi_suffix.hpp>
#endif
#endif // BOOST_THREAD_CONFIG_PDM070801_H

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,21 +1,139 @@
#ifndef BOOST_THREAD_MUTEX_HPP
#define BOOST_THREAD_MUTEX_HPP
// mutex.hpp
// Copyright (C) 2001
// William E. Kempf
//
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/mutex.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/mutex.hpp>
#else
#error "Boost threads unavailable on this platform"
#ifndef BOOST_MUTEX_WEK070601_HPP
#define BOOST_MUTEX_WEK070601_HPP
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
# error Thread support is unavailable!
#endif
#include <boost/utility.hpp>
#include <boost/thread/detail/lock.hpp>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#endif
namespace boost {
struct xtime;
class mutex : private noncopyable
{
public:
friend class detail::thread::lock_ops<mutex>;
typedef detail::thread::scoped_lock<mutex> scoped_lock;
mutex();
~mutex();
private:
#if defined(BOOST_HAS_WINTHREADS)
typedef void* cv_state;
#elif defined(BOOST_HAS_PTHREADS)
struct cv_state
{
pthread_mutex_t* pmutex;
};
#endif
void do_lock();
void do_unlock();
void do_lock(cv_state& state);
void do_unlock(cv_state& state);
#if defined(BOOST_HAS_WINTHREADS)
void* m_mutex;
#elif defined(BOOST_HAS_PTHREADS)
pthread_mutex_t m_mutex;
#endif
};
class try_mutex : private noncopyable
{
public:
friend class detail::thread::lock_ops<try_mutex>;
typedef detail::thread::scoped_lock<try_mutex> scoped_lock;
typedef detail::thread::scoped_try_lock<try_mutex> scoped_try_lock;
try_mutex();
~try_mutex();
private:
#if defined(BOOST_HAS_WINTHREADS)
typedef void* cv_state;
#elif defined(BOOST_HAS_PTHREADS)
struct cv_state
{
pthread_mutex_t* pmutex;
};
#endif
void do_lock();
bool do_trylock();
void do_unlock();
void do_lock(cv_state& state);
void do_unlock(cv_state& state);
#if defined(BOOST_HAS_WINTHREADS)
void* m_mutex;
#elif defined(BOOST_HAS_PTHREADS)
pthread_mutex_t m_mutex;
#endif
};
class timed_mutex : private noncopyable
{
public:
friend class detail::thread::lock_ops<timed_mutex>;
typedef detail::thread::scoped_lock<timed_mutex> scoped_lock;
typedef detail::thread::scoped_try_lock<timed_mutex> scoped_try_lock;
typedef detail::thread::scoped_timed_lock<timed_mutex> scoped_timed_lock;
timed_mutex();
~timed_mutex();
private:
#if defined(BOOST_HAS_WINTHREADS)
typedef void* cv_state;
#elif defined(BOOST_HAS_PTHREADS)
struct cv_state
{
pthread_mutex_t* pmutex;
};
#endif
void do_lock();
bool do_trylock();
bool do_timedlock(const xtime& xt);
void do_unlock();
void do_lock(cv_state& state);
void do_unlock(cv_state& state);
#if defined(BOOST_HAS_WINTHREADS)
void* m_mutex;
#elif defined(BOOST_HAS_PTHREADS)
pthread_mutex_t m_mutex;
pthread_cond_t m_condition;
bool m_locked;
#endif
};
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 22 May 01 WEKEMPF Modified to use xtime for time outs. Factored out
// to three classes, mutex, try_mutex and timed_mutex.
#endif // BOOST_MUTEX_WEK070601_HPP

View File

@@ -1,33 +1,45 @@
#ifndef BOOST_THREAD_ONCE_HPP
#define BOOST_THREAD_ONCE_HPP
// once.hpp
// Copyright (C) 2001
// William E. Kempf
//
// (C) Copyright 2006-7 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/once.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/once.hpp>
#else
#error "Boost threads unavailable on this platform"
#ifndef BOOST_ONCE_WEK080101_HPP
#define BOOST_ONCE_WEK080101_HPP
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
# error Thread support is unavailable!
#endif
#include <boost/config/abi_prefix.hpp>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#endif
namespace boost
{
inline void call_once(void (*func)(),once_flag& flag)
{
call_once(flag,func);
}
}
namespace boost {
#include <boost/config/abi_suffix.hpp>
#if defined(BOOST_HAS_PTHREADS)
typedef pthread_once_t once_flag;
#define BOOST_ONCE_INIT PTHREAD_ONCE_INIT
#elif defined(BOOST_HAS_WINTHREADS)
typedef bool once_flag;
#define BOOST_ONCE_INIT false
#endif
void call_once(void (*func)(), once_flag& flag);
} // namespace boost
// Change Log:
// 1 Aug 01 WEKEMPF Initial version.
#endif // BOOST_ONCE_WEK080101_HPP

View File

@@ -1,176 +0,0 @@
#ifndef BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-10 Anthony Williams
#include "timespec.hpp"
#include "pthread_mutex_scoped_lock.hpp"
#include "thread_data.hpp"
#include "condition_variable_fwd.hpp"
#include <boost/config/abi_prefix.hpp>
namespace boost
{
inline void condition_variable::wait(unique_lock<mutex>& m)
{
detail::interruption_checker check_for_interruption(&cond);
BOOST_VERIFY(!pthread_cond_wait(&cond,m.mutex()->native_handle()));
}
inline bool condition_variable::timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until)
{
detail::interruption_checker check_for_interruption(&cond);
struct timespec const timeout=detail::get_timespec(wait_until);
int const cond_res=pthread_cond_timedwait(&cond,m.mutex()->native_handle(),&timeout);
if(cond_res==ETIMEDOUT)
{
return false;
}
BOOST_ASSERT(!cond_res);
return true;
}
inline void condition_variable::notify_one()
{
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
inline void condition_variable::notify_all()
{
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
}
class condition_variable_any
{
pthread_mutex_t internal_mutex;
pthread_cond_t cond;
condition_variable_any(condition_variable_any&);
condition_variable_any& operator=(condition_variable_any&);
public:
condition_variable_any()
{
int const res=pthread_mutex_init(&internal_mutex,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
boost::throw_exception(thread_resource_error());
}
}
~condition_variable_any()
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
BOOST_VERIFY(!pthread_cond_destroy(&cond));
}
template<typename lock_type>
void wait(lock_type& m)
{
int res=0;
{
detail::interruption_checker check_for_interruption(&cond);
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_wait(&cond,&internal_mutex);
}
m.lock();
}
if(res)
{
boost::throw_exception(condition_error());
}
}
template<typename lock_type,typename predicate_type>
void wait(lock_type& m,predicate_type pred)
{
while(!pred()) wait(m);
}
template<typename lock_type>
bool timed_wait(lock_type& m,boost::system_time const& wait_until)
{
struct timespec const timeout=detail::get_timespec(wait_until);
int res=0;
{
detail::interruption_checker check_for_interruption(&cond);
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
m.unlock();
res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout);
}
m.lock();
}
if(res==ETIMEDOUT)
{
return false;
}
if(res)
{
boost::throw_exception(condition_error());
}
return true;
}
template<typename lock_type>
bool timed_wait(lock_type& m,xtime const& wait_until)
{
return timed_wait(m,system_time(wait_until));
}
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration)
{
return timed_wait(m,get_system_time()+wait_duration);
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::system_time const& wait_until,predicate_type pred)
{
while (!pred())
{
if(!timed_wait(m, wait_until))
return pred();
}
return true;
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,xtime const& wait_until,predicate_type pred)
{
return timed_wait(m,system_time(wait_until),pred);
}
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
{
return timed_wait(m,get_system_time()+wait_duration,pred);
}
void notify_one()
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
void notify_all()
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,99 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_CONDITION_VARIABLE_FWD_HPP
#define BOOST_THREAD_PTHREAD_CONDITION_VARIABLE_FWD_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class condition_variable
{
private:
pthread_cond_t cond;
condition_variable(condition_variable&);
condition_variable& operator=(condition_variable&);
public:
condition_variable()
{
int const res=pthread_cond_init(&cond,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
}
~condition_variable()
{
BOOST_VERIFY(!pthread_cond_destroy(&cond));
}
void wait(unique_lock<mutex>& m);
template<typename predicate_type>
void wait(unique_lock<mutex>& m,predicate_type pred)
{
while(!pred()) wait(m);
}
inline bool timed_wait(unique_lock<mutex>& m,
boost::system_time const& wait_until);
bool timed_wait(unique_lock<mutex>& m,xtime const& wait_until)
{
return timed_wait(m,system_time(wait_until));
}
template<typename duration_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration)
{
return timed_wait(m,get_system_time()+wait_duration);
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until,predicate_type pred)
{
while (!pred())
{
if(!timed_wait(m, wait_until))
return pred();
}
return true;
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,xtime const& wait_until,predicate_type pred)
{
return timed_wait(m,system_time(wait_until),pred);
}
template<typename duration_type,typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration,predicate_type pred)
{
return timed_wait(m,get_system_time()+wait_duration,pred);
}
typedef pthread_cond_t* native_handle_type;
native_handle_type native_handle()
{
return &cond;
}
void notify_one();
void notify_all();
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,222 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_MUTEX_HPP
#define BOOST_THREAD_PTHREAD_MUTEX_HPP
// (C) Copyright 2007-8 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <pthread.h>
#include <boost/utility.hpp>
#include <boost/throw_exception.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/assert.hpp>
#include <errno.h>
#include "timespec.hpp"
#include "pthread_mutex_scoped_lock.hpp"
#ifdef _POSIX_TIMEOUTS
#if _POSIX_TIMEOUTS >= 0
#define BOOST_PTHREAD_HAS_TIMEDLOCK
#endif
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class mutex
{
private:
mutex(mutex const&);
mutex& operator=(mutex const&);
pthread_mutex_t m;
public:
mutex()
{
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
}
~mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
}
void lock()
{
int const res=pthread_mutex_lock(&m);
if(res)
{
boost::throw_exception(lock_error(res));
}
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
}
bool try_lock()
{
int const res=pthread_mutex_trylock(&m);
if(res && (res!=EBUSY))
{
boost::throw_exception(lock_error(res));
}
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
typedef unique_lock<mutex> scoped_lock;
typedef detail::try_lock_wrapper<mutex> scoped_try_lock;
};
typedef mutex try_mutex;
class timed_mutex
{
private:
timed_mutex(timed_mutex const&);
timed_mutex& operator=(timed_mutex const&);
private:
pthread_mutex_t m;
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
pthread_cond_t cond;
bool is_locked;
#endif
public:
timed_mutex()
{
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
boost::throw_exception(thread_resource_error());
}
is_locked=false;
#endif
}
~timed_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
#ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
BOOST_VERIFY(!pthread_cond_destroy(&cond));
#endif
}
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
}
bool timed_lock(boost::xtime const & absolute_time)
{
return timed_lock(system_time(absolute_time));
}
#ifdef BOOST_PTHREAD_HAS_TIMEDLOCK
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
}
bool try_lock()
{
int const res=pthread_mutex_trylock(&m);
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
bool timed_lock(system_time const & abs_time)
{
struct timespec const timeout=detail::get_timespec(abs_time);
int const res=pthread_mutex_timedlock(&m,&timeout);
BOOST_ASSERT(!res || res==ETIMEDOUT);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
#else
void lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
while(is_locked)
{
BOOST_VERIFY(!pthread_cond_wait(&cond,&m));
}
is_locked=true;
}
void unlock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
is_locked=false;
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
bool try_lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked)
{
return false;
}
is_locked=true;
return true;
}
bool timed_lock(system_time const & abs_time)
{
struct timespec const timeout=detail::get_timespec(abs_time);
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
while(is_locked)
{
int const cond_res=pthread_cond_timedwait(&cond,&m,&timeout);
if(cond_res==ETIMEDOUT)
{
return false;
}
BOOST_ASSERT(!cond_res);
}
is_locked=true;
return true;
}
#endif
typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,95 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_ONCE_HPP
#define BOOST_THREAD_PTHREAD_ONCE_HPP
// once.hpp
//
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/config.hpp>
#include <pthread.h>
#include <boost/assert.hpp>
#include "pthread_mutex_scoped_lock.hpp"
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#include <boost/cstdint.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
struct once_flag
{
boost::uintmax_t epoch;
};
namespace detail
{
BOOST_THREAD_DECL boost::uintmax_t& get_once_per_thread_epoch();
BOOST_THREAD_DECL extern boost::uintmax_t once_global_epoch;
BOOST_THREAD_DECL extern pthread_mutex_t once_epoch_mutex;
BOOST_THREAD_DECL extern pthread_cond_t once_epoch_cv;
}
#define BOOST_ONCE_INITIAL_FLAG_VALUE 0
#define BOOST_ONCE_INIT {BOOST_ONCE_INITIAL_FLAG_VALUE}
// Based on Mike Burrows fast_pthread_once algorithm as described in
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2444.html
template<typename Function>
void call_once(once_flag& flag,Function f)
{
static boost::uintmax_t const uninitialized_flag=BOOST_ONCE_INITIAL_FLAG_VALUE;
static boost::uintmax_t const being_initialized=uninitialized_flag+1;
boost::uintmax_t const epoch=flag.epoch;
boost::uintmax_t& this_thread_epoch=detail::get_once_per_thread_epoch();
if(epoch<this_thread_epoch)
{
pthread::pthread_mutex_scoped_lock lk(&detail::once_epoch_mutex);
while(flag.epoch<=being_initialized)
{
if(flag.epoch==uninitialized_flag)
{
flag.epoch=being_initialized;
#ifndef BOOST_NO_EXCEPTIONS
try
{
#endif
pthread::pthread_mutex_scoped_unlock relocker(&detail::once_epoch_mutex);
f();
#ifndef BOOST_NO_EXCEPTIONS
}
catch(...)
{
flag.epoch=uninitialized_flag;
BOOST_VERIFY(!pthread_cond_broadcast(&detail::once_epoch_cv));
throw;
}
#endif
flag.epoch=--detail::once_global_epoch;
BOOST_VERIFY(!pthread_cond_broadcast(&detail::once_epoch_cv));
}
else
{
while(flag.epoch==being_initialized)
{
BOOST_VERIFY(!pthread_cond_wait(&detail::once_epoch_cv,&detail::once_epoch_mutex));
}
}
}
this_thread_epoch=detail::once_global_epoch;
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,54 +0,0 @@
#ifndef BOOST_PTHREAD_MUTEX_SCOPED_LOCK_HPP
#define BOOST_PTHREAD_MUTEX_SCOPED_LOCK_HPP
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <pthread.h>
#include <boost/assert.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace pthread
{
class pthread_mutex_scoped_lock
{
pthread_mutex_t* m;
public:
explicit pthread_mutex_scoped_lock(pthread_mutex_t* m_):
m(m_)
{
BOOST_VERIFY(!pthread_mutex_lock(m));
}
~pthread_mutex_scoped_lock()
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
}
};
class pthread_mutex_scoped_unlock
{
pthread_mutex_t* m;
public:
explicit pthread_mutex_scoped_unlock(pthread_mutex_t* m_):
m(m_)
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
}
~pthread_mutex_scoped_unlock()
{
BOOST_VERIFY(!pthread_mutex_lock(m));
}
};
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,345 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_RECURSIVE_MUTEX_HPP
#define BOOST_THREAD_PTHREAD_RECURSIVE_MUTEX_HPP
// (C) Copyright 2007-8 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <pthread.h>
#include <boost/utility.hpp>
#include <boost/throw_exception.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/assert.hpp>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <boost/date_time/posix_time/conversion.hpp>
#include <errno.h>
#include "timespec.hpp"
#include "pthread_mutex_scoped_lock.hpp"
#ifdef _POSIX_TIMEOUTS
#if _POSIX_TIMEOUTS >= 0
#define BOOST_PTHREAD_HAS_TIMEDLOCK
#endif
#endif
#if defined(BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE) && defined(BOOST_PTHREAD_HAS_TIMEDLOCK)
#define BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class recursive_mutex
{
private:
recursive_mutex(recursive_mutex const&);
recursive_mutex& operator=(recursive_mutex const&);
pthread_mutex_t m;
#ifndef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
pthread_cond_t cond;
bool is_locked;
pthread_t owner;
unsigned count;
#endif
public:
recursive_mutex()
{
#ifdef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
pthread_mutexattr_t attr;
int const init_attr_res=pthread_mutexattr_init(&attr);
if(init_attr_res)
{
boost::throw_exception(thread_resource_error());
}
int const set_attr_res=pthread_mutexattr_settype(&attr,PTHREAD_MUTEX_RECURSIVE);
if(set_attr_res)
{
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
boost::throw_exception(thread_resource_error());
}
int const res=pthread_mutex_init(&m,&attr);
if(res)
{
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
boost::throw_exception(thread_resource_error());
}
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
#else
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
boost::throw_exception(thread_resource_error());
}
is_locked=false;
count=0;
#endif
}
~recursive_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
#ifndef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
BOOST_VERIFY(!pthread_cond_destroy(&cond));
#endif
}
#ifdef BOOST_PTHREAD_HAS_MUTEXATTR_SETTYPE
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
}
bool try_lock()
{
int const res=pthread_mutex_trylock(&m);
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
#else
void lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && pthread_equal(owner,pthread_self()))
{
++count;
return;
}
while(is_locked)
{
BOOST_VERIFY(!pthread_cond_wait(&cond,&m));
}
is_locked=true;
++count;
owner=pthread_self();
}
void unlock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(!--count)
{
is_locked=false;
}
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
bool try_lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && !pthread_equal(owner,pthread_self()))
{
return false;
}
is_locked=true;
++count;
owner=pthread_self();
return true;
}
#endif
typedef unique_lock<recursive_mutex> scoped_lock;
typedef detail::try_lock_wrapper<recursive_mutex> scoped_try_lock;
};
typedef recursive_mutex recursive_try_mutex;
class recursive_timed_mutex
{
private:
recursive_timed_mutex(recursive_timed_mutex const&);
recursive_timed_mutex& operator=(recursive_timed_mutex const&);
private:
pthread_mutex_t m;
#ifndef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
pthread_cond_t cond;
bool is_locked;
pthread_t owner;
unsigned count;
#endif
public:
recursive_timed_mutex()
{
#ifdef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
pthread_mutexattr_t attr;
int const init_attr_res=pthread_mutexattr_init(&attr);
if(init_attr_res)
{
boost::throw_exception(thread_resource_error());
}
int const set_attr_res=pthread_mutexattr_settype(&attr,PTHREAD_MUTEX_RECURSIVE);
if(set_attr_res)
{
boost::throw_exception(thread_resource_error());
}
int const res=pthread_mutex_init(&m,&attr);
if(res)
{
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
boost::throw_exception(thread_resource_error());
}
BOOST_VERIFY(!pthread_mutexattr_destroy(&attr));
#else
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
boost::throw_exception(thread_resource_error());
}
is_locked=false;
count=0;
#endif
}
~recursive_timed_mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
#ifndef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
BOOST_VERIFY(!pthread_cond_destroy(&cond));
#endif
}
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
}
#ifdef BOOST_USE_PTHREAD_RECURSIVE_TIMEDLOCK
void lock()
{
BOOST_VERIFY(!pthread_mutex_lock(&m));
}
void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
}
bool try_lock()
{
int const res=pthread_mutex_trylock(&m);
BOOST_ASSERT(!res || res==EBUSY);
return !res;
}
bool timed_lock(system_time const & abs_time)
{
struct timespec const timeout=detail::get_timespec(abs_time);
int const res=pthread_mutex_timedlock(&m,&timeout);
BOOST_ASSERT(!res || res==ETIMEDOUT);
return !res;
}
typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
}
#else
void lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && pthread_equal(owner,pthread_self()))
{
++count;
return;
}
while(is_locked)
{
BOOST_VERIFY(!pthread_cond_wait(&cond,&m));
}
is_locked=true;
++count;
owner=pthread_self();
}
void unlock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(!--count)
{
is_locked=false;
}
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
bool try_lock()
{
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && !pthread_equal(owner,pthread_self()))
{
return false;
}
is_locked=true;
++count;
owner=pthread_self();
return true;
}
bool timed_lock(system_time const & abs_time)
{
struct timespec const timeout=detail::get_timespec(abs_time);
boost::pthread::pthread_mutex_scoped_lock const local_lock(&m);
if(is_locked && pthread_equal(owner,pthread_self()))
{
++count;
return true;
}
while(is_locked)
{
int const cond_res=pthread_cond_timedwait(&cond,&m,&timeout);
if(cond_res==ETIMEDOUT)
{
return false;
}
BOOST_ASSERT(!cond_res);
}
is_locked=true;
++count;
owner=pthread_self();
return true;
}
#endif
typedef unique_lock<recursive_timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<recursive_timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,303 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_SHARED_MUTEX_HPP
#define BOOST_THREAD_PTHREAD_SHARED_MUTEX_HPP
// (C) Copyright 2006-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/detail/thread_interruption.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class shared_mutex
{
private:
struct state_data
{
unsigned shared_count;
bool exclusive;
bool upgrade;
bool exclusive_waiting_blocked;
};
state_data state;
boost::mutex state_change;
boost::condition_variable shared_cond;
boost::condition_variable exclusive_cond;
boost::condition_variable upgrade_cond;
void release_waiters()
{
exclusive_cond.notify_one();
shared_cond.notify_all();
}
public:
shared_mutex()
{
state_data state_={0,0,0,0};
state=state_;
}
~shared_mutex()
{
}
void lock_shared()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.exclusive || state.exclusive_waiting_blocked)
{
shared_cond.wait(lk);
}
++state.shared_count;
}
bool try_lock_shared()
{
boost::mutex::scoped_lock lk(state_change);
if(state.exclusive || state.exclusive_waiting_blocked)
{
return false;
}
else
{
++state.shared_count;
return true;
}
}
bool timed_lock_shared(system_time const& timeout)
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.exclusive || state.exclusive_waiting_blocked)
{
if(!shared_cond.timed_wait(lk,timeout))
{
return false;
}
}
++state.shared_count;
return true;
}
template<typename TimeDuration>
bool timed_lock_shared(TimeDuration const & relative_time)
{
return timed_lock_shared(get_system_time()+relative_time);
}
void unlock_shared()
{
boost::mutex::scoped_lock lk(state_change);
bool const last_reader=!--state.shared_count;
if(last_reader)
{
if(state.upgrade)
{
state.upgrade=false;
state.exclusive=true;
upgrade_cond.notify_one();
}
else
{
state.exclusive_waiting_blocked=false;
}
release_waiters();
}
}
void lock()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.shared_count || state.exclusive)
{
state.exclusive_waiting_blocked=true;
exclusive_cond.wait(lk);
}
state.exclusive=true;
}
bool timed_lock(system_time const& timeout)
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.shared_count || state.exclusive)
{
state.exclusive_waiting_blocked=true;
if(!exclusive_cond.timed_wait(lk,timeout))
{
if(state.shared_count || state.exclusive)
{
state.exclusive_waiting_blocked=false;
exclusive_cond.notify_one();
return false;
}
break;
}
}
state.exclusive=true;
return true;
}
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time)
{
return timed_lock(get_system_time()+relative_time);
}
bool try_lock()
{
boost::mutex::scoped_lock lk(state_change);
if(state.shared_count || state.exclusive)
{
return false;
}
else
{
state.exclusive=true;
return true;
}
}
void unlock()
{
boost::mutex::scoped_lock lk(state_change);
state.exclusive=false;
state.exclusive_waiting_blocked=false;
release_waiters();
}
void lock_upgrade()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
{
shared_cond.wait(lk);
}
++state.shared_count;
state.upgrade=true;
}
bool timed_lock_upgrade(system_time const& timeout)
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
while(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
{
if(!shared_cond.timed_wait(lk,timeout))
{
if(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
{
return false;
}
break;
}
}
++state.shared_count;
state.upgrade=true;
return true;
}
template<typename TimeDuration>
bool timed_lock_upgrade(TimeDuration const & relative_time)
{
return timed_lock_upgrade(get_system_time()+relative_time);
}
bool try_lock_upgrade()
{
boost::mutex::scoped_lock lk(state_change);
if(state.exclusive || state.exclusive_waiting_blocked || state.upgrade)
{
return false;
}
else
{
++state.shared_count;
state.upgrade=true;
return true;
}
}
void unlock_upgrade()
{
boost::mutex::scoped_lock lk(state_change);
state.upgrade=false;
bool const last_reader=!--state.shared_count;
if(last_reader)
{
state.exclusive_waiting_blocked=false;
release_waiters();
}
}
void unlock_upgrade_and_lock()
{
boost::this_thread::disable_interruption do_not_disturb;
boost::mutex::scoped_lock lk(state_change);
--state.shared_count;
while(state.shared_count)
{
upgrade_cond.wait(lk);
}
state.upgrade=false;
state.exclusive=true;
}
void unlock_and_lock_upgrade()
{
boost::mutex::scoped_lock lk(state_change);
state.exclusive=false;
state.upgrade=true;
++state.shared_count;
state.exclusive_waiting_blocked=false;
release_waiters();
}
void unlock_and_lock_shared()
{
boost::mutex::scoped_lock lk(state_change);
state.exclusive=false;
++state.shared_count;
state.exclusive_waiting_blocked=false;
release_waiters();
}
void unlock_upgrade_and_lock_shared()
{
boost::mutex::scoped_lock lk(state_change);
state.upgrade=false;
state.exclusive_waiting_blocked=false;
release_waiters();
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,129 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_THREAD_DATA_HPP
#define BOOST_THREAD_PTHREAD_THREAD_DATA_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007 Anthony Williams
#include <boost/thread/detail/config.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/optional.hpp>
#include <pthread.h>
#include "condition_variable_fwd.hpp"
#include <map>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class thread;
namespace detail
{
struct tss_cleanup_function;
struct thread_exit_callback_node;
struct tss_data_node
{
boost::shared_ptr<boost::detail::tss_cleanup_function> func;
void* value;
tss_data_node(boost::shared_ptr<boost::detail::tss_cleanup_function> func_,
void* value_):
func(func_),value(value_)
{}
};
struct thread_data_base;
typedef boost::shared_ptr<thread_data_base> thread_data_ptr;
struct BOOST_THREAD_DECL thread_data_base:
enable_shared_from_this<thread_data_base>
{
thread_data_ptr self;
pthread_t thread_handle;
boost::mutex data_mutex;
boost::condition_variable done_condition;
boost::mutex sleep_mutex;
boost::condition_variable sleep_condition;
bool done;
bool join_started;
bool joined;
boost::detail::thread_exit_callback_node* thread_exit_callbacks;
std::map<void const*,boost::detail::tss_data_node> tss_data;
bool interrupt_enabled;
bool interrupt_requested;
pthread_cond_t* current_cond;
thread_data_base():
done(false),join_started(false),joined(false),
thread_exit_callbacks(0),
interrupt_enabled(true),
interrupt_requested(false),
current_cond(0)
{}
virtual ~thread_data_base();
typedef pthread_t native_handle_type;
virtual void run()=0;
};
BOOST_THREAD_DECL thread_data_base* get_current_thread_data();
class interruption_checker
{
thread_data_base* const thread_info;
void check_for_interruption()
{
if(thread_info->interrupt_requested)
{
thread_info->interrupt_requested=false;
throw thread_interrupted();
}
}
void operator=(interruption_checker&);
public:
explicit interruption_checker(pthread_cond_t* cond):
thread_info(detail::get_current_thread_data())
{
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> guard(thread_info->data_mutex);
check_for_interruption();
thread_info->current_cond=cond;
}
}
~interruption_checker()
{
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> guard(thread_info->data_mutex);
thread_info->current_cond=NULL;
check_for_interruption();
}
}
};
}
namespace this_thread
{
void BOOST_THREAD_DECL yield();
void BOOST_THREAD_DECL sleep(system_time const& abs_time);
template<typename TimeDuration>
inline void sleep(TimeDuration const& rel_time)
{
this_thread::sleep(get_system_time()+rel_time);
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,242 +0,0 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2008 Anthony Williams
#ifndef THREAD_HEAP_ALLOC_PTHREAD_HPP
#define THREAD_HEAP_ALLOC_PTHREAD_HPP
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
template<typename T>
inline T* heap_new()
{
return new T();
}
#ifndef BOOST_NO_RVALUE_REFERENCES
template<typename T,typename A1>
inline T* heap_new(A1&& a1)
{
return new T(static_cast<A1&&>(a1));
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1&& a1,A2&& a2)
{
return new T(static_cast<A1&&>(a1),static_cast<A2&&>(a2));
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1&& a1,A2&& a2,A3&& a3)
{
return new T(static_cast<A1&&>(a1),static_cast<A2&&>(a2),
static_cast<A3&&>(a3));
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1&& a1,A2&& a2,A3&& a3,A4&& a4)
{
return new T(static_cast<A1&&>(a1),static_cast<A2&&>(a2),
static_cast<A3&&>(a3),static_cast<A4&&>(a4));
}
#else
template<typename T,typename A1>
inline T* heap_new_impl(A1 a1)
{
return new T(a1);
}
template<typename T,typename A1,typename A2>
inline T* heap_new_impl(A1 a1,A2 a2)
{
return new T(a1,a2);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new_impl(A1 a1,A2 a2,A3 a3)
{
return new T(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new_impl(A1 a1,A2 a2,A3 a3,A4 a4)
{
return new T(a1,a2,a3,a4);
}
template<typename T,typename A1>
inline T* heap_new(A1 const& a1)
{
return heap_new_impl<T,A1 const&>(a1);
}
template<typename T,typename A1>
inline T* heap_new(A1& a1)
{
return heap_new_impl<T,A1&>(a1);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1 const& a1,A2 const& a2)
{
return heap_new_impl<T,A1 const&,A2 const&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1& a1,A2 const& a2)
{
return heap_new_impl<T,A1&,A2 const&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1 const& a1,A2& a2)
{
return heap_new_impl<T,A1 const&,A2&>(a1,a2);
}
template<typename T,typename A1,typename A2>
inline T* heap_new(A1& a1,A2& a2)
{
return heap_new_impl<T,A1&,A2&>(a1,a2);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3)
{
return heap_new_impl<T,A1&,A2&,A3 const&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3)
{
return heap_new_impl<T,A1&,A2 const&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3)
{
return heap_new_impl<T,A1 const&,A2&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3>
inline T* heap_new(A1& a1,A2& a2,A3& a3)
{
return heap_new_impl<T,A1&,A2&,A3&>(a1,a2,a3);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2&,A3 const&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3& a3,A4 const& a4)
{
return heap_new_impl<T,A1&,A2&,A3&,A4 const&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3 const& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2&,A3 const&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2 const& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2 const&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2 const& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2 const&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1 const& a1,A2& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1 const&,A2&,A3&,A4&>(a1,a2,a3,a4);
}
template<typename T,typename A1,typename A2,typename A3,typename A4>
inline T* heap_new(A1& a1,A2& a2,A3& a3,A4& a4)
{
return heap_new_impl<T,A1&,A2&,A3&,A4&>(a1,a2,a3,a4);
}
#endif
template<typename T>
inline void heap_delete(T* data)
{
delete data;
}
template<typename T>
struct do_heap_delete
{
void operator()(T* data) const
{
detail::heap_delete(data);
}
};
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,36 +0,0 @@
#ifndef BOOST_THREAD_PTHREAD_TIMESPEC_HPP
#define BOOST_THREAD_PTHREAD_TIMESPEC_HPP
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/thread_time.hpp>
#include <boost/date_time/posix_time/conversion.hpp>
#include <pthread.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
inline struct timespec get_timespec(boost::system_time const& abs_time)
{
struct timespec timeout={0,0};
boost::posix_time::time_duration const time_since_epoch=abs_time-boost::posix_time::from_time_t(0);
timeout.tv_sec=time_since_epoch.total_seconds();
timeout.tv_nsec=(long)(time_since_epoch.fractional_seconds()*(1000000000l/time_since_epoch.ticks_per_second()));
return timeout;
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,21 +1,160 @@
#ifndef BOOST_THREAD_RECURSIVE_MUTEX_HPP
#define BOOST_THREAD_RECURSIVE_MUTEX_HPP
// recursive_mutex.hpp
// Copyright (C) 2001
// William E. Kempf
//
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/recursive_mutex.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/recursive_mutex.hpp>
#else
#error "Boost threads unavailable on this platform"
#ifndef BOOST_RECURSIVE_MUTEX_WEK070601_HPP
#define BOOST_RECURSIVE_MUTEX_WEK070601_HPP
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
# error Thread support is unavailable!
#endif
#include <boost/utility.hpp>
#include <boost/thread/detail/lock.hpp>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#endif
namespace boost {
struct xtime;
class recursive_mutex : private noncopyable
{
public:
friend class detail::thread::lock_ops<recursive_mutex>;
typedef detail::thread::scoped_lock<recursive_mutex> scoped_lock;
recursive_mutex();
~recursive_mutex();
private:
#if defined(BOOST_HAS_WINTHREADS)
typedef std::size_t cv_state;
#elif defined(BOOST_HAS_PTHREADS)
struct cv_state
{
long count;
pthread_mutex_t* pmutex;
};
#endif
void do_lock();
void do_unlock();
void do_lock(cv_state& state);
void do_unlock(cv_state& state);
#if defined(BOOST_HAS_WINTHREADS)
void* m_mutex;
unsigned long m_count;
#elif defined(BOOST_HAS_PTHREADS)
pthread_mutex_t m_mutex;
unsigned m_count;
# if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE)
pthread_cond_t m_unlocked;
pthread_t m_thread_id;
bool m_valid_id;
# endif
#endif
};
class recursive_try_mutex : private noncopyable
{
public:
friend class detail::thread::lock_ops<recursive_try_mutex>;
typedef detail::thread::scoped_lock<recursive_try_mutex> scoped_lock;
typedef detail::thread::scoped_try_lock<recursive_try_mutex> scoped_try_lock;
recursive_try_mutex();
~recursive_try_mutex();
private:
#if defined(BOOST_HAS_WINTHREADS)
typedef std::size_t cv_state;
#elif defined(BOOST_HAS_PTHREADS)
struct cv_state
{
long count;
pthread_mutex_t* pmutex;
};
#endif
void do_lock();
bool do_trylock();
void do_unlock();
void do_lock(cv_state& state);
void do_unlock(cv_state& state);
#if defined(BOOST_HAS_WINTHREADS)
void* m_mutex;
unsigned long m_count;
#elif defined(BOOST_HAS_PTHREADS)
pthread_mutex_t m_mutex;
unsigned m_count;
# if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE)
pthread_cond_t m_unlocked;
pthread_t m_thread_id;
bool m_valid_id;
# endif
#endif
};
class recursive_timed_mutex : private noncopyable
{
public:
friend class detail::thread::lock_ops<recursive_timed_mutex>;
typedef detail::thread::scoped_lock<recursive_timed_mutex> scoped_lock;
typedef detail::thread::scoped_try_lock<recursive_timed_mutex> scoped_try_lock;
typedef detail::thread::scoped_timed_lock<recursive_timed_mutex> scoped_timed_lock;
recursive_timed_mutex();
~recursive_timed_mutex();
private:
#if defined(BOOST_HAS_WINTHREADS)
typedef std::size_t cv_state;
#elif defined(BOOST_HAS_PTHREADS)
struct cv_state
{
long count;
pthread_mutex_t* pmutex;
};
#endif
void do_lock();
bool do_trylock();
bool do_timedlock(const xtime& xt);
void do_unlock();
void do_lock(cv_state& state);
void do_unlock(cv_state& state);
#if defined(BOOST_HAS_WINTHREADS)
void* m_mutex;
unsigned long m_count;
#elif defined(BOOST_HAS_PTHREADS)
pthread_mutex_t m_mutex;
pthread_cond_t m_unlocked;
pthread_t m_thread_id;
bool m_valid_id;
unsigned m_count;
#endif
};
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 1 Jun 01 WEKEMPF Modified to use xtime for time outs. Factored out
// to three classes, mutex, try_mutex and timed_mutex.
// 11 Jun 01 WEKEMPF Modified to use PTHREAD_MUTEX_RECURSIVE if available.
#endif // BOOST_RECURSIVE_MUTEX_WEK070601_HPP

View File

@@ -1,21 +0,0 @@
#ifndef BOOST_THREAD_SHARED_MUTEX_HPP
#define BOOST_THREAD_SHARED_MUTEX_HPP
// shared_mutex.hpp
//
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/platform.hpp>
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/shared_mutex.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/shared_mutex.hpp>
#else
#error "Boost threads unavailable on this platform"
#endif
#endif

View File

@@ -1,27 +1,84 @@
#ifndef BOOST_THREAD_THREAD_HPP
#define BOOST_THREAD_THREAD_HPP
// thread.hpp
// Copyright (C) 2001
// William E. Kempf
//
// (C) Copyright 2007-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#include <boost/thread/detail/platform.hpp>
#ifndef BOOST_THREAD_WEK070601_HPP
#define BOOST_THREAD_WEK070601_HPP
#if defined(BOOST_THREAD_PLATFORM_WIN32)
#include <boost/thread/win32/thread_data.hpp>
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)
#include <boost/thread/pthread/thread_data.hpp>
#else
#error "Boost threads unavailable on this platform"
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
# error Thread support is unavailable!
#endif
#include <boost/thread/detail/thread.hpp>
#include <boost/thread/detail/thread_interruption.hpp>
#include <boost/thread/detail/thread_group.hpp>
#include <boost/utility.hpp>
#include <boost/function.hpp>
#include <boost/thread/mutex.hpp>
#include <list>
#include <memory>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
# include <boost/thread/condition.hpp>
#endif
namespace boost {
struct xtime;
class thread : private noncopyable
{
public:
thread();
explicit thread(const function0<void>& threadfunc);
~thread();
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;
void join();
static void sleep(const xtime& xt);
static void yield();
private:
#if defined(BOOST_HAS_WINTHREADS)
void* m_thread;
unsigned int m_id;
#elif defined(BOOST_HAS_PTHREADS)
private:
pthread_t m_thread;
#endif
bool m_joinable;
};
class thread_group : private noncopyable
{
public:
thread_group();
~thread_group();
thread* create_thread(const function0<void>& threadfunc);
void add_thread(thread* thrd);
void remove_thread(thread* thrd);
void join_all();
private:
std::list<thread*> m_threads;
mutex m_mutex;
};
} // namespace boost
// Change Log:
// 8 Feb 01 WEKEMPF Initial version.
// 1 Jun 01 WEKEMPF Added boost::thread initial implementation.
// 3 Jul 01 WEKEMPF Redesigned boost::thread to be noncopyable.
#endif // BOOST_THREAD_WEK070601_HPP

View File

@@ -1,50 +0,0 @@
#ifndef BOOST_THREAD_TIME_HPP
#define BOOST_THREAD_TIME_HPP
// (C) Copyright 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/date_time/microsec_time_clock.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
typedef boost::posix_time::ptime system_time;
inline system_time get_system_time()
{
return boost::date_time::microsec_clock<system_time>::universal_time();
}
namespace detail
{
inline system_time get_system_time_sentinel()
{
return system_time(boost::posix_time::pos_infin);
}
inline unsigned long get_milliseconds_until(system_time const& target_time)
{
if(target_time.is_pos_infinity())
{
return ~(unsigned long)0;
}
system_time const now=get_system_time();
if(target_time<=now)
{
return 0;
}
return static_cast<unsigned long>((target_time-now).total_milliseconds()+1);
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,113 +1,72 @@
#ifndef BOOST_THREAD_TSS_HPP
#define BOOST_THREAD_TSS_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// Copyright (C) 2001
// William E. Kempf
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. William E. Kempf makes no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
#include <boost/thread/detail/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread/detail/thread_heap_alloc.hpp>
#ifndef BOOST_TSS_WEK070601_HPP
#define BOOST_TSS_WEK070601_HPP
#include <boost/config/abi_prefix.hpp>
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
# error Thread support is unavailable!
#endif
namespace boost
{
namespace detail
{
struct tss_cleanup_function
#include <boost/utility.hpp>
#if defined(BOOST_HAS_PTHREADS)
# include <pthread.h>
#endif
namespace boost {
namespace detail {
class tss : private noncopyable
{
virtual ~tss_cleanup_function()
{}
virtual void operator()(void* data)=0;
public:
tss(void (*cleanup)(void*)=0);
~tss();
void* get() const;
bool set(void* value);
private:
#if defined(BOOST_HAS_WINTHREADS)
unsigned long m_key;
void (*m_cleanup)(void*);
#elif defined(BOOST_HAS_PTHREADS)
pthread_key_t m_key;
#endif
};
BOOST_THREAD_DECL void set_tss_data(void const* key,boost::shared_ptr<tss_cleanup_function> func,void* tss_data,bool cleanup_existing);
BOOST_THREAD_DECL void* get_tss_data(void const* key);
}
template <typename T>
class thread_specific_ptr
{
private:
thread_specific_ptr(thread_specific_ptr&);
thread_specific_ptr& operator=(thread_specific_ptr&);
template <typename T>
class thread_specific_ptr : private noncopyable
{
public:
thread_specific_ptr() : m_tss(&thread_specific_ptr<T>::cleanup) { }
struct delete_data:
detail::tss_cleanup_function
{
void operator()(void* data)
{
delete static_cast<T*>(data);
}
};
struct run_custom_cleanup_function:
detail::tss_cleanup_function
{
void (*cleanup_function)(T*);
explicit run_custom_cleanup_function(void (*cleanup_function_)(T*)):
cleanup_function(cleanup_function_)
{}
void operator()(void* data)
{
cleanup_function(static_cast<T*>(data));
}
};
T* get() const { return static_cast<T*>(m_tss.get()); }
T* operator->() const { return get(); }
T& operator*() const { return *get(); }
T* release() { T* temp = get(); m_tss.set(0); return temp; }
void reset(T* p=0) { T* cur = get(); if (cur == p) return; delete cur; m_tss.set(p); }
private:
static void cleanup(void* p) { delete static_cast<T*>(p); }
boost::shared_ptr<detail::tss_cleanup_function> cleanup;
public:
typedef T element_type;
thread_specific_ptr():
cleanup(detail::heap_new<delete_data>(),detail::do_heap_delete<delete_data>())
{}
explicit thread_specific_ptr(void (*func_)(T*))
{
if(func_)
{
cleanup.reset(detail::heap_new<run_custom_cleanup_function>(func_),detail::do_heap_delete<run_custom_cleanup_function>());
}
}
~thread_specific_ptr()
{
detail::set_tss_data(this,boost::shared_ptr<detail::tss_cleanup_function>(),0,true);
}
mutable detail::tss m_tss;
};
T* get() const
{
return static_cast<T*>(detail::get_tss_data(this));
}
T* operator->() const
{
return get();
}
T& operator*() const
{
return *get();
}
T* release()
{
T* const temp=get();
detail::set_tss_data(this,boost::shared_ptr<detail::tss_cleanup_function>(),0,false);
return temp;
}
void reset(T* new_value=0)
{
T* const current_value=get();
if(current_value!=new_value)
{
detail::set_tss_data(this,cleanup,new_value,true);
}
}
};
}
} // namespace boost
#include <boost/config/abi_suffix.hpp>
// Change Log:
// 6 Jun 01 WEKEMPF Initial version.
#endif // BOOST_TSS_WEK070601_HPP
#endif

View File

@@ -1,120 +0,0 @@
#ifndef BOOST_BASIC_RECURSIVE_MUTEX_WIN32_HPP
#define BOOST_BASIC_RECURSIVE_MUTEX_WIN32_HPP
// basic_recursive_mutex.hpp
//
// (C) Copyright 2006-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "thread_primitives.hpp"
#include "basic_timed_mutex.hpp"
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
template<typename underlying_mutex_type>
struct basic_recursive_mutex_impl
{
long recursion_count;
long locking_thread_id;
underlying_mutex_type mutex;
void initialize()
{
recursion_count=0;
locking_thread_id=0;
mutex.initialize();
}
void destroy()
{
mutex.destroy();
}
bool try_lock()
{
long const current_thread_id=win32::GetCurrentThreadId();
return try_recursive_lock(current_thread_id) || try_basic_lock(current_thread_id);
}
void lock()
{
long const current_thread_id=win32::GetCurrentThreadId();
if(!try_recursive_lock(current_thread_id))
{
mutex.lock();
BOOST_INTERLOCKED_EXCHANGE(&locking_thread_id,current_thread_id);
recursion_count=1;
}
}
bool timed_lock(::boost::system_time const& target)
{
long const current_thread_id=win32::GetCurrentThreadId();
return try_recursive_lock(current_thread_id) || try_timed_lock(current_thread_id,target);
}
template<typename Duration>
bool timed_lock(Duration const& timeout)
{
return timed_lock(get_system_time()+timeout);
}
void unlock()
{
if(!--recursion_count)
{
BOOST_INTERLOCKED_EXCHANGE(&locking_thread_id,0);
mutex.unlock();
}
}
private:
bool try_recursive_lock(long current_thread_id)
{
if(::boost::detail::interlocked_read_acquire(&locking_thread_id)==current_thread_id)
{
++recursion_count;
return true;
}
return false;
}
bool try_basic_lock(long current_thread_id)
{
if(mutex.try_lock())
{
BOOST_INTERLOCKED_EXCHANGE(&locking_thread_id,current_thread_id);
recursion_count=1;
return true;
}
return false;
}
bool try_timed_lock(long current_thread_id,::boost::system_time const& target)
{
if(mutex.timed_lock(target))
{
BOOST_INTERLOCKED_EXCHANGE(&locking_thread_id,current_thread_id);
recursion_count=1;
return true;
}
return false;
}
};
typedef basic_recursive_mutex_impl<basic_timed_mutex> basic_recursive_mutex;
typedef basic_recursive_mutex_impl<basic_timed_mutex> basic_recursive_timed_mutex;
}
}
#define BOOST_BASIC_RECURSIVE_MUTEX_INITIALIZER {0}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,209 +0,0 @@
#ifndef BOOST_BASIC_TIMED_MUTEX_WIN32_HPP
#define BOOST_BASIC_TIMED_MUTEX_WIN32_HPP
// basic_timed_mutex_win32.hpp
//
// (C) Copyright 2006-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/assert.hpp>
#include "thread_primitives.hpp"
#include "interlocked_read.hpp"
#include <boost/thread/thread_time.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/detail/interlocked.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
struct basic_timed_mutex
{
BOOST_STATIC_CONSTANT(unsigned char,lock_flag_bit=31);
BOOST_STATIC_CONSTANT(unsigned char,event_set_flag_bit=30);
BOOST_STATIC_CONSTANT(long,lock_flag_value=1<<lock_flag_bit);
BOOST_STATIC_CONSTANT(long,event_set_flag_value=1<<event_set_flag_bit);
long active_count;
void* event;
void initialize()
{
active_count=0;
event=0;
}
void destroy()
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4312)
#endif
void* const old_event=BOOST_INTERLOCKED_EXCHANGE_POINTER(&event,0);
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
if(old_event)
{
win32::CloseHandle(old_event);
}
}
bool try_lock()
{
return !win32::interlocked_bit_test_and_set(&active_count,lock_flag_bit);
}
void lock()
{
if(try_lock())
{
return;
}
long old_count=active_count;
mark_waiting_and_try_lock(old_count);
if(old_count&lock_flag_value)
{
bool lock_acquired=false;
void* const sem=get_event();
do
{
BOOST_VERIFY(win32::WaitForSingleObject(
sem,::boost::detail::win32::infinite)==0);
clear_waiting_and_try_lock(old_count);
lock_acquired=!(old_count&lock_flag_value);
}
while(!lock_acquired);
}
}
void mark_waiting_and_try_lock(long& old_count)
{
for(;;)
{
long const new_count=(old_count&lock_flag_value)?(old_count+1):(old_count|lock_flag_value);
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,new_count,old_count);
if(current==old_count)
{
break;
}
old_count=current;
}
}
void clear_waiting_and_try_lock(long& old_count)
{
old_count&=~lock_flag_value;
old_count|=event_set_flag_value;
for(;;)
{
long const new_count=((old_count&lock_flag_value)?old_count:((old_count-1)|lock_flag_value))&~event_set_flag_value;
long const current=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&active_count,new_count,old_count);
if(current==old_count)
{
break;
}
old_count=current;
}
}
bool timed_lock(::boost::system_time const& wait_until)
{
if(try_lock())
{
return true;
}
long old_count=active_count;
mark_waiting_and_try_lock(old_count);
if(old_count&lock_flag_value)
{
bool lock_acquired=false;
void* const sem=get_event();
do
{
if(win32::WaitForSingleObject(sem,::boost::detail::get_milliseconds_until(wait_until))!=0)
{
BOOST_INTERLOCKED_DECREMENT(&active_count);
return false;
}
clear_waiting_and_try_lock(old_count);
lock_acquired=!(old_count&lock_flag_value);
}
while(!lock_acquired);
}
return true;
}
template<typename Duration>
bool timed_lock(Duration const& timeout)
{
return timed_lock(get_system_time()+timeout);
}
bool timed_lock(boost::xtime const& timeout)
{
return timed_lock(system_time(timeout));
}
void unlock()
{
long const offset=lock_flag_value;
long const old_count=BOOST_INTERLOCKED_EXCHANGE_ADD(&active_count,lock_flag_value);
if(!(old_count&event_set_flag_value) && (old_count>offset))
{
if(!win32::interlocked_bit_test_and_set(&active_count,event_set_flag_bit))
{
win32::SetEvent(get_event());
}
}
}
private:
void* get_event()
{
void* current_event=::boost::detail::interlocked_read_acquire(&event);
if(!current_event)
{
void* const new_event=win32::create_anonymous_event(win32::auto_reset_event,win32::event_initially_reset);
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4311)
#pragma warning(disable:4312)
#endif
void* const old_event=BOOST_INTERLOCKED_COMPARE_EXCHANGE_POINTER(&event,new_event,0);
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
if(old_event!=0)
{
win32::CloseHandle(new_event);
return old_event;
}
else
{
return new_event;
}
}
return current_event;
}
};
}
}
#define BOOST_BASIC_TIMED_MUTEX_INITIALIZER {0}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,418 +0,0 @@
#ifndef BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
#include <boost/thread/mutex.hpp>
#include "thread_primitives.hpp"
#include <limits.h>
#include <boost/assert.hpp>
#include <algorithm>
#include <boost/thread/thread.hpp>
#include <boost/thread/thread_time.hpp>
#include "interlocked_read.hpp"
#include <boost/thread/xtime.hpp>
#include <vector>
#include <boost/intrusive_ptr.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
class basic_cv_list_entry;
void intrusive_ptr_add_ref(basic_cv_list_entry * p);
void intrusive_ptr_release(basic_cv_list_entry * p);
class basic_cv_list_entry
{
private:
detail::win32::handle_manager semaphore;
detail::win32::handle_manager wake_sem;
long waiters;
bool notified;
long references;
basic_cv_list_entry(basic_cv_list_entry&);
void operator=(basic_cv_list_entry&);
public:
explicit basic_cv_list_entry(detail::win32::handle_manager const& wake_sem_):
semaphore(detail::win32::create_anonymous_semaphore(0,LONG_MAX)),
wake_sem(wake_sem_.duplicate()),
waiters(1),notified(false),references(0)
{}
static bool no_waiters(boost::intrusive_ptr<basic_cv_list_entry> const& entry)
{
return !detail::interlocked_read_acquire(&entry->waiters);
}
void add_waiter()
{
BOOST_INTERLOCKED_INCREMENT(&waiters);
}
void remove_waiter()
{
BOOST_INTERLOCKED_DECREMENT(&waiters);
}
void release(unsigned count_to_release)
{
notified=true;
detail::win32::ReleaseSemaphore(semaphore,count_to_release,0);
}
void release_waiters()
{
release(detail::interlocked_read_acquire(&waiters));
}
bool is_notified() const
{
return notified;
}
bool wait(timeout wait_until)
{
return this_thread::interruptible_wait(semaphore,wait_until);
}
bool woken()
{
unsigned long const woken_result=detail::win32::WaitForSingleObject(wake_sem,0);
BOOST_ASSERT((woken_result==detail::win32::timeout) || (woken_result==0));
return woken_result==0;
}
friend void intrusive_ptr_add_ref(basic_cv_list_entry * p);
friend void intrusive_ptr_release(basic_cv_list_entry * p);
};
inline void intrusive_ptr_add_ref(basic_cv_list_entry * p)
{
BOOST_INTERLOCKED_INCREMENT(&p->references);
}
inline void intrusive_ptr_release(basic_cv_list_entry * p)
{
if(!BOOST_INTERLOCKED_DECREMENT(&p->references))
{
delete p;
}
}
class basic_condition_variable
{
boost::mutex internal_mutex;
long total_count;
unsigned active_generation_count;
typedef basic_cv_list_entry list_entry;
typedef boost::intrusive_ptr<list_entry> entry_ptr;
typedef std::vector<entry_ptr> generation_list;
generation_list generations;
detail::win32::handle_manager wake_sem;
void wake_waiters(long count_to_wake)
{
detail::interlocked_write_release(&total_count,total_count-count_to_wake);
detail::win32::ReleaseSemaphore(wake_sem,count_to_wake,0);
}
template<typename lock_type>
struct relocker
{
lock_type& lock;
bool unlocked;
relocker(lock_type& lock_):
lock(lock_),unlocked(false)
{}
void unlock()
{
lock.unlock();
unlocked=true;
}
~relocker()
{
if(unlocked)
{
lock.lock();
}
}
private:
relocker(relocker&);
void operator=(relocker&);
};
entry_ptr get_wait_entry()
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!wake_sem)
{
wake_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
BOOST_ASSERT(wake_sem);
}
detail::interlocked_write_release(&total_count,total_count+1);
if(generations.empty() || generations.back()->is_notified())
{
entry_ptr new_entry(new list_entry(wake_sem));
generations.push_back(new_entry);
return new_entry;
}
else
{
generations.back()->add_waiter();
return generations.back();
}
}
struct entry_manager
{
entry_ptr const entry;
entry_manager(entry_ptr const& entry_):
entry(entry_)
{}
~entry_manager()
{
entry->remove_waiter();
}
list_entry* operator->()
{
return entry.get();
}
private:
void operator=(entry_manager&);
entry_manager(entry_manager&);
};
protected:
template<typename lock_type>
bool do_wait(lock_type& lock,timeout wait_until)
{
relocker<lock_type> locker(lock);
entry_manager entry(get_wait_entry());
locker.unlock();
bool woken=false;
while(!woken)
{
if(!entry->wait(wait_until))
{
return false;
}
woken=entry->woken();
}
return woken;
}
template<typename lock_type,typename predicate_type>
bool do_wait(lock_type& m,timeout const& wait_until,predicate_type pred)
{
while (!pred())
{
if(!do_wait(m, wait_until))
return pred();
}
return true;
}
basic_condition_variable(const basic_condition_variable& other);
basic_condition_variable& operator=(const basic_condition_variable& other);
public:
basic_condition_variable():
total_count(0),active_generation_count(0),wake_sem(0)
{}
~basic_condition_variable()
{}
void notify_one()
{
if(detail::interlocked_read_acquire(&total_count))
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!total_count)
{
return;
}
wake_waiters(1);
for(generation_list::iterator it=generations.begin(),
end=generations.end();
it!=end;++it)
{
(*it)->release(1);
}
generations.erase(std::remove_if(generations.begin(),generations.end(),&basic_cv_list_entry::no_waiters),generations.end());
}
}
void notify_all()
{
if(detail::interlocked_read_acquire(&total_count))
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!total_count)
{
return;
}
wake_waiters(total_count);
for(generation_list::iterator it=generations.begin(),
end=generations.end();
it!=end;++it)
{
(*it)->release_waiters();
}
generations.clear();
wake_sem=detail::win32::handle(0);
}
}
};
}
class condition_variable:
private detail::basic_condition_variable
{
private:
condition_variable(condition_variable&);
void operator=(condition_variable&);
public:
condition_variable()
{}
using detail::basic_condition_variable::notify_one;
using detail::basic_condition_variable::notify_all;
void wait(unique_lock<mutex>& m)
{
do_wait(m,detail::timeout::sentinel());
}
template<typename predicate_type>
void wait(unique_lock<mutex>& m,predicate_type pred)
{
while(!pred()) wait(m);
}
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until)
{
return do_wait(m,wait_until);
}
bool timed_wait(unique_lock<mutex>& m,boost::xtime const& wait_until)
{
return do_wait(m,system_time(wait_until));
}
template<typename duration_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration)
{
return do_wait(m,wait_duration.total_milliseconds());
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& wait_until,predicate_type pred)
{
return do_wait(m,wait_until,pred);
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::xtime const& wait_until,predicate_type pred)
{
return do_wait(m,system_time(wait_until),pred);
}
template<typename duration_type,typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration,predicate_type pred)
{
return do_wait(m,wait_duration.total_milliseconds(),pred);
}
};
class condition_variable_any:
private detail::basic_condition_variable
{
private:
condition_variable_any(condition_variable_any&);
void operator=(condition_variable_any&);
public:
condition_variable_any()
{}
using detail::basic_condition_variable::notify_one;
using detail::basic_condition_variable::notify_all;
template<typename lock_type>
void wait(lock_type& m)
{
do_wait(m,detail::timeout::sentinel());
}
template<typename lock_type,typename predicate_type>
void wait(lock_type& m,predicate_type pred)
{
while(!pred()) wait(m);
}
template<typename lock_type>
bool timed_wait(lock_type& m,boost::system_time const& wait_until)
{
return do_wait(m,wait_until);
}
template<typename lock_type>
bool timed_wait(lock_type& m,boost::xtime const& wait_until)
{
return do_wait(m,system_time(wait_until));
}
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration)
{
return do_wait(m,wait_duration.total_milliseconds());
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::system_time const& wait_until,predicate_type pred)
{
return do_wait(m,wait_until,pred);
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::xtime const& wait_until,predicate_type pred)
{
return do_wait(m,system_time(wait_until),pred);
}
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
{
return do_wait(m,wait_duration.total_milliseconds(),pred);
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,80 +0,0 @@
#ifndef BOOST_THREAD_DETAIL_INTERLOCKED_READ_WIN32_HPP
#define BOOST_THREAD_DETAIL_INTERLOCKED_READ_WIN32_HPP
// interlocked_read_win32.hpp
//
// (C) Copyright 2005-8 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/detail/interlocked.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_MSVC
extern "C" void _ReadWriteBarrier(void);
#pragma intrinsic(_ReadWriteBarrier)
namespace boost
{
namespace detail
{
inline long interlocked_read_acquire(long volatile* x)
{
long const res=*x;
_ReadWriteBarrier();
return res;
}
inline void* interlocked_read_acquire(void* volatile* x)
{
void* const res=*x;
_ReadWriteBarrier();
return res;
}
inline void interlocked_write_release(long volatile* x,long value)
{
_ReadWriteBarrier();
*x=value;
}
inline void interlocked_write_release(void* volatile* x,void* value)
{
_ReadWriteBarrier();
*x=value;
}
}
}
#else
namespace boost
{
namespace detail
{
inline long interlocked_read_acquire(long volatile* x)
{
return BOOST_INTERLOCKED_COMPARE_EXCHANGE(x,0,0);
}
inline void* interlocked_read_acquire(void* volatile* x)
{
return BOOST_INTERLOCKED_COMPARE_EXCHANGE_POINTER(x,0,0);
}
inline void interlocked_write_release(long volatile* x,long value)
{
BOOST_INTERLOCKED_EXCHANGE(x,value);
}
inline void interlocked_write_release(void* volatile* x,void* value)
{
BOOST_INTERLOCKED_EXCHANGE_POINTER(x,value);
}
}
}
#endif
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,69 +0,0 @@
#ifndef BOOST_THREAD_WIN32_MUTEX_HPP
#define BOOST_THREAD_WIN32_MUTEX_HPP
// (C) Copyright 2005-7 Anthony Williams
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "basic_timed_mutex.hpp"
#include <boost/utility.hpp>
#include <boost/thread/exceptions.hpp>
#include <boost/thread/locks.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
typedef ::boost::detail::basic_timed_mutex underlying_mutex;
}
class mutex:
public ::boost::detail::underlying_mutex
{
private:
mutex(mutex const&);
mutex& operator=(mutex const&);
public:
mutex()
{
initialize();
}
~mutex()
{
destroy();
}
typedef unique_lock<mutex> scoped_lock;
typedef detail::try_lock_wrapper<mutex> scoped_try_lock;
};
typedef mutex try_mutex;
class timed_mutex:
public ::boost::detail::basic_timed_mutex
{
private:
timed_mutex(timed_mutex const&);
timed_mutex& operator=(timed_mutex const&);
public:
timed_mutex()
{
initialize();
}
~timed_mutex()
{
destroy();
}
typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef detail::try_lock_wrapper<timed_mutex> scoped_try_lock;
typedef scoped_timed_lock scoped_lock;
};
}
#include <boost/config/abi_suffix.hpp>
#endif

View File

@@ -1,205 +0,0 @@
#ifndef BOOST_THREAD_WIN32_ONCE_HPP
#define BOOST_THREAD_WIN32_ONCE_HPP
// once.hpp
//
// (C) Copyright 2005-7 Anthony Williams
// (C) Copyright 2005 John Maddock
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cstring>
#include <cstddef>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/interlocked.hpp>
#include <boost/thread/win32/thread_primitives.hpp>
#include <boost/thread/win32/interlocked_read.hpp>
#include <boost/config/abi_prefix.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std
{
using ::memcpy;
using ::ptrdiff_t;
}
#endif
namespace boost
{
struct once_flag
{
long status;
long count;
};
#define BOOST_ONCE_INIT {0,0}
namespace detail
{
#ifdef BOOST_NO_ANSI_APIS
typedef wchar_t once_char_type;
#else
typedef char once_char_type;
#endif
unsigned const once_mutex_name_fixed_length=54;
unsigned const once_mutex_name_length=once_mutex_name_fixed_length+
sizeof(void*)*2+sizeof(unsigned long)*2+1;
template <class I>
void int_to_string(I p, once_char_type* buf)
{
for(unsigned i=0; i < sizeof(I)*2; ++i,++buf)
{
#ifdef BOOST_NO_ANSI_APIS
once_char_type const a=L'A';
#else
once_char_type const a='A';
#endif
*buf = a + static_cast<once_char_type>((p >> (i*4)) & 0x0f);
}
*buf = 0;
}
inline void name_once_mutex(once_char_type* mutex_name,void* flag_address)
{
#ifdef BOOST_NO_ANSI_APIS
static const once_char_type fixed_mutex_name[]=L"Local\\{C15730E2-145C-4c5e-B005-3BC753F42475}-once-flag";
#else
static const once_char_type fixed_mutex_name[]="Local\\{C15730E2-145C-4c5e-B005-3BC753F42475}-once-flag";
#endif
BOOST_STATIC_ASSERT(sizeof(fixed_mutex_name) ==
(sizeof(once_char_type)*(once_mutex_name_fixed_length+1)));
std::memcpy(mutex_name,fixed_mutex_name,sizeof(fixed_mutex_name));
detail::int_to_string(reinterpret_cast<std::ptrdiff_t>(flag_address),
mutex_name + once_mutex_name_fixed_length);
detail::int_to_string(win32::GetCurrentProcessId(),
mutex_name + once_mutex_name_fixed_length + sizeof(void*)*2);
}
inline void* open_once_event(once_char_type* mutex_name,void* flag_address)
{
if(!*mutex_name)
{
name_once_mutex(mutex_name,flag_address);
}
#ifdef BOOST_NO_ANSI_APIS
return ::boost::detail::win32::OpenEventW(
#else
return ::boost::detail::win32::OpenEventA(
#endif
::boost::detail::win32::synchronize |
::boost::detail::win32::event_modify_state,
false,
mutex_name);
}
inline void* create_once_event(once_char_type* mutex_name,void* flag_address)
{
if(!*mutex_name)
{
name_once_mutex(mutex_name,flag_address);
}
#ifdef BOOST_NO_ANSI_APIS
return ::boost::detail::win32::CreateEventW(
#else
return ::boost::detail::win32::CreateEventA(
#endif
0,::boost::detail::win32::manual_reset_event,
::boost::detail::win32::event_initially_reset,
mutex_name);
}
}
template<typename Function>
void call_once(once_flag& flag,Function f)
{
// Try for a quick win: if the procedure has already been called
// just skip through:
long const function_complete_flag_value=0xc15730e2;
long const running_value=0x7f0725e3;
long status;
bool counted=false;
detail::win32::handle_manager event_handle;
detail::once_char_type mutex_name[detail::once_mutex_name_length];
mutex_name[0]=0;
while((status=::boost::detail::interlocked_read_acquire(&flag.status))
!=function_complete_flag_value)
{
status=BOOST_INTERLOCKED_COMPARE_EXCHANGE(&flag.status,running_value,0);
if(!status)
{
try
{
if(!event_handle)
{
event_handle=detail::open_once_event(mutex_name,&flag);
}
if(event_handle)
{
::boost::detail::win32::ResetEvent(event_handle);
}
f();
if(!counted)
{
BOOST_INTERLOCKED_INCREMENT(&flag.count);
counted=true;
}
BOOST_INTERLOCKED_EXCHANGE(&flag.status,function_complete_flag_value);
if(!event_handle &&
(::boost::detail::interlocked_read_acquire(&flag.count)>1))
{
event_handle=detail::create_once_event(mutex_name,&flag);
}
if(event_handle)
{
::boost::detail::win32::SetEvent(event_handle);
}
break;
}
catch(...)
{
BOOST_INTERLOCKED_EXCHANGE(&flag.status,0);
if(!event_handle)
{
event_handle=detail::open_once_event(mutex_name,&flag);
}
if(event_handle)
{
::boost::detail::win32::SetEvent(event_handle);
}
throw;
}
}
if(!counted)
{
BOOST_INTERLOCKED_INCREMENT(&flag.count);
counted=true;
status=::boost::detail::interlocked_read_acquire(&flag.status);
if(status==function_complete_flag_value)
{
break;
}
if(!event_handle)
{
event_handle=detail::create_once_event(mutex_name,&flag);
continue;
}
}
BOOST_VERIFY(!::boost::detail::win32::WaitForSingleObject(
event_handle,::boost::detail::win32::infinite));
}
}
}
#include <boost/config/abi_suffix.hpp>
#endif

Some files were not shown because too many files have changed in this diff Show More