Files
spirit_x4/test/x4/container_support.cpp
Nana Sakisaka aff263bb1d Clarify behavior of iterator/attribute on failed parse (#64)
The old implementation created temporary container variable and
move-appended its elements to the exposed attribute. This commit adds
new core class `container_appender` that transparently handles insertion
in underlying parsers, without the need to creating a temporary variable.
This change simplifies the core behavior of how the attribute and
iterator is preserved (or not preserved) in failed parse attempts.

Since X4 does not allow error handlers to return anything except `void`,
X4's iterator rollback behavior is not dependent on the error handler
anymore. This commit further clarifies the iterator/attribute behavior
for all supported core parsers.

Due to the reasons described above, this commit not only acts as X4's
"companion" fix mentioned in boostorg/spirit#833, but essentially acts as
the strict superset of the corresponding work boostorg/spirit#836 in X4's
domain.
2025-10-06 00:17:48 +09:00

318 lines
11 KiB
C++

/*=============================================================================
Copyright (c) 2001-2015 Joel de Guzman
Copyright (c) 2001-2011 Hartmut Kaiser
Copyright (c) 2025 Nana Sakisaka
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#include "test.hpp"
#include <boost/spirit/x4/rule.hpp>
#include <boost/spirit/x4/char/char.hpp>
#include <boost/spirit/x4/char/char_class.hpp>
#include <boost/spirit/x4/directive/lexeme.hpp>
#include <boost/spirit/x4/operator/sequence.hpp>
#include <boost/spirit/x4/operator/list.hpp>
#include <boost/spirit/x4/operator/plus.hpp>
#include <boost/spirit/x4/operator/kleene.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <deque>
#include <list>
#include <string>
#include <type_traits>
namespace x4 = boost::spirit::x4;
// check if we did not break user defined specializations
namespace check_substitute {
template<class T> struct foo {};
template<class T> struct bar { using type = T; };
template<class T> struct is_bar : std::false_type {};
template<class T> struct is_bar<bar<T>> : std::true_type {};
} // check_substitute
namespace boost::spirit::x4::traits {
using namespace check_substitute;
template<class T, X4Attribute U>
struct is_substitute<foo<T>, foo<U>>
: is_substitute<T, U>
{};
template<class T, X4Attribute U>
requires is_bar<T>::value && is_bar<U>::value
struct is_substitute<T, U>
: is_substitute<typename T::type, typename U::type>
{};
} // boost::spirit::x4::traits
namespace check_substitute {
using x4::traits::is_substitute_v;
static_assert( is_substitute_v<foo<int>, foo<int>>);
static_assert(!is_substitute_v<foo<int>, foo<long>>);
static_assert( is_substitute_v<bar<int>, bar<int>>);
static_assert(!is_substitute_v<bar<int>, bar<long>>);
} // check_substitute
namespace {
constexpr x4::rule<class pair_rule, std::pair<std::string, std::string>> pair_rule("pair");
constexpr x4::rule<class string_rule, std::string> string_rule("string");
constexpr auto pair_rule_def = string_rule >> x4::lit('=') >> string_rule;
constexpr auto string_rule_def = x4::lexeme[*x4::standard::alnum];
BOOST_SPIRIT_X4_DEFINE(pair_rule)
BOOST_SPIRIT_X4_DEFINE(string_rule)
template<class Container>
void test_map_support()
{
{
constexpr auto rule = pair_rule % x4::lit(',');
Container actual;
REQUIRE(parse("k1=v1,k2=v2,k2=v3", rule, actual));
CHECK(actual.size() == 2);
CHECK(actual == Container{{"k1", "v1"}, {"k2", "v2"}});
}
{
// test sequences parsing into containers
constexpr auto seq_rule = pair_rule >> ',' >> pair_rule >> ',' >> pair_rule;
Container container;
CHECK(parse("k1=v1,k2=v2,k2=v3", seq_rule, container));
}
{
// test parsing container into container
constexpr auto cic_rule = pair_rule >> +(',' >> pair_rule);
Container container;
CHECK(parse("k1=v1,k2=v2,k2=v3", cic_rule, container));
}
}
template<class Container>
void test_multimap_support()
{
{
constexpr auto rule = pair_rule % x4::lit(',');
Container actual;
REQUIRE(parse("k1=v1,k2=v2,k2=v3", rule, actual));
CHECK(actual.size() == 3);
CHECK(actual == Container{{"k1", "v1"}, {"k2", "v2"}, {"k2", "v3"}});
}
{
// test sequences parsing into containers
constexpr auto seq_rule = pair_rule >> ',' >> pair_rule >> ',' >> pair_rule;
Container container;
CHECK(parse("k1=v1,k2=v2,k2=v3", seq_rule, container));
}
{
// test parsing container into container
constexpr auto cic_rule = pair_rule >> +(',' >> pair_rule);
Container container;
CHECK(parse("k1=v1,k2=v2,k2=v3", cic_rule, container));
}
}
template<class Container>
void test_sequence_support()
{
{
constexpr auto rule = string_rule % x4::lit(',');
Container actual;
REQUIRE(parse("e1,e2,e2", rule, actual));
CHECK(actual.size() == 3);
CHECK(actual == Container{"e1", "e2", "e2"});
}
{
// test sequences parsing into containers
constexpr auto seq_rule = string_rule >> ',' >> string_rule >> ',' >> string_rule;
Container container;
CHECK(parse("e1,e2,e2", seq_rule, container));
}
{
// test parsing container into container
constexpr auto cic_rule = string_rule >> +(',' >> string_rule);
Container container;
CHECK(parse("e1,e2,e2", cic_rule, container));
}
}
template<class Container>
void test_set_support()
{
{
constexpr auto rule = string_rule % x4::lit(',');
Container actual;
REQUIRE(parse("e1,e2,e2", rule, actual));
CHECK(actual.size() == 2);
CHECK(actual == Container{"e1", "e2"});
}
{
// test sequences parsing into containers
constexpr auto seq_rule = string_rule >> ',' >> string_rule >> ',' >> string_rule;
Container container;
CHECK(parse("e1,e2,e2", seq_rule, container));
}
{
// test parsing container into container
constexpr auto cic_rule = string_rule >> +(',' >> string_rule);
Container container;
CHECK(parse("e1,e2,e2", cic_rule, container));
}
}
template<class Container>
void test_multiset_support()
{
{
constexpr auto rule = string_rule % x4::lit(',');
Container actual;
REQUIRE(parse("e1,e2,e2", rule, actual));
CHECK(actual.size() == 3);
CHECK(actual == Container{"e1", "e2", "e2"});
}
{
// test sequences parsing into containers
constexpr auto seq_rule = string_rule >> ',' >> string_rule >> ',' >> string_rule;
Container container;
CHECK(parse("e1,e2,e2", seq_rule, container));
}
{
// test parsing container into container
constexpr auto cic_rule = string_rule >> +(',' >> string_rule);
Container container;
CHECK(parse("e1,e2,e2", cic_rule, container));
}
}
template<class Container>
void test_string_support()
{
{
constexpr auto rule = string_rule % x4::lit(',');
Container container;
REQUIRE(parse("e1,e2,e2", rule, container));
CHECK(container.size() == 6);
CHECK(container == Container{"e1e2e2"});
}
{
// test sequences parsing into containers
constexpr auto seq_rule = string_rule >> ',' >> string_rule >> ',' >> string_rule;
Container container;
CHECK(parse("e1,e2,e2", seq_rule, container));
}
{
// test parsing container into container
constexpr auto cic_rule = string_rule >> +(',' >> string_rule);
Container container;
CHECK(parse("e1,e2,e2", cic_rule, container));
}
}
} // anonymous
TEST_CASE("container_support")
{
using x4::traits::is_container_v;
using x4::traits::is_associative_v;
// ------------------------------------------------------------------
STATIC_CHECK(is_container_v<std::string>);
STATIC_CHECK(!is_associative_v<std::string>);
STATIC_CHECK(is_container_v<x4::container_appender<std::string>>);
STATIC_CHECK(!is_associative_v<x4::container_appender<std::string>>);
STATIC_CHECK(is_container_v<std::vector<int>>);
STATIC_CHECK(!is_associative_v<std::vector<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::vector<int>>>);
STATIC_CHECK(!is_associative_v<x4::container_appender<std::vector<int>>>);
STATIC_CHECK(is_container_v<std::deque<int>>);
STATIC_CHECK(!is_associative_v<std::deque<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::deque<int>>>);
STATIC_CHECK(!is_associative_v<x4::container_appender<std::deque<int>>>);
STATIC_CHECK(is_container_v<std::list<int>>);
STATIC_CHECK(!is_associative_v<std::list<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::list<int>>>);
STATIC_CHECK(!is_associative_v<x4::container_appender<std::list<int>>>);
// ------------------------------------------------------------------
STATIC_CHECK(is_container_v<std::set<int>>);
STATIC_CHECK(is_associative_v<std::set<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::set<int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::set<int>>>);
STATIC_CHECK(is_container_v<std::unordered_set<int>>);
STATIC_CHECK(is_associative_v<std::unordered_set<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::unordered_set<int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::unordered_set<int>>>);
STATIC_CHECK(is_container_v<std::multiset<int>>);
STATIC_CHECK(is_associative_v<std::multiset<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::multiset<int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::multiset<int>>>);
STATIC_CHECK(is_container_v<std::unordered_multiset<int>>);
STATIC_CHECK(is_associative_v<std::unordered_multiset<int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::unordered_multiset<int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::unordered_multiset<int>>>);
STATIC_CHECK(is_container_v<std::map<int,int>>);
STATIC_CHECK(is_associative_v<std::map<int,int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::map<int,int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::map<int,int>>>);
STATIC_CHECK(is_container_v<std::unordered_map<int,int>>);
STATIC_CHECK(is_associative_v<std::unordered_map<int,int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::unordered_map<int,int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::unordered_map<int,int>>>);
STATIC_CHECK(is_container_v<std::multimap<int,int>>);
STATIC_CHECK(is_associative_v<std::multimap<int,int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::multimap<int,int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::multimap<int,int>>>);
STATIC_CHECK(is_container_v<std::unordered_multimap<int,int>>);
STATIC_CHECK(is_associative_v<std::unordered_multimap<int,int>>);
STATIC_CHECK(is_container_v<x4::container_appender<std::unordered_multimap<int,int>>>);
STATIC_CHECK(is_associative_v<x4::container_appender<std::unordered_multimap<int,int>>>);
// ------------------------------------------------------------------
test_string_support<std::string>();
test_sequence_support<std::vector<std::string>>();
test_sequence_support<std::list<std::string>>();
test_sequence_support<std::deque<std::string>>();
test_set_support<std::set<std::string>>();
test_set_support<std::unordered_set<std::string>>();
test_multiset_support<std::multiset<std::string>>();
test_multiset_support<std::unordered_multiset<std::string>>();
test_map_support<std::map<std::string,std::string>>();
test_map_support<std::unordered_map<std::string,std::string>>();
test_multimap_support<std::multimap<std::string,std::string>>();
test_multimap_support<std::unordered_multimap<std::string,std::string>>();
}