2
0
mirror of https://github.com/boostorg/random.git synced 2026-01-19 16:32:16 +00:00
Files
random/histogram.cpp
Jens Maurer 44f6a441f7 change tabs to spaces
[SVN r11738]
2001-11-19 22:13:04 +00:00

148 lines
4.5 KiB
C++

/* boost histogram.cpp graphical verification of distribution functions
*
* Copyright Jens Maurer 2000
* Permission to use, copy, modify, sell, and distribute this software
* is hereby granted without fee provided that the above copyright notice
* appears in all copies and that both that copyright notice and this
* permission notice appear in supporting documentation,
*
* Jens Maurer makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without express or
* implied warranty.
*
* $Id$
*
* This test program allows to visibly examine the results of the
* distribution functions.
*/
#include <iostream>
#include <iomanip>
#include <vector>
#include <algorithm>
#include <cmath>
#include <string>
#include <boost/random.hpp>
void plot_histogram(const std::vector<int>& slots, int samples,
double from, double to)
{
int m = *std::max_element(slots.begin(), slots.end());
const int nRows = 20;
std::cout.setf(std::ios::fixed|std::ios::left);
std::cout.precision(5);
for(int r = 0; r < nRows; r++) {
double y = ((nRows - r) * double(m))/(nRows * samples);
std::cout << std::setw(10) << y << " ";
for(unsigned int col = 0; col < slots.size(); col++) {
char out = ' ';
if(slots[col]/double(samples) >= y)
out = 'x';
std::cout << out;
}
std::cout << std::endl;
}
std::cout << std::setw(12) << " "
<< std::setw(10) << from;
std::cout.setf(std::ios::right, std::ios::adjustfield);
std::cout << std::setw(slots.size()-10) << to << std::endl;
}
// I am not sure whether these two should be in the library as well
// maintain sum of NumberGenerator results
template<class NumberGenerator,
class Sum = typename NumberGenerator::result_type>
class sum_result
{
public:
typedef NumberGenerator base_type;
typedef typename base_type::result_type result_type;
explicit sum_result(const base_type & g) : gen(g), _sum(0) { }
result_type operator()() { result_type r = gen(); _sum += r; return r; }
base_type & base() { return gen; }
Sum sum() const { return _sum; }
void reset() { _sum = 0; }
private:
base_type gen;
Sum _sum;
};
// maintain square sum of NumberGenerator results
template<class NumberGenerator,
class Sum = typename NumberGenerator::result_type>
class squaresum_result
{
public:
typedef NumberGenerator base_type;
typedef typename base_type::result_type result_type;
explicit squaresum_result(const base_type & g) : gen(g), _sum(0) { }
result_type operator()() { result_type r = gen(); _sum += r*r; return r; }
base_type & base() { return gen; }
Sum squaresum() const { return _sum; }
void reset() { _sum = 0; }
private:
base_type gen;
Sum _sum;
};
template<class RNG>
void histogram(RNG base, int samples, double from, double to,
const std::string & name)
{
typedef squaresum_result<sum_result<RNG, double>, double > SRNG;
SRNG gen((sum_result<RNG, double>(base)));
const int nSlots = 60;
std::vector<int> slots(nSlots,0);
for(int i = 0; i < samples; i++) {
double val = gen();
if(val < from || val >= to) // early check avoids overflow
continue;
int slot = int((val-from)/(to-from) * nSlots);
if(slot < 0 || slot > (int)slots.size())
continue;
slots[slot]++;
}
std::cout << name << std::endl;
plot_histogram(slots, samples, from, to);
double mean = gen.base().sum() / samples;
std::cout << "mean: " << mean
<< " sigma: " << std::sqrt(gen.squaresum()/samples-mean*mean)
<< "\n" << std::endl;
}
template<class PRNG>
void histograms()
{
PRNG rng;
using namespace boost;
histogram(uniform_01<PRNG>(rng), 100000, -0.5, 1.5, "uniform_01(0,1)");
histogram(bernoulli_distribution<PRNG>(rng, 0.2), 100000, -0.5, 1.5,
"bernoulli(0.2)");
histogram(triangle_distribution<PRNG>(rng, 1, 2, 8), 100000, 0, 10,
"triangle(1,2,8)");
histogram(geometric_distribution<PRNG>(rng, 5.0/6.0), 100000, 0, 10,
"geometric(5/6)");
histogram(exponential_distribution<PRNG>(rng, 0.3), 100000, 0, 10,
"exponential(0.3)");
histogram(cauchy_distribution<PRNG>(rng), 100000, -5, 5,
"cauchy");
histogram(lognormal_distribution<PRNG>(rng, 3, 2), 100000, 0, 10,
"lognormal");
histogram(normal_distribution<PRNG>(rng), 100000, -3, 3,
"normal");
histogram(normal_distribution<PRNG>(rng, 0.5, 0.5), 100000, -3, 3,
"normal(0.5, 0.5)");
}
int main()
{
histograms<boost::mt19937>();
}