2
0
mirror of https://github.com/boostorg/random.git synced 2026-01-23 17:52:18 +00:00

Merge [53462], [53699], and [53800] from the trunk.

[SVN r53871]
This commit is contained in:
Steven Watanabe
2009-06-13 17:54:06 +00:00
parent 7abb87d4f8
commit 6ce516d9ed
12 changed files with 383 additions and 121 deletions

View File

@@ -54,6 +54,8 @@ public:
additive_combine(typename MLCG1::result_type seed1,
typename MLCG2::result_type seed2)
: _mlcg1(seed1), _mlcg2(seed2) { }
additive_combine(result_type seed)
: _mlcg1(seed), _mlcg2(seed) { }
template<class It> additive_combine(It& first, It last)
: _mlcg1(first, last), _mlcg2(first, last) { }
@@ -63,6 +65,12 @@ public:
_mlcg2.seed();
}
void seed(result_type seed)
{
_mlcg1.seed(seed);
_mlcg2.seed(seed);
}
void seed(typename MLCG1::result_type seed1,
typename MLCG2::result_type seed2)
{

View File

@@ -0,0 +1,88 @@
/* boost random/detail/seed.hpp header file
*
* Copyright Steven Watanabe 2009
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id$
*/
#ifndef BOOST_RANDOM_DETAIL_SEED_HPP
#define BOOST_RANDOM_DETAIL_SEED_HPP
#include <boost/config.hpp>
#if !defined(BOOST_NO_SFINAE)
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
namespace boost {
namespace random {
namespace detail {
template<class T>
struct disable_seed : boost::disable_if<boost::is_arithmetic<T> > {};
template<class Engine, class T>
struct disable_constructor : disable_seed<T> {};
template<class Engine>
struct disable_constructor<Engine, Engine> {
};
#define BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(Self, Generator, gen) \
template<class Generator> \
explicit Self(Generator& gen, typename ::boost::random::detail::disable_constructor<Self, Generator>::type* = 0)
#define BOOST_RANDOM_DETAIL_GENERATOR_SEED(Self, Generator, gen) \
template<class Generator> \
void seed(Generator& gen, typename ::boost::random::detail::disable_seed<Generator>::type* = 0)
#define BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(Self, T, x) \
explicit Self(const T& x)
#define BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(Self, T, x) \
void seed(const T& x)
}
}
}
#else
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/mpl/bool.hpp>
#define BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(Self, Generator, gen) \
Self(Self& other) { *this = other; } \
Self(const Self& other) { *this = other; } \
template<class Generator> \
explicit Self(Generator& gen) { \
boost_random_constructor_impl(gen, ::boost::is_arithmetic<Generator>());\
} \
template<class Generator> \
void boost_random_constructor_impl(Generator& gen, ::boost::mpl::false_)
#define BOOST_RANDOM_DETAIL_GENERATOR_SEED(Self, Generator, gen) \
template<class Generator> \
void seed(Generator& gen) { \
boost_random_seed_impl(gen, ::boost::is_arithmetic<Generator>());\
}\
template<class Generator>\
void boost_random_seed_impl(Generator& gen, ::boost::mpl::false_)
#define BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(Self, T, x) \
explicit Self(const T& x) { boost_random_constructor_impl(x, ::boost::mpl::true_()); }\
void boost_random_constructor_impl(const T& x, ::boost::mpl::true_)
#define BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(Self, T, x) \
void seed(const T& x) { boost_random_seed_impl(x, ::boost::mpl::true_()); }\
void boost_random_seed_impl(const T& x, ::boost::mpl::true_)
#endif
#endif

View File

@@ -43,6 +43,7 @@ public:
discard_block() : _rng(), _n(0) { }
explicit discard_block(const base_type & rng) : _rng(rng), _n(0) { }
template<class T> explicit discard_block(T s) : _rng(s), _n(0) {}
template<class It> discard_block(It& first, It last)
: _rng(first, last), _n(0) { }
void seed() { _rng.seed(); _n = 0; }

View File

@@ -28,6 +28,7 @@
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/seed.hpp>
#include <boost/random/detail/pass_through_engine.hpp>
namespace boost {
@@ -267,9 +268,10 @@ public:
BOOST_STATIC_CONSTANT(unsigned int, short_lag = q);
lagged_fibonacci_01() { init_modulus(); seed(); }
explicit lagged_fibonacci_01(uint32_t value) { init_modulus(); seed(value); }
template<class Generator>
explicit lagged_fibonacci_01(Generator & gen) { init_modulus(); seed(gen); }
BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(lagged_fibonacci_01, uint32_t, value)
{ init_modulus(); seed(value); }
BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(lagged_fibonacci_01, Generator, gen)
{ init_modulus(); seed(gen); }
template<class It> lagged_fibonacci_01(It& first, It last)
{ init_modulus(); seed(first, last); }
// compiler-generated copy ctor and assignment operator are fine
@@ -285,7 +287,8 @@ private:
}
public:
void seed(uint32_t value = 331u)
void seed() { seed(331u); }
BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(lagged_fibonacci_01, uint32_t, value)
{
minstd_rand0 intgen(value);
seed(intgen);
@@ -294,8 +297,7 @@ public:
// For GCC, moving this function out-of-line prevents inlining, which may
// reduce overall object code size. However, MSVC does not grok
// out-of-line template member functions.
template<class Generator>
void seed(Generator & gen)
BOOST_RANDOM_DETAIL_GENERATOR_SEED(lagged_fibonacci, Generator, gen)
{
// use pass-by-reference, but wrap argument in pass_through_engine
typedef detail::pass_through_engine<Generator&> ref_gen;

View File

@@ -212,12 +212,12 @@ public:
int32_t min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
int32_t max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return std::numeric_limits<int32_t>::max BOOST_PREVENT_MACRO_SUBSTITUTION (); }
explicit rand48(int32_t x0 = 1) : lcf(cnv(x0)) { }
explicit rand48(uint64_t x0) : lcf(x0) { }
rand48() : lcf(cnv(static_cast<int32_t>(1))) {}
template<class T> explicit rand48(T x0) : lcf(cnv(x0)) { }
template<class It> rand48(It& first, It last) : lcf(first, last) { }
// compiler-generated copy ctor and assignment operator are fine
void seed(int32_t x0 = 1) { lcf.seed(cnv(x0)); }
void seed(uint64_t x0) { lcf.seed(x0); }
void seed() { seed(static_cast<int32_t>(1)); }
template<class T> void seed(T x0) { lcf.seed(cnv(x0)); }
template<class It> void seed(It& first, It last) { lcf.seed(first,last); }
int32_t operator()() { return static_cast<int32_t>(lcf() >> 17); }
@@ -253,8 +253,18 @@ private:
random::linear_congruential<uint64_t,
uint64_t(0xDEECE66DUL) | (uint64_t(0x5) << 32), // xxxxULL is not portable
0xB, uint64_t(1)<<48, /* unknown */ 0> lcf;
static uint64_t cnv(int32_t x)
{ return (static_cast<uint64_t>(x) << 16) | 0x330e; }
template<class T>
static uint64_t cnv(T x)
{
if(sizeof(T) < sizeof(uint64_t)) {
return (static_cast<uint64_t>(x) << 16) | 0x330e;
} else {
return(static_cast<uint64_t>(x));
}
}
static uint64_t cnv(float x) { return(static_cast<uint64_t>(x)); }
static uint64_t cnv(double x) { return(static_cast<uint64_t>(x)); }
static uint64_t cnv(long double x) { return(static_cast<uint64_t>(x)); }
};
#endif /* !BOOST_NO_INT64_T && !BOOST_NO_INTEGRAL_INT64_T */

View File

@@ -28,6 +28,7 @@
#include <boost/detail/workaround.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/ptr_helper.hpp>
#include <boost/random/detail/seed.hpp>
namespace boost {
namespace random {
@@ -55,28 +56,18 @@ public:
mersenne_twister() { seed(); }
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x520)
// Work around overload resolution problem (Gennadiy E. Rozental)
explicit mersenne_twister(const UIntType& value)
#else
explicit mersenne_twister(UIntType value)
#endif
BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(mersenne_twister, UIntType, value)
{ seed(value); }
template<class It> mersenne_twister(It& first, It last) { seed(first,last); }
template<class Generator>
explicit mersenne_twister(Generator & gen) { seed(gen); }
BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(mersenne_twister, Generator, gen)
{ seed(gen); }
// compiler-generated copy ctor and assignment operator are fine
void seed() { seed(UIntType(5489)); }
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x520)
// Work around overload resolution problem (Gennadiy E. Rozental)
void seed(const UIntType& value)
#else
void seed(UIntType value)
#endif
BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(mersenne_twister, UIntType, value)
{
// New seeding algorithm from
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
@@ -93,8 +84,7 @@ public:
// For GCC, moving this function out-of-line prevents inlining, which may
// reduce overall object code size. However, MSVC does not grok
// out-of-line definitions of member function templates.
template<class Generator>
void seed(Generator & gen)
BOOST_RANDOM_DETAIL_GENERATOR_SEED(mersenne_twister, Generator, gen)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<result_type>::is_signed);

View File

@@ -27,6 +27,7 @@
#include <boost/static_assert.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/seed.hpp>
#include <boost/random/linear_congruential.hpp>
@@ -86,14 +87,16 @@ public:
#endif
seed();
}
explicit subtract_with_carry(uint32_t value) { seed(value); }
template<class Generator>
explicit subtract_with_carry(Generator & gen) { seed(gen); }
BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(subtract_with_carry, uint32_t, value)
{ seed(value); }
BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(subtract_with_carry, Generator, gen)
{ seed(gen); }
template<class It> subtract_with_carry(It& first, It last) { seed(first,last); }
// compiler-generated copy ctor and assignment operator are fine
void seed(uint32_t value = 19780503u)
void seed() { seed(19780503u); }
BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(subtract_with_carry, uint32_t, value)
{
random::linear_congruential<int32_t, 40014, 0, 2147483563, 0> intgen(value);
seed(intgen);
@@ -102,8 +105,7 @@ public:
// For GCC, moving this function out-of-line prevents inlining, which may
// reduce overall object code size. However, MSVC does not grok
// out-of-line template member functions.
template<class Generator>
void seed(Generator & gen)
BOOST_RANDOM_DETAIL_GENERATOR_SEED(subtract_with_carry, Generator, gen)
{
// I could have used std::generate_n, but it takes "gen" by value
for(unsigned int j = 0; j < long_lag; ++j)

View File

@@ -23,13 +23,9 @@
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/random/uniform_smallint.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/signed_unsigned_tools.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
#include <boost/type_traits/is_float.hpp>
#endif
namespace boost {
@@ -119,45 +115,135 @@ private:
for(;;) {
// concatenate several invocations of the base RNG
// take extra care to avoid overflows
// limit == floor((range+1)/(brange+1))
// Therefore limit*(brange+1) <= range+1
range_type limit;
if(range == (std::numeric_limits<range_type>::max)()) {
limit = range/(range_type(brange)+1);
if(range % range_type(brange)+1 == range_type(brange))
if(range % (range_type(brange)+1) == range_type(brange))
++limit;
} else {
limit = (range+1)/(range_type(brange)+1);
}
// We consider "result" as expressed to base (brange+1):
// For every power of (brange+1), we determine a random factor
range_type result = range_type(0);
range_type mult = range_type(1);
// loop invariants:
// result < mult
// mult <= range
while(mult <= limit) {
// Postcondition: result <= range, thus no overflow
//
// limit*(brange+1)<=range+1 def. of limit (1)
// eng()-bmin<=brange eng() post. (2)
// and mult<=limit. loop condition (3)
// Therefore mult*(eng()-bmin+1)<=range+1 by (1),(2),(3) (4)
// Therefore mult*(eng()-bmin)+mult<=range+1 rearranging (4) (5)
// result<mult loop invariant (6)
// Therefore result+mult*(eng()-bmin)<range+1 by (5), (6) (7)
//
// Postcondition: result < mult*(brange+1)
//
// result<mult loop invariant (1)
// eng()-bmin<=brange eng() post. (2)
// Therefore result+mult*(eng()-bmin) <
// mult+mult*(eng()-bmin) by (1) (3)
// Therefore result+(eng()-bmin)*mult <
// mult+mult*brange by (2), (3) (4)
// Therefore result+(eng()-bmin)*mult <
// mult*(brange+1) by (4)
result += random::detail::subtract<base_result>()(eng(), bmin) * mult;
// equivalent to (mult * (brange+1)) == range+1, but avoids overflow.
if(mult * range_type(brange) == range - mult + 1) {
// The destination range is an integer power of
// the generator's range.
return(result);
}
// Postcondition: mult <= range
//
// limit*(brange+1)<=range+1 def. of limit (1)
// mult<=limit loop condition (2)
// Therefore mult*(brange+1)<=range+1 by (1), (2) (3)
// mult*(brange+1)!=range+1 preceding if (4)
// Therefore mult*(brange+1)<range+1 by (3), (4) (5)
//
// Postcondition: result < mult
//
// See the second postcondition on the change to result.
mult *= range_type(brange)+range_type(1);
}
if(mult == limit)
// range+1 is an integer power of brange+1: no rejections required
return result;
// loop postcondition: range/mult < brange+1
//
// mult > limit loop condition (1)
// Suppose range/mult >= brange+1 Assumption (2)
// range >= mult*(brange+1) by (2) (3)
// range+1 > mult*(brange+1) by (3) (4)
// range+1 > (limit+1)*(brange+1) by (1), (4) (5)
// (range+1)/(brange+1) > limit+1 by (5) (6)
// limit < floor((range+1)/(brange+1)) by (6) (7)
// limit==floor((range+1)/(brange+1)) def. of limit (8)
// not (2) reductio (9)
//
// loop postcondition: (range/mult)*mult+(mult-1) >= range
//
// (range/mult)*mult + range%mult == range identity (1)
// range%mult < mult def. of % (2)
// (range/mult)*mult+mult > range by (1), (2) (3)
// (range/mult)*mult+(mult-1) >= range by (3) (4)
//
// Note that the maximum value of result at this point is (mult-1),
// so after this final step, we generate numbers that can be
// at least as large as range. We have to really careful to avoid
// overflow in this final addition and in the rejection. Anything
// that overflows is larger than range and can thus be rejected.
// range/mult < brange+1 -> no endless loop
result += uniform_int<range_type>(0, range/mult)(eng) * mult;
if(result <= range)
return random::detail::add<range_type, result_type>()(result, min_value);
range_type result_increment = uniform_int<range_type>(0, range/mult)(eng);
if((std::numeric_limits<range_type>::max)() / mult < result_increment) {
// The multiplcation would overflow. Reject immediately.
continue;
}
result_increment *= mult;
// unsigned integers are guaranteed to wrap on overflow.
result += result_increment;
if(result < result_increment) {
// The addition overflowed. Reject.
continue;
}
if(result > range) {
// Too big. Reject.
continue;
}
return random::detail::add<range_type, result_type>()(result, min_value);
}
} else { // brange > range
if(brange / range > 4 /* quantization_cutoff */ ) {
// the new range is vastly smaller than the source range,
// so quantization effects are not relevant
return boost::uniform_smallint<result_type>(min_value, max_value)(eng);
} else {
// use rejection method to handle cases like 0..5 -> 0..4
for(;;) {
base_unsigned result =
random::detail::subtract<base_result>()(eng(), bmin);
// result and range are non-negative, and result is possibly larger
// than range, so the cast is safe
if(result <= static_cast<base_unsigned>(range))
return random::detail::add<base_unsigned, result_type>()(result, min_value);
base_unsigned bucket_size;
// it's safe to add 1 to range, as long as we cast it first,
// because we know that it is less than brange. However,
// we do need to be careful not to cause overflow by adding 1
// to brange.
if(brange == (std::numeric_limits<base_unsigned>::max)()) {
bucket_size = brange / (static_cast<base_unsigned>(range)+1);
if(brange % (static_cast<base_unsigned>(range)+1) == static_cast<base_unsigned>(range)) {
++bucket_size;
}
} else {
bucket_size = (brange+1) / (static_cast<base_unsigned>(range)+1);
}
for(;;) {
base_unsigned result =
random::detail::subtract<base_result>()(eng(), bmin);
result /= bucket_size;
// result and range are non-negative, and result is possibly larger
// than range, so the cast is safe
if(result <= static_cast<base_unsigned>(range))
return random::detail::add<base_unsigned, result_type>()(result, min_value);
}
}
}

View File

@@ -49,9 +49,12 @@ public:
{ }
xor_combine(const base1_type & rng1, const base2_type & rng2)
: _rng1(rng1), _rng2(rng2) { }
xor_combine(const result_type & v)
: _rng1(v), _rng2(v) { }
template<class It> xor_combine(It& first, It last)
: _rng1(first, last), _rng2( /* advanced by other call */ first, last) { }
void seed() { _rng1.seed(); _rng2.seed(); }
void seed(const result_type & v) { _rng1.seed(v); _rng2.seed(v); }
template<class It> void seed(It& first, It last)
{
_rng1.seed(first, last);

View File

@@ -129,12 +129,61 @@ void instantiate_real_dist(URNG& urng, RealType /* ignored */)
boost::gamma_distribution<RealType>(1));
}
template<class URNG, class T>
void test_seed(URNG & urng, const T & t) {
URNG urng2(t);
BOOST_CHECK(urng == urng2);
urng2.seed(t);
BOOST_CHECK(urng == urng2);
}
// rand48 uses non-standard seeding
template<class T>
void test_seed(boost::rand48 & urng, const T & t) {
boost::rand48 urng2(t);
urng2.seed(t);
}
template<class URNG, class ResultType>
void instantiate_urng(const std::string & s, const URNG &, const ResultType &)
void instantiate_seed(const URNG &, const ResultType &) {
{
URNG urng;
URNG urng2;
urng2.seed();
BOOST_CHECK(urng == urng2);
}
{
int value = 127;
URNG urng(value);
// integral types
test_seed(urng, static_cast<char>(value));
test_seed(urng, static_cast<signed char>(value));
test_seed(urng, static_cast<unsigned char>(value));
test_seed(urng, static_cast<short>(value));
test_seed(urng, static_cast<unsigned short>(value));
test_seed(urng, static_cast<int>(value));
test_seed(urng, static_cast<unsigned int>(value));
test_seed(urng, static_cast<long>(value));
test_seed(urng, static_cast<unsigned long>(value));
#if !defined(BOOST_NO_INT64_T)
test_seed(urng, static_cast<boost::int64_t>(value));
test_seed(urng, static_cast<boost::uint64_t>(value));
#endif
// floating point types
test_seed(urng, static_cast<float>(value));
test_seed(urng, static_cast<double>(value));
test_seed(urng, static_cast<long double>(value));
}
}
template<class URNG, class ResultType>
void instantiate_urng(const std::string & s, const URNG & u, const ResultType & r)
{
std::cout << "Basic tests for " << s;
URNG urng;
urng.seed(); // seed() member function
instantiate_seed(u, r); // seed() member function
int a[URNG::has_fixed_range ? 5 : 10]; // compile-time constant
(void) a; // avoid "unused" warning
typename URNG::result_type x1 = urng();
@@ -148,6 +197,8 @@ void instantiate_urng(const std::string & s, const URNG &, const ResultType &)
urng();
urng2 = urng; // copy assignment
BOOST_CHECK(urng == urng2);
urng2 = URNG(urng2); // copy constructor, not templated constructor
BOOST_CHECK(urng == urng2);
#endif // BOOST_MSVC
const std::vector<int> v(9999u, 0x41);

View File

@@ -35,8 +35,8 @@
<li><a href="#mersenne_twister">Class template
<code>random::mersenne_twister</code></a></li>
<li><a href="#lagged_fibonacci">Class template
<code>random::lagged_fibonacci</code></a></li>
<li><a href="#lagged_fibonacci_01">Class template
<code>random::lagged_fibonacci_01</code></a></li>
<li><a href="#performance">Performance</a></li>
</ul>
@@ -351,18 +351,18 @@ namespace boost {
typedef random::mersenne_twister&lt; /* ... */ &gt; mt19937;
namespace random {
template&lt;class FloatType, unsigned int p, unsigned int q&gt;
class lagged_fibonacci;
template&lt;class FloatType, int w, unsigned int p, unsigned int q&gt;
class lagged_fibonacci_01;
}
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci607;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci1279;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci2281;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci3217;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci4423;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci9689;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci19937;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci23209;
typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci44497;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci607;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci1279;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci2281;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci3217;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci4423;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci9689;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci19937;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci23209;
typedef random::lagged_fibonacci_01&lt; /* ... */ &gt; lagged_fibonacci44497;
} // namespace boost
</pre>
@@ -773,7 +773,7 @@ template&lt;class T&gt; void seed(T s)
#include &lt;<a href=
"../../boost/random/inversive_congruential.hpp">boost/random/inversive_congruential.hpp</a>&gt;
template&lt;class IntType, IntType a, IntType b, IntType p&gt;
template&lt;class IntType, IntType a, IntType b, IntType p, IntType val&gt;
class random::inversive_congruential
{
public:
@@ -789,7 +789,7 @@ public:
IntType operator()();
};
typedef random::inversive_congruential&lt;int32_t, 9102, 2147483647-36884165, 2147483647&gt; hellekalek1995;
typedef random::inversive_congruential&lt;int32_t, 9102, 2147483647-36884165, 2147483647, 0&gt; hellekalek1995;
</pre>
<h3>Description</h3>
@@ -812,7 +812,8 @@ typedef random::inversive_congruential&lt;int32_t, 9102, 2147483647-36884165, 21
<p>The template parameter <code>IntType</code> shall denote a signed
integral type large enough to hold p; a, b, and p are the parameters of the
generators.</p>
generators. The template parameter val is the validation value checked by
validation.</p>
<p><em>Note:</em> The implementation currently uses the Euclidian Algorithm
to compute the multiplicative inverse. Therefore, the inversive generators
@@ -849,21 +850,19 @@ void seed(IntType y0)
#include &lt;<a href=
"../../boost/random/mersenne_twister.hpp">boost/random/mersenne_twister.hpp</a>&gt;
template&lt;class DataType, int w, int n, int m, int r, DataType a, int u,
int s, DataType b, int t, DataType c, int l, IntType val&gt;
template&lt;class UIntType, int w, int n, int m, int r, UIntType a, int u,
int s, UIntType b, int t, UIntType c, int l, UIntType val&gt;
class random::mersenne_twister
{
public:
typedef DataType result_type;
static const bool has_fixed_range = true;
static const result_type min_value;
static const result_type max_value;
typedef UIntType result_type;
static const bool has_fixed_range = false;
mersenne_twister();
explicit mersenne_twister(DataType value);
explicit mersenne_twister(UIntType value);
template&lt;class Generator&gt; explicit mersenne_twister(Generator &amp; gen);
// compiler-generated copy ctor and assignment operator are fine
void seed();
void seed(DataType value);
void seed(UIntType value);
template&lt;class Generator&gt; void seed(Generator &amp; gen);
result_type operator()();
bool validation(result_type) const;
@@ -918,13 +917,9 @@ template&lt;class Generator&gt; explicit mersenne_twister(Generator &amp; gen)
<p><strong>Effects:</strong> Constructs a <code>mersenne_twister</code> and
calls <code>seed(gen)</code>.</p>
<p><em>Note:</em> When using direct-initialization syntax with an lvalue
(e.g. in the variable definition <code>Gen gen2(gen);</code>), this
templated constructor will be preferred over the compiler-generated copy
constructor. For variable definitions which should copy the state of
another <code>mersenne_twister</code>, use e.g. <code>Gen gen2 =
gen;</code>, which is copy-initialization syntax and guaranteed to invoke
the copy constructor.</p>
<p><em>Note:</em> The copy constructor will always be preferred over the
templated constructor. mersenne_twister takes special steps to guarantee
this.</p>
<h3>Seeding</h3>
<pre>
@@ -953,39 +948,35 @@ template&lt;class Generator&gt; void seed(Generator &amp; gen)
<p><strong>Complexity:</strong> Exactly <code>n</code> invocations of
<code>gen</code>.</p>
<p><em>Note:</em> When invoking <code>seed</code> with an lvalue, overload
resolution chooses the function template unless the type of the argument
exactly matches <code>result_type</code>. For other integer types, you
should convert the argument to <code>result_type</code> explicitly.</p>
<h3><a name="mt11213b" id="mt11213b"></a><a name="mt19937" id=
"mt19937">Specializations</a></h3>
<p>The specializations <code>mt11213b</code> and <code>mt19937</code> are
from the paper cited above.</p>
<h2><a name="lagged_fibonacci" id="lagged_fibonacci">Class template
<code>random::lagged_fibonacci</code></a></h2>
<h2><a name="lagged_fibonacci_01" id="lagged_fibonacci_01">Class template
<code>random::lagged_fibonacci_01</code></a></h2>
<h3>Synopsis</h3>
<pre>
#include &lt;<a href=
"../../boost/random/lagged_fibonacci.hpp">boost/random/lagged_fibonacci.hpp</a>&gt;
template&lt;class FloatType, unsigned int p, unsigned int q&gt;
class lagged_fibonacci
template&lt;class FloatType, int w, unsigned int p, unsigned int q&gt;
class lagged_fibonacci_01
{
public:
typedef FloatType result_type;
static const bool has_fixed_range = false;
static const int word_size = w;
static const unsigned int long_lag = p;
static const unsigned int short_lag = q;
result_type min() const { return 0.0; }
result_type max() const { return 1.0; }
lagged_fibonacci();
explicit lagged_fibonacci(uint32_t value);
lagged_fibonacci_01();
explicit lagged_fibonacci_01(uint32_t value);
template&lt;class Generator&gt;
explicit lagged_fibonacci(Generator &amp; gen);
explicit lagged_fibonacci_01(Generator &amp; gen);
// compiler-generated copy ctor and assignment operator are fine
void seed(uint32_t value = 331u);
template&lt;class Generator&gt; void seed(Generator &amp; gen);
@@ -993,15 +984,15 @@ public:
bool validation(result_type x) const;
};
typedef random::lagged_fibonacci&lt;double, 607, 273&gt; lagged_fibonacci607;
typedef random::lagged_fibonacci&lt;double, 1279, 418&gt; lagged_fibonacci1279;
typedef random::lagged_fibonacci&lt;double, 2281, 1252&gt; lagged_fibonacci2281;
typedef random::lagged_fibonacci&lt;double, 3217, 576&gt; lagged_fibonacci3217;
typedef random::lagged_fibonacci&lt;double, 4423, 2098&gt; lagged_fibonacci4423;
typedef random::lagged_fibonacci&lt;double, 9689, 5502&gt; lagged_fibonacci9689;
typedef random::lagged_fibonacci&lt;double, 19937, 9842&gt; lagged_fibonacci19937;
typedef random::lagged_fibonacci&lt;double, 23209, 13470&gt; lagged_fibonacci23209;
typedef random::lagged_fibonacci&lt;double, 44497, 21034&gt; lagged_fibonacci44497;
typedef random::lagged_fibonacci_01&lt;double, 48, 607, 273&gt; lagged_fibonacci607;
typedef random::lagged_fibonacci_01&lt;double, 48, 1279, 418&gt; lagged_fibonacci1279;
typedef random::lagged_fibonacci_01&lt;double, 48, 2281, 1252&gt; lagged_fibonacci2281;
typedef random::lagged_fibonacci_01&lt;double, 48, 3217, 576&gt; lagged_fibonacci3217;
typedef random::lagged_fibonacci_01&lt;double, 48, 4423, 2098&gt; lagged_fibonacci4423;
typedef random::lagged_fibonacci_01&lt;double, 48, 9689, 5502&gt; lagged_fibonacci9689;
typedef random::lagged_fibonacci_01&lt;double, 48, 19937, 9842&gt; lagged_fibonacci19937;
typedef random::lagged_fibonacci_01&lt;double, 48, 23209, 13470&gt; lagged_fibonacci23209;
typedef random::lagged_fibonacci_01&lt;double, 48, 44497, 21034&gt; lagged_fibonacci44497;
</pre>
<h3>Description</h3>
@@ -1029,22 +1020,22 @@ typedef random::lagged_fibonacci&lt;double, 44497, 21034&gt; lagged_fibonacci444
<h3>Constructors</h3>
<pre>
lagged_fibonacci()
lagged_fibonacci_01()
</pre>
<p><strong>Effects:</strong> Constructs a <code>lagged_fibonacci</code>
<p><strong>Effects:</strong> Constructs a <code>lagged_fibonacci_01</code>
generator and calls <code>seed()</code>.</p>
<pre>
explicit lagged_fibonacci(uint32_t value)
explicit lagged_fibonacci_01(uint32_t value)
</pre>
<p><strong>Effects:</strong> Constructs a <code>lagged_fibonacci</code>
<p><strong>Effects:</strong> Constructs a <code>lagged_fibonacci_01</code>
generator and calls <code>seed(value)</code>.</p>
<pre>
template&lt;class Generator&gt; explicit lagged_fibonacci(Generator &amp; gen)
template&lt;class Generator&gt; explicit lagged_fibonacci_01(Generator &amp; gen)
</pre>
<p><strong>Effects:</strong> Constructs a <code>lagged_fibonacci</code>
<p><strong>Effects:</strong> Constructs a <code>lagged_fibonacci_01</code>
generator and calls <code>seed(gen)</code>.</p>
<h3>Seeding</h3>
@@ -1065,7 +1056,7 @@ template&lt;class Generator&gt; void seed(Generator &amp; gen)
</pre>
<p><strong>Effects:</strong> Sets the state of this
<code>lagged_fibonacci</code> to the values returned by <code>p</code>
<code>lagged_fibonacci_01</code> to the values returned by <code>p</code>
invocations of <code>uniform_01&lt;gen, FloatType&gt;</code>.<br>
<strong>Complexity:</strong> Exactly <code>p</code> invocations of
<code>gen</code>.</p>

View File

@@ -64,7 +64,8 @@ void check_uniform_int(Generator & gen, int iter)
for(int k = 0; k < range; k++)
sum += bucket[k];
double avg = static_cast<double>(sum)/range;
double threshold = 2*avg/std::sqrt(static_cast<double>(iter));
double p = 1 / static_cast<double>(range);
double threshold = 2*std::sqrt(static_cast<double>(iter)*p*(1-p));
for(int i = 0; i < range; i++) {
if(std::fabs(bucket[i] - avg) > threshold) {
// 95% confidence interval
@@ -100,11 +101,37 @@ void test_uniform_int(Generator & gen)
// small range => larger range
level_two uint05(uint12, int_gen(-3, 2));
check_uniform_int(uint05, 100000);
// small range => larger range
level_two uint099(uint12, int_gen(0, 99));
check_uniform_int(uint099, 100000);
// larger => small range, rejection case
typedef boost::variate_generator<level_two&, int_gen> level_three;
level_three uint1_4(uint05, int_gen(1, 4));
check_uniform_int(uint1_4, 100000);
typedef boost::uniform_int<boost::uint8_t> int8_gen;
typedef boost::variate_generator<Generator&, int8_gen> gen8_t;
gen8_t gen8_03(gen, int8_gen(0, 3));
// use the full range of the type, where the destination
// range is a power of the source range
typedef boost::variate_generator<gen8_t, int8_gen> uniform_uint8;
uniform_uint8 uint8_0255(gen8_03, int8_gen(0, 255));
check_uniform_int(uint8_0255, 100000);
// use the full range, but a generator whose range is not
// a root of the destination range.
gen8_t gen8_02(gen, int8_gen(0, 2));
uniform_uint8 uint8_0255_2(gen8_02, int8_gen(0, 255));
check_uniform_int(uint8_0255_2, 100000);
// expand the range to a larger type.
typedef boost::variate_generator<gen8_t, int_gen> uniform_uint_from8;
uniform_uint_from8 uint0300(gen8_03, int_gen(0, 300));
check_uniform_int(uint0300, 100000);
}
#if defined(BOOST_MSVC) && _MSC_VER < 1300
@@ -140,10 +167,13 @@ INSTANT(boost::mt11213b)
class ruetti_gen
{
public:
ruetti_gen() : state((max)() - 1) {}
typedef boost::uint64_t result_type;
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return std::numeric_limits<result_type>::max BOOST_PREVENT_MACRO_SUBSTITUTION (); }
result_type operator()() { return (max)()-1; }
result_type operator()() { return state--; }
private:
result_type state;
};
void test_overflow_range()