2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-19 16:32:16 +00:00

Compare commits

...

39 Commits

Author SHA1 Message Date
Ralf W. Grosse-Kunstleve
8824572893 get ready to move to trunk
[SVN r9818]
2001-04-17 19:37:40 +00:00
Ralf W. Grosse-Kunstleve
4bb2668733 copyright
[SVN r9811]
2001-04-17 18:37:37 +00:00
Ralf W. Grosse-Kunstleve
01aa63e5f1 Motivation: Assertion 'static_class_object == 0' failed.
[SVN r9809]
2001-04-17 02:22:39 +00:00
Ralf W. Grosse-Kunstleve
237ae8a322 Use default python.
[SVN r9757]
2001-04-11 00:30:49 +00:00
Ralf W. Grosse-Kunstleve
0183d777d2 Better comments.
[SVN r9756]
2001-04-11 00:29:24 +00:00
Ralf W. Grosse-Kunstleve
176beb3b47 uniform python_import_extension_class_converters
[SVN r9755]
2001-04-10 23:04:02 +00:00
Ralf W. Grosse-Kunstleve
77626967d6 unique sig, import
[SVN r9754]
2001-04-10 21:35:31 +00:00
Ralf W. Grosse-Kunstleve
d2115b21d7 unique sig, export
[SVN r9753]
2001-04-10 19:30:21 +00:00
Ralf W. Grosse-Kunstleve
38492e4e7e -all ld option removed.
[SVN r9721]
2001-04-05 14:35:06 +00:00
nobody
e2580e5c60 This commit was manufactured by cvs2svn to create branch
'ralf_grosse_kunstleve'.

[SVN r9690]
2001-04-01 13:47:26 +00:00
Ralf W. Grosse-Kunstleve
e87c03643f meaningless const removed.
[SVN r9637]
2001-03-23 09:15:25 +00:00
Ralf W. Grosse-Kunstleve
7367d79a09 build boost_python.lib
[SVN r9636]
2001-03-23 05:29:13 +00:00
Ralf W. Grosse-Kunstleve
cd45d594aa Pointers to new examples.
[SVN r9627]
2001-03-21 22:34:00 +00:00
Ralf W. Grosse-Kunstleve
8771eded6d Minor fixes.
[SVN r9626]
2001-03-21 22:33:28 +00:00
Ralf W. Grosse-Kunstleve
b96393a7e8 --broken-auto-ptr switch for VC++ 6.0
[SVN r9625]
2001-03-21 20:00:23 +00:00
Ralf W. Grosse-Kunstleve
66e3c67398 Files renamed to *simple_vector*, *do_it_yourself_converters*
[SVN r9624]
2001-03-21 02:39:01 +00:00
nobody
34bc55e21a This commit was manufactured by cvs2svn to create branch
'ralf_grosse_kunstleve'.

[SVN r9622]
2001-03-21 02:33:28 +00:00
Ralf W. Grosse-Kunstleve
61978881ba Much more extensive testing of import_converters.
[SVN r9620]
2001-03-21 01:22:21 +00:00
Ralf W. Grosse-Kunstleve
8631427d4e Much more extensive testing of import_converters.
[SVN r9618]
2001-03-21 01:11:03 +00:00
Ralf W. Grosse-Kunstleve
82edce6450 Now using BOOST_PYTHON_MODULE_INIT.
[SVN r9617]
2001-03-21 01:09:17 +00:00
Ralf W. Grosse-Kunstleve
1c454c4116 Return type for smart ptr values fixed.
[SVN r9614]
2001-03-21 01:02:24 +00:00
Ralf W. Grosse-Kunstleve
6dc5ef02b5 BOOST_PYTHON_TRU64_CXX_PROBLEM define
[SVN r9613]
2001-03-20 14:49:26 +00:00
Ralf W. Grosse-Kunstleve
feadcfe0a2 New export_converters() interface.
[SVN r9604]
2001-03-20 02:44:20 +00:00
nobody
e21d518511 This commit was manufactured by cvs2svn to create branch
'ralf_grosse_kunstleve'.

[SVN r9603]
2001-03-20 02:16:09 +00:00
Ralf W. Grosse-Kunstleve
f2b763c2e1 VC++ 6.0 makefile; filemgr.py used by all ralf_grosse_kunstleve makefiles.
[SVN r9602]
2001-03-20 02:16:08 +00:00
Ralf W. Grosse-Kunstleve
028a3b9750 VC++ 6.0 fixes and misc. other modifications.
[SVN r9601]
2001-03-20 02:13:28 +00:00
Ralf W. Grosse-Kunstleve
e8c9229704 Renamed to cross_module.cpp
[SVN r9598]
2001-03-20 02:03:44 +00:00
Ralf W. Grosse-Kunstleve
ffc29171e3 Renamed to cross_module.hpp
[SVN r9597]
2001-03-20 02:02:38 +00:00
Ralf W. Grosse-Kunstleve
bc54113bef Revert to main reference.hpp. VC6 cannot handle, get<T>().
[SVN r9593]
2001-03-19 22:40:08 +00:00
Ralf W. Grosse-Kunstleve
ff3120a52c free getattr()
[SVN r9554]
2001-03-14 05:27:13 +00:00
Ralf W. Grosse-Kunstleve
9e41737b68 More comments.
[SVN r9553]
2001-03-13 00:24:38 +00:00
Ralf W. Grosse-Kunstleve
33aac2ec83 New pickle1,2,3 examples.
[SVN r9552]
2001-03-13 00:05:43 +00:00
nobody
fd563fbf3c This commit was manufactured by cvs2svn to create branch
'ralf_grosse_kunstleve'.

[SVN r9550]
2001-03-13 00:01:07 +00:00
Ralf W. Grosse-Kunstleve
419a323483 reference.get<T>(); reference.getattr(attr_name);
[SVN r9548]
2001-03-12 23:54:18 +00:00
Ralf W. Grosse-Kunstleve
a0ebc5f25e Mods to address David's remarks.
[SVN r9469]
2001-03-07 00:09:23 +00:00
Ralf W. Grosse-Kunstleve
e1a600aba9 SPECIAL_PYCVTSOBJECT removed for now.
[SVN r9468]
2001-03-06 23:08:29 +00:00
Ralf W. Grosse-Kunstleve
0561d5e363 x_class_builder rules etc. added to Makefiles.
[SVN r9461]
2001-03-06 02:52:30 +00:00
Ralf W. Grosse-Kunstleve
4d007528a7 (incomplete) adaptation to new vers of class python_extension_class_converters.
[SVN r9460]
2001-03-06 02:51:03 +00:00
nobody
667ec238a5 This commit was manufactured by cvs2svn to create branch
'ralf_grosse_kunstleve'.

[SVN r9458]
2001-03-06 02:44:33 +00:00
117 changed files with 2339 additions and 21032 deletions

View File

@@ -1,241 +0,0 @@
# Microsoft Developer Studio Project File - Name="bpl_static" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Static Library" 0x0104
CFG=bpl_static - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "bpl_static.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "bpl_static.mak" CFG="bpl_static - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "bpl_static - Win32 Release" (based on "Win32 (x86) Static Library")
!MESSAGE "bpl_static - Win32 Debug" (based on "Win32 (x86) Static Library")
!MESSAGE "bpl_static - Win32 DebugPython" (based on "Win32 (x86) Static Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
RSC=rc.exe
!IF "$(CFG)" == "bpl_static - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c
# ADD CPP /nologo /MD /W4 /WX /GR /GX /O2 /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /c
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ELSEIF "$(CFG)" == "bpl_static - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W4 /WX /Gm- /GR /GX /Zi /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /GZ /c
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ELSEIF "$(CFG)" == "bpl_static - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "bpl_static___Win32_DebugPython"
# PROP BASE Intermediate_Dir "bpl_static___Win32_DebugPython"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W4 /WX /Gm /GR /GX /Zi /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /FR /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W4 /WX /Gm- /GR /GX /Zi /Od /I "..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /D "BOOST_DEBUG_PYTHON" /FR /YX /FD /GZ /EHs /c
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo
!ENDIF
# Begin Target
# Name "bpl_static - Win32 Release"
# Name "bpl_static - Win32 Debug"
# Name "bpl_static - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\src\classes.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\conversions.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\extension_class.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\functions.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\init_function.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\module_builder.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\objects.cpp
# ADD CPP /W3
# End Source File
# Begin Source File
SOURCE=..\src\types.cpp
# ADD CPP /W3
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File
SOURCE=..\..\..\boost\python\detail\base_object.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\callback.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\caller.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\cast.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\class_builder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\classes.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\config.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\conversions.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\errors.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\extension_class.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\functions.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\init_function.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\module_builder.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\none.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\objects.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\operators.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\reference.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\signatures.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\singleton.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\types.hpp
# End Source File
# Begin Source File
SOURCE=..\..\..\boost\python\detail\wrap_python.hpp
# End Source File
# End Group
# End Target
# End Project

View File

@@ -1,108 +0,0 @@
Microsoft Developer Studio Workspace File, Format Version 6.00
# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!
###############################################################################
Project: "bpl_static"=.\bpl_static.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
}}}
###############################################################################
Project: "example1"=.\example1\example1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "getting_started1"=.\getting_started1\getting_started1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "getting_started2"=.\getting_started2\getting_started2.dsp - Package Owner=<4>
Package=<5>
{{{
begin source code control
getting_started2
.\getting_started2
end source code control
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "rwgk1"=.\rwgk1\rwgk1.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Project: "test"=.\test\test.dsp - Package Owner=<4>
Package=<5>
{{{
}}}
Package=<4>
{{{
Begin Project Dependency
Project_Dep_Name bpl_static
End Project Dependency
}}}
###############################################################################
Global:
Package=<5>
{{{
}}}
Package=<3>
{{{
}}}
###############################################################################

Binary file not shown.

View File

@@ -1,55 +0,0 @@
# Revision History:
# 06 Mar 01 Fixed typo in use of "PYTHON_LIB" (Dave Abrahams)
# 04 Mar 01 Changed library name to libboost_python.a (David Abrahams)
LIBSRC = \
classes.cpp \
conversions.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
OBJ = $(LIBOBJ)
ifeq "$(OS)" "Windows_NT"
PYTHON_LIB=c:/tools/python/libs/python15.lib
INC = -Ic:/cygnus/usr/include/g++-3 -Ic:/cygnus/usr/include -Ic:/boost -Ic:/tools/python/include
MODULE_EXTENSION=dll
else
INC = -I/usr/local/include/python1.5
MODULE_EXTENSION=so
endif
%.o: ../src/%.cpp
como --pic $(INC) -o $*.o -c $<
%.d: ../src/%.cpp
@echo creating $@
@set -e; como -M $(INC) -c $< \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@
example1: example1.o libboost_python.a
como-dyn-link -o ../example/hellomodule.$(MODULE_EXTENSION) $(PYTHON_LIB) example1.o -L. -lboost_python
python ../example/test_example1.py
example1.o: ../example/example1.cpp
como --pic $(INC) -o $*.o -c $<
clean:
rm -rf *.o *.$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out
libboost_python.a: $(LIBOBJ)
rm -f libboost_python.a
ar cq libboost_python.a $(LIBOBJ)
DEP = $(OBJ:.o=.d)
ifneq "$(MAKECMDGOALS)" "clean"
include $(DEP)
endif

View File

@@ -1,136 +0,0 @@
# Microsoft Developer Studio Project File - Name="example1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=example1 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "example1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "example1.mak" CFG="example1 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "example1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "example1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "example1 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "example1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"Release/hello.dll" /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "example1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"Debug/hello.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "example1 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "example1___Win32_DebugPython"
# PROP BASE Intermediate_Dir "example1___Win32_DebugPython"
# PROP BASE Ignore_Export_Lib 0
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W3 /Gm /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "EXAMPLE1_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /EHs /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"Debug/hello.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"DebugPython/hello_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\PCbuild"
!ENDIF
# Begin Target
# Name "example1 - Win32 Release"
# Name "example1 - Win32 Debug"
# Name "example1 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\example1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

135
build/filemgr.py Normal file
View File

@@ -0,0 +1,135 @@
# Revision history:
# 12 Apr 01 use os.path, shutil
# Initial version: R.W. Grosse-Kunstleve
bpl_src = "/libs/python/src"
bpl_tst = "/libs/python/test"
bpl_exa = "/libs/python/example"
files = (
bpl_src + "/classes.cpp",
bpl_src + "/conversions.cpp",
bpl_src + "/extension_class.cpp",
bpl_src + "/functions.cpp",
bpl_src + "/init_function.cpp",
bpl_src + "/module_builder.cpp",
bpl_src + "/objects.cpp",
bpl_src + "/types.cpp",
bpl_src + "/cross_module.cpp",
bpl_tst + "/comprehensive.cpp",
bpl_tst + "/comprehensive.hpp",
bpl_tst + "/comprehensive.py",
bpl_tst + "/doctest.py",
bpl_exa + "/abstract.cpp",
bpl_exa + "/getting_started1.cpp",
bpl_exa + "/getting_started2.cpp",
bpl_exa + "/getting_started3.cpp",
bpl_exa + "/simple_vector.cpp",
bpl_exa + "/do_it_yourself_converters.cpp",
bpl_exa + "/pickle1.cpp",
bpl_exa + "/pickle2.cpp",
bpl_exa + "/pickle3.cpp",
bpl_exa + "/test_abstract.py",
bpl_exa + "/test_getting_started1.py",
bpl_exa + "/test_getting_started2.py",
bpl_exa + "/test_getting_started3.py",
bpl_exa + "/test_simple_vector.py",
bpl_exa + "/test_do_it_yourself_converters.py",
bpl_exa + "/test_pickle1.py",
bpl_exa + "/test_pickle2.py",
bpl_exa + "/test_pickle3.py",
bpl_exa + "/noncopyable.h",
bpl_exa + "/noncopyable_export.cpp",
bpl_exa + "/noncopyable_import.cpp",
bpl_exa + "/dvect.h",
bpl_exa + "/dvect.cpp",
bpl_exa + "/dvect_conversions.cpp",
bpl_exa + "/dvect_defs.cpp",
bpl_exa + "/ivect.h",
bpl_exa + "/ivect.cpp",
bpl_exa + "/ivect_conversions.cpp",
bpl_exa + "/ivect_defs.cpp",
bpl_exa + "/tst_noncopyable.py",
bpl_exa + "/tst_dvect1.py",
bpl_exa + "/tst_dvect2.py",
bpl_exa + "/tst_ivect1.py",
bpl_exa + "/tst_ivect2.py",
bpl_exa + "/test_cross_module.py",
)
defs = (
"boost_python_test",
"abstract",
"getting_started1",
"getting_started2",
"getting_started3",
"simple_vector",
"do_it_yourself_converters",
"pickle1",
"pickle2",
"pickle3",
"noncopyable_export",
"noncopyable_import",
"ivect",
"dvect",
)
if (__name__ == "__main__"):
import sys, os, shutil
path = sys.argv[1]
mode = sys.argv[2]
if (not mode in ("softlinks", "unlink", "cp", "rm", "copy", "del")):
raise RuntimeError, \
"usage: python filemgr.py path <softlinks|unlink|cp|rm|copy|del>"
if (mode in ("cp", "copy")):
for fn in files:
f = os.path.basename(fn)
print "Copying: " + f
shutil.copy(path + fn, ".")
elif (mode == "softlinks"):
for fn in files:
f = os.path.basename(fn)
if (os.path.exists(f)):
print "File exists: " + f
else:
print "Linking: " + f
os.symlink(path + fn, f)
elif (mode in ("rm", "del")):
for fn in files:
f = os.path.basename(fn)
if (os.path.exists(f)):
print "Removing: " + f
try: os.unlink(f)
except: pass
elif (mode == "unlink"):
for fn in files:
f = os.path.basename(fn)
if (os.path.exists(f)):
if (os.path.islink(f)):
print "Unlinking: " + f
try: os.unlink(f)
except: pass
else:
print "Not a softlink: " + f
if (mode in ("softlinks", "cp", "copy")):
for d in defs:
fn = d + ".def"
print "Creating: " + fn
f = open(fn, "w")
f.write("EXPORTS\n")
f.write("\tinit" + d + "\n")
f.close()
if (mode in ("unlink", "rm", "del")):
for d in defs:
fn = d + ".def"
if (os.path.exists(fn)):
print "Removing: " + fn
try: os.unlink(fn)
except: pass

View File

@@ -1,73 +0,0 @@
# Revision History
# 04 Mar 01 Changed library name to libboost_python.a, various cleanups,
# attempted Cygwin compatibility. Still needs testing on Linux
# (David Abrahams)
LIBSRC = \
classes.cpp \
conversions.cpp \
extension_class.cpp \
functions.cpp \
init_function.cpp \
module_builder.cpp \
objects.cpp \
types.cpp
LIBOBJ = $(LIBSRC:.cpp=.o)
OBJ = $(LIBOBJ)
PYTHON_INC=$(ROOT)/usr/local/include/python2.0
# libpython2.0.dll
ifeq "$(OS)" "Windows_NT"
ROOT=c:/cygnus
INC = -Ic:/cygnus/usr/include/g++-3 -Ic:/cygnus/usr/include -Ic:/boost -I$(PYTHON_INC)
MODULE_EXTENSION=dll
PYTHON_LIB=c:/cygnus/usr/local/lib/python2.0/config/libpython2.0.dll.a
else
INC = -I$(PYTHON_INC)
MODULE_EXTENSION=so
endif
%.o: ../src/%.cpp
g++ -fPIC -Wall -W $(INC) -o $*.o -c $<
%.d: ../src/%.cpp
@echo creating $@
@set -e; g++ -M $(INC) -c $< \
| sed 's/\($*\)\.o[ :]*/\1.o $@ : /g' > $@; \
[ -s $@ ] || rm -f $@
PYTHON = python
test: comprehensive.o libboost_python.a
g++ $(CXXFLAGS) -shared -o ../test/boost_python_test.$(MODULE_EXTENSION) comprehensive.o -L. -lboost_python $(PYTHON_LIB)
$(PYTHON) ../test/comprehensive.py
comprehensive.o: ../test/comprehensive.cpp
g++ $(CXXFLAGS) --template-depth-32 -fPIC -Wall -W $(INC) -o $*.o -c $<
example1: example1.o libboost_python.a
g++ $(CXXFLAGS) -shared -o ../example/hellomodule.$(MODULE_EXTENSION) example1.o -L. -lboost_python $(PYTHON_LIB)
$(PYTHON) ../example/test_example1.py
example1.o: ../example/example1.cpp
g++ $(CXXFLAGS) --template-depth-32 -fPIC -Wall -W $(INC) -o $*.o -c $<
clean:
rm -rf *.o *.$(MODULE_EXTENSION) *.a *.d *.pyc *.bak a.out
libboost_python.a: $(LIBOBJ)
rm -f libboost_python.a
ar cq libboost_python.a $(LIBOBJ)
DEP = $(OBJ:.o=.d)
ifneq "$(MAKECMDGOALS)" "clean"
include $(DEP)
endif

View File

@@ -1,136 +0,0 @@
# Microsoft Developer Studio Project File - Name="getting_started1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=getting_started1 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "getting_started1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "getting_started1.mak" CFG="getting_started1 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "getting_started1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started1 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=xicl6.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "getting_started1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /GR /GX /ZI /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started1 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "DebugPython"
# PROP BASE Intermediate_Dir "DebugPython"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /pdb:"DebugPython/boost_python_test_d.pdb" /debug /machine:I386 /out:"DebugPython/getting_started1_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\PCbuild"
# SUBTRACT LINK32 /pdb:none
!ENDIF
# Begin Target
# Name "getting_started1 - Win32 Release"
# Name "getting_started1 - Win32 Debug"
# Name "getting_started1 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\getting_started1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,135 +0,0 @@
# Microsoft Developer Studio Project File - Name="getting_started2" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=getting_started2 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "getting_started2.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "getting_started2.mak" CFG="getting_started2 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "getting_started2 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started2 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "getting_started2 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName "getting_started2"
# PROP Scc_LocalPath "."
CPP=xicl6.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "getting_started2 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started2 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /FR /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "getting_started2 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "getting_started2___Win32_DebugPython"
# PROP BASE Intermediate_Dir "getting_started2___Win32_DebugPython"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "getting_started2___Win32_DebugPython"
# PROP Intermediate_Dir "getting_started2___Win32_DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /D "BOOST_DEBUG_PYTHON" /FR /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=xilink6.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:windows /dll /debug /machine:I386 /out:"DebugPython/getting_started2_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\pcbuild"
!ENDIF
# Begin Target
# Name "getting_started2 - Win32 Release"
# Name "getting_started2 - Win32 Debug"
# Name "getting_started2 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\getting_started2.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

165
build/irix_CC.mak Normal file
View File

@@ -0,0 +1,165 @@
# Usage:
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Adjust the pathnames below.
#
# make softlinks Create softlinks to source code and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make unlink Remove softlinks
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
ROOT=$(HOME)
BOOST=$(ROOT)/boost
PYEXE=/usr/local/Python-1.5.2/bin/python
PYINC=-I/usr/local/Python-1.5.2/include/python1.5
#PYEXE=/usr/local/Python-2.0/bin/python
#PYINC=-I/usr/local/Python-2.0/include/python2.0
STLPORTINC=-I$(BOOST)/boost/compatibility/cpp_c_headers
STDOPTS=
WARNOPTS=-woff 1001,1234,1682
OPTOPTS=-g
CPP=CC -LANG:std -n32 -mips4
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
MAKEDEP=-M
LD=CC -LANG:std -n32 -mips4
LDOPTS=-shared
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
DEPOBJ=$(OBJ) \
comprehensive.o \
abstract.o \
getting_started1.o getting_started2.o getting_started3.o \
simple_vector.o \
do_it_yourself_converters.o \
pickle1.o pickle2.o pickle3.o \
noncopyable_export.o noncopyable_import.o \
ivect.o dvect.o
.SUFFIXES: .o .cpp
all: libboost_python.a \
boost_python_test.so \
abstract.so \
getting_started1.so getting_started2.so getting_started3.so \
simple_vector.so \
do_it_yourself_converters.so \
pickle1.so pickle2.so pickle3.so \
noncopyable_export.so noncopyable_import.so \
ivect.so dvect.so
libboost_python.a: $(OBJ)
rm -f libboost_python.a
$(CPP) -ar -o libboost_python.a $(OBJ)
boost_python_test.so: $(OBJ) comprehensive.o
$(LD) $(LDOPTS) $(OBJ) comprehensive.o -o boost_python_test.so -lm
abstract.so: $(OBJ) abstract.o
$(LD) $(LDOPTS) $(OBJ) abstract.o -o abstract.so
getting_started1.so: $(OBJ) getting_started1.o
$(LD) $(LDOPTS) $(OBJ) getting_started1.o -o getting_started1.so
getting_started2.so: $(OBJ) getting_started2.o
$(LD) $(LDOPTS) $(OBJ) getting_started2.o -o getting_started2.so
getting_started3.so: $(OBJ) getting_started3.o
$(LD) $(LDOPTS) $(OBJ) getting_started3.o -o getting_started3.so
simple_vector.so: $(OBJ) simple_vector.o
$(LD) $(LDOPTS) $(OBJ) simple_vector.o -o simple_vector.so
do_it_yourself_converters.so: $(OBJ) do_it_yourself_converters.o
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_converters.o -o do_it_yourself_converters.so
pickle1.so: $(OBJ) pickle1.o
$(LD) $(LDOPTS) $(OBJ) pickle1.o -o pickle1.so
pickle2.so: $(OBJ) pickle2.o
$(LD) $(LDOPTS) $(OBJ) pickle2.o -o pickle2.so
pickle3.so: $(OBJ) pickle3.o
$(LD) $(LDOPTS) $(OBJ) pickle3.o -o pickle3.so
noncopyable_export.so: $(OBJ) noncopyable_export.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_export.o -o noncopyable_export.so
noncopyable_import.so: $(OBJ) noncopyable_import.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_import.o -o noncopyable_import.so
ivect.so: $(OBJ) ivect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) ivect.o -o ivect.so
dvect.so: $(OBJ) dvect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) dvect.o -o dvect.so
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
test:
$(PYEXE) comprehensive.py
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_getting_started3.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_converters.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
rm -f comprehensive.o boost_python_test.so
rm -f abstract.o abstract.so
rm -f getting_started1.o getting_started1.so
rm -f getting_started2.o getting_started2.so
rm -f getting_started3.o getting_started3.so
rm -f simple_vector.o simple_vector.so
rm -f do_it_yourself_converters.o do_it_yourself_converters.so
rm -f pickle1.o pickle1.so
rm -f pickle2.o pickle2.so
rm -f pickle3.o pickle3.so
rm -f noncopyable_export.o noncopyable_export.so
rm -f noncopyable_import.o noncopyable_import.so
rm -f ivect.o ivect.so
rm -f dvect.o dvect.so
rm -f so_locations *.pyc
rm -rf ii_files
softlinks:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) softlinks
unlink:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) unlink
cp:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) cp
rm:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) rm
depend:
@ cat Makefile.nodepend; \
for obj in $(DEPOBJ); \
do \
bn=`echo "$$obj" | cut -d. -f1`; \
$(CPP) $(CPPOPTS) $(MAKEDEP) "$$bn".cpp; \
done

View File

@@ -2,110 +2,64 @@
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Set the BOOST pathname below.
# Adjust the pathnames below.
#
# make softlinks Create softlinks to source code and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make unlink Remove softlinks
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
BOOST= /net/cci/rwgk/boost
ROOT=$(HOME)
BOOST=$(ROOT)/boost
PYEXE= /usr/local/Python-1.5.2/bin/python
PYINC= -I/usr/local/Python-1.5.2/include/python1.5
#PYEXE= /usr/local/Python-2.0/bin/python
#PYINC= -I/usr/local/Python-2.0/include/python2.0
#STLPORTINC= -I/usr/local/STLport-4.1b3/stlport
#STLPORTOPTS= \
# -D__USE_STD_IOSTREAM \
# -D__STL_NO_SGI_IOSTREAMS \
# -D__STL_USE_NATIVE_STRING \
# -D__STL_NO_NEW_C_HEADERS \
# -D_RWSTD_COMPILE_INSTANTIATE=1
#STLPORTINC= -I/usr/local/STLport-4.1b4/stlport
#STLPORTOPTS= -D__NO_USE_STD_IOSTREAM -D__STL_NO_SGI_IOSTREAMS
#STLPORTINC= -I/net/cci/xp/C++_C_headers
PYEXE=/usr/bin/python
PYINC=-I/usr/include/python1.5
#PYEXE=/usr/local/Python-1.5.2/bin/python
#PYINC=-I/usr/local/Python-1.5.2/include/python1.5
#PYEXE=/usr/local/Python-2.0/bin/python
#PYINC=-I/usr/local/Python-2.0/include/python2.0
STDOPTS= -ftemplate-depth-21
STDOPTS=-ftemplate-depth-21
WARNOPTS=
# use -msg_display_number to obtain integer tags for -msg_disable
OPTOPTS=-g
CPP= g++
CPPOPTS= $(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) -g
MAKEDEP= -M
CPP=g++
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
MAKEDEP=-M
LD= g++
LDOPTS= -shared
LD=g++
LDOPTS=-shared
#HIDDEN= -hidden
BPL_SRC = $(BOOST)/libs/python/src
BPL_TST = $(BOOST)/libs/python/test
BPL_EXA = $(BOOST)/libs/python/example
SOFTLINKS = \
$(BPL_SRC)/classes.cpp \
$(BPL_SRC)/conversions.cpp \
$(BPL_SRC)/extension_class.cpp \
$(BPL_SRC)/functions.cpp \
$(BPL_SRC)/init_function.cpp \
$(BPL_SRC)/module_builder.cpp \
$(BPL_SRC)/objects.cpp \
$(BPL_SRC)/types.cpp \
$(BPL_TST)/comprehensive.cpp \
$(BPL_TST)/comprehensive.hpp \
$(BPL_TST)/comprehensive.py \
$(BPL_TST)/doctest.py \
$(BPL_EXA)/abstract.cpp \
$(BPL_EXA)/getting_started1.cpp \
$(BPL_EXA)/getting_started2.cpp \
$(BPL_EXA)/getting_started3.cpp \
$(BPL_EXA)/getting_started4.cpp \
$(BPL_EXA)/getting_started5.cpp \
$(BPL_EXA)/test_abstract.py \
$(BPL_EXA)/test_getting_started1.py \
$(BPL_EXA)/test_getting_started2.py \
$(BPL_EXA)/test_getting_started3.py \
$(BPL_EXA)/test_getting_started4.py \
$(BPL_EXA)/test_getting_started5.py
OBJ = classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o
DEPOBJ= $(OBJ) comprehensive.o abstract.o \
getting_started1.o getting_started2.o getting_started3.o \
getting_started4.o getting_started5.o
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
DEPOBJ=$(OBJ) \
comprehensive.o \
abstract.o \
getting_started1.o getting_started2.o getting_started3.o \
simple_vector.o \
do_it_yourself_converters.o \
pickle1.o pickle2.o pickle3.o \
noncopyable_export.o noncopyable_import.o \
ivect.o dvect.o
.SUFFIXES: .o .cpp
all: libboost_python.a boost_python_test.so abstract.so \
all: libboost_python.a \
boost_python_test.so \
abstract.so \
getting_started1.so getting_started2.so getting_started3.so \
getting_started4.so getting_started5.so
softlinks:
@ for pn in $(SOFTLINKS); \
do \
bn=`basename "$$pn"`; \
if [ ! -e "$$bn" ]; then \
echo "ln -s $$pn ."; \
ln -s "$$pn" .; \
else \
echo "info: no softlink created (file exists): $$bn"; \
fi; \
done
unlink:
@ for pn in $(SOFTLINKS); \
do \
bn=`basename "$$pn"`; \
if [ -L "$$bn" ]; then \
echo "rm $$bn"; \
rm "$$bn"; \
elif [ -e "$$bn" ]; then \
echo "info: not a softlink: $$bn"; \
fi; \
done
simple_vector.so \
do_it_yourself_converters.so \
pickle1.so pickle2.so pickle3.so \
noncopyable_export.so noncopyable_import.so \
ivect.so dvect.so
libboost_python.a: $(OBJ)
rm -f libboost_python.a
@@ -126,11 +80,34 @@ getting_started2.so: $(OBJ) getting_started2.o
getting_started3.so: $(OBJ) getting_started3.o
$(LD) $(LDOPTS) $(OBJ) getting_started3.o -o getting_started3.so
getting_started4.so: $(OBJ) getting_started4.o
$(LD) $(LDOPTS) $(OBJ) getting_started4.o -o getting_started4.so
simple_vector.so: $(OBJ) simple_vector.o
$(LD) $(LDOPTS) $(OBJ) simple_vector.o -o simple_vector.so
getting_started5.so: $(OBJ) getting_started5.o
$(LD) $(LDOPTS) $(OBJ) getting_started5.o -o getting_started5.so
do_it_yourself_converters.so: $(OBJ) do_it_yourself_converters.o
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_converters.o -o do_it_yourself_converters.so
pickle1.so: $(OBJ) pickle1.o
$(LD) $(LDOPTS) $(OBJ) pickle1.o -o pickle1.so
pickle2.so: $(OBJ) pickle2.o
$(LD) $(LDOPTS) $(OBJ) pickle2.o -o pickle2.so
pickle3.so: $(OBJ) pickle3.o
$(LD) $(LDOPTS) $(OBJ) pickle3.o -o pickle3.so
noncopyable_export.so: $(OBJ) noncopyable_export.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_export.o -o noncopyable_export.so
noncopyable_import.so: $(OBJ) noncopyable_import.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_import.o -o noncopyable_import.so
ivect.so: $(OBJ) ivect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) ivect.o -o ivect.so
dvect.so: $(OBJ) dvect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) dvect.o -o dvect.so
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
@@ -141,8 +118,12 @@ test:
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_getting_started3.py
$(PYEXE) test_getting_started4.py
$(PYEXE) test_getting_started5.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_converters.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
@@ -151,10 +132,28 @@ clean:
rm -f getting_started1.o getting_started1.so
rm -f getting_started2.o getting_started2.so
rm -f getting_started3.o getting_started3.so
rm -f getting_started4.o getting_started4.so
rm -f getting_started5.o getting_started5.so
rm -f simple_vector.o simple_vector.so
rm -f do_it_yourself_converters.o do_it_yourself_converters.so
rm -f pickle1.o pickle1.so
rm -f pickle2.o pickle2.so
rm -f pickle3.o pickle3.so
rm -f noncopyable_export.o noncopyable_export.so
rm -f noncopyable_import.o noncopyable_import.so
rm -f ivect.o ivect.so
rm -f dvect.o dvect.so
rm -f so_locations *.pyc
rm -rf cxx_repository
softlinks:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) softlinks
unlink:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) unlink
cp:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) cp
rm:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) rm
depend:
@ cat Makefile.nodepend; \

View File

@@ -1,18 +1,14 @@
# Usage:
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Set the BOOST_* pathnames below.
# make copy Copy the sources and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make del Remove the sources and tests
#
# The idea is that the build directory is on a Unix filesystem that
# is mounted on a PC using SAMBA. Use this makefile under both Unix
# and Windows:
#
# Unix: make softlinks Create softlinks to source code and tests
# Win: make Compile all sources
# Win: make test Run doctest tests
# Unix: make clean Remove all object files
# Unix: make unlink Remove softlinks
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
# To install mingw32, follow instructions at:
# http://starship.python.net/crew/kernr/mingw32/Notes.html
@@ -31,117 +27,49 @@
# Could this be fixed with compiler options?
# -fhuge-objects looks interesting, but requires recompiling the C++ library.
# (what exactly does that mean?)
# -fvtable-thunks eliminates the compiler warning,
# but "import boost_python_test" still causes a crash.
# -fvtable-thunks eliminates the compiler warning, but
# "import boost_python_test" still causes a crash.
BOOST_UNIX= /net/cci/rwgk/boost
BOOST_WIN= "L:\boost"
ROOT=L:
BOOST_WIN="$(ROOT)\boost"
BOOST_UNIX=$(HOME)/boost
PYEXE= "C:\Program files\Python\python.exe"
PYINC= -I"C:\usr\include\python1.5"
PYLIB= "C:\usr\lib\libpython15.a"
PYEXE="C:\Program files\Python\python.exe"
PYINC=-I"C:\usr\include\python1.5"
PYLIB="C:\usr\lib\libpython15.a"
STDOPTS= -ftemplate-depth-21
STDOPTS=-ftemplate-depth-21
WARNOPTS=
OPTOPTS=-g
CPP= g++
CPPOPTS= $(STLPORTINC) $(STLPORTOPTS) -I$(BOOST_WIN) $(PYINC) \
$(STDOPTS) $(WARNOPTS) -g
CPP=g++
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST_WIN) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
LD= g++
LDOPTS= -shared
LD=g++
LDOPTS=-shared
BPL_SRC = $(BOOST_UNIX)/libs/python/src
BPL_TST = $(BOOST_UNIX)/libs/python/test
BPL_EXA = $(BOOST_UNIX)/libs/python/example
SOFTLINKS = \
$(BPL_SRC)/classes.cpp \
$(BPL_SRC)/conversions.cpp \
$(BPL_SRC)/extension_class.cpp \
$(BPL_SRC)/functions.cpp \
$(BPL_SRC)/init_function.cpp \
$(BPL_SRC)/module_builder.cpp \
$(BPL_SRC)/objects.cpp \
$(BPL_SRC)/types.cpp \
$(BPL_TST)/comprehensive.cpp \
$(BPL_TST)/comprehensive.hpp \
$(BPL_TST)/comprehensive.py \
$(BPL_TST)/doctest.py \
$(BPL_EXA)/abstract.cpp \
$(BPL_EXA)/getting_started1.cpp \
$(BPL_EXA)/getting_started2.cpp \
$(BPL_EXA)/getting_started3.cpp \
$(BPL_EXA)/getting_started4.cpp \
$(BPL_EXA)/getting_started5.cpp \
$(BPL_EXA)/passing_char.cpp \
$(BPL_EXA)/test_abstract.py \
$(BPL_EXA)/test_getting_started1.py \
$(BPL_EXA)/test_getting_started2.py \
$(BPL_EXA)/test_getting_started3.py \
$(BPL_EXA)/test_getting_started4.py \
$(BPL_EXA)/test_getting_started5.py
DEFS= \
boost_python_test \
abstract \
getting_started1 \
getting_started2 \
getting_started3 \
getting_started4 \
getting_started5
OBJ = classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
.SUFFIXES: .o .cpp
all: libboost_python.a boost_python_test.pyd abstract.pyd \
all: libboost_python.a \
abstract.pyd \
getting_started1.pyd getting_started2.pyd getting_started3.pyd \
getting_started4.pyd getting_started5.pyd
softlinks: defs
@ for pn in $(SOFTLINKS); \
do \
bn=`basename "$$pn"`; \
if [ ! -e "$$bn" ]; then \
echo "ln -s $$pn ."; \
ln -s "$$pn" .; \
else \
echo "info: no softlink created (file exists): $$bn"; \
fi; \
done
unlink: rmdefs
@ for pn in $(SOFTLINKS); \
do \
bn=`basename "$$pn"`; \
if [ -L "$$bn" ]; then \
echo "rm $$bn"; \
rm "$$bn"; \
elif [ -e "$$bn" ]; then \
echo "info: not a softlink: $$bn"; \
fi; \
done
defs:
@ for def in $(DEFS); \
do \
echo "EXPORTS\n\tinit$$def" > $$def.def; \
done
rmdefs:
@ for def in $(DEFS); \
do \
rm $$def.def; \
done
simple_vector.pyd \
do_it_yourself_converters.pyd \
pickle1.pyd pickle2.pyd pickle3.pyd \
noncopyable_export.pyd noncopyable_import.pyd \
ivect.pyd dvect.pyd
libboost_python.a: $(OBJ)
del libboost_python.a
ar r libboost_python.a $(OBJ)
DLLWRAPOPTS= -s --driver-name g++ -s
--entry _DllMainCRTStartup@12 --target=i386-mingw32
DLLWRAPOPTS=-s --driver-name g++ -s \
--entry _DllMainCRTStartup@12 --target=i386-mingw32
boost_python_test.pyd: $(OBJ) comprehensive.o
dllwrap $(DLLWRAPOPTS) \
@@ -173,38 +101,96 @@ getting_started3.pyd: $(OBJ) getting_started3.o
--def getting_started3.def \
$(OBJ) getting_started3.o $(PYLIB)
getting_started4.pyd: $(OBJ) getting_started4.o
simple_vector.pyd: $(OBJ) simple_vector.o
dllwrap $(DLLWRAPOPTS) \
--dllname getting_started4.pyd \
--def getting_started4.def \
$(OBJ) getting_started4.o $(PYLIB)
--dllname simple_vector.pyd \
--def simple_vector.def \
$(OBJ) simple_vector.o $(PYLIB)
getting_started5.pyd: $(OBJ) getting_started5.o
do_it_yourself_converters.pyd: $(OBJ) do_it_yourself_converters.o
dllwrap $(DLLWRAPOPTS) \
--dllname getting_started5.pyd \
--def getting_started5.def \
$(OBJ) getting_started5.o $(PYLIB)
--dllname do_it_yourself_converters.pyd \
--def do_it_yourself_converters.def \
$(OBJ) do_it_yourself_converters.o $(PYLIB)
pickle1.pyd: $(OBJ) pickle1.o
dllwrap $(DLLWRAPOPTS) \
--dllname pickle1.pyd \
--def pickle1.def \
$(OBJ) pickle1.o $(PYLIB)
pickle2.pyd: $(OBJ) pickle2.o
dllwrap $(DLLWRAPOPTS) \
--dllname pickle2.pyd \
--def pickle2.def \
$(OBJ) pickle2.o $(PYLIB)
pickle3.pyd: $(OBJ) pickle3.o
dllwrap $(DLLWRAPOPTS) \
--dllname pickle3.pyd \
--def pickle3.def \
$(OBJ) pickle3.o $(PYLIB)
noncopyable_export.pyd: $(OBJ) noncopyable_export.o
dllwrap $(DLLWRAPOPTS) \
--dllname noncopyable_export.pyd \
--def noncopyable_export.def \
$(OBJ) noncopyable_export.o $(PYLIB)
noncopyable_import.pyd: $(OBJ) noncopyable_import.o
dllwrap $(DLLWRAPOPTS) \
--dllname noncopyable_import.pyd \
--def noncopyable_import.def \
$(OBJ) noncopyable_import.o $(PYLIB)
ivect.pyd: $(OBJ) ivect.o
dllwrap $(DLLWRAPOPTS) \
--dllname ivect.pyd \
--def ivect.def \
$(OBJ) ivect.o $(PYLIB)
dvect.pyd: $(OBJ) dvect.o
dllwrap $(DLLWRAPOPTS) \
--dllname dvect.pyd \
--def dvect.def \
$(OBJ) dvect.o $(PYLIB)
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
test:
$(PYEXE) comprehensive.py
# $(PYEXE) comprehensive.py
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_getting_started3.py
$(PYEXE) test_getting_started4.py
$(PYEXE) test_getting_started5.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_converters.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
rm -f comprehensive.o boost_python_test.pyd
rm -f abstract.o abstract.pyd
rm -f getting_started1.o getting_started1.pyd
rm -f getting_started2.o getting_started2.pyd
rm -f getting_started3.o getting_started3.pyd
rm -f getting_started4.o getting_started4.pyd
rm -f getting_started5.o getting_started5.pyd
rm -f so_locations *.pyc
rm -rf cxx_repository
del *.o
del *.a
del *.pyd
del *.pyc
softlinks:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) softlinks
unlink:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) unlink
cp:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) cp
rm:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) rm
copy:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) copy
del:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) del

View File

@@ -1,135 +0,0 @@
# Microsoft Developer Studio Project File - Name="rwgk1" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=rwgk1 - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "rwgk1.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "rwgk1.mak" CFG="rwgk1 - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "rwgk1 - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "rwgk1 - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "rwgk1 - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "rwgk1 - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /c
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "rwgk1 - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "rwgk1 - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "rwgk1___Win32_DebugPython"
# PROP BASE Intermediate_Dir "rwgk1___Win32_DebugPython"
# PROP BASE Ignore_Export_Lib 0
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W3 /Gm /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "RWGK1_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"DebugPython/rwgk1_d.dll" /pdbtype:sept /libpath:"C:\tools\python\src\PCbuild"
!ENDIF
# Begin Target
# Name "rwgk1 - Win32 Release"
# Name "rwgk1 - Win32 Debug"
# Name "rwgk1 - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\example\rwgk1.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -1,145 +0,0 @@
# Microsoft Developer Studio Project File - Name="test" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **
# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
CFG=test - Win32 DebugPython
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "test.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "test.mak" CFG="test - Win32 DebugPython"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "test - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "test - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "test - Win32 DebugPython" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE
# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName ""
# PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "test - Win32 Release"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /c
# ADD CPP /nologo /MD /W3 /GR /GX /O2 /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /Zm200 /c
# SUBTRACT CPP /Fr
# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"Release/boost_python_test.dll" /libpath:"c:\tools\python\libs"
!ELSEIF "$(CFG)" == "test - Win32 Debug"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "Debug"
# PROP Intermediate_Dir "Debug"
# PROP Ignore_Export_Lib 0
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /Zm200 /c
# SUBTRACT CPP /Fr
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"Debug/boost_python_test.dll" /pdbtype:sept /libpath:"c:\tools\python\libs"
# SUBTRACT LINK32 /pdb:none
!ELSEIF "$(CFG)" == "test - Win32 DebugPython"
# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "test___Win32_DebugPython"
# PROP BASE Intermediate_Dir "test___Win32_DebugPython"
# PROP BASE Ignore_Export_Lib 0
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 1
# PROP Output_Dir "DebugPython"
# PROP Intermediate_Dir "DebugPython"
# PROP Ignore_Export_Lib 1
# PROP Target_Dir ""
# ADD BASE CPP /nologo /MDd /W3 /Gm /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /YX /FD /GZ /Zm200 /c
# ADD CPP /nologo /MDd /W3 /Gm- /GR /GX /Zi /Od /I "..\..\..\.." /I "c:\tools\python\include" /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "TEST_EXPORTS" /D "BOOST_DEBUG_PYTHON" /YX /FD /GZ /Zm200 /EHs /c
# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
# ADD BASE RSC /l 0x409 /d "_DEBUG"
# ADD RSC /l 0x409 /d "_DEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /pdbtype:sept /libpath:"c:\tools\python\libs"
# SUBTRACT BASE LINK32 /pdb:none
# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /incremental:no /debug /machine:I386 /out:"DebugPython/boost_python_test_d.dll" /pdbtype:sept /libpath:"c:\tools\python\src\PCbuild"
# SUBTRACT LINK32 /pdb:none
!ENDIF
# Begin Target
# Name "test - Win32 Release"
# Name "test - Win32 Debug"
# Name "test - Win32 DebugPython"
# Begin Group "Source Files"
# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
# Begin Source File
SOURCE=..\..\test\comprehensive.cpp
# End Source File
# End Group
# Begin Group "Header Files"
# PROP Default_Filter "h;hpp;hxx;hm;inl"
# Begin Source File
SOURCE=..\..\test\comprehensive.hpp
# End Source File
# End Group
# Begin Group "Resource Files"
# PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
# End Group
# End Target
# End Project

View File

@@ -2,110 +2,74 @@
#
# Create a new empty directory anywhere (preferably not in the boost tree).
# Copy this Makefile to that new directory and rename it to "Makefile"
# Set the BOOST pathname below.
# Adjust the pathnames below.
#
# make softlinks Create softlinks to source code and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make unlink Remove softlinks
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
BOOST= /net/cci/rwgk/boost
ROOT=$(HOME)
BOOST=$(ROOT)/boost
PYEXE= /usr/local/Python-1.5.2/bin/python
PYINC= -I/usr/local/Python-1.5.2/include/python1.5
#PYEXE= /usr/local/Python-2.0/bin/python
#PYINC= -I/usr/local/Python-2.0/include/python2.0
#STLPORTINC= -I/usr/local/STLport-4.1b3/stlport
PYEXE=/usr/local/Python-1.5.2/bin/python
PYINC=-I/usr/local/Python-1.5.2/include/python1.5
#PYEXE=/usr/local/Python-2.0/bin/python
#PYINC=-I/usr/local/Python-2.0/include/python2.0
#STLPORTINC=-I/usr/local/STLport-4.1b3/stlport
#STLPORTINC=-I/usr/local/STLport-4.1b4/stlport
#STLPORTOPTS= \
# -D__USE_STD_IOSTREAM \
# -D__STL_NO_SGI_IOSTREAMS \
# -D__STL_USE_NATIVE_STRING \
# -D__STL_NO_NEW_C_HEADERS \
# -D_RWSTD_COMPILE_INSTANTIATE=1
#STLPORTINC= -I/usr/local/STLport-4.1b4/stlport
#STLPORTOPTS= -D__NO_USE_STD_IOSTREAM -D__STL_NO_SGI_IOSTREAMS
STLPORTINC= -I/net/cci/xp/C++_C_headers
STLPORTINC=-I$(BOOST)/boost/compatibility/cpp_c_headers
STDOPTS= -std strict_ansi
WARNOPTS= -msg_disable 186,450,1115
STDOPTS=-std strict_ansi
# use -msg_display_number to obtain integer tags for -msg_disable
WARNOPTS=-msg_disable 186,450,1115
OPTOPTS=-g
CPP= cxx
CPPOPTS= $(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) -g
MAKEDEP= -Em
CPP=cxx
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) -I$(BOOST) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
MAKEDEP=-Em
LD= cxx
LDOPTS= -shared -expect_unresolved 'Py*' -expect_unresolved '_Py*'
LD=cxx
LDOPTS=-shared -expect_unresolved 'Py*' -expect_unresolved '_Py*'
#HIDDEN= -hidden
#HIDDEN=-hidden
BPL_SRC = $(BOOST)/libs/python/src
BPL_TST = $(BOOST)/libs/python/test
BPL_EXA = $(BOOST)/libs/python/example
SOFTLINKS = \
$(BPL_SRC)/classes.cpp \
$(BPL_SRC)/conversions.cpp \
$(BPL_SRC)/extension_class.cpp \
$(BPL_SRC)/functions.cpp \
$(BPL_SRC)/init_function.cpp \
$(BPL_SRC)/module_builder.cpp \
$(BPL_SRC)/objects.cpp \
$(BPL_SRC)/types.cpp \
$(BPL_TST)/comprehensive.cpp \
$(BPL_TST)/comprehensive.hpp \
$(BPL_TST)/comprehensive.py \
$(BPL_TST)/doctest.py \
$(BPL_EXA)/abstract.cpp \
$(BPL_EXA)/getting_started1.cpp \
$(BPL_EXA)/getting_started2.cpp \
$(BPL_EXA)/getting_started3.cpp \
$(BPL_EXA)/getting_started4.cpp \
$(BPL_EXA)/getting_started5.cpp \
$(BPL_EXA)/test_abstract.py \
$(BPL_EXA)/test_getting_started1.py \
$(BPL_EXA)/test_getting_started2.py \
$(BPL_EXA)/test_getting_started3.py \
$(BPL_EXA)/test_getting_started4.py \
$(BPL_EXA)/test_getting_started5.py
OBJ = classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o
DEPOBJ= $(OBJ) comprehensive.o abstract.o \
getting_started1.o getting_started2.o getting_started3.o \
getting_started4.o getting_started5.o
OBJ=classes.o conversions.o extension_class.o functions.o \
init_function.o module_builder.o \
objects.o types.o cross_module.o
DEPOBJ=$(OBJ) \
comprehensive.o \
abstract.o \
getting_started1.o getting_started2.o getting_started3.o \
simple_vector.o \
do_it_yourself_converters.o \
pickle1.o pickle2.o pickle3.o \
noncopyable_export.o noncopyable_import.o \
ivect.o dvect.o
.SUFFIXES: .o .cpp
all: libboost_python.a boost_python_test.so abstract.so \
all: libboost_python.a \
boost_python_test.so \
abstract.so \
getting_started1.so getting_started2.so getting_started3.so \
getting_started4.so getting_started5.so
softlinks:
@ for pn in $(SOFTLINKS); \
do \
bn=`basename "$$pn"`; \
if [ ! -e "$$bn" ]; then \
echo "ln -s $$pn ."; \
ln -s "$$pn" .; \
else \
echo "info: no softlink created (file exists): $$bn"; \
fi; \
done
unlink:
@ for pn in $(SOFTLINKS); \
do \
bn=`basename "$$pn"`; \
if [ -L "$$bn" ]; then \
echo "rm $$bn"; \
rm "$$bn"; \
elif [ -e "$$bn" ]; then \
echo "info: not a softlink: $$bn"; \
fi; \
done
simple_vector.so \
do_it_yourself_converters.so \
pickle1.so pickle2.so pickle3.so \
noncopyable_export.so noncopyable_import.so \
ivect.so dvect.so
libboost_python.a: $(OBJ)
rm -f libboost_python.a
@@ -130,11 +94,34 @@ getting_started2.so: $(OBJ) getting_started2.o
getting_started3.so: $(OBJ) getting_started3.o
$(LD) $(LDOPTS) $(OBJ) getting_started3.o -o getting_started3.so
getting_started4.so: $(OBJ) getting_started4.o
$(LD) $(LDOPTS) $(OBJ) getting_started4.o -o getting_started4.so
simple_vector.so: $(OBJ) simple_vector.o
$(LD) $(LDOPTS) $(OBJ) simple_vector.o -o simple_vector.so
getting_started5.so: $(OBJ) getting_started5.o
$(LD) $(LDOPTS) $(OBJ) getting_started5.o -o getting_started5.so
do_it_yourself_converters.so: $(OBJ) do_it_yourself_converters.o
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_converters.o -o do_it_yourself_converters.so
pickle1.so: $(OBJ) pickle1.o
$(LD) $(LDOPTS) $(OBJ) pickle1.o -o pickle1.so
pickle2.so: $(OBJ) pickle2.o
$(LD) $(LDOPTS) $(OBJ) pickle2.o -o pickle2.so
pickle3.so: $(OBJ) pickle3.o
$(LD) $(LDOPTS) $(OBJ) pickle3.o -o pickle3.so
noncopyable_export.so: $(OBJ) noncopyable_export.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_export.o -o noncopyable_export.so
noncopyable_import.so: $(OBJ) noncopyable_import.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) \
noncopyable_import.o -o noncopyable_import.so
ivect.so: $(OBJ) ivect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) ivect.o -o ivect.so
dvect.so: $(OBJ) dvect.o
$(LD) $(LDOPTS) $(OBJ) $(HIDDEN) dvect.o -o dvect.so
.cpp.o:
$(CPP) $(CPPOPTS) -c $*.cpp
@@ -145,8 +132,12 @@ test:
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_getting_started3.py
$(PYEXE) test_getting_started4.py
$(PYEXE) test_getting_started5.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_converters.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py
clean:
rm -f $(OBJ) libboost_python.a libboost_python.a.input
@@ -155,11 +146,30 @@ clean:
rm -f getting_started1.o getting_started1.so
rm -f getting_started2.o getting_started2.so
rm -f getting_started3.o getting_started3.so
rm -f getting_started4.o getting_started4.so
rm -f getting_started5.o getting_started5.so
rm -f simple_vector.o simple_vector.so
rm -f do_it_yourself_converters.o do_it_yourself_converters.so
rm -f pickle1.o pickle1.so
rm -f pickle2.o pickle2.so
rm -f pickle3.o pickle3.so
rm -f noncopyable_export.o noncopyable_export.so
rm -f noncopyable_import.o noncopyable_import.so
rm -f ivect.o ivect.so
rm -f dvect.o dvect.so
rm -f so_locations *.pyc
rm -rf cxx_repository
softlinks:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) softlinks
unlink:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) unlink
cp:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) cp
rm:
$(PYEXE) $(BOOST)/libs/python/build/filemgr.py $(BOOST) rm
depend:
@ cat Makefile.nodepend; \
for obj in $(DEPOBJ); \

133
build/vc60.mak Normal file
View File

@@ -0,0 +1,133 @@
# Usage:
#
# make copy Copy the sources and tests
# make Compile all sources
# make test Run doctest tests
# make clean Remove all object files
# make del Remove the sources and tests
#
# Revision history:
# 12 Apr 01 new macro ROOT to simplify configuration (R.W. Grosse-Kunstleve)
# Initial version: R.W. Grosse-Kunstleve
ROOT=L:
BOOST_WIN="$(ROOT)\boost"
BOOST_UNIX=$(HOME)/boost
PYEXE="C:\Program files\Python\python.exe"
PYINC=/I"C:\Program files\Python\include"
PYLIB="C:\Program files\Python\libs\python15.lib"
STDOPTS=/nologo /MD /GR /GX /Zm200
WARNOPTS=
OPTOPTS=
CPP=cl.exe
CPPOPTS=$(STLPORTINC) $(STLPORTOPTS) /I$(BOOST_WIN) $(PYINC) \
$(STDOPTS) $(WARNOPTS) $(OPTOPTS)
LD=link.exe
LDOPTS=/nologo /dll /incremental:no
OBJ=classes.obj conversions.obj extension_class.obj functions.obj \
init_function.obj module_builder.obj \
objects.obj types.obj cross_module.obj
.SUFFIXES: .obj .cpp
all: boost_python.lib \
boost_python_test.pyd \
abstract.pyd \
getting_started1.pyd getting_started2.pyd getting_started3.pyd \
simple_vector.pyd \
do_it_yourself_converters.pyd \
pickle1.pyd pickle2.pyd pickle3.pyd \
noncopyable_export.pyd noncopyable_import.pyd \
ivect.pyd dvect.pyd
boost_python.lib: $(OBJ)
$(LD) -lib /nologo /out:boost_python.lib $(OBJ)
boost_python_test.pyd: $(OBJ) comprehensive.obj
$(LD) $(LDOPTS) $(OBJ) comprehensive.obj $(PYLIB) /export:initboost_python_test /out:"boost_python_test.pyd"
abstract.pyd: $(OBJ) abstract.obj
$(LD) $(LDOPTS) $(OBJ) abstract.obj $(PYLIB) /export:initabstract /out:"abstract.pyd"
getting_started1.pyd: $(OBJ) getting_started1.obj
$(LD) $(LDOPTS) $(OBJ) getting_started1.obj $(PYLIB) /export:initgetting_started1 /out:"getting_started1.pyd"
getting_started2.pyd: $(OBJ) getting_started2.obj
$(LD) $(LDOPTS) $(OBJ) getting_started2.obj $(PYLIB) /export:initgetting_started2 /out:"getting_started2.pyd"
getting_started3.pyd: $(OBJ) getting_started3.obj
$(LD) $(LDOPTS) $(OBJ) getting_started3.obj $(PYLIB) /export:initgetting_started3 /out:"getting_started3.pyd"
simple_vector.pyd: $(OBJ) simple_vector.obj
$(LD) $(LDOPTS) $(OBJ) simple_vector.obj $(PYLIB) /export:initsimple_vector /out:"simple_vector.pyd"
do_it_yourself_converters.pyd: $(OBJ) do_it_yourself_converters.obj
$(LD) $(LDOPTS) $(OBJ) do_it_yourself_converters.obj $(PYLIB) /export:initdo_it_yourself_converters /out:"do_it_yourself_converters.pyd"
pickle1.pyd: $(OBJ) pickle1.obj
$(LD) $(LDOPTS) $(OBJ) pickle1.obj $(PYLIB) /export:initpickle1 /out:"pickle1.pyd"
pickle2.pyd: $(OBJ) pickle2.obj
$(LD) $(LDOPTS) $(OBJ) pickle2.obj $(PYLIB) /export:initpickle2 /out:"pickle2.pyd"
pickle3.pyd: $(OBJ) pickle3.obj
$(LD) $(LDOPTS) $(OBJ) pickle3.obj $(PYLIB) /export:initpickle3 /out:"pickle3.pyd"
noncopyable_export.pyd: $(OBJ) noncopyable_export.obj
$(LD) $(LDOPTS) $(OBJ) noncopyable_export.obj $(PYLIB) /export:initnoncopyable_export /out:"noncopyable_export.pyd"
noncopyable_import.pyd: $(OBJ) noncopyable_import.obj
$(LD) $(LDOPTS) $(OBJ) noncopyable_import.obj $(PYLIB) /export:initnoncopyable_import /out:"noncopyable_import.pyd"
ivect.pyd: $(OBJ) ivect.obj
$(LD) $(LDOPTS) $(OBJ) ivect.obj $(PYLIB) /export:initivect /out:"ivect.pyd"
dvect.pyd: $(OBJ) dvect.obj
$(LD) $(LDOPTS) $(OBJ) dvect.obj $(PYLIB) /export:initdvect /out:"dvect.pyd"
.cpp.obj:
$(CPP) $(CPPOPTS) /c $*.cpp
test:
$(PYEXE) comprehensive.py --broken-auto-ptr
$(PYEXE) test_abstract.py
$(PYEXE) test_getting_started1.py
$(PYEXE) test_getting_started2.py
$(PYEXE) test_getting_started3.py
$(PYEXE) test_simple_vector.py
$(PYEXE) test_do_it_yourself_converters.py
$(PYEXE) test_pickle1.py
$(PYEXE) test_pickle2.py
$(PYEXE) test_pickle3.py
$(PYEXE) test_cross_module.py --broken-auto-ptr
clean:
del *.obj
del *.lib
del *.exp
del *.idb
del *.pyd
del *.pyc
softlinks:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) softlinks
unlink:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) unlink
cp:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) cp
rm:
python $(BOOST_UNIX)/libs/python/build/filemgr.py $(BOOST_UNIX) rm
copy:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) copy
del:
$(PYEXE) $(BOOST_WIN)\libs\python\build\filemgr.py $(BOOST_WIN) del

View File

@@ -1,157 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<meta name="generator" content="HTML Tidy, see www.w3.org">
<title>Building an Extension Module</title>
<div>
<h1><img width="277" height="86" id="_x0000_i1025" align="center" src=
"../../../c++boost.gif" alt="c++boost.gif (8819 bytes)">Building an
Extension Module</h1>
<p>The build process for Boost is currently undergoing some evolution,
and, it is to be hoped, improvement. The following facts may help:
<ul>
<li>
Makefiles for various platforms reside in the Boost subdirectory
<tt>libs/python/build</tt>:
<ul>
<li><a href="../build/como.mak">como.mak</a> (Comeau C++ on Linux)
<li><a href="../build/linux_gcc.mak">linux_gcc.mak</a> (GCC on
Linux/Unix)
<li><a href="../build/gcc.mak">gcc.mak</a> (older makefile for GCC
on Linux/Unix. Deprecated.)
<li><a href="../build/mingw32.mak">mingw32.mak</a>
(highly-specialized makefile for mingw32 (Win32-targeted) GCC. Read
the header comment).
<li><a href="../build/tru64_cxx.mak">tru64_cxx.mak</a> (Compaq
Alpha).
</ul>
<br>
<li>
A project workspace for Microsoft Visual Studio is provided at <tt><a
href="../build/build.dsw">libs/python/build/build.dsw</a></tt>. The
include paths for this project may need to be changed for your
installation. They currently assume that python has been installed at
<tt>c:\tools\python</tt>. Three configurations of all targets are
supported:
<ul>
<li>Release (optimization, <tt>-DNDEBUG</tt>)
<li>Debug (no optimization <tt>-D_DEBUG</tt>)
<li>DebugPython (no optimization, <tt>-D_DEBUG
-DBOOST_DEBUG_PYTHON</tt>)
</ul>
<p>When extension modules are built with Visual C++ using
<tt>-D_DEBUG</tt>, Python defaults to <i>force</i> linking with a
special debugging version of the Python DLL. Since this debug DLL
isn't supplied with the default Python installation for Windows,
Boost.Python uses <tt><a href=
"../../../boost/python/detail/wrap_python.hpp">boost/python/detail/wrap_python.hpp</a></tt>
to temporarily undefine <tt>_DEBUG</tt> when <tt>Python.h</tt> is
<tt>#include</tt>d.
<p>If you want the extra runtime checks available with the debugging
version of the library, <tt>#define BOOST_DEBUG_PYTHON</tt> to
re-enable library forcing, and link with the DebugPython version of
<tt>boost_python.lib</tt>. You'll need to get the debugging version
of the Python executable (<tt>python_d.exe</tt>) and DLL
(<tt>python20_d.dll</tt> or <tt>python15_d.dll</tt>). The Python
sources include project files for building these. If you <a href=
"http://www.python.org">download</a> them, change the name of the
top-level directory to <tt>src</tt>, and install it under
<tt>c:\tools\python</tt>, the workspace supplied by Boost.Python will
be able to use it without modification. Just open
<tt>c:\tools\python\src\pcbuild\pcbuild.dsw</tt> and invoke "build
all" to generate all the debugging targets.
<p>If you do not <tt>#define BOOST_DEBUG_PYTHON</tt>, be sure that
any source files <tt>#include &lt;<a href=
"../../../boost/python/detail/wrap_python.hpp">boost/python/detail/wrap_python.hpp</a>&gt;</tt>
instead of the usual <tt>Python.h</tt>, or you will have link
incompatibilities.<br>
<br>
<li>
The makefiles and Visual Studio project can all build at least the
following:
<ul>
<li>The <tt>boost_python</tt> library for static linking with your
extension module. On the various Unices, this library will be
called <tt>libboost_python.a</tt>. On Win32 platforms, the library
will be called <tt>boost_python.lib</tt>.
<li>A comprehensive test of Boost.Python features. This test builds
a Boost.Python extension module, then runs Python to import the
module, and runs a series of tests on it using <tt><a href=
"../test/doctest.py">doctest</a></tt>. Source code for the module
and tests is available in the Boost subdirectory
<tt>libs/python/test</tt>.<br>
<li>Various examples from the Boost subdirectory
<tt>libs/python/example</tt>. Which examples are built currently
depends on the platform. The most up-to-date examples are
<tt>getting_started</tt><i>n</i><tt>.cpp</tt> from <a href=
"http://cci.lbl.gov/staff/ralf_grosse-kunstleve.html">Ralf W.
Grosse-Kunstleve</a>. All these examples include a doctest modeled
on the comprehensive test above.<br>
<br>
</ul>
<li>
If your platform isn't directly supported, you can build a static
library from the following source files (in the Boost subdirectory
<tt>libs/python/src</tt>), or compile them directly and link the
resulting objects into your extension module:
<ul>
<li><a href=
"../../../libs/python/src/extension_class.cpp">extension_class.cpp</a>
<li><a href=
"../../../libs/python/src/functions.cpp">functions.cpp</a>
<li><a href=
"../../../libs/python/src/init_function.cpp">init_function.cpp</a>
<li><a href=
"../../../libs/python/src/module_builder.cpp">module_builder.cpp</a>
<li><a href="../../../libs/python/src/types.cpp">types.cpp</a>
<li><a href="../../../libs/python/src/objects.cpp">objects.cpp</a>
<li><a href=
"../../../libs/python/src/conversions.cpp">conversions.cpp</a>
<li><a href="../../../libs/python/src/classes.cpp">classes.cpp</a>
</ul>
</ul>
<p>Next: <a href="enums.html">Wrapping Enums</a> Previous: <a href=
"under-the-hood.html">A Peek Under the Hood</a> Up: <a href=
"index.html">Top</a>
<p>&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>Updated: Mar 6, 2001
</div>

View File

@@ -1,231 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Comparisons with Other Systems
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)"><br>
Comparisons with
Other Systems
</h1>
<h2>CXX</h2>
<p>
Like Boost.Python, <a href="http://cxx.sourceforge.net/">CXX</a> attempts to
provide a C++-oriented interface to Python. In most cases, as with the
boost library, it relieves the user from worrying about
reference-counts. Both libraries automatically convert thrown C++
exceptions into Python exceptions. As far as I can tell, CXX has no
support for subclassing C++ extension types in Python. An even
more significant difference is that a user's C++ code is still basically
``dealing with Python objects'', though they are wrapped in
C++ classes. This means such jobs as argument parsing and conversion are
still left to be done explicitly by the user.
<p>
CXX claims to interoperate well with the C++ Standard Library
(a.k.a. STL) by providing iterators into Python Lists and Dictionaries,
but the claim is unfortunately unsupportable. The problem is that in
general, access to Python sequence and mapping elements through
iterators requires the use of proxy objects as the return value of
iterator dereference operations. This usage conflicts with the basic
ForwardIterator requirements in <a
href="http://anubis.dkuug.dk/jtc1/sc22/open/n2356/lib-iterators.html#lib.forward.iterators">
section 24.1.3 of the standard</a> (dereferencing must produce a
reference). Although you may be able to use these iterators with some
operations in some standard library implementations, it is neither
guaranteed to work nor portable.
<p>
As far as I can tell, CXX enables one to write what is essentially
idiomatic Python code in C++, manipulating Python objects through the
same fully-generic interfaces we use in Python. While you're hardly
programming directly to the ``bare metal'' with CXX, it basically
presents a ``C++-ized'' version of the Python 'C' API. Some fraction of
that capability is available in Boost.Python through <tt><a
href="../../../boost/python/objects.hpp">boost/python/objects.hpp</a></tt>,
which provides C++ objects corresponding to Python lists, tuples,
strings, and dictionaries, and through <tt><a
href="../../../boost/python/callback.hpp">boost/python/callback.hpp</a></tt>,
which allows you to call back into python with C++ arguments.
<p>
<a href="mailto:dubois1@llnl.gov">Paul F. Dubois</a>, the original
author of CXX, has told me that what I've described is only half of the
picture with CXX, but I never understood his explanation well-enough to
fill in the other half. Here is his response to the commentary above:
<blockquote>
``My intention with CXX was not to do what you are doing. It was to enable a
person to write an extension directly in C++ rather than C. I figured others had
the wrapping business covered. I thought maybe CXX would provide an easier
target language for those making wrappers, but I never explored
that.''<br><i>-<a href="mailto:dubois1@llnl.gov">Paul Dubois</a></i>
</blockquote>
<h2>SWIG</h2>
<p>
<a href= "http://www.swig.org/">SWIG</a> is an impressively mature tool
for exporting an existing ANSI 'C' interface into various scripting
languages. Swig relies on a parser to read your source code and produce
additional source code files which can be compiled into a Python (or
Perl or Tcl) extension module. It has been successfully used to create
many Python extension modules. Like Boost.Python, SWIG is trying to allow an
existing interface to be wrapped with little or no change to the
existing code. The documentation says ``SWIG parses a form of ANSI C
syntax that has been extended with a number of special directives. As a
result, interfaces are usually built by grabbing a header file and
tweaking it a little bit.'' For C++ interfaces, the tweaking has often
proven to amount to more than just a little bit. One user
writes:
<blockquote> ``The problem with swig (when I used it) is that it
couldnt handle templates, didnt do func overloading properly etc. For
ANSI C libraries this was fine. But for usual C++ code this was a
problem. Simple things work. But for anything very complicated (or
realistic), one had to write code by hand. I believe Boost.Python doesn't have
this problem[<a href="#sic">sic</a>]... IMHO overloaded functions are very important to
wrap correctly.''<br><i>-Prabhu Ramachandran</i>
</blockquote>
<p>
By contrast, Boost.Python doesn't attempt to parse C++ - the problem is simply
too complex to do correctly. <a name="sic">Technically</a>, one does
write code by hand to use Boost.Python. The goal, however, has been to make
that code nearly as simple as listing the names of the classes and
member functions you want to expose in Python.
<h2>SIP</h2>
<p>
<a
href="http://www.thekompany.com/projects/pykde/background.php3?dhtml_ok=1">SIP</a>
is a system similar to SWIG, though seemingly more
C++-oriented. The author says that like Boost.Python, SIP supports overriding
extension class member functions in Python subclasses. It appears to
have been designed specifically to directly support some features of
PyQt/PyKDE, which is its primary client. Documentation is almost
entirely missing at the time of this writing, so a detailed comparison
is difficult.
<h2>ILU</h2>
<p>
<a
href="http://www.cl.cam.ac.uk/Research/Rainbow/projects/origami/ilu-1.8-manual">ILU</a>
is a very ambitious project which tries to describe a module's interface
(types and functions) in terms of an <a
href="http://www.cl.cam.ac.uk/Research/Rainbow/projects/origami/ilu-1.8-manual/manual_2.html">Interface
Specification Language</a> (ISL) so that it can be uniformly interfaced
to a wide range of computer languages, including Common Lisp, C++, C,
Modula-3, and Python. ILU can parse the ISL to generate a C++ language
header file describing the interface, of which the user is expected to
provide an implementation. Unlike Boost.Python, this means that the system
imposes implementation details on your C++ code at the deepest level. It
is worth noting that some of the C++ names generated by ILU are supposed
to be reserved to the C++ implementation. It is unclear from the
documentation whether ILU supports overriding C++ virtual functions in Python.
<h2>GRAD</h2>
<p>
<a
href="http://www.python.org/workshops/1996-11/papers/GRAD/html/GRADcover.html">GRAD</a>
is another very ambitious project aimed at generating Python wrappers for
interfaces written in ``legacy languages'', among which C++ is the first one
implemented. Like SWIG, it aims to parse source code and automatically
generate wrappers, though it appears to take a more sophisticated approach
to parsing in general and C++ in particular, so it should do a much better
job with C++. It appears to support function overloading. The
documentation is missing a lot of information I'd like to see, so it is
difficult to give an accurate and fair assessment. I am left with the
following questions:
<ul>
<li>Does it support overriding of virtual functions?
<li>What about overriding private or protected virtual functions (the documentation indicates
that only public interfaces are supported)?
<li>Which C++ language constructs are supportd?
<li>Does it support implicit conversions between wrapped C++ classes that have
an inheritance relationship?
<li>Does it support smart pointers?
</ul>
<p>
Anyone in the possession of the answers to these questions will earn my
gratitude for a write-up <code>;-)</code>
<h2>Zope ExtensionClasses</h2>
<p>
<a href="http:http://www.digicool.com/releases/ExtensionClass">
ExtensionClasses in Zope</a> use the same underlying mechanism as Boost.Python
to support subclassing of extension types in Python, including
multiple-inheritance. Both systems support pickling/unpickling of
extension class instances in very similar ways. Both systems rely on the
same ``<a
href="http://www.python.org/workshops/1994-11/BuiltInClasses/Welcome.html">Don
Beaudry Hack</a>'' that also inspired Don's MESS System.
<p>
The major differences are:
<ul>
<li>Zope is entirely 'C' language-based. It doesn't require a C++
compiler, so it's much more portable than Boost.Python, which stresses
the limits of even some modern C++ implementations.
<li>
Boost.Python lifts the burden on the user to parse and convert function
argument types. Zope provides no such facility.
<li>
Boost.Python lifts the burden on the user to maintain Python
reference-counts.
<li>
Boost.Python supports function overloading; Zope does not.
<li>
Boost.Python supplies a simple mechanism for exposing read-only and
read/write access to data members of the wrapped C++ type as Python
attributes.
<li>
Writing a Zope ExtensionClass is significantly more complex than
exposing a C++ class to python using Boost.Python (mostly a summary of the
previous 4 items). <a href=
"http://www.digicool.com/releases/ExtensionClass/MultiMapping.html">A
Zope Example</a> illustrates the differences.
<li>
Zope's ExtensionClasses are specifically motivated by ``the need for a
C-based persistence mechanism''. Boost.Python's are motivated by the desire
to simply reflect a C++ API into Python with as little modification as
possible.
<li>
The following Zope restriction does not apply to Boost.Python: ``At most one
base extension direct or indirect super class may define C data
members. If an extension subclass inherits from multiple base
extension classes, then all but one must be mix-in classes that
provide extension methods but no data.''
<li>
Zope requires use of the somewhat funky inheritedAttribute (search for
``inheritedAttribute'' on <a
href="http://www.digicool.com/releases/ExtensionClass">this page</a>)
method to access base class methods. In Boost.Python, base class methods can
be accessed in the usual way by writing
``<code>BaseClass.method</code>''.
<li>
Zope supplies some creative but esoteric idioms such as <a href=
"http://www.digicool.com/releases/ExtensionClass/Acquisition.html">
Acquisition</a>. No specific support for this is built into Boost.Python.
<li>
Zope's ComputedAttribute support is designed to be used from Python.
<a href="special.html#getter_setter">The analogous feature of
Boost.Python</a> can be used from C++ or Python. The feature is arguably
easier to use in Boost.Python.
</ul>
<p>
Next: <a href="example1.html">A Simple Example Using Boost.Python</a>
Previous: <a href="extending.html">A Brief Introduction to writing Python Extension Modules</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -0,0 +1,336 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>Cross-extension-module dependencies</title>
<div>
<img src="../../../c++boost.gif"
alt="c++boost.gif (8819 bytes)"
align="center"
width="277" height="86">
<hr>
<h1>Cross-extension-module dependencies</h1>
It is good programming practice to organize large projects as modules
that interact with each other via well defined interfaces. With
Boost.Python it is possible to reflect this organization at the C++
level at the Python level. This is, each logical C++ module can be
organized as a separate Python extension module.
<p>
At first sight this might seem natural and straightforward. However, it
is a fairly complex problem to establish cross-extension-module
dependencies while maintaining the same ease of use Boost.Python
provides for classes that are wrapped in the same extension module. To
a large extent this complexity can be hidden from the author of a
Boost.Python extension module, but not entirely.
<hr>
<h2>The recipe</h2>
Suppose there is an extension module that exposes certain instances of
the C++ <tt>std::vector</tt> template library such that it can be used
from Python in the following manner:
<pre>
import std_vector
v = std_vector.double([1, 2, 3, 4])
v.push_back(5)
v.size()
</pre>
Suppose the <tt>std_vector</tt> module is done well and reflects all
C++ functions that are useful at the Python level, for all C++ built-in
data types (<tt>std_vector.int</tt>, <tt>std_vector.long</tt>, etc.).
<p>
Suppose further that there is statistic module with a C++ class that
has constructors or member functions that use or return a
<tt>std::vector</tt>. For example:
<pre>
class xy {
public:
xy(const std::vector&lt;double&gt;&amp; x, const std::vector&lt;double&gt;&amp; y) : m_x(x), m_y(y) {}
const std::vector&lt;double&gt;&amp; x() const { return m_x; }
const std::vector&lt;double&gt;&amp; y() const { return m_y; }
double correlation();
private:
std::vector&lt;double&gt; m_x;
std::vector&lt;double&gt; m_y;
}
</pre>
What is more natural than reusing the <tt>std_vector</tt> extension
module to expose these constructors or functions to Python?
<p>
Unfortunately, what seems natural needs a little work in both the
<tt>std_vector</tt> and the <tt>statistics</tt> module.
<p>
In the <tt>std_vector</tt> extension module,
<tt>std::vector&lt;double&gt;</tt> is exposed to Python in the usual
way with the <tt>class_builder&lt;&gt;</tt> template. To also enable the
automatic conversion of <tt>std::vector&lt;double&gt;</tt> function
arguments or return values in other Boost.Python C++ modules, the
converters that convert a <tt>std::vector&lt;double&gt;</tt> C++ object
to a Python object and vice versa (i.e. the <tt>to_python()</tt> and
<tt>from_python()</tt> template functions) have to be exported. For
example:
<pre>
#include &lt;boost/python/cross_module.hpp&gt;
//...
class_builder&lt;std::vector&lt;double&gt; &gt; v_double(std_vector_module, &quot;double&quot;);
export_converters(v_double);
</pre>
In the extension module that wraps <tt>class xy</tt> we can now import
these converters with the <tt>import_converters&lt;&gt;</tt> template.
For example:
<pre>
#include &lt;boost/python/cross_module.hpp&gt;
//...
import_converters&lt;std::vector&lt;double&gt; &gt; v_double_converters(&quot;std_vector&quot;, &quot;double&quot;);
</pre>
That is all. All the attributes that are defined for
<tt>std_vector.double</tt> in the <tt>std_vector</tt> Boost.Python
module will be available for the returned objects of <tt>xy.x()</tt>
and <tt>xy.y()</tt>. Similarly, the constructor for <tt>xy</tt> will
accept objects that were created by the <tt>std_vector</tt>module.
<hr>
<h2>Placement of <tt>import_converters&lt;&gt;</tt> template instantiations</h2>
<tt>import_converts&lt;&gt;</tt> can be viewed as a drop-in replacement
for <tt>class_wrapper&lt;&gt;</tt>, and the recommendations for the
placement of <tt>class_wrapper&lt;&gt;</tt> template instantiations
also apply to to <tt>import_converts&lt;&gt;</tt>. In particular, it is
important that an instantiation of <tt>class_wrapper&lt;&gt;</tt> is
visible to any code which wraps a C++ function with a <tt>T</tt>,
<tt>T*</tt>, const <tt>T&amp;</tt>, etc. parameter or return value.
Therefore you may want to group all <tt>class_wrapper&lt;&gt;</tt> and
<tt>import_converts&lt;&gt;</tt> instantiations at the top of your
module's init function, then <tt>def()</tt> the member functions later
to avoid problems with inter-class dependencies.
<hr>
<h2>Non-copyable types</h2>
<tt>export_converters()</tt> instantiates C++ template functions that
invoke the copy constructor of the wrapped type. For a type that is
non-copyable this will result in compile-time error messages. In such a
case, <tt>export_converters_noncopyable()</tt> can be used to export
the converters that do not involve the copy constructor of the wrapped
type. For example:
<pre>
class_builder&lt;store&gt; py_store(your_module, &quot;store&quot;);
export_converters_noncopyable(py_store);
</pre>
The corresponding <tt>import_converters&lt;&gt;</tt> statement does not
need any special attention:
<pre>
import_converters&lt;store&gt; py_store(&quot;noncopyable_export&quot;, &quot;store&quot;);
</pre>
<hr>
<h2>Python module search path</h2>
The <tt>std_vector</tt> and <tt>statistics</tt> modules can now be used
in the following way:
<pre>
import std_vector
import statistics
x = std_vector.double([1, 2, 3, 4])
y = std_vector.double([2, 4, 6, 8])
xy = statistics.xy(x, y)
xy.correlation()
</pre>
In this example it is clear that Python has to be able to find both the
<tt>std_vector</tt> and the <tt>statistics</tt> extension module. In
other words, both extension modules need to be in the Python module
search path (<tt>sys.path</tt>).
<p>
The situation is not always this obvious. Suppose the
<tt>statistics</tt> module has a <tt>random()</tt> function that
returns a vector of random numbers with a given length:
<pre>
import statistics
x = statistics.random(5)
y = statistics.random(5)
xy = statistics.xy(x, y)
xy.correlation()
</pre>
A naive user will not easily anticipate that the <tt>std_vector</tt>
module is used to pass the <tt>x</tt> and <tt>y</tt> vectors around. If
the <tt>std_vector</tt> module is in the Python module search path,
this form of ignorance is of no harm. On the contrary, we are glad
that we do not have to bother the user with details like this.
<p>
If the <tt>std_vector</tt> module is not in the Python module search
path, a Python exception will be raised:
<pre>
Traceback (innermost last):
File &quot;foo.py&quot;, line 2, in ?
x = statistics.random(5)
ImportError: No module named std_vector
</pre>
As is the case with any system of a non-trivial complexity, it is
important that the setup is consistent and complete.
<hr>
<h2>Two-way module dependencies</h2>
Boost.Python supports two-way module dependencies. This is best
illustrated by a simple example.
<p>
Suppose there is a module <tt>ivect</tt> that implements vectors of
integers, and a similar module <tt>dvect</tt> that implements vectors
of doubles. We want to be able do convert an integer vector to a double
vector and vice versa. For example:
<pre>
import ivect
iv = ivect.ivect((1,2,3,4,5))
dv = iv.as_dvect()
</pre>
The last expression will implicitly import the <tt>dvect</tt> module in
order to enable the conversion of the C++ representation of
<tt>dvect</tt> to a Python object. The analogous is possible for a
<tt>dvect</tt>:
<pre>
import dvect
dv = dvect.dvect((1,2,3,4,5))
iv = dv.as_ivect()
</pre>
Now the <tt>ivect</tt> module is imported implicitly.
<p>
Note that the two-way dependencies are possible because the
dependencies are resolved only when needed. This is, the initialization
of the <tt>ivect</tt> module does not rely on the <tt>dvect</tt>
module, and vice versa. Only if <tt>as_dvect()</tt> or
<tt>as_ivect()</tt> is actually invoked will the corresponding module
be implicitly imported. This also means that, for example, the
<tt>dvect</tt> module does not have to be available at all if
<tt>as_dvect()</tt> is never used.
<hr>
<h2>Clarification of compile-time and link-time dependencies</h2>
Boost.Python's support for resolving cross-module dependencies at
runtime does not imply that compile-time dependencies are eliminated.
For example, the statistics extension module in the example above will
need to <tt>#include &lt;vector&gt;</tt>. This is immediately obvious
from the definition of <tt>class xy</tt>.
<p>
If a library is wrapped that consists of both header files and compiled
components (e.g. <tt>libdvect.a</tt>, <tt>dvect.lib</tt>, etc.), both
the Boost.Python extension module with the
<tt>export_converters()</tt> statement and the module with the
<tt>import_converters&lt;&gt;</tt> statement need to be linked against
the object library. Ideally one would build a shared library (e.g.
<tt>libdvect.so</tt>, <tt>dvect.dll</tt>, etc.). However, this
introduces the issue of having to configure the search path for the
dynamic loading correctly. For small libraries it is therefore often
more convenient to ignore the fact that the object files are loaded
into memory more than once.
<hr>
<h2>Summary of motivation for cross-module support</h2>
The main purpose of Boost.Python's cross-module support is to allow for
a modular system layout. With this support it is straightforward to
reflect C++ code organization at the Python level. Without the
cross-module support, a multi-purpose module like <tt>std_vector</tt>
would be impractical because the entire wrapper code would somehow have
to be duplicated in all extension modules that use it, making them
harder to maintain and harder to build.
<p>
Another motivation for the cross-module support is that two extension
modules that wrap the same class cannot both be imported into Python.
For example, if there are two modules <tt>A</tt> and <tt>B</tt> that
both wrap a given <tt>class X</tt>, this will work:
<pre>
import A
x = A.X()
</pre>
This will also work:
<pre>
import B
x = B.X()
</pre>
However, this will fail:
<pre>
import A
import B
python: /net/cci/rwgk/boost/boost/python/detail/extension_class.hpp:866:
static void boost::python::detail::class_registry&lt;X&gt;::register_class(boost::python::detail::extension_class_base *):
Assertion `static_class_object == 0' failed.
Abort
</pre>
A good solution is to wrap <tt>class X</tt> only once. Depending on the
situation, this could be done by module <tt>A</tt> or <tt>B</tt>, or an
additional small extension module that only wraps and exports
<tt>class X</tt>.
<p>
Finally, there can be important psychological or political reasons for
using the cross-module support. If a group of classes is lumped
together with many others in a huge module, the authors will have
difficulties in being identified with their work. The situation is
much more transparent if the work is represented by a module with a
recognizable name. This is not just a question of strong egos, but also
of getting credit and funding.
<hr>
<h2>Why not use <tt>export_converters()</tt> universally?</h2>
There is some overhead associated with the Boost.Python cross-module
support. Depending on the platform, the size of the code generated by
<tt>export_converters()</tt> is roughly 10%-20% of that generated
by <tt>class_builder&lt;&gt;</tt>. For a large extension module with
many wrapped classes, this could mean a significant difference.
Therefore the general recommendation is to use
<tt>export_converters()</tt> only for classes that are likely to
be used as function arguments or return values in other modules.
<hr>
&copy; Copyright Ralf W. Grosse-Kunstleve 2001. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided "as
is" without express or implied warranty, and with no claim as to its
suitability for any purpose.
<p>
Updated: April 2001
</div>

View File

@@ -1,192 +0,0 @@
Given a real Python class 'A', a wrapped C++ class 'B', and this definition:
class C(A, B):
def __init__(self):
B.__init__(self)
self.x = 1
...
c = C()
this diagram describes the internal structure of an instance of 'C', including
its inheritance relationships. Note that ExtensionClass<B> is derived from
Class<ExtensionInstance>, and is in fact identical for all intents and purposes.
MetaClass<ExtensionInstance>
+---------+ +---------+
types.ClassType: | | | |
| | | |
| | | |
+---------+ +---------+
^ ^ ^
PyClassObject | ExtensionClass<B> | |
A: +------------+ | B: +------------+ | |
| ob_type -+-+ | ob_type -+-----+ |
| | ()<--+- __bases__ | |
| | | __dict__ -+->{...} |
| | 'B'<-+- __name__ | |
+------------+ +------------+ |
^ ^ |
| | |
+-----+ +-------------+ |
| | |
| | Class<ExtensionInstance> |
| | C: +------------+ |
| | | ob_type -+------------+
tuple:(*, *)<--+- __bases__ |
| __dict__ -+->{__module__, <methods, etc.>}
'C' <-+- __name__ |
+------------+
^ (in case of inheritance from more than one
| extension class, this vector would contain
+---------------+ a pointer to an instance holder for the data
| of each corresponding C++ class)
| ExtensionInstance
| c: +---------------------+ std::vector<InstanceHolderBase>
+----+- __class__ | +---+--
| m_wrapped_objects -+->| * | ...
{'x': 1}<-+- __dict__ | +-|-+--
+---------------------+ | InstanceValueHolder<B>
| +--------------------------------+
+-->| (contains a C++ instance of B) |
+--------------------------------+
In our inheritance test cases in extclass_demo.cpp/test_extclass.py, we have the
following C++ inheritance hierarchy:
+-----+ +----+
| A1 | | A2 |
+-----+ +----+
^ ^ ^ ^ ^
| | | | |
+-----+ | +---------+-----+
| | | |
| +---+----------+
.......!...... | |
: A_callback : +-+--+ +-+--+
:............: | B1 | | B2 |
+----+ +----+
^
|
+-------+---------+
| |
+-+-+ ......!.......
| C | : B_callback :
+---+ :............:
A_callback and B_callback are used as part of the wrapping mechanism but not
represented in Python. C is also not represented in Python but is delivered
there polymorphically through a smart pointer.
This is the data structure in Python.
ExtensionClass<A1>
A1: +------------+
()<--+- __bases__ |
| __dict__ -+->{...}
+------------+
^
| ExtensionInstance
| a1: +---------------------+ vec InstanceValueHolder<A1,A_callback>
+---------+- __class__ | +---+ +---------------------+
| | m_wrapped_objects -+->| *-+-->| contains A_callback |
| +---------------------+ +---+ +---------------------+
|
| ExtensionInstance
| pa1_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ A1
| +---------------------+ +---+ +---+ | +---+
| +->| |
| ExtensionInstance +---+
| pb1_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ B1
| +---------------------+ +---+ +---+ | +---+
| +->| |
| ExtensionInstance +---+
| pb2_a1: +---------------------+ vec InstancePtrHolder<auto_ptr<A1>,A1>
+---------+- __class__ | +---+ +---+
| | m_wrapped_objects -+->| *-+-->| *-+-+ B2
| +---------------------+ +---+ +---+ | +---+
| +->| |
| +---+
| ExtensionClass<A1>
| A2: +------------+
| ()<--+- __bases__ |
| | __dict__ -+->{...}
| +------------+
| ^
| | ExtensionInstance
| a2: | +---------------------+ vec InstanceValueHolder<A2>
| +-+- __class__ | +---+ +-------------+
| | | m_wrapped_objects -+->| *-+-->| contains A2 |
| | +---------------------+ +---+ +-------------+
| |
| | ExtensionInstance
| pa2_a2: | +---------------------+ vec InstancePtrHolder<auto_ptr<A2>,A2>
| +-+- __class__ | +---+ +---+
| | | m_wrapped_objects -+->| *-+-->| *-+-+ A2
| | +---------------------+ +---+ +---+ | +---+
| | +->| |
| | ExtensionInstance +---+
| pb1_a2: | +---------------------+ vec InstancePtrHolder<auto_ptr<A2>,A2>
| +-+- __class__ | +---+ +---+
| | | m_wrapped_objects -+->| *-+-->| *-+-+ B1
| | +---------------------+ +---+ +---+ | +---+
| | +->| |
| | +---+
| |
| +---------------+------------------------------+
| | |
+------+-------------------------+-|----------------------------+ |
| | | | |
| Class<ExtensionInstance> | | ExtensionClass<B1> | | ExtensionClass<B1>
| DA1: +------------+ | | B1: +------------+ | | B2: +------------+
(*,)<---+- __bases__ | (*,*)<---+- __bases__ | (*,*)<---+- __bases__ |
| __dict__ -+->{...} | __dict__ -+->{...} | __dict__ -+->{...}
+------------+ +------------+ +------------+
^ ^ ^
| ExtensionInstance | |
| da1: +---------------------+ | vec InstanceValueHolder<A1,A_callback>
+-------+- __class__ | | +---+ +---------------------+ |
| m_wrapped_objects -+--|-->| *-+-->| contains A_callback | |
+---------------------+ | +---+ +---------------------+ |
+--------------------------------------+ |
| ExtensionInstance |
b1: | +---------------------+ vec InstanceValueHolder<B1,B_callback> |
+-+- __class__ | +---+ +---------------------+ |
| | m_wrapped_objects -+->| *-+-->| contains B_callback | |
| +---------------------+ +---+ +---------------------+ |
| |
| ExtensionInstance |
pb1_b1: | +---------------------+ vec InstancePtrHolder<auto_ptr<B1>,B1> |
+-+- __class__ | +---+ +---+ |
| | m_wrapped_objects -+->| *-+-->| *-+-+ B1 |
| +---------------------+ +---+ +---+ | +---+ |
| +->| | |
| ExtensionInstance +---+ |
pc_b1: | +---------------------+ vec InstancePtrHolder<auto_ptr<B1>,B1> |
+-+- __class__ | +---+ +---+ |
| | m_wrapped_objects -+->| *-+-->| *-+-+ C |
| +---------------------+ +---+ +---+ | +---+ |
| +->| | |
| +---+ |
| |
| Class<ExtensionInstance> +---------------------------------------+
| DB1: +------------+ | ExtensionInstance
(*,)<---+- __bases__ | a2: | +---------------------+ vec InstanceValueHolder<A2>
| __dict__ -+->{...} +-+- __class__ | +---+ +-------------+
+------------+ | m_wrapped_objects -+->| *-+-->| contains A2 |
^ +---------------------+ +---+ +-------------+
| ExtensionInstance
db1: | +---------------------+ vec InstanceValueHolder<B1,B_callback>
+-+- __class__ | +---+ +----------------------+
| m_wrapped_objects -+-->| *-+-->| contains B1_callback |
+---------------------+ +---+ +----------------------+

View File

@@ -1,120 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Wrapping enums
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)"><br>
Wrapping enums
</h1>
<p>Because there is in general no way to deduce that a value of arbitrary type T
is an enumeration constant, the Boost Python Library cannot automatically
convert enum values to and from Python. To handle this case, you need to decide
how you want the enum to show up in Python (since Python doesn't have
enums). Once you have done that, you can write some simple
<code>from_python()</code> and <code>to_python()</code> functions.
<p>If you are satisfied with a Python int as a way to represent your enum
values, we provide a shorthand for these functions. You just need to cause
<code>boost::python::enum_as_int_converters&lt;EnumType&gt;</code> to be
instantiated, where
<code>EnumType</code> is your enumerated type. There are two convenient ways to do this:
<ol>
<li>Explicit instantiation:
<blockquote><pre>
template class boost::python::enum_as_int_converters&lt;my_enum&gt;;
</blockquote></pre>
Some buggy C++ implementations require a class to be instantiated in the same
namespace in which it is defined. In that case, the simple incantation above becomes:
<blockquote>
<pre>
...
} // close my_namespace
// drop into namespace python and explicitly instantiate
namespace boost { namespace python {
template class enum_as_int_converters&lt;my_enum_type&gt;;
}} // namespace boost::python
namespace my_namespace { // re-open my_namespace
...
</pre>
</blockquote>
<li>If you have such an implementation, you may find this technique more convenient
<blockquote><pre>
// instantiate as base class in any namespace
struct EnumTypeConverters
: boost::python::enum_as_int_converters&lt;EnumType&gt;
{
};
</blockquote></pre>
</ol>
<p>Either of the above is equivalent to the following declarations:
<blockquote><pre>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
MyEnumType from_python(PyObject* x, boost::python::type&lt;MyEnumType&gt;)
{
return static_cast&lt;MyEnum&gt;(
from_python(x, boost::python::type&lt;long&gt;()));
}
MyEnumType from_python(PyObject* x, boost::python::type&lt;const MyEnumType&amp;&gt;)
{
return static_cast&lt;MyEnum&gt;(
from_python(x, boost::python::type&lt;long&gt;()));
}
PyObject* to_python(MyEnumType x)
{
return to_python(static_cast&lt;long&gt;(x));
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
</pre></blockquote>
<p>This technique defines the conversions of
<code>MyEnumType</code> in terms of the conversions for the built-in
<code>long</code> type.
You may also want to add a bunch of lines like this to your module
initialization. These bind the corresponding enum values to the appropriate
names so they can be used from Python:
<blockquote><pre>
mymodule.add(boost::python::to_python(enum_value_1), "enum_value_1");
mymodule.add(boost::python::to_python(enum_value_2), "enum_value_2");
...
</pre></blockquote>
You can also add these to an extension class definition, if your enum happens to
be local to a class and you want the analogous interface in Python:
<blockquote><pre>
my_class_builder.add(boost::python::to_python(enum_value_1), "enum_value_1");
my_class_builder.add(boost::python::to_python(enum_value_2), "enum_value_2");
...
</pre></blockquote>
<p>
Next: <a href="pointers.html">Pointers and Smart Pointers</a>
Previous: <a href="building.html">Building an Extension Module</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,82 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
A Simple Example
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" src="../../../c++boost.gif" alt=
"c++boost.gif (8819 bytes)">
</h1>
<h1>
A Simple Example
</h1>
<p>
Suppose we have the following C++ API which we want to expose in
Python:
<blockquote>
<pre>
#include &lt;string&gt;
namespace { // Avoid cluttering the global namespace.
// A couple of simple C++ functions that we want to expose to Python.
std::string greet() { return "hello, world"; }
int square(int number) { return number * number; }
}
</pre>
</blockquote>
<p>
Here is the C++ code for a python module called <tt>getting_started1</tt>
which exposes the API.
<blockquote>
<pre>
#include &lt;boost/python/class_builder.hpp&gt;
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(getting_started1)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started1");
// Add regular functions to the module.
this_module.def(greet, "greet");
this_module.def(square, "square");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
</pre>
</blockquote>
<p>
That's it! If we build this shared library and put it on our <code>
PYTHONPATH</code> we can now access our C++ functions from
Python.
<blockquote>
<pre>
&gt;&gt;&gt; import getting_started1
&gt;&gt;&gt; print getting_started1.greet()
hello, world
&gt;&gt;&gt; number = 11
&gt;&gt;&gt; print number, '*', number, '=', getting_started1.square(number)
11 * 11 = 121
</pre>
<p>
Next: <a href="exporting_classes.html">Exporting Classes</a>
Previous: <a href="comparisons.html">Comparisons with other systems</a> Up:
<a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Mar 6, 2000
</div>

View File

@@ -1,144 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Exporting Classes
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" src="../../../c++boost.gif" alt=
"c++boost.gif (8819 bytes)">
</h1>
<h1>
Exporting Classes
</h1>
<p>
Now let's expose a C++ class to Python:
<blockquote><pre>
#include &lt;iostream&gt;
#include &lt;string&gt;
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class hello
{
public:
hello(const std::string&amp; country) { this-&gt;country = country; }
std::string greet() const { return "Hello from " + country; }
private:
std::string country;
};
// A function taking a hello object as an argument.
std::string invite(const hello&amp; w) {
return w.greet() + "! Please come soon!";
}
}
</blockquote></pre> <p>
To expose the class, we use a <tt>class_builder</tt> in addition to the
<tt>module_builder</tt> from the previous example. Class member functions
are exposed by using the <tt>def()</tt> member function on the
<tt>class_builder</tt>:
<blockquote><pre>
#include &lt;boost/python/class_builder.hpp&gt;
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(getting_started2)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started2");
// Create the Python type object for our extension class.
python::class_builder&lt;hello&gt; hello_class(this_module, "hello");
// Add the __init__ function.
hello_class.def(python::constructor&lt;std::string&gt;());
// Add a regular member function.
hello_class.def(&amp;hello::greet, "greet");
// Add invite() as a regular function to the module.
this_module.def(invite, "invite");
// Even better, invite() can also be made a member of hello_class!!!
hello_class.def(invite, "invite");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
</blockquote></pre>
<p>
Now we can use the class normally from Python:
<blockquote><pre>
&gt;&gt;&gt; from getting_started2 import *
&gt;&gt;&gt; hi = hello('California')
&gt;&gt;&gt; hi.greet()
'Hello from California'
&gt;&gt;&gt; invite(hi)
'Hello from California! Please come soon!'
&gt;&gt;&gt; hi.invite()
'Hello from California! Please come soon!'
</blockquote></pre>
Notes:<ul>
<li> We expose the class' constructor by calling <tt>def()</tt> on the
<tt>class_builder</tt> with an argument whose type is
<tt>constructor&lt;</tt><i>params</i><tt>&gt;</tt>, where <i>params</i>
matches the list of constructor argument types:
<li>Regular member functions are defined by calling <tt>def()</tt> with a
member function pointer and its Python name:
<li>Any function added to a class whose initial argument matches the class (or
any base) will act like a member function in Python.
</ul>
<p>
We can even make a subclass of <code>hello.world</code>:
<blockquote><pre>
&gt;&gt;&gt; class wordy(hello):
... def greet(self):
... return hello.greet(self) + ', where the weather is fine'
...
&gt;&gt;&gt; hi2 = wordy('Florida')
&gt;&gt;&gt; hi2.greet()
'Hello from Florida, where the weather is fine'
&gt;&gt;&gt; invite(hi2)
'Hello from Florida! Please come soon!'
</blockquote></pre>
<p>
Pretty cool! You can't do that with an ordinary Python extension type!
Of course, you may now have a slightly empty feeling in the pit of
your little pythonic stomach. Perhaps you wanted to see the following
<tt>wordy</tt> invitation:
<blockquote><pre>
'Hello from Florida, where the weather is fine! Please come soon!'
</blockquote></pre>
After all, <tt>invite</tt> calls <tt>hello::greet()</tt>, and you
reimplemented that in your Python subclass, <tt>wordy</tt>. If so, <a
href= "overriding.html">read on</a>...
<p>
Next: <a href="overriding.html">Overridable virtual functions</a>
Previous: <a href="example1.html">A Simple Example</a> Up:
<a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,73 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
A Brief Introduction to writing Python extension modules
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center"
width="277" height="86">
</h1>
<h1>
A Brief Introduction to writing Python extension modules
</h1>
<p>
Interfacing any language to Python involves building a module which can
be loaded by the Python interpreter, but which isn't written in Python.
This is known as an <em>extension module</em>. Many of the <a href=
"http://www.python.org/doc/current/lib/lib.html">built-in Python
libraries</a> are constructed in 'C' this way; Python even supplies its
<a href="http://www.python.org/doc/current/lib/types.html">fundamental
types</a> using the same mechanism. An extension module can be statically
linked with the Python interpreter, but it more commonly resides in a
shared library or DLL.
<p>
As you can see from <a href=
"http://www.python.org/doc/current/ext/ext.html"> The Python Extending
and Embedding Tutorial</a>, writing an extension module normally means
worrying about
<ul>
<li>
<a href="http://www.python.org/doc/current/ext/refcounts.html">
maintaining reference counts</a>
<li>
<a href="http://www.python.org/doc/current/ext/callingPython.html"> how
to call back into Python</a>
<li>
<a href="http://www.python.org/doc/current/ext/parseTuple.html">
function argument parsing and typechecking</a>
</ul>
This last item typically occupies a great deal of code in an extension
module. Remember that Python is a completely dynamic language. A callable
object receives its arguments in a tuple; it is up to that object to extract
those arguments from the tuple, check their types, and raise appropriate
exceptions. There are numerous other tedious details that need to be
managed; too many to mention here. The Boost Python Library is designed to
lift most of that burden.<br>
<br>
<p>
Another obstacle that most people run into eventually when extending
Python is that there's no way to make a true Python class in an extension
module. The typical solution is to create a new Python type in the
extension module, and then write an additional module in 100% Python. The
Python module defines a Python class which dispatches to an instance of
the extension type, which it contains. This allows users to write
subclasses of the class in the Python module, almost as though they were
sublcassing the extension type. Aside from being tedious, it's not really
the same as having a true class, because there's no way for the user to
override a method of the extension type which is called from the
extension module. Boost.Python solves this problem by taking advantage of <a
href="http://www.python.org/doc/essays/metaclasses/">Python's metaclass
feature</a> to provide objects which look, walk, and hiss almost exactly
like regular Python classes. Boost.Python classes are actually cleaner than
Python classes in some subtle ways; a more detailed discussion will
follow (someday).</p>
<p>Next: <a href="comparisons.html">Comparisons with Other Systems</a> Up: <a
href="index.html">Top</a> </p>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability for
any purpose.</p>

View File

@@ -1,165 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
The Boost Python Library (Boost.Python)
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277"
align="center" height="86"><br>The Boost Python Library (Boost.Python)
</h1>
<h2>Synopsis</h2>
<p>
Use the Boost Python Library to quickly and easily export a C++ library to <a
href="http://www.python.org">Python</a> such that the Python interface is
very similar to the C++ interface. It is designed to be minimally
intrusive on your C++ design. In most cases, you should not have to alter
your C++ classes in any way in order to use them with Boost.Python. The system
<em>should</em> simply ``reflect'' your C++ classes and functions into
Python. The major features of Boost.Python include support for:
<ul>
<li><a href="inheritance.html">Subclassing extension types in Python</a>
<li><a href="overriding.html">Overriding virtual functions in Python</a>
<li><a href="overloading.html">[Member] function Overloading</a>
<li><a href="special.html#numeric_auto">Automatic wrapping of numeric operators</a>
</ul>
among others.
<h2>Supported Platforms</h2>
<p>Boost.Python is known to have been tested in the following configurations:
<ul>
<li>Against Python 2.0 using the following compiler/library combinations:
<ul>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>
with the native library.
<li>An upcoming release of <a
href="http://www.metrowerks.com/products/windows/">Metrowerks
CodeWarrior Pro6 for Windows</a> with the native library (the first
release has a bug that's fatal to Boost.Python)
<li><a
href="http://developer.intel.com/software/products/compilers/c50/">Intel
C++ 5.0</a>. Compilation succeeds, but tests <font
color="#FF0000"><b>FAILED at runtime</b></font> due to a bug in its
exception-handling implementation.
</ul>
<li>Against Python 1.5.2 using the following compiler/library:
<ul>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>
<li><a
href="http://msdn.microsoft.com/vstudio/sp/vs6sp4/dnldoverview.asp">MSVC++6sp4</a>/<a
href="http://www.stlport.org">STLport 4.0</a>
<li><a href="http://gcc.gnu.org/">GCC 2.95.2</a> [by <a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich
Koethe</a>]
<li><a href="http://gcc.gnu.org/">GCC 2.95.2</a>/<a href="http://www.stlport.org">STLport 4.0</a>
<li>Compaq C++ V6.2-024 for Digital UNIX V5.0 Rev. 910 (an <a
href="http://www.edg.com/">EDG</a>-based compiler) with <a
href="http://www.stlport.org/beta.html">STLport-4.1b3</a> [by <a
href="mailto:rwgk@cci.lbl.gov">Ralf W. Grosse-Kunstleve</a>]
<li>An upcoming release of <a href="http://www.metrowerks.com/products/windows/">Metrowerks CodeWarrior
Pro6 for Windows</a> (the first release has a bug that's fatal to Boost.Python)
</ul>
</ul>
<h2>Credits</h2>
<ul>
<li><a href="../../../people/dave_abrahams.htm">David Abrahams</a> originated
and wrote most of the library, and continues to coordinate development.
<li><a href="mailto:koethe@informatik.uni-hamburg.de">Ullrich Koethe</a>
had independently developed a similar system. When he discovered Boost.Python,
he generously contributed countless hours of coding and much insight into
improving it. He is responsible for an early version of the support for <a
href="overloading.html">function overloading</a> and wrote the support for
<a href="inheritance.html#implicit_conversion">reflecting C++ inheritance
relationships</a>. He has helped to improve error-reporting from both
Python and C++, and has designed an extremely easy-to-use way of
exposing <a href="special.html#numeric">numeric operators</a>, including
a way to avoid explicit coercion by means of overloading.
<li><a href="http://cci.lbl.gov/staff/ralf_grosse-kunstleve.html">Ralf W.
Grosse-Kunstleve</a> contributed <a href="pickle.html">pickle support</a>
and numerous other small improvements. He's working on a way to allow
types exported by multiple modules to interact.
<li>The members of the boost mailing list and the Python community
supplied invaluable early feedback. In particular, Ron Clarke, Mark Evans,
Anton Gluck, Chuck Ingold, Prabhu Ramachandran, and Barry Scott took the
brave step of trying to use Boost.Python while it was still in early
stages of development.
<li>The development of Boost.Python wouldn't have been possible without
the generous support of <a href="http://www.dragonsys.com/">Dragon
Systems/Lernout and Hauspie, Inc</a> who supported its development as an
open-source project.
</ul>
<h2>Table of Contents</h2>
<ol>
<li><a href="extending.html">A Brief Introduction to writing Python
extension modules</a>
<li><a href="comparisons.html">Comparisons between Boost.Python and other
systems for extending Python</a>
<li><a href="example1.html">A Simple Example</a>
<li><a href="exporting_classes.html">Exporting Classes</a>
<li><a href="overriding.html">Overridable Virtual Functions</a>
<li><a href="overloading.html">Function Overloading</a>
<li><a href="inheritance.html">Inheritance</a>
<li><a href="special.html">Special Method and Operator Support</a>
<li><a href="under-the-hood.html">A Peek Under the Hood</a>
<li><a href="building.html">Building an Extension Module</a>
<li><a href="pickle.html">Pickle Support</a>
<li><a href="enums.html">Wrapping Enums</a>
<li><a href="pointers.html">Pointers and Smart Pointers</a>
<li><a href="data_structures.txt">Internal Data Structures</a>
</ol>
<p>
Documentation is a major ongoing project; assistance is greatly
appreciated! In the meantime, useful examples of every Boost.Python feature should
be evident in the regression test files <code>test/comprehensive.[<a
href="../test/comprehensive.py">py</a>/<a
href="../test/comprehensive.hpp">hpp</a>/<a
href="../test/comprehensive.cpp">cpp</a>]</code>
<p>
Questions should be directed to <a href=
"http://www.egroups.com/list/boost">the boost mailing list</a>.
<p>
&copy; Copyright David Abrahams 2001. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as is'' without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Mar 6, 2001

View File

@@ -1,173 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Inheritance
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Inheritance
</h1>
<h2>Inheritance in Python</h2>
<p>
Boost.Python extension classes support single and multiple-inheritance in
Python, just like regular Python classes. You can arbitrarily mix
built-in Python classes with extension classes in a derived class'
tuple of bases. Whenever a Boost.Python extension class is among the bases for a
new class in Python, the result is an extension class:
<blockquote>
<pre>
&gt;&gt;&gt; class MyPythonClass:
... def f(): return 'MyPythonClass.f()'
...
&gt;&gt;&gt; import my_extension_module
&gt;&gt;&gt; class Derived(my_extension_module.MyExtensionClass, MyPythonClass):
... '''This is an extension class'''
... pass
...
&gt;&gt;&gt; x = Derived()
&gt;&gt;&gt; x.f()
'MyPythonClass.f()'
&gt;&gt;&gt; x.g()
'MyExtensionClass.g()'
</pre>
</blockquote>
<h2><a name="implicit_conversion">Reflecting C++ Inheritance Relationships</a></h2>
<p>
Boost.Python also allows us to represent C++ inheritance relationships so that
wrapped derived classes may be passed where values, pointers, or
references to a base class are expected as arguments. The
<code>declare_base</code> member function of
<code>class_builder&lt;&gt;</code> is used to establish the relationship
between base and derived classes:
<blockquote>
<pre>
#include &lt;memory&gt; // for std::auto_ptr&lt;&gt;
struct Base {
virtual ~Base() {}
virtual const char* name() const { return "Base"; }
};
struct Derived : Base {
Derived() : x(-1) {}
virtual const char* name() const { return "Derived"; }
int x;
};
std::auto_ptr&lt;Base&gt; derived_as_base() {
return std::auto_ptr&lt;Base&gt;(new Derived);
}
const char* get_name(const Base& b) {
return b.name();
}
int get_derived_x(const Derived& d) {
return d.x;
}
<hr>
#include &lt;boost/python/class_builder.hpp&gt;
// namespace alias for code brevity
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(my_module)
{
    try
    {
       python::module_builder my_module("my_module");
       python::class_builder&lt;Base&gt; base_class(my_module, "Base");
       base_class.def(python::constructor&lt;void&gt;());
       python::class_builder&lt;Derived&gt; derived_class(my_module, "Derived");
       derived_class.def(python::constructor&lt;void&gt;());
<b>// Establish the inheritance relationship between Base and Derived
derived_class.declare_base(base_class);</b>
my_module.def(derived_as_base, "derived_as_base");
my_module.def(get_name, "get_name");
my_module.def(get_derived_x, "get_derived_x");
    }
    catch(...)
    {
       python::handle_exception();    // Deal with the exception for Python
    }
}
</pre>
</blockquote>
<p>
Then, in Python:
<blockquote>
<pre>
&gt;&gt;&gt; from my_module import *
&gt;&gt;&gt; base = Base()
&gt;&gt;&gt; derived = Derived()
&gt;&gt;&gt; get_name(base)
'Base'
</pre>
</blockquote>
<i>objects of wrapped class Derived may be passed where Base is expected</i>
<blockquote>
<pre>
&gt;&gt;&gt; get_name(derived)
'Derived'
</pre>
</blockquote>
<i>objects of wrapped class Derived can be passed where Derived is
expected but where type information has been lost.</i>
<blockquote>
<pre>
&gt;&gt;&gt; get_derived_x(derived_as_base())
-1
</pre>
</blockquote>
<h2>Inheritance Without Virtual Functions</h2>
<p>
If for some reason your base class has no virtual functions but you still want
to represent the inheritance relationship between base and derived classes,
pass the special symbol <code>boost::python::without_downcast</code> as the 2nd parameter
to <code>declare_base</code>:
<blockquote>
<pre>
struct Base2 {};
struct Derived2 { int f(); };
<hr>
...
   python::class_builder&lt;Base&gt; base2_class(my_module, "Base2");
   base2_class.def(python::constructor&lt;void&gt;());
   python::class_builder&lt;Derived2&gt; derived2_class(my_module, "Derived2");
   derived2_class.def(python::constructor&lt;void&gt;());
derived_class.declare_base(base_class, <b>python::without_downcast</b>);
</pre>
</blockquote>
<p>This approach will allow <code>Derived2</code> objects to be passed where
<code>Base2</code> is expected, but does not attempt to implicitly convert (downcast)
smart-pointers to <code>Base2</code> into <code>Derived2</code> pointers,
references, or values.
<p>
Next: <a href="special.html">Special Method and Operator Support</a>
Previous: <a href="overloading.html">Function Overloading</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Nov 26, 2000
</div>

View File

@@ -1,155 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Function Overloading
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Function Overloading
</h1>
<h2>An Example</h2>
<p>
To expose overloaded functions in Python, simply <code>def()</code> each
one with the same Python name:
<blockquote>
<pre>
inline int f1() { return 3; }
inline int f2(int x) { return x + 1; }
class X {
public:
X() : m_value(0) {}
X(int n) : m_value(n) {}
int value() const { return m_value; }
void value(int v) { m_value = v; }
private:
int m_value;
};
...
BOOST_PYTHON_MODULE_INIT(overload_demo)
{
    try
    {
boost::python::module_builder overload_demo("overload_demo");
// Overloaded functions at module scope
overload_demo.def(f1, "f");
overload_demo.def(f2, "f");
boost::python::class_builder&lt;X&gt; x_class(overload_demo, "X");
// Overloaded constructors
x_class.def(boost::python::constructor&lt;&gt;());
x_class.def(boost::python::constructor&lt;int&gt;());
// Overloaded member functions
x_class.def((int (X::*)() const)&amp;X::value, "value");
x_class.def((void (X::*)(int))&amp;X::value, "value");
...
</pre>
</blockquote>
<p>
Now in Python:
<blockquote>
<pre>
>>> from overload_demo import *
>>> x0 = X()
>>> x1 = X(1)
>>> x0.value()
0
>>> x1.value()
1
>>> x0.value(3)
>>> x0.value()
3
>>> X('hello')
TypeError: No overloaded functions match (X, string). Candidates are:
void (*)()
void (*)(int)
>>> f()
3
>>> f(4)
5
</pre>
</blockquote>
<h2>Discussion</h2>
<p>
Notice that overloading in the Python module was produced three ways:<ol>
<li>by combining the non-overloaded C++ functions <code>int f1()</code>
and <code>int f2(int)</code> and exposing them as <code>f</code> in Python.
<li>by exposing the overloaded constructors of <code>class X</code>
<li>by exposing the overloaded member functions <code>X::value</code>.
</ol>
<p>
Techniques 1. and 3. above are really alternatives. In case 3, you need
to form a pointer to each of the overloaded functions. The casting
syntax shown above is one way to do that in C++. Case 1 does not require
complicated-looking casts, but may not be viable if you can't change
your C++ interface. N.B. There's really nothing unsafe about casting an
overloaded (member) function address this way: the compiler won't let
you write it at all unless you get it right.
<h2>An Alternative to Casting</h2>
<p>
This approach is not neccessarily better, but may be preferable for some
people who have trouble writing out the types of (member) function
pointers or simply prefer to avoid all casts as a matter of principle:
<blockquote>
<pre>
// Forwarding functions for X::value
inline void set_x_value(X&amp; self, int v) { self.value(v); }
inline int get_x_value(X&amp; self) { return self.value(); }
...
// Overloaded member functions
x_class.def(set_x_value, "value");
x_class.def(get_x_value, "value");
</pre>
</blockquote>
<p>Here we are taking advantage of the ability to expose C++ functions at
namespace scope as Python member functions.
<h2>Overload Resolution</h2>
<p>
The function overload resolution mechanism works as follows:
<ul>
<li>Attribute lookup for extension classes proceeds in <a
href="http://www.python.org/doc/current/tut/node11.html#SECTION0011510000000000000000">the
usual Python way</a> using a depth-first, left-to-right search. When a
class is found which has a matching attribute, only functions overloaded
in the context of that class are candidates for overload resolution. In
this sense, overload resolution mirrors the C++ mechanism, where a name
in a derived class ``hides'' all functions with the same name from a base
class.
<p>
<li>Within a name-space context (extension class or module), overloaded
functions are tried in the same order they were
<code>def()</code>ed. The first function whose signature can be made to
match each argument passed is the one which is ultimately called.
This means in particular that you cannot overload the same function on
both ``<code>int</code>'' and ``<code>float</code>'' because Python
automatically converts either of the two types into the other one.
If the ``<code>float</code>'' overload is found first, it is used
also used for arguments of type ``<code>int</code>'' as well, and the
``<code>int</code>'' version of the function is never invoked.
</ul>
<p>
Next: <a href="inheritance.html">Inheritance</a>
Previous: <a href="overriding.html">Overridable Virtual Functions</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2001. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided ``as
is'' without express or implied warranty, and with no claim as to
its suitability for any purpose.
<p>
Updated: Mar 6, 2001
</div>

View File

@@ -1,215 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Overridable Virtual Functions</title>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center"
width="277" height="86">
<h1>Overridable Virtual Functions</h1>
<p>
In the <a href="exporting_classes.html">previous example</a> we exposed a simple
C++ class in Python and showed that we could write a subclass. We even
redefined one of the functions in our derived class. Now we will learn
how to make the function behave virtually <em>when called from C++</em>.
<h2><a name="overriding_example">Example</a></h2>
<p>In this example, it is assumed that <code>hello::greet()</code> is a virtual
member function:
<blockquote><pre>
class hello
{
public:
hello(const std::string&amp; country) { this-&gt;country = country; }
<b>virtual</b> std::string greet() const { return "Hello from " + country; }
    virtual ~hello(); // Good practice
...
};
</pre></blockquote>
<p>
We'll need a derived class<a href="#why_derived">*</a> to help us
dispatch the call to Python. In our derived class, we need the following
elements:
<ol>
<li><a name="derived_1">A</a> <code>PyObject*</code> data member (usually
called <tt>self</tt>) that holds a pointer to the Python object corresponding
to our C++ <tt>hello</tt> instance.
<li><a name="derived_2">For</a> each exposed constructor of the
base class <tt>T</tt>, a constructor which takes the same parameters preceded by an initial
<code>PyObject*</code> argument. The initial argument should be stored in the <tt>self</tt> data
member described above.
<li>If the class being wrapped is ever returned <i>by
value</i> from a wrapped function, be sure you do the same for the
<tt>T</tt>'s copy constructor: you'll need a constructor taking arguments
<tt>(PyObject*,&nbsp;const&nbsp;T&amp;)</tt>.
<li><a name="derived_3">An</a> implementation of each virtual function you may
wish to override in Python which uses
<tt>callback&lt</tt><i>return-type</i><tt>&gt;::call_method(self,&nbsp;&quot;</tt><i>name</i><tt>&quot;,&nbsp;</tt><i>args...</i><tt>)</tt> to call
the Python override.
<li><a name="derived_4">For</a> each non-pure virtual function meant to be
overridable from Python, a static member function (or a free function) taking
a reference or pointer to the <tt>T</tt> as the first parameter and which
forwards any additional parameters neccessary to the <i>default</i>
implementation of the virtual function. See also <a href="#private">this
note</a> if the base class virtual function is private.
</ol>
<blockquote><pre>
struct hello_callback : hello
{
// hello constructor storing initial self_ parameter
hello_callback(PyObject* self_, const std::string&amp; x) // <a href="#derived_2">2</a>
: hello(x), self(self_) {}
// In case hello is returned by-value from a wrapped function
hello_callback(PyObject* self_, const hello&amp; x) // <a href="#derived_3">3</a>
: hello(x), self(self_) {}
// Override greet to call back into Python
std::string greet() const // <a href="#derived_4">4</a>
{ return boost::python::callback&lt;std::string&gt;::call_method(self, "greet"); }
// Supplies the default implementation of greet
static std::string <a name= "default_implementation">default_greet</a>(const hello& self_) const // <a href="#derived_5">5</a>
{ return self_.hello::greet(); }
private:
PyObject* self; // <a href="#derived_1">1</a>
};
</pre></blockquote>
<p>
Finally, we add <tt>hello_callback</tt> to the <tt>
class_builder&lt;&gt;</tt> declaration in our module initialization
function, and when we define the function, we must tell Boost.Python about the default
implementation:
<blockquote><pre>
// Create the <a name=
"hello_class">Python type object</a> for our extension class
boost::python::class_builder&lt;hello<strong>,hello_callback&gt;</strong> hello_class(hello, "hello");
// Add a virtual member function
hello_class.def(&amp;hello::greet, "greet", &amp;<b>hello_callback::default_greet</b>);
</pre></blockquote>
<p>
Now our Python subclass of <tt>hello</tt> behaves as expected:
<blockquote><pre>
&gt;&gt;&gt; class wordy(hello):
... def greet(self):
... return hello.greet(self) + ', where the weather is fine'
...
&gt;&gt;&gt; hi2 = wordy('Florida')
&gt;&gt;&gt; hi2.greet()
'Hello from Florida, where the weather is fine'
&gt;&gt;&gt; invite(hi2)
'Hello from Florida, where the weather is fine! Please come soon!'
</pre></blockquote>
<p>
<a name="why_derived">*</a>You may ask, "Why do we need this derived
class? This could have been designed so that everything gets done right
inside of <tt>hello</tt>." One of the goals of Boost.Python is to be
minimally intrusive on an existing C++ design. In principle, it should be
possible to expose the interface for a 3rd party library without changing
it. To unintrusively hook into the virtual functions so that a Python
override may be called, we must use a derived class.
<h2>Pure Virtual Functions</h2>
<p>
A pure virtual function with no implementation is actually a lot easier to
deal with than a virtual function with a default implementation. First of
all, you obviously don't need to <a href="#default_implementation"> supply
a default implementation</a>. Secondly, you don't need to call
<tt>def()</tt> on the <tt>extension_class&lt;&gt;</tt> instance
for the virtual function. In fact, you wouldn't <em>want</em> to: if the
corresponding attribute on the Python class stays undefined, you'll get an
<tt>AttributeError</tt> in Python when you try to call the function,
indicating that it should have been implemented. For example:
<blockquote>
<pre>
struct baz {
<strong>virtual</strong> int pure(int) = 0;
int calls_pure(int x) { return pure(x) + 1000; }
};
struct baz_callback {
int pure(int x) { boost::python::callback&lt;int&gt;::call_method(m_self, "pure", x); }
};
BOOST_PYTHON_MODULE_INIT(foobar)
{
try
{
boost::python::module_builder foobar("foobar");
boost::python::class_builder&lt;baz,baz_callback&gt; baz_class("baz");
baz_class.def(&amp;baz::calls_pure, "calls_pure");
}
catch(...)
{
boost::python::handle_exception(); // Deal with the exception for Python
}
}
</pre>
</blockquote>
<p>
Now in Python:
<blockquote>
<pre>
&gt;&gt;&gt; from foobar import baz
&gt;&gt;&gt; x = baz()
&gt;&gt;&gt; x.pure(1)
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
AttributeError: pure
&gt;&gt;&gt; x.calls_pure(1)
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
AttributeError: pure
&gt;&gt;&gt; class mumble(baz):
... def pure(self, x): return x + 1
...
&gt;&gt;&gt; y = mumble()
&gt;&gt;&gt; y.pure(99)
100
&gt;&gt;&gt; y.calls_pure(99)
1100
</pre></blockquote>
<a name="private"><h2>Private Non-Pure Virtual Functions</h2></a>
<p>This is one area where some minor intrusiveness on the wrapped library is
required. Once it has been overridden, the only way to call the base class
implementation of a private virtual function is to make the derived class a
friend of the base class. You didn't hear it from me, but most C++
implementations will allow you to change the declaration of the base class in
this limited way without breaking binary compatibility (though it will certainly
break the <a
href="http://cs.calvin.edu/c++/C++Standard-Nov97/basic.html#basic.def.odr">ODR</a>).
<hr>
<p>
Next: <a href="overloading.html">Function Overloading</a>
Previous: <a href="exporting_classes.html">Exporting Classes</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2001. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Mar 6, 2001

View File

@@ -227,11 +227,38 @@ Both <tt>__getinitargs__</tt> and <tt>__getstate__</tt> are not defined.
</ul>
<hr>
<h2>Example</h2>
<h2>Examples</h2>
An example that shows how to configure pickle support is available in the
<tt>boost/lib/python/example</tt> directory
(<tt>getting_started3.cpp</tt>).
There are three files in <tt>boost/libs/python/example</tt> that
show how so provide pickle support.
<h3><a href="../example/pickle1.cpp"><tt>pickle1.cpp</tt></a></h3>
The C++ class in this example can be fully restored by passing the
appropriate argument to the constructor. Therefore it is sufficient
to define the pickle interface method <tt>__getinitargs__</tt>.
<h3><a href="../example/pickle2.cpp"><tt>pickle2.cpp</tt></a></h3>
The C++ class in this example contains member data that cannot be
restored by any of the constructors. Therefore it is necessary to
provide the <tt>__getstate__</tt>/<tt>__setstate__</tt> pair of
pickle interface methods.
<p>
For simplicity, the <tt>__dict__</tt> is not included in the result
of <tt>__getstate__</tt>. This is not generally recommended, but a
valid approach if it is anticipated that the object's
<tt>__dict__</tt> will always be empty. Note that the safety guards
will catch the cases where this assumption is violated.
<h3><a href="../example/pickle3.cpp"><tt>pickle3.cpp</tt></a></h3>
This example is similar to <a
href="../example/pickle2.cpp"><tt>pickle2.cpp</tt></a>. However, the
object's <tt>__dict__</tt> is included in the result of
<tt>__getstate__</tt>. This requires more code but is unavoidable
if the object's <tt>__dict__</tt> is not always empty.
<hr>
&copy; Copyright Ralf W. Grosse-Kunstleve 2001. Permission to copy,
@@ -241,5 +268,5 @@ is" without express or implied warranty, and with no claim as to its
suitability for any purpose.
<p>
Updated: March 10, 2001
Updated: March 21, 2001
</div>

View File

@@ -1,148 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Pointers
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center"
src="../../../c++boost.gif" alt= "c++boost.gif (8819 bytes)">Pointers
</h1>
<h2><a name="problem">The Problem With Pointers</a></h2>
<p>
In general, raw pointers passed to or returned from functions are problematic
for Boost.Python because pointers have too many potential meanings. Is it an iterator?
A pointer to a single element? An array? When used as a return value, is the
caller expected to manage (delete) the pointed-to object or is the pointer
really just a reference? If the latter, what happens to Python references to the
referent when some C++ code deletes it?
<p>
There are a few cases in which pointers are converted automatically:
<ul>
<li>Both const- and non-const pointers to wrapped class instances can be passed
<i>to</i> C++ functions.
<li>Values of type <code>const char*</code> are interpreted as
null-terminated 'C' strings and when passed to or returned from C++ functions are
converted from/to Python strings.
</ul>
<h3>Can you avoid the problem?</h3>
<p>My first piece of advice to anyone with a case not covered above is
``find a way to avoid the problem.'' For example, if you have just one
or two functions that return a pointer to an individual <code>const
T</code>, and <code>T</code> is a wrapped class, you may be able to write a ``thin
converting wrapper'' over those two functions as follows:
<blockquote><pre>
const Foo* f(); // original function
const Foo& f_wrapper() { return *f(); }
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>
Foo must have a public copy constructor for this technique to work, since Boost.Python
converts <code>const T&</code> values <code>to_python</code> by copying the <code>T</code>
value into a new extension instance.
<h2>Dealing with the problem</h2>
<p>The first step in handling the remaining cases is to figure out what the pointer
means. Several potential solutions are provided in the examples that follow:
<h3>Returning a pointer to a wrapped type</h3>
<h4>Returning a const pointer</h4>
<p>If you have lots of functions returning a <code>const T*</code> for some
wrapped <code>T</code>, you may want to provide an automatic
<code>to_python</code> conversion function so you don't have to write lots of
thin wrappers. You can do this simply as follows:
<blockquote><pre>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
PyObject* to_python(const Foo* p) {
return to_python(*p); // convert const Foo* in terms of const Foo&
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
</pre></blockquote>
<h4>If you can't (afford to) copy the referent, or the pointer is non-const</h4>
<p>If the wrapped type doesn't have a public copy constructor, if copying is
<i>extremely</i> costly (remember, we're dealing with Python here), or if the
pointer is non-const and you really need to be able to modify the referent from
Python, you can use the following dangerous trick. Why dangerous? Because python
can not control the lifetime of the referent, so it may be destroyed by your C++
code before the last Python reference to it disappears:
<blockquote><pre>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
PyObject* to_python(Foo* p)
{
return boost::python::python_extension_class_converters&ltFoo&gt::ptr_to_python(p);
}
PyObject* to_python(const Foo* p)
{
return to_python(const_cast&lt;Foo*&gt;(p));
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
</pre></blockquote>
This will cause the Foo* to be treated as though it were an owning smart
pointer, even though it's not. Be sure you don't use the reference for anything
from Python once the pointer becomes invalid, though. Don't worry too much about
the <code>const_cast&lt;&gt;</code> above: Const-correctness is completely lost
to Python anyway!
<h3>[In/]Out Parameters and Immutable Types</h3>
<p>If you have an interface that uses non-const pointers (or references) as
in/out parameters to types which in Python are immutable (e.g. int, string),
there simply is <i>no way</i> to get the same interface in Python. You must
resort to transforming your interface with simple thin wrappers as shown below:
<blockquote><pre>
const void f(int* in_out_x); // original function
const int f_wrapper(int in_x) { f(in_x); return in_x; }
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>Of course, [in/]out parameters commonly occur only when there is already a
return value. You can handle this case by returning a Python tuple:
<blockquote><pre>
typedef unsigned ErrorCode;
const char* f(int* in_out_x); // original function
...
#include &lt;boost/python/objects.hpp&gt;
const boost::python::tuple f_wrapper(int in_x) {
const char* s = f(in_x);
return boost::python::tuple(s, in_x);
}
...
my_module.def(f_wrapper, "f");
</pre></blockquote>
<p>Now, in Python:
<blockquote><pre>
&gt;&gt;&gt; str,out_x = f(3)
</pre></blockquote>
<p>
Previous: <a href="enums.html">Enums</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Nov 26, 2000
</div>

View File

@@ -1,905 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<title>
Special Method and Operator Support
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="middle" src=
"../../../c++boost.gif" alt="c++boost.gif (8819 bytes)">Special Method and
Operator Support
</h1>
<h2>
Overview
</h2>
<p>
Boost.Python supports all of the standard <a href=
"http://www.python.org/doc/current/ref/specialnames.html">
special method names</a> supported by real Python class instances <em>
except</em> <code>__complex__</code> (more on the reasons <a href=
"#reasons">below</a>). In addition, it can quickly and easily expose
suitable C++ functions and operators as Python operators. The following
categories of special method names are supported:
<ul>
<li><a href="#general">Basic Customization</a>
<li><a href="#numeric">Numeric Operators</a>
<li><a href="#sequence_and_mapping">Sequence and Mapping protocols</a>
<li><a href="#getter_setter">Attribute Getters and Setters</a>
</ul>
<h2><a name="general">Basic Customization</a></h2>
<p>
Python provides a number of special operators for basic customization of a
class. Only a brief description is provided below; more complete
documentation can be found <a
href="http://www.python.org/doc/current/ref/customization.html">here</a>.
<dl>
<dt>
<b><tt class='method'>__init__</tt></b>(<i>self</i>)
<dd>
Initialize the class instance. For extension classes not subclassed in
Python, <code> __init__</code> is defined by
<pre> my_class.def(boost::python::constructor<...>())</pre>
(see section <a href="example1.html">"A Simple Example Using Boost.Python"</a>).<p>
<dt>
<b><tt class='method'>__del__</tt></b>(<i>self</i>)
<dd>
Called when the extension instance is about to be destroyed. For extension classes
not subclassed in Python, <code> __del__</code> is always defined automatically by
means of the class' destructor.
<dt>
<b><tt class='method'>__repr__</tt></b>(<i>self</i>)
<dd>
Create a string representation from which the object can be
reconstructed.
<dt>
<b><tt class='method'>__str__</tt></b>(<i>self</i>)
<dd>
Create a string representation which is suitable for printing.
<dt>
<b><tt class='method'>__cmp__</tt></b>(<i>self, other</i>)
<dd>
Three-way compare function, used to implement comparison operators
(&lt; etc.) Should return a negative integer if <code> self < other
</code> , zero if <code> self == other </code> , a positive integer if
<code> self > other </code>.
<dt>
<b><tt class='method'>__hash__</tt></b>(<i>self</i>)
<dd>
Called for the key object for dictionary operations, and by the
built-in function hash(). Should return a 32-bit integer usable as a
hash value for dictionary operations (only allowed if __cmp__ is also
defined)
<dt>
<b><tt class='method'>__nonzero__</tt></b>(<i>self</i>)
<dd>
called if the object is used as a truth value (e.g. in an if
statement)
<dt>
<b><tt class='method'>__call__</tt></b> (<var>self</var><big>[</big><var>, args...</var><big>]</big>)
<dd>
Called when the instance is ``called'' as a function; if this method
is defined, <code><var>x</var>(arg1, arg2, ...)</code> is a shorthand for
<code><var>x</var>.__call__(arg1, arg2, ...)</code>.
</dl>
If we have a suitable C++ function that supports any of these features,
we can export it like any other function, using its Python special name.
For example, suppose that class <code>Foo</code> provides a string
conversion function:
<blockquote><pre>
std::string to_string(Foo const&amp; f)
{
std::ostringstream s;
s &lt;&lt; f;
return s.str();
}
</pre></blockquote>
This function would be wrapped like this:
<blockquote><pre>
boost::python::class_builder&lt;Foo&gt; foo_class(my_module, "Foo");
foo_class.def(&amp;to_string, "__str__");
</pre></blockquote>
Note that Boost.Python also supports <em>automatic wrapping</em> of
<code>__str__</code> and <code>__cmp__</code>. This is explained in the <a
href="#numeric">next section</a> and the <a href="#numeric_table">Table of
Automatically Wrapped Methods</a>.
<h2><a name="numeric">Numeric Operators</a></h2>
<p>
Numeric operators can be exposed manually, by <code>def</code>ing C++
[member] functions that support the standard Python <a
href="http://www.python.org/doc/current/ref/numeric-types.html">numeric
protocols</a>. This is the same basic technique used to expose
<code>to_string()</code> as <code>__str__()</code> above, and is <a
href="#numeric_manual">covered in detail below</a>. Boost.Python also supports
<i>automatic wrapping</i> of numeric operators whenever they have already
been defined in C++.
<h3><a name="numeric_auto">Exposing C++ Operators Automatically</a></h3>
<p>
Supose we wanted to expose a C++ class
<code>BigNum</code> which supports addition. That is, in C++ we can write:
<blockquote><pre>
BigNum a, b, c;
...
c = a + b;
</pre></blockquote>
<p>
To enable the same functionality in Python, we first wrap the <code>
BigNum</code> class as usual:
<blockquote><pre>
boost::python::class_builder&lt;BigNum&gt; bignum_class(my_module, "BigNum");
bignum_class.def(boost::python::constructor&lt;&gt;());
...
</pre></blockquote>
Then we export the addition operator like this:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;());
</pre></blockquote>
Since BigNum also supports subtraction, multiplication, and division, we
want to export those also. This can be done in a single command by
``or''ing the operator identifiers together (a complete list of these
identifiers and the corresponding operators can be found in the <a href=
"#numeric_table">Table of Automatically Wrapped Methods</a>):
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::python::op_mul | boost::python::op_div)&gt;());
</pre></blockquote>
[Note that the or-expression must be enclosed in parentheses.]
<p>This form of operator definition can be used to wrap unary and
homogeneous binary operators (a <i>homogeneous</i> operator has left and
right operands of the same type). Now suppose that our C++ library also
supports addition of BigNums and plain integers:
<blockquote><pre>
BigNum a, b;
int i;
...
a = b + i;
a = i + b;
</pre></blockquote>
To wrap these heterogeneous operators, we need to specify a different type for
one of the operands. This is done using the <code>right_operand</code>
and <code>left_operand</code> templates:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;(), boost::python::right_operand&lt;int&gt;());
bignum_class.def(boost::python::operators&lt;boost::python::op_add&gt;(), boost::python::left_operand&lt;int&gt;());
</pre></blockquote>
Boost.Python uses overloading to register several variants of the same
operation (more on this in the context of <a href="#coercion">
coercion</a>). Again, several operators can be exported at once:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::python::op_mul | boost::python::op_div)&gt;(),
boost::python::right_operand&lt;int&gt;());
bignum_class.def(boost::python::operators&lt;(boost::python::op_sub | boost::python::op_mul | boost::python::op_div)&gt;(),
boost::python::left_operand&lt;int&gt;());
</pre></blockquote>
The type of the operand not mentioned is taken from the class being wrapped. In
our example, the class object is <code>bignum_class</code>, and thus the
other operand's type is ``<code>BigNum const&amp;</code>''. You can override
this default by explicitly specifying a type in the <code>
operators</code> template:
<blockquote><pre>
bignum_class.def(boost::python::operators&lt;boost::python::op_add, BigNum&gt;(), boost::python::right_operand&lt;int&gt;());
</pre></blockquote>
<p>
Note that automatic wrapping uses the <em>expression</em>
``<code>left + right</code>'' and can be used uniformly
regardless of whether the C++ operators are supplied as free functions
<blockquote><pre>
BigNum operator+(BigNum, BigNum)
</pre></blockquote>
or as member functions
<blockquote><pre>
BigNum::operator+(BigNum).
</pre></blockquote>
<p>
For the Python built-in functions <code>pow()</code> and
<code>abs()</code>, there is no corresponding C++ operator. Instead,
automatic wrapping attempts to wrap C++ functions of the same name. This
only works if those functions are known in namespace
<code>python</code>. On some compilers (e.g. MSVC) it might be
necessary to add a using declaration prior to wrapping:
<blockquote><pre>
namespace boost { namespace python {
using my_namespace::pow;
using my_namespace::abs;
}
</pre></blockquote>
<h3><a name="numeric_manual">Wrapping Numeric Operators Manually</a></h3>
<p>
In some cases, automatic wrapping of operators may be impossible or
undesirable. Suppose, for example, that the modulo operation for BigNums
is defined by a set of functions called <code>mod()</code>:
<blockquote><pre>
BigNum mod(BigNum const&amp; left, BigNum const&amp; right);
BigNum mod(BigNum const&amp; left, int right);
BigNum mod(int left, BigNum const&amp; right);
</pre></blockquote>
<p>
For automatic wrapping of the modulo function, <code>operator%()</code> would be needed.
Therefore, the <code>mod()</code>-functions must be wrapped manually. That is, we have
to export them explicitly with the Python special name "__mod__":
<blockquote><pre>
bignum_class.def((BigNum (*)(BigNum const&amp;, BigNum const&amp;))&amp;mod, "__mod__");
bignum_class.def((BigNum (*)(BigNum const&amp;, int))&amp;mod, "__mod__");
</pre></blockquote>
<p>
The third form of <code>mod()</code> (with <code>int</code> as left operand) cannot
be wrapped directly. We must first create a function <code>rmod()</code> with the
operands reversed:
<blockquote><pre>
BigNum rmod(BigNum const&amp; right, int left)
{
return mod(left, right);
}
</pre></blockquote>
This function must be wrapped under the name "__rmod__" (standing for "reverse mod"):
<blockquote><pre>
bignum_class.def(&amp;rmod, "__rmod__");
</pre></blockquote>
Many of the possible operator names can be found in the <a href=
"#numeric_table">Table of Automatically Wrapped Methods</a>. Special treatment is
necessary to export the <a href="#ternary_pow">ternary pow</a> operator.
<p>
Automatic and manual wrapping can be mixed arbitrarily. Note that you
cannot overload the same operator for a given extension class on both
``<code>int</code>'' and ``<code>float</code>'', because Python implicitly
converts these types into each other. Thus, the overloaded variant
found first (be it ``<code>int</code>`` or ``<code>float</code>'') will be
used for either of the two types.
<h3><a name="coercion">Coercion</a></h3>
Plain Python can only execute operators with identical types on the left
and right hand side. If it encounters an expression where the types of
the left and right operand differ, it tries to coerce these types to a
common type before invoking the actual operator. Implementing good
coercion functions can be difficult if many type combinations must be
supported.
<p>
Boost.Python solves this problem the same way that C++ does: with <em><a
href="overloading.html">overloading</a></em>. This technique drastically
simplifies the code neccessary to support operators: you just register
operators for all desired type combinations, and Boost.Python automatically
ensures that the correct function is called in each case; there is no
need for user-defined coercion functions. To enable operator
overloading, Boost.Python provides a standard coercion which is <em>implicitly
registered</em> whenever automatic operator wrapping is used.
<p>
If you wrap all operator functions manually, but still want to use
operator overloading, you have to register the standard coercion
function explicitly:
<blockquote><pre>
// this is not necessary if automatic operator wrapping is used
bignum_class.def_standard_coerce();
</pre></blockquote>
If you encounter a situation where you absolutely need a customized
coercion, you can still define the "__coerce__" operator manually. The signature
of a coercion function should look like one of the following (the first is
the safest):
<blockquote><pre>
boost::python::tuple custom_coerce(boost::python::reference left, boost::python::reference right);
boost::python::tuple custom_coerce(PyObject* left, PyObject* right);
PyObject* custom_coerce(PyObject* left, PyObject* right);
</pre></blockquote>
The resulting <code>tuple</code> must contain two elements which
represent the values of <code>left</code> and <code>right</code>
converted to the same type. Such a function is wrapped as usual:
<blockquote><pre>
// this must be called before any use of automatic operator
// wrapping or a call to some_class.def_standard_coerce()
some_class.def(&amp;custom_coerce, "__coerce__");
</pre></blockquote>
Note that the standard coercion (defined by use of automatic
operator wrapping on a <code>class_builder</code> or a call to
<code>class_builder::def_standard_coerce()</code>) will never be applied if
a custom coercion function has been registered. Therefore, in
your coercion function you should call
<blockquote><pre>
boost::python::standard_coerce(left, right);
</pre></blockquote>
for all cases that you don't want to handle yourself.
<h3><a name="ternary_pow">The Ternary <code>pow()</code> Operator</a></h3>
<p>
In addition to the usual binary <code>pow(x, y)</code> operator (meaning
<i>x<sup>y</sup></i>), Python also provides a ternary variant that implements
<i>x<sup>y</sup> <b>mod</b> z</i>, presumably using a more efficient algorithm than
concatenation of power and modulo operators. Automatic operator wrapping
can only be used with the binary variant. Ternary <code>pow()</code> must
always be wrapped manually. For a homgeneous ternary <code>pow()</code>,
this is done as usual:
<blockquote><pre>
BigNum power(BigNum const&amp; first, BigNum const&amp; second, BigNum const&amp; modulus);
typedef BigNum (ternary_function1)(const BigNum&amp;, const BigNum&amp;, const BigNum&amp;);
...
bignum_class.def((ternary_function1)&amp;power, "__pow__");
</pre></blockquote>
If you want to support this function with non-uniform argument
types, wrapping is a little more involved. Suppose you have to wrap:
<blockquote><pre>
BigNum power(BigNum const&amp; first, int second, int modulus);
BigNum power(int first, BigNum const&amp; second, int modulus);
BigNum power(int first, int second, BigNum const&amp; modulus);
</pre></blockquote>
The first variant can be wrapped as usual:
<blockquote><pre>
typedef BigNum (ternary_function2)(const BigNum&amp;, int, int);
bignum_class.def((ternary_function2)&amp;power, "__pow__");
</pre></blockquote>
In the second variant, however, <code>BigNum</code> appears only as second
argument, and in the last one it's the third argument. These functions
must be presented to Boost.Python such that that the <code>BigNum</code>
argument appears in first position:
<blockquote><pre>
BigNum rpower(BigNum const&amp; second, int first, int modulus)
{
return power(first, second, modulus);
}
BigNum rrpower(BigNum const&amp; modulus, int first, int second)
{
return power(first, second, modulus);
}
</pre></blockquote>
<p>These functions must be wrapped under the names "__rpow__" and "__rrpow__"
respectively:
<blockquote><pre>
bignum_class.def((ternary_function2)&amp;rpower, "__rpow__");
bignum_class.def((ternary_function2)&amp;rrpower, "__rrpow__");
</pre></blockquote>
Note that "__rrpow__" is an extension not present in plain Python.
<h2><a name="numeric_table">Table of Automatically Wrapped Methods</a></h2>
<p>
Boost.Python can automatically wrap the following <a href=
"http://www.python.org/doc/current/ref/specialnames.html">
special methods</a>:
<p>
<table summary="special numeric methods" cellpadding="5" border="1"
width="100%">
<tr>
<td align="center">
<b>Python Operator Name</b>
<td align="center">
<b>Python Expression</b>
<td align="center">
<b>C++ Operator Id</b>
<td align="center">
<b>C++ Expression Used For Automatic Wrapping</b><br>
with <code>cpp_left = from_python(left,
type&lt;Left&gt;())</code>,<br>
<code>cpp_right = from_python(right,
type&lt;Right&gt;())</code>,<br>
and <code>cpp_oper = from_python(oper, type&lt;Oper&gt;())</code>
<tr>
<td>
<code>__add__, __radd__</code>
<td>
<code>left + right</code>
<td>
<code>op_add</code>
<td>
<code>cpp_left + cpp_right</code>
<tr>
<td>
<code>__sub__, __rsub__</code>
<td>
<code>left - right</code>
<td>
<code>op_sub</code>
<td>
<code>cpp_left - cpp_right</code>
<tr>
<td>
<code>__mul__, __rmul__</code>
<td>
<code>left * right</code>
<td>
<code>op_mul</code>
<td>
<code>cpp_left * cpp_right</code>
<tr>
<td>
<code>__div__, __rdiv__</code>
<td>
<code>left / right</code>
<td>
<code>op_div</code>
<td>
<code>cpp_left / cpp_right</code>
<tr>
<td>
<code>__mod__, __rmod__</code>
<td>
<code>left % right</code>
<td>
<code>op_mod</code>
<td>
<code>cpp_left % cpp_right</code>
<tr>
<td>
<code>__divmod__, __rdivmod__</code>
<td>
<code>(quotient, remainder)<br>
= divmod(left, right)</code>
<td>
<code>op_divmod</code>
<td>
<code>cpp_left / cpp_right</code>
<br><code>cpp_left % cpp_right</code>
<tr>
<td>
<code>__pow__, __rpow__</code>
<td>
<code>pow(left, right)</code><br>
(binary power)
<td>
<code>op_pow</code>
<td>
<code>pow(cpp_left, cpp_right)</code>
<tr>
<td>
<code>__rrpow__</code>
<td>
<code>pow(left, right, modulo)</code><br>
(ternary power modulo)
<td colspan="2">
no automatic wrapping, <a href="#ternary_pow">special treatment</a>
required
<tr>
<td>
<code>__lshift__, __rlshift__</code>
<td>
<code>left &lt;&lt; right</code>
<td>
<code>op_lshift</code>
<td>
<code>cpp_left &lt;&lt; cpp_right</code>
<tr>
<td>
<code>__rshift__, __rrshift__</code>
<td>
<code>left &gt;&gt; right</code>
<td>
<code>op_rshift</code>
<td>
<code>cpp_left &gt;&gt; cpp_right</code>
<tr>
<td>
<code>__and__, __rand__</code>
<td>
<code>left &amp; right</code>
<td>
<code>op_and</code>
<td>
<code>cpp_left &amp; cpp_right</code>
<tr>
<td>
<code>__xor__, __rxor__</code>
<td>
<code>left ^ right</code>
<td>
<code>op_xor</code>
<td>
<code>cpp_left ^ cpp_right</code>
<tr>
<td>
<code>__or__, __ror__</code>
<td>
<code>left | right</code>
<td>
<code>op_or</code>
<td>
<code>cpp_left | cpp_right</code>
<tr>
<td>
<code>__cmp__, __rcmp__</code>
<td>
<code>cmp(left, right)</code><br>
<code>left &lt; right</code><br>
<code>left &lt;= right</code><br>
<code>left &gt; right</code><br>
<code>left &gt;= right</code><br>
<code>left == right</code><br>
<code>left != right</code>
<td>
<code>op_cmp</code>
<td>
<code>cpp_left &lt; cpp_right </code>
<br><code>cpp_right &lt; cpp_left</code>
<tr>
<td>
<code>__neg__</code>
<td>
<code>-oper </code> (unary negation)
<td>
<code>op_neg</code>
<td>
<code>-cpp_oper</code>
<tr>
<td>
<code>__pos__</code>
<td>
<code>+oper </code> (identity)
<td>
<code>op_pos</code>
<td>
<code>+cpp_oper</code>
<tr>
<td>
<code>__abs__</code>
<td>
<code>abs(oper) </code> (absolute value)
<td>
<code>op_abs</code>
<td>
<code>abs(cpp_oper)</code>
<tr>
<td>
<code>__invert__</code>
<td>
<code>~oper </code> (bitwise inversion)
<td>
<code>op_invert</code>
<td>
<code>~cpp_oper</code>
<tr>
<td>
<code>__int__</code>
<td>
<code>int(oper) </code> (integer conversion)
<td>
<code>op_int</code>
<td>
<code>long(cpp_oper)</code>
<tr>
<td>
<code>__long__</code>
<td>
<code>long(oper) </code><br>
(infinite precision integer conversion)
<td>
<code>op_long</code>
<td>
<code>PyLong_FromLong(cpp_oper)</code>
<tr>
<td>
<code>__float__</code>
<td>
<code>float(oper) </code> (float conversion)
<td>
<code>op_float</code>
<td>
<code>double(cpp_oper)</code>
<tr>
<td>
<code>__str__</code>
<td>
<code>str(oper) </code> (string conversion)
<td>
<code>op_str</code>
<td>
<code>std::ostringstream s; s &lt;&lt; oper;</code>
<tr>
<td>
<code>__coerce__</code>
<td>
<code>coerce(left, right)</code>
<td colspan="2">
usually defined automatically, otherwise <a href="#coercion">
special treatment</a> required
</table>
<h2><a name="sequence_and_mapping">Sequence and Mapping Operators</a></h2>
<p>
Sequence and mapping operators let wrapped objects behave in accordance
to Python's iteration and access protocols. These protocols differ
considerably from the ones found in C++. For example, Python's typical
iteration idiom looks like
<blockquote><pre>
for i in S:
</pre></blockquote>
while in C++ one writes
<blockquote><pre>
for (iterator i = S.begin(), end = S.end(); i != end; ++i)
</pre></blockquote>
<p>One could try to wrap C++ iterators in order to carry the C++ idiom into
Python. However, this does not work very well because
<ol>
<li>It leads to
non-uniform Python code (wrapped sequences support a usage different from
Python built-in sequences) and
<li>Iterators (e.g. <code>std::vector::iterator</code>) are often implemented as plain C++
pointers which are <a href="pointers.html#problem">problematic</a> for any automatic
wrapping system.
</ol>
<p>
It is a better idea to support the standard <a
href="http://www.python.org/doc/current/ref/sequence-types.html">Python
sequence and mapping protocols</a> for your wrapped containers. These
operators have to be wrapped manually because there are no corresponding
C++ operators that could be used for automatic wrapping. The Python
documentation lists the relevant <a href=
"http://www.python.org/doc/current/ref/sequence-types.html">
container operators</a>. In particular, expose __getitem__, __setitem__
and remember to raise the appropriate Python exceptions
(<code>PyExc_IndexError</code> for sequences,
<code>PyExc_KeyError</code> for mappings) when the requested item is not
present.
<p>
In the following example, we expose <code>std::map&lt;std::size_t,std::string&gt;</code>:
<blockquote>
<pre>
typedef std::map&lt;std::size_t, std::string&gt; StringMap;
// A helper function for dealing with errors. Throw a Python exception
// if p == m.end().
void throw_key_error_if_end(
const StringMap&amp; m,
StringMap::const_iterator p,
std::size_t key)
{
if (p == m.end())
{
PyErr_SetObject(PyExc_KeyError, boost::python::converters::to_python(key));
throw boost::python::error_already_set();
}
}
// Define some simple wrapper functions which match the Python protocol
// for __getitem__, __setitem__, and __delitem__. Just as in Python, a
// free function with a ``self'' first parameter makes a fine class method.
const std::string&amp; get_item(const StringMap&amp; self, std::size_t key)
{
const StringMap::const_iterator p = self.find(key);
throw_key_error_if_end(self, p, key);
return p-&gt;second;
}
// Sets the item corresponding to key in the map.
void StringMapPythonClass::set_item(StringMap&amp; self, std::size_t key, const std::string&amp; value)
{
self[key] = value;
}
// Deletes the item corresponding to key from the map.
void StringMapPythonClass::del_item(StringMap&amp; self, std::size_t key)
{
const StringMap::iterator p = self.find(key);
throw_key_error_if_end(self, p, key);
self.erase(p);
}
class_builder&lt;StringMap&gt; string_map(my_module, "StringMap");
string_map.def(boost::python::constructor&lt;&gt;());
string_map.def(&amp;StringMap::size, "__len__");
string_map.def(get_item, "__getitem__");
string_map.def(set_item, "__setitem__");
string_map.def(del_item, "__delitem__");
</pre>
</blockquote>
<p>
Then in Python:
<blockquote>
<pre>
&gt;&gt;&gt; m = StringMap()
&gt;&gt;&gt; m[1]
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 1
&gt;&gt;&gt; m[1] = 'hello'
&gt;&gt;&gt; m[1]
'hello'
&gt;&gt;&gt; del m[1]
&gt;&gt;&gt; m[1] # prove that it's gone
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 1
&gt;&gt;&gt; del m[2]
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 2
&gt;&gt;&gt; len(m)
0
&gt;&gt;&gt; m[0] = 'zero'
&gt;&gt;&gt; m[1] = 'one'
&gt;&gt;&gt; m[2] = 'two'
&gt;&gt;&gt; m[3] = 'three'
&gt;&gt;&gt; len(m)
4
</pre>
</blockquote>
<h2><a name="getter_setter">Customized Attribute Access</a></h2>
<p>
Just like built-in Python classes, Boost.Python extension classes support <a
href="http://www.python.org/doc/current/ref/attribute-access.html">special
the usual attribute access methods</a> <code>__getattr__</code>,
<code>__setattr__</code>, and <code>__delattr__</code>.
Because writing these functions can
be tedious in the common case where the attributes being accessed are
known statically, Boost.Python checks the special names
<ul>
<li>
<code>__getattr__<em>&lt;name&gt;</em>__</code>
<li>
<code>__setattr__<em>&lt;name&gt;</em>__</code>
<li>
<code>__delattr__<em>&lt;name&gt;</em>__</code>
</ul>
to provide functional access to the attribute <em>&lt;name&gt;</em>. This
facility can be used from C++ or entirely from Python. For example, the
following shows how we can implement a ``computed attribute'' in Python:
<blockquote>
<pre>
&gt;&gt;&gt; class Range(AnyBoost.PythonExtensionClass):
... def __init__(self, start, end):
... self.start = start
... self.end = end
... def __getattr__length__(self):
... return self.end - self.start
...
&gt;&gt;&gt; x = Range(3, 9)
&gt;&gt;&gt; x.length
6
</pre>
</blockquote>
<h4>
Direct Access to Data Members
</h4>
<p>
Boost.Python uses the special <code>
__xxxattr__<em>&lt;name&gt;</em>__</code> functionality described above
to allow direct access to data members through the following special
functions on <code>class_builder&lt;&gt;</code> and <code>
extension_class&lt;&gt;</code>:
<ul>
<li>
<code>def_getter(<em>pointer-to-member</em>, <em>name</em>)</code> //
read access to the member via attribute <em>name</em>
<li>
<code>def_setter(<em>pointer-to-member</em>, <em>name</em>)</code> //
write access to the member via attribute <em>name</em>
<li>
<code>def_readonly(<em>pointer-to-member</em>, <em>name</em>)</code>
// read-only access to the member via attribute <em>name</em>
<li>
<code>def_read_write(<em>pointer-to-member</em>, <em>
name</em>)</code> // read/write access to the member via attribute
<em>name</em>
</ul>
<p>
Note that the first two functions, used alone, may produce surprising
behavior. For example, when <code>def_getter()</code> is used, the
default functionality for <code>setattr()</code> and <code>
delattr()</code> remains in effect, operating on items in the extension
instance's name-space (i.e., its <code>__dict__</code>). For that
reason, you'll usually want to stick with <code>def_readonly</code> and
<code>def_read_write</code>.
<p>
For example, to expose a <code>std::pair&lt;int,long&gt;</code> we
might write:
<blockquote>
<pre>
typedef std::pair&lt;int,long&gt; Pil;
int first(const Pil&amp; x) { return x.first; }
long second(const Pil&amp; x) { return x.second; }
...
my_module.def(first, "first");
my_module.def(second, "second");
class_builder&lt;Pil&gt; pair_int_long(my_module, "Pair");
pair_int_long.def(boost::python::constructor&lt;&gt;());
pair_int_long.def(boost::python::constructor&lt;int,long&gt;());
pair_int_long.def_read_write(&amp;Pil::first, "first");
pair_int_long.def_read_write(&amp;Pil::second, "second");
</pre>
</blockquote>
<p>
Now your Python class has attributes <code>first</code> and <code>
second</code> which, when accessed, actually modify or reflect the
values of corresponding data members of the underlying C++ object. Now
in Python:
<blockquote>
<pre>
&gt;&gt;&gt; x = Pair(3,5)
&gt;&gt;&gt; x.first
3
&gt;&gt;&gt; x.second
5
&gt;&gt;&gt; x.second = 8
&gt;&gt;&gt; x.second
8
&gt;&gt;&gt; second(x) # Prove that we're not just changing the instance __dict__
8
</pre>
</blockquote>
<h2>
<a name="reasons">And what about <code>__complex__</code>?</a>
</h2>
<p>
That, dear reader, is one problem we don't know how to solve. The
Python source contains the following fragment, indicating the
special-case code really is hardwired:
<blockquote>
<pre>
/* XXX Hack to support classes with __complex__ method */
if (PyInstance_Check(r)) { ...
</pre>
</blockquote>
<p>
Next: <a href="under-the-hood.html">A Peek Under the Hood</a>
Previous: <a href="inheritance.html">Inheritance</a>
Up: <a href= "index.html">Top</a>
<p>
&copy; Copyright David Abrahams and Ullrich K&ouml;the 2000.
Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This
document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any purpose.
<p>
Updated: Nov 26, 2000
</div>

View File

@@ -1,62 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
A Peek Under the Hood
</title>
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center"
width="277" height="86">
</h1>
<h1>
A Peek Under the Hood
</h1>
<p>
Declaring a <code>class_builder&lt;T&gt;</code> causes the instantiation
of an <code>extension_class&lt;T&gt;</code> to which it forwards all
member function calls and which is doing most of the real work.
<code>extension_class&lt;T&gt;</code> is a subclass of <code>
PyTypeObject</code>, the <code> struct</code> which Python's 'C' API uses
to describe a type. <a href="example1.html#world_class">An instance of the
<code>extension_class&lt;&gt;</code></a> becomes the Python type object
corresponding to <code>hello::world</code>. When we <a href=
"example1.html#add_world_class">add it to the module</a> it goes into the
module's dictionary to be looked up under the name "world".
<p>
Boost.Python uses C++'s template argument deduction mechanism to determine the
types of arguments to functions (except constructors, for which we must
<a href="example1.html#Constructor_example">provide an argument list</a>
because they can't be named in C++). Then, it calls the appropriate
overloaded functions <code>PyObject*
to_python(</code><em>S</em><code>)</code> and <em>
S'</em><code>from_python(PyObject*,
type&lt;</code><em>S</em><code>&gt;)</code> which convert between any C++
type <em>S</em> and a <code>PyObject*</code>, the type which represents a
reference to any Python object in its 'C' API. The <a href=
"example1.html#world_class"><code>extension_class&lt;T&gt;</code></a>
template defines a whole raft of these conversions (for <code>T, T*,
T&amp;, std::auto_ptr&lt;T&gt;</code>, etc.), using the same inline
friend function technique employed by <a href=
"http://www.boost.org/libs/utility/operators.htm">the boost operators
library</a>.
<p>
Because the <code>to_python</code> and <code>from_python</code> functions
for a user-defined class are defined by <code>
extension_class&lt;T&gt;</code>, it is important that an instantiation of
<code> extension_class&lt;T&gt;</code> is visible to any code which wraps
a C++ function with a <code>T, T*, const T&amp;</code>, etc. parameter or
return value. In particular, you may want to create all of the classes at
the top of your module's init function, then <code>def</code> the member
functions later to avoid problems with inter-class dependencies.
<p>
Next: <a href="building.html">Building a Module with Boost.Python</a>
Previous: <a href="special.html">Special Method and Operator Support</a>
Up: <a href="index.html">Top</a>
<p>
&copy; Copyright David Abrahams 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability for
any purpose.
<p>
Updated: Nov 26, 2000

View File

@@ -1,6 +0,0 @@
To get started with the Boost Python Library, use the examples
getting_started?.cpp and abstract.cpp.
The files example1.cpp and rwgk1.cpp are obsolete. They are only
included because the makefiles in the build directory still refer to
them. This will be fixed later.

View File

@@ -1,34 +0,0 @@
// Example by Ullrich Koethe
#include "boost/python/class_builder.hpp"
#include <string>
struct Abstract
{
virtual std::string test() = 0;
};
struct Abstract_callback: Abstract
{
Abstract_callback(PyObject * self)
: m_self(self)
{}
std::string test()
{
return boost::python::callback<std::string>::call_method(m_self, "test");
}
PyObject * m_self;
};
extern "C"
DL_EXPORT(void)
initabstract()
{
boost::python::module_builder a("abstract");
boost::python::class_builder<Abstract, Abstract_callback>
a_class(a, "Abstract");
a_class.def(boost::python::constructor<>()); // wrap a constructor
a_class.def(&Abstract::test, "test");
}

View File

@@ -60,7 +60,7 @@ namespace { // Avoid cluttering the global namespace.
std::vector<MillerIndex> VMIx;
public:
void add(const MillerIndex& MIx) { VMIx.push_back(MIx); }
MillerIndex get(const std::size_t i) const { return VMIx[i]; }
MillerIndex get(std::size_t i) const { return VMIx[i]; }
};
}
@@ -103,12 +103,12 @@ BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
BOOST_PYTHON_END_CONVERSION_NAMESPACE
BOOST_PYTHON_MODULE_INIT(getting_started5)
BOOST_PYTHON_MODULE_INIT(do_it_yourself_converters)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started5");
python::module_builder this_module("do_it_yourself_converters");
// Create the Python type object for our extension class.
python::class_builder<IndexingSet> ixset_class(this_module, "IndexingSet");

42
example/dvect.cpp Normal file
View File

@@ -0,0 +1,42 @@
#include "dvect.h"
#include "ivect.h"
#include <boost/python/cross_module.hpp>
namespace python = boost::python;
namespace {
# include "dvect_conversions.cpp"
# include "ivect_conversions.cpp"
vects::ivect dvect_as_ivect(const vects::dvect& dv)
{
vects::ivect iv(dv.size());
vects::ivect::iterator iviter = iv.begin();
for (int i = 0; i < dv.size(); i++) iviter[i] = static_cast<int>(dv[i]);
return iv;
}
}
BOOST_PYTHON_MODULE_INIT(dvect)
{
try
{
python::module_builder this_module("dvect");
python::class_builder<vects::dvect> dvect_class(this_module, "dvect");
python::export_converters(dvect_class);
python::import_converters<vects::ivect> ivect_converters("ivect", "ivect");
dvect_class.def(python::constructor<python::tuple>());
dvect_class.def(&vects::dvect::as_tuple, "as_tuple");
dvect_class.def(dvect_as_ivect, "as_ivect");
# include "dvect_defs.cpp"
# include "ivect_defs.cpp"
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

32
example/dvect.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef DVECT_H
#define DVECT_H
#include <vector>
#include <boost/python/class_builder.hpp>
namespace vects {
struct dvect : public std::vector<double>
{
dvect() : std::vector<double>() {}
dvect(size_t n) : std::vector<double>(n) {}
dvect(boost::python::tuple tuple) : std::vector<double>(tuple.size())
{
std::vector<double>::iterator v_it = begin();
for (int i = 0; i < tuple.size(); i++)
v_it[i] = BOOST_PYTHON_CONVERSION::from_python(tuple[i].get(),
boost::python::type<double>());
}
boost::python::tuple as_tuple() const
{
boost::python::tuple t(size());
for (int i = 0; i < size(); i++)
t.set_item(i,
boost::python::ref(BOOST_PYTHON_CONVERSION::to_python((*this)[i])));
return t;
}
};
}
#endif // DVECT_H

View File

@@ -0,0 +1,51 @@
// basics first: const reference converters
boost::python::tuple const_dvect_reference_as_tuple(const vects::dvect& dv)
{
return dv.as_tuple();
}
// to_python smart pointer conversions
std::auto_ptr<vects::dvect> dvect_as_auto_ptr(const vects::dvect& dv)
{
return std::auto_ptr<vects::dvect>(new vects::dvect(dv));
}
boost::shared_ptr<vects::dvect> dvect_as_shared_ptr(const vects::dvect& dv)
{
return boost::shared_ptr<vects::dvect>(new vects::dvect(dv));
}
// smart pointers passed by value
boost::python::ref auto_ptr_value_dvect_as_tuple(std::auto_ptr<vects::dvect> dv)
{
if (dv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return dv->as_tuple().reference();
}
boost::python::ref shared_ptr_value_dvect_as_tuple(boost::shared_ptr<vects::dvect> dv)
{
if (dv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return dv->as_tuple().reference();
}
// smart pointers passed by reference
boost::python::ref auto_ptr_reference_dvect_as_tuple(std::auto_ptr<vects::dvect>& dv)
{
if (dv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return dv->as_tuple().reference();
}
boost::python::ref shared_ptr_reference_dvect_as_tuple(boost::shared_ptr<vects::dvect>& dv)
{
if (dv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return dv->as_tuple().reference();
}
// smart pointers passed by const reference
boost::python::ref auto_ptr_const_reference_dvect_as_tuple(const std::auto_ptr<vects::dvect>& dv)
{
if (dv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return dv->as_tuple().reference();
}
boost::python::ref shared_ptr_const_reference_dvect_as_tuple(const boost::shared_ptr<vects::dvect>& dv)
{
if (dv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return dv->as_tuple().reference();
}

13
example/dvect_defs.cpp Normal file
View File

@@ -0,0 +1,13 @@
this_module.def(dvect_as_auto_ptr, "dvect_as_auto_ptr");
this_module.def(dvect_as_shared_ptr, "dvect_as_shared_ptr");
this_module.def(const_dvect_reference_as_tuple, "const_dvect_reference_as_tuple");
this_module.def(auto_ptr_value_dvect_as_tuple, "auto_ptr_value_dvect_as_tuple");
this_module.def(shared_ptr_value_dvect_as_tuple, "shared_ptr_value_dvect_as_tuple");
this_module.def(auto_ptr_reference_dvect_as_tuple, "auto_ptr_reference_dvect_as_tuple");
this_module.def(shared_ptr_reference_dvect_as_tuple, "shared_ptr_reference_dvect_as_tuple");
this_module.def(auto_ptr_const_reference_dvect_as_tuple, "auto_ptr_const_reference_dvect_as_tuple");
this_module.def(shared_ptr_const_reference_dvect_as_tuple, "shared_ptr_const_reference_dvect_as_tuple");

View File

@@ -1,54 +0,0 @@
#include <string.h>
namespace hello {
class world
{
public:
world(int) {}
~world() {}
const char* get() const { return "hi, world"; }
};
size_t length(const world& x) { return strlen(x.get()); }
}
#include <boost/python/class_builder.hpp>
// Python requires an exported function called init<module-name> in every
// extension module. This is where we build the module contents.
extern "C"
#ifdef _WIN32
__declspec(dllexport)
#endif
void inithello()
{
try
{
// create an object representing this extension module
boost::python::module_builder hello("hello");
// Create the Python type object for our extension class
boost::python::class_builder<hello::world> world_class(hello, "world");
// Add the __init__ function
world_class.def(boost::python::constructor<int>());
// Add a regular member function
world_class.def(&hello::world::get, "get");
// Add a regular function to the module
hello.def(hello::length, "length");
}
catch(...)
{
boost::python::handle_exception(); // Deal with the exception for Python
}
}
// Win32 DLL boilerplate
#if defined(_WIN32)
#include <windows.h>
extern "C" BOOL WINAPI DllMain(HINSTANCE, DWORD, LPVOID)
{
return 1;
}
#endif // _WIN32

View File

@@ -1,30 +0,0 @@
#include <string>
namespace { // Avoid cluttering the global namespace.
// A couple of simple C++ functions that we want to expose to Python.
std::string greet() { return "hello, world"; }
int square(int number) { return number * number; }
}
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
// Python requires an exported function called init<module-name> in every
// extension module. This is where we build the module contents.
BOOST_PYTHON_MODULE_INIT(getting_started1)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started1");
// Add regular functions to the module.
this_module.def(greet, "greet");
this_module.def(square, "square");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

View File

@@ -1,50 +0,0 @@
#include <iostream>
#include <string>
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class hello
{
public:
hello(const std::string& country) { this->country = country; }
std::string greet() const { return "Hello from " + country; }
private:
std::string country;
};
// A function taking a hello object as an argument.
std::string invite(const hello& w) {
return w.greet() + "! Please come soon!";
}
}
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
BOOST_PYTHON_MODULE_INIT(getting_started2)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started2");
// Create the Python type object for our extension class.
python::class_builder<hello> hello_class(this_module, "hello");
// Add the __init__ function.
hello_class.def(python::constructor<std::string>());
// Add a regular member function.
hello_class.def(&hello::greet, "greet");
// Add invite() as a regular function to the module.
this_module.def(invite, "invite");
// Even better, invite() can also be made a member of hello_class!!!
hello_class.def(invite, "invite");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

View File

@@ -1,120 +0,0 @@
/*
This example shows how to make an Extension Class "pickleable".
Python's pickle module implements a basic but powerful algorithm
for "pickling" (a.k.a. serializing, marshalling or flattening)
nearly arbitrary Python objects.
The user can influence how an Extension Class instance is pickled
by defining three special methods: __getinitargs__(),
__getstate__(), and __setstate(). This interface is similar to
that for regular Python classes as described in detail in the
Python Library Reference for pickle:
http://www.python.org/doc/current/lib/module-pickle.html
When an Extension Class instance is pickled, __getinitargs__() is
called, if implemented. This method should return a tuple
containing the arguments to be passed to the class constructor when
the object is restored.
If there is no __getstate__() method, the instance's __dict__ is
pickled if it is not empty. If __getstate__() is defined, it should
return an object representing the state of the instance.
If there is no __setstate__() method, __getstate__() must return a
dictionary. When the instance is restored, the items in this dictionary
are added to the instance's __dict__.
If the Extension Class defines __setstate__(), the pickle loader
calls it with the result of __getstate__() as arguments. In this
case, the state object need not be a dictionary. The
__getstate__() and __setstate__() methods can do what they want.
If both __getinitargs__() and __getstate__() are defined, the
instance is restored by first calling the constructor with
the result of __getinitargs__() as argument. After the instance
is reconstructed, the __dict__ is updated or __setstate__() is
called if implemented.
The mechanism described here is an exact replication of that one
implemented by Jim Fulton's ExtensionClass (included in Zope 2.2.2).
*/
#include <iostream>
#include <string>
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class world
{
private:
std::string country;
int secret_number;
public:
world(const std::string& country) : secret_number(0) {
this->country = country;
}
std::string greet() const { return "Hello from " + country + "!"; }
std::string get_country() const { return country; }
void set_secret_number(int number) { secret_number = number; }
int get_secret_number() const { return secret_number; }
};
// Support for pickle.
python::tuple world_getinitargs(const world& w) {
python::tuple result(1);
result.set_item(0, w.get_country());
return result;
}
python::tuple world_getstate(const world& w) {
python::tuple result(1);
result.set_item(0, w.get_secret_number());
return result;
}
void world_setstate(world& w, python::tuple state) {
if (state.size() != 1) {
PyErr_SetString(PyExc_ValueError,
"Unexpected argument in call to __setstate__.");
throw python::error_already_set();
}
int number = BOOST_PYTHON_CONVERSION::from_python(state[0].get(),
python::type<int>());
if (number != 42)
w.set_secret_number(number);
}
}
BOOST_PYTHON_MODULE_INIT(getting_started3)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("getting_started3");
// Create the Python type object for our extension class.
python::class_builder<world> world_class(this_module, "world");
// Add the __init__ function.
world_class.def(python::constructor<std::string>());
// Add a regular member function.
world_class.def(&world::greet, "greet");
world_class.def(&world::get_secret_number, "get_secret_number");
world_class.def(&world::set_secret_number, "set_secret_number");
// Support for pickle.
world_class.def(world_getinitargs, "__getinitargs__");
world_class.def(world_getstate, "__getstate__");
world_class.def(world_setstate, "__setstate__");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

42
example/ivect.cpp Normal file
View File

@@ -0,0 +1,42 @@
#include "dvect.h"
#include "ivect.h"
#include <boost/python/cross_module.hpp>
namespace python = boost::python;
namespace {
# include "dvect_conversions.cpp"
# include "ivect_conversions.cpp"
vects::dvect ivect_as_dvect(const vects::ivect& iv)
{
vects::dvect dv(iv.size());
vects::dvect::iterator dviter = dv.begin();
for (int i = 0; i < iv.size(); i++) dviter[i] = static_cast<double>(iv[i]);
return dv;
}
}
BOOST_PYTHON_MODULE_INIT(ivect)
{
try
{
python::module_builder this_module("ivect");
python::class_builder<vects::ivect> ivect_class(this_module, "ivect");
python::export_converters(ivect_class);
python::import_converters<vects::dvect> dvect_converters("dvect", "dvect");
ivect_class.def(python::constructor<python::tuple>());
ivect_class.def(&vects::ivect::as_tuple, "as_tuple");
ivect_class.def(ivect_as_dvect, "as_dvect");
# include "dvect_defs.cpp"
# include "ivect_defs.cpp"
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

32
example/ivect.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef IVECT_H
#define IVECT_H
#include <vector>
#include <boost/python/class_builder.hpp>
namespace vects {
struct ivect : public std::vector<int>
{
ivect() : std::vector<int>() {}
ivect(size_t n) : std::vector<int>(n) {}
ivect(boost::python::tuple tuple) : std::vector<int>(tuple.size())
{
std::vector<int>::iterator v_it = begin();
for (int i = 0; i < tuple.size(); i++)
v_it[i] = BOOST_PYTHON_CONVERSION::from_python(tuple[i].get(),
boost::python::type<int>());
}
boost::python::tuple as_tuple() const
{
boost::python::tuple t(size());
for (int i = 0; i < size(); i++)
t.set_item(i,
boost::python::ref(BOOST_PYTHON_CONVERSION::to_python((*this)[i])));
return t;
}
};
}
#endif // IVECT_H

View File

@@ -0,0 +1,51 @@
// basics first: const reference converters
boost::python::tuple const_ivect_reference_as_tuple(const vects::ivect& iv)
{
return iv.as_tuple();
}
// to_python smart pointer conversions
std::auto_ptr<vects::ivect> ivect_as_auto_ptr(const vects::ivect& iv)
{
return std::auto_ptr<vects::ivect>(new vects::ivect(iv));
}
boost::shared_ptr<vects::ivect> ivect_as_shared_ptr(const vects::ivect& iv)
{
return boost::shared_ptr<vects::ivect>(new vects::ivect(iv));
}
// smart pointers passed by value
boost::python::ref auto_ptr_value_ivect_as_tuple(std::auto_ptr<vects::ivect> iv)
{
if (iv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return iv->as_tuple().reference();
}
boost::python::ref shared_ptr_value_ivect_as_tuple(boost::shared_ptr<vects::ivect> iv)
{
if (iv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return iv->as_tuple().reference();
}
// smart pointers passed by reference
boost::python::ref auto_ptr_reference_ivect_as_tuple(std::auto_ptr<vects::ivect>& iv)
{
if (iv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return iv->as_tuple().reference();
}
boost::python::ref shared_ptr_reference_ivect_as_tuple(boost::shared_ptr<vects::ivect>& iv)
{
if (iv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return iv->as_tuple().reference();
}
// smart pointers passed by const reference
boost::python::ref auto_ptr_const_reference_ivect_as_tuple(const std::auto_ptr<vects::ivect>& iv)
{
if (iv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return iv->as_tuple().reference();
}
boost::python::ref shared_ptr_const_reference_ivect_as_tuple(const boost::shared_ptr<vects::ivect>& iv)
{
if (iv.get() == 0) return boost::python::ref(Py_None, boost::python::ref::increment_count);
return iv->as_tuple().reference();
}

13
example/ivect_defs.cpp Normal file
View File

@@ -0,0 +1,13 @@
this_module.def(ivect_as_auto_ptr, "ivect_as_auto_ptr");
this_module.def(ivect_as_shared_ptr, "ivect_as_shared_ptr");
this_module.def(const_ivect_reference_as_tuple, "const_ivect_reference_as_tuple");
this_module.def(auto_ptr_value_ivect_as_tuple, "auto_ptr_value_ivect_as_tuple");
this_module.def(shared_ptr_value_ivect_as_tuple, "shared_ptr_value_ivect_as_tuple");
this_module.def(auto_ptr_reference_ivect_as_tuple, "auto_ptr_reference_ivect_as_tuple");
this_module.def(shared_ptr_reference_ivect_as_tuple, "shared_ptr_reference_ivect_as_tuple");
this_module.def(auto_ptr_const_reference_ivect_as_tuple, "auto_ptr_const_reference_ivect_as_tuple");
this_module.def(shared_ptr_const_reference_ivect_as_tuple, "shared_ptr_const_reference_ivect_as_tuple");

14
example/noncopyable.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef NONCOPYABLE_H
#define NONCOPYABLE_H
class store
{
private:
store(const store&) { } // Disable the copy constructor.
int number;
public:
store(const int i) : number(i) { }
int recall() const { return number; }
};
#endif // NONCOPYABLE_H

View File

@@ -0,0 +1,22 @@
#include <boost/python/cross_module.hpp>
namespace python = boost::python;
#include "noncopyable.h"
BOOST_PYTHON_MODULE_INIT(noncopyable_export)
{
try
{
python::module_builder this_module("noncopyable_export");
python::class_builder<store> store_class(this_module, "store");
python::export_converters_noncopyable(store_class);
store_class.def(python::constructor<int>());
store_class.def(&store::recall, "recall");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

View File

@@ -0,0 +1,39 @@
#include <boost/python/cross_module.hpp>
namespace python = boost::python;
#include "noncopyable.h"
namespace { // Avoid cluttering the global namespace.
// A function with store objects as both input and output parameters.
// Because the copy constructor is disabled, we cannot pass a store
// object by value. Instead, we pass a smart pointer.
std::auto_ptr<store> add_stores(const store& s1, const store& s2)
{
int sum = s1.recall() + s2.recall();
std::auto_ptr<store> ss = std::auto_ptr<store>(new store(sum));
return ss;
}
}
BOOST_PYTHON_MODULE_INIT(noncopyable_import)
{
try
{
python::module_builder this_module("noncopyable_import");
python::import_converters<store>
dvect_converters("noncopyable_export", "store");
// Imagine all the additional classes with member functions
// that have store objects as input and output parameters.
// Lots and lots of them.
// However, to keep this example simple, we only define a
// module-level function.
this_module.def(add_stores, "add_stores");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

62
example/pickle1.cpp Normal file
View File

@@ -0,0 +1,62 @@
/*
This example shows how to make an Extension Class "pickleable".
The world class below can be fully restored by passing the
appropriate argument to the constructor. Therefore it is sufficient
to define the pickle interface method __getinitargs__.
For more information refer to boost/libs/python/doc/pickle.html.
*/
#include <string>
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class world
{
private:
std::string country;
int secret_number;
public:
world(const std::string& country) : secret_number(0) {
this->country = country;
}
std::string greet() const { return "Hello from " + country + "!"; }
std::string get_country() const { return country; }
};
// Support for pickle.
python::ref world_getinitargs(const world& w) {
python::tuple result(1);
result.set_item(0, w.get_country());
return result.reference();
}
}
BOOST_PYTHON_MODULE_INIT(pickle1)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("pickle1");
// Create the Python type object for our extension class.
python::class_builder<world> world_class(this_module, "world");
// Add the __init__ function.
world_class.def(python::constructor<std::string>());
// Add a regular member function.
world_class.def(&world::greet, "greet");
// Support for pickle.
world_class.def(world_getinitargs, "__getinitargs__");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

98
example/pickle2.cpp Normal file
View File

@@ -0,0 +1,98 @@
/*
This example shows how to make an Extension Class "pickleable".
The world class below contains member data (secret_number) that
cannot be restored by any of the constructors. Therefore it is
necessary to provide the __getstate__/__setstate__ pair of pickle
interface methods.
For simplicity, the __dict__ is not included in the result of
__getstate__. This is not generally recommended, but a valid
approach if it is anticipated that the object's __dict__ will
always be empty. Note that safety guard are provided to catch the
cases where this assumption is not true.
pickle3.cpp shows how to include the object's __dict__ in the
result of __getstate__.
For more information refer to boost/libs/python/doc/pickle.html.
*/
#include <string>
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class world
{
public:
world(const std::string& country) : secret_number(0) {
this->country = country;
}
std::string greet() const { return "Hello from " + country + "!"; }
std::string get_country() const { return country; }
void set_secret_number(int number) { secret_number = number; }
int get_secret_number() const { return secret_number; }
private:
std::string country;
int secret_number;
};
// Support for pickle.
using BOOST_PYTHON_CONVERSION::from_python;
python::ref world_getinitargs(const world& w) {
python::tuple result(1);
result.set_item(0, w.get_country());
return result.reference(); // returning the reference avoids the copying.
}
python::ref world_getstate(const world& w) {
python::tuple result(1);
result.set_item(0, w.get_secret_number());
return result.reference(); // returning the reference avoids the copying.
}
void world_setstate(world& w, python::tuple state) {
if (state.size() != 1) {
PyErr_SetString(PyExc_ValueError,
"Unexpected argument in call to __setstate__.");
throw python::error_already_set();
}
int number = from_python(state[0].get(), python::type<int>());
if (number != 42)
w.set_secret_number(number);
}
}
BOOST_PYTHON_MODULE_INIT(pickle2)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("pickle2");
// Create the Python type object for our extension class.
python::class_builder<world> world_class(this_module, "world");
// Add the __init__ function.
world_class.def(python::constructor<std::string>());
// Add a regular member function.
world_class.def(&world::greet, "greet");
world_class.def(&world::get_secret_number, "get_secret_number");
world_class.def(&world::set_secret_number, "set_secret_number");
// Support for pickle.
world_class.def(world_getinitargs, "__getinitargs__");
world_class.def(world_getstate, "__getstate__");
world_class.def(world_setstate, "__setstate__");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}

148
example/pickle3.cpp Normal file
View File

@@ -0,0 +1,148 @@
/*
This example shows how to make an Extension Class "pickleable".
The world class below contains member data (secret_number) that
cannot be restored by any of the constructors. Therefore it is
necessary to provide the __getstate__/__setstate__ pair of pickle
interface methods.
The object's __dict__ is included in the result of __getstate__.
This requires more code (compare with pickle2.cpp), but is
unavoidable if the object's __dict__ is not always empty.
For more information refer to boost/libs/python/doc/pickle.html.
*/
#include <string>
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
namespace boost { namespace python {
ref getattr(PyObject* o, const std::string& attr_name) {
return ref(PyObject_GetAttrString(o, const_cast<char*>(attr_name.c_str())));
}
ref getattr(const ref& r, const std::string& attr_name) {
return getattr(r.get(), attr_name);
}
}}
namespace { // Avoid cluttering the global namespace.
// A friendly class.
class world
{
public:
world(const std::string& country) : secret_number(0) {
this->country = country;
}
std::string greet() const { return "Hello from " + country + "!"; }
std::string get_country() const { return country; }
void set_secret_number(int number) { secret_number = number; }
int get_secret_number() const { return secret_number; }
private:
std::string country;
int secret_number;
};
// Support for pickle.
python::ref world_getinitargs(const world& w) {
python::tuple result(1);
result.set_item(0, w.get_country());
return result.reference(); // returning the reference avoids the copying.
}
python::ref world_getstate(python::tuple const & args,
python::dictionary const & keywords);
PyObject* world_setstate(python::tuple const & args,
python::dictionary const & keywords);
}
BOOST_PYTHON_MODULE_INIT(pickle3)
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("pickle3");
// Create the Python type object for our extension class.
python::class_builder<world> world_class(this_module, "world");
// Add the __init__ function.
world_class.def(python::constructor<std::string>());
// Add a regular member function.
world_class.def(&world::greet, "greet");
world_class.def(&world::get_secret_number, "get_secret_number");
world_class.def(&world::set_secret_number, "set_secret_number");
// Support for pickle.
world_class.def(world_getinitargs, "__getinitargs__");
world_class.def_raw(world_getstate, "__getstate__");
world_class.def_raw(world_setstate, "__setstate__");
world_class.getstate_manages_dict();
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
namespace {
using BOOST_PYTHON_CONVERSION::from_python;
using boost::python::type;
using boost::python::ref;
using boost::python::tuple;
using boost::python::list;
using boost::python::dictionary;
using boost::python::getattr;
ref world_getstate(tuple const & args, dictionary const & keywords)
{
if(args.size() != 1 || keywords.size() != 0) {
PyErr_SetString(PyExc_TypeError, "wrong number of arguments");
throw boost::python::argument_error();
}
const world& w = from_python(args[0].get(), type<const world&>());
ref mydict = getattr(args[0], "__dict__");
tuple result(2);
// store the object's __dict__
result.set_item(0, mydict);
// store the internal state of the C++ object
result.set_item(1, w.get_secret_number());
return result.reference(); // returning the reference avoids the copying.
}
PyObject* world_setstate(tuple const & args, dictionary const & keywords)
{
if(args.size() != 2 || keywords.size() != 0) {
PyErr_SetString(PyExc_TypeError, "wrong number of arguments");
throw boost::python::argument_error();
}
world& w = from_python(args[0].get(), type<world&>());
ref mydict = getattr(args[0], "__dict__");
tuple state = from_python(args[1].get(), type<tuple>());
if (state.size() != 2) {
PyErr_SetString(PyExc_ValueError,
"Unexpected argument in call to __setstate__.");
throw python::error_already_set();
}
// restore the object's __dict__
dictionary odict = from_python(mydict.get(), type<dictionary>());
const dictionary& pdict = from_python(state[0].get(), type<const dictionary&>());
list pkeys(pdict.keys());
for (int i = 0; i < pkeys.size(); i++) {
ref k(pkeys[i]);
//odict[k] = pdict[k]; // XXX memory leak!
odict[k] = pdict.get_item(k); // this does not leak.
}
// restore the internal state of the C++ object
int number = from_python(state[1].get(), type<int>());
if (number != 42)
w.set_secret_number(number);
return python::detail::none();
}
}

View File

@@ -1,41 +0,0 @@
#include <string>
namespace { // Avoid cluttering the global namespace.
// A couple of simple C++ functions that we want to expose to Python.
std::string greet() { return "hello, world"; }
int square(int number) { return number * number; }
}
#include <boost/python/class_builder.hpp>
namespace python = boost::python;
// Python requires an exported function called init<module-name> in every
// extension module. This is where we build the module contents.
extern "C"
#ifdef _WIN32
__declspec(dllexport)
#endif
void initrwgk1()
{
try
{
// Create an object representing this extension module.
python::module_builder this_module("rwgk1");
// Add regular functions to the module.
this_module.def(greet, "greet");
this_module.def(square, "square");
}
catch(...)
{
python::handle_exception(); // Deal with the exception for Python
}
}
// Win32 DLL boilerplate
#if defined(_WIN32)
#include <windows.h>
extern "C" BOOL WINAPI DllMain(HINSTANCE, DWORD, LPVOID) { return 1; }
#endif // _WIN32

View File

@@ -15,7 +15,7 @@ namespace { // Avoid cluttering the global namespace.
vector_double_wrapper(PyObject* self)
: std::vector<double>() {}
vector_double_wrapper(PyObject* self, const int n)
vector_double_wrapper(PyObject* self, int n)
: std::vector<double>(n) {}
vector_double_wrapper(PyObject* self, python::tuple tuple)
@@ -28,17 +28,16 @@ namespace { // Avoid cluttering the global namespace.
}
};
double getitem(const std::vector<double>& vd, const std::size_t key) {
double getitem(const std::vector<double>& vd, std::size_t key) {
return vd[key];
}
void setitem(std::vector<double>& vd, const std::size_t key,
const double &d) {
void setitem(std::vector<double>& vd, std::size_t key, double d) {
std::vector<double>::iterator vditer = vd.begin();
vditer[key] = d;
}
void delitem(std::vector<double>& vd, const std::size_t key) {
void delitem(std::vector<double>& vd, std::size_t key) {
std::vector<double>::iterator vditer = vd.begin();
vd.erase(&vditer[key]);
}
@@ -74,11 +73,11 @@ namespace { // Avoid cluttering the global namespace.
}
}
BOOST_PYTHON_MODULE_INIT(getting_started4)
BOOST_PYTHON_MODULE_INIT(simple_vector)
{
try
{
python::module_builder this_module("getting_started4");
python::module_builder this_module("simple_vector");
python::class_builder<std::vector<double>, vector_double_wrapper>
vector_double(this_module, "vector_double");

1
example/swap_iv_dv.sh Normal file
View File

@@ -0,0 +1 @@
sed 's/iv/xv/g' $1 | sed 's/dv/iv/g' | sed 's/xv/dv/g'

View File

@@ -1,23 +0,0 @@
# Example by Ullrich Koethe
r'''>>> from abstract import *
>>> class A(Abstract):
... def __init__(self, text):
... Abstract.__init__(self) # call the base class constructor
... self.text = text
... def test(self): # implement abstract function
... return self.text
...
>>> a = A("Hello")
>>> a.test()
'Hello'
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_abstract
doctest.testmod(test_abstract)
if __name__ == '__main__':
run()

View File

@@ -1,5 +1,5 @@
r'''>>> import getting_started5
>>> ixset = getting_started5.IndexingSet()
r'''>>> import do_it_yourself_converters
>>> ixset = do_it_yourself_converters.IndexingSet()
>>> ixset.add((1,2,3))
>>> ixset.add((4,5,6))
>>> ixset.add((7,8,9))
@@ -15,8 +15,8 @@ def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_getting_started5
doctest.testmod(test_getting_started5)
import doctest, test_do_it_yourself_converters
doctest.testmod(test_do_it_yourself_converters)
if __name__ == '__main__':
run()

View File

@@ -1,50 +0,0 @@
r'''
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
That's it! If we build this shared library and put it on our PYTHONPATH we can
now access our C++ class and function from Python.
>>> import hello
>>> hi_world = hello.world(3)
>>> hi_world.get()
'hi, world'
>>> hello.length(hi_world)
9
We can even make a subclass of hello.world:
>>> class my_subclass(hello.world):
... def get(self):
... return 'hello, world'
...
>>> y = my_subclass(2)
>>> y.get()
'hello, world'
Pretty cool! You can't do that with an ordinary Python extension type!
>>> hello.length(y)
9
Of course, you may now have a slightly empty feeling in the pit of your little
pythonic stomach. Perhaps you feel your subclass deserves to have a length() of
12? If so, read on...
'''
from hello import *
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_example1
doctest.testmod(test_example1)
if __name__ == '__main__':
run()

View File

@@ -1,17 +0,0 @@
r'''>>> import getting_started1
>>> print getting_started1.greet()
hello, world
>>> number = 11
>>> print number, '*', number, '=', getting_started1.square(number)
11 * 11 = 121
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_getting_started1
doctest.testmod(test_getting_started1)
if __name__ == '__main__':
run()

View File

@@ -1,29 +0,0 @@
r'''>>> from getting_started2 import *
>>> hi = hello('California')
>>> hi.greet()
'Hello from California'
>>> invite(hi)
'Hello from California! Please come soon!'
>>> hi.invite()
'Hello from California! Please come soon!'
>>> class wordy(hello):
... def greet(self):
... return hello.greet(self) + ', where the weather is fine'
...
>>> hi2 = wordy('Florida')
>>> hi2.greet()
'Hello from Florida, where the weather is fine'
>>> invite(hi2)
'Hello from Florida! Please come soon!'
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_getting_started2
doctest.testmod(test_getting_started2)
if __name__ == '__main__':
run()

View File

@@ -1,56 +0,0 @@
r'''>>> import getting_started3
>>> import re
>>> import pickle
>>> getting_started3.world.__module__
'getting_started3'
>>> getting_started3.world.__safe_for_unpickling__
1
>>> getting_started3.world.__reduce__()
'world'
>>> assert re.match(
... "\(<extension class getting_started3.world at [0-9a-fA-FxX]+>, \('Hello',\), \(0,\)\)",
... repr(getting_started3.world('Hello').__reduce__()))
>>>
>>> for number in (24, 42):
... wd = getting_started3.world('California')
... wd.set_secret_number(number)
... pstr = pickle.dumps(wd)
... print pstr
... wl = pickle.loads(pstr)
... print wd.greet(), wd.get_secret_number()
... print wl.greet(), wl.get_secret_number()
cgetting_started3
world
p0
(S'California'
p1
tp2
R(I24
tp3
bp4
.
Hello from California! 24
Hello from California! 24
cgetting_started3
world
p0
(S'California'
p1
tp2
R(I42
tp3
bp4
.
Hello from California! 42
Hello from California! 0
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_getting_started3
doctest.testmod(test_getting_started3)
if __name__ == '__main__':
run()

31
example/test_pickle1.py Normal file
View File

@@ -0,0 +1,31 @@
r'''>>> import pickle1
>>> import re
>>> import pickle
>>> pickle1.world.__module__
'pickle1'
>>> pickle1.world.__safe_for_unpickling__
1
>>> pickle1.world.__reduce__()
'world'
>>> assert re.match(
... "\(<extension class pickle1.world at [0-9a-fA-FxX]+>, \('Hello',\)\)",
... repr(pickle1.world('Hello').__reduce__()))
>>>
>>> wd = pickle1.world('California')
>>> pstr = pickle.dumps(wd)
>>> wl = pickle.loads(pstr)
>>> print wd.greet()
Hello from California!
>>> print wl.greet()
Hello from California!
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_pickle1
doctest.testmod(test_pickle1)
if __name__ == '__main__':
run()

45
example/test_pickle2.py Normal file
View File

@@ -0,0 +1,45 @@
r'''>>> import pickle2
>>> import re
>>> import pickle
>>> pickle2.world.__module__
'pickle2'
>>> pickle2.world.__safe_for_unpickling__
1
>>> pickle2.world.__reduce__()
'world'
>>> assert re.match(
... "\(<extension class pickle2.world at [0-9a-fA-FxX]+>, \('Hello',\), \(0,\)\)",
... repr(pickle2.world('Hello').__reduce__()))
>>>
>>> for number in (24, 42):
... wd = pickle2.world('California')
... wd.set_secret_number(number)
... pstr = pickle.dumps(wd)
... wl = pickle.loads(pstr)
... print wd.greet(), wd.get_secret_number()
... print wl.greet(), wl.get_secret_number()
Hello from California! 24
Hello from California! 24
Hello from California! 42
Hello from California! 0
# Now show that the __dict__ is not taken care of.
>>> wd = pickle2.world('California')
>>> wd.x = 1
>>> wd.__dict__
{'x': 1}
>>> try: pstr = pickle.dumps(wd)
... except RuntimeError, err: print err[0]
...
Incomplete pickle support (__getstate_manages_dict__ not set)
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_pickle2
doctest.testmod(test_pickle2)
if __name__ == '__main__':
run()

38
example/test_pickle3.py Normal file
View File

@@ -0,0 +1,38 @@
r'''>>> import pickle3
>>> import re
>>> import pickle
>>> pickle3.world.__module__
'pickle3'
>>> pickle3.world.__safe_for_unpickling__
1
>>> pickle3.world.__reduce__()
'world'
>>> assert re.match(
... "\(<extension class pickle3.world at [0-9a-fA-FxX]+>, \('Hello',\), \(\{\}, 0\)\)",
... repr(pickle3.world('Hello').__reduce__()))
>>>
>>> for number in (24, 42):
... wd = pickle3.world('California')
... wd.set_secret_number(number)
... wd.x = 2 * number
... wd.y = 'y' * number
... wd.z = 3. * number
... pstr = pickle.dumps(wd)
... wl = pickle.loads(pstr)
... print wd.greet(), wd.get_secret_number(), wd.__dict__
... print wl.greet(), wl.get_secret_number(), wl.__dict__
Hello from California! 24 {'z': 72.0, 'x': 48, 'y': 'yyyyyyyyyyyyyyyyyyyyyyyy'}
Hello from California! 24 {'z': 72.0, 'x': 48, 'y': 'yyyyyyyyyyyyyyyyyyyyyyyy'}
Hello from California! 42 {'z': 126.0, 'x': 84, 'y': 'yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy'}
Hello from California! 0 {'z': 126.0, 'x': 84, 'y': 'yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy'}
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_pickle3
doctest.testmod(test_pickle3)
if __name__ == '__main__':
run()

View File

@@ -1,17 +0,0 @@
r'''>>> import rwgk1
>>> print rwgk1.greet()
hello, world
>>> number = 11
>>> print number, '*', number, '=', rwgk1.square(number)
11 * 11 = 121
'''
def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_rwgk1
doctest.testmod(test_rwgk1)
if __name__ == '__main__':
run()

View File

@@ -1,13 +1,13 @@
r'''>>> import getting_started4
>>> v=getting_started4.vector_double()
r'''>>> import simple_vector
>>> v=simple_vector.vector_double()
>>> print v.as_tuple()
()
>>> v=getting_started4.vector_double(5)
>>> v=simple_vector.vector_double(5)
>>> print v.as_tuple()
(0.0, 0.0, 0.0, 0.0, 0.0)
>>> print len(v)
5
>>> v=getting_started4.vector_double((3,4,5))
>>> v=simple_vector.vector_double((3,4,5))
>>> print v.as_tuple()
(3.0, 4.0, 5.0)
>>> print v[1]
@@ -18,9 +18,9 @@ r'''>>> import getting_started4
>>> del v[1]
>>> print v.as_tuple()
(3.0, 5.0)
>>> print getting_started4.foo(11).as_tuple()
>>> print simple_vector.foo(11).as_tuple()
(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)
>>> print getting_started4.bar(12).as_tuple()
>>> print simple_vector.bar(12).as_tuple()
(0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0)
'''
@@ -28,8 +28,8 @@ def run(args = None):
if args is not None:
import sys
sys.argv = args
import doctest, test_getting_started4
doctest.testmod(test_getting_started4)
import doctest, test_simple_vector
doctest.testmod(test_simple_vector)
if __name__ == '__main__':
run()

23
example/tst_dvect1.py Normal file
View File

@@ -0,0 +1,23 @@
def f():
import dvect
print dvect.dvect.__converters__
dv = dvect.dvect((1,2,3,4,5))
print dv
print dv.as_tuple()
iv = dv.as_ivect()
print iv
print iv.as_tuple()
print dvect.const_ivect_reference_as_tuple(iv)
aiv = dvect.ivect_as_auto_ptr(iv)
print dvect.const_ivect_reference_as_tuple(aiv)
siv = dvect.ivect_as_shared_ptr(iv)
print dvect.const_ivect_reference_as_tuple(siv)
print aiv.as_tuple()
print siv.as_tuple()
if (__name__ == "__main__"):
import sys, string
n = 1
if (len(sys.argv) > 1): n = string.atoi(sys.argv[1])
for i in xrange(n):
f()

98
example/tst_dvect2.py Normal file
View File

@@ -0,0 +1,98 @@
def f(broken_auto_ptr):
import dvect
import ivect
#
dv = dvect.dvect((1,2,3,4,5))
iv = dv.as_ivect()
#
aiv = dvect.ivect_as_auto_ptr(iv)
print '1. auto_ptr_value_ivect_as_tuple'
print ivect.auto_ptr_value_ivect_as_tuple(aiv)
print '2. auto_ptr_value_ivect_as_tuple'
if (not broken_auto_ptr):
print ivect.auto_ptr_value_ivect_as_tuple(aiv)
else:
print None
#
adv = dvect.dvect_as_auto_ptr(dv)
print '1. auto_ptr_value_dvect_as_tuple'
print ivect.auto_ptr_value_dvect_as_tuple(adv)
print '2. auto_ptr_value_dvect_as_tuple'
if (not broken_auto_ptr):
print ivect.auto_ptr_value_dvect_as_tuple(adv)
else:
print None
#
siv = dvect.ivect_as_shared_ptr(iv)
print '1. shared_ptr_value_ivect_as_tuple'
print ivect.shared_ptr_value_ivect_as_tuple(siv)
print '2. shared_ptr_value_ivect_as_tuple'
print ivect.shared_ptr_value_ivect_as_tuple(siv)
#
sdv = dvect.dvect_as_shared_ptr(dv)
print '1. shared_ptr_value_dvect_as_tuple'
print ivect.shared_ptr_value_dvect_as_tuple(sdv)
print '2. shared_ptr_value_dvect_as_tuple'
print ivect.shared_ptr_value_dvect_as_tuple(sdv)
#
aiv = dvect.ivect_as_auto_ptr(iv)
print '1. auto_ptr_reference_ivect_as_tuple'
print ivect.auto_ptr_reference_ivect_as_tuple(aiv)
print '2. auto_ptr_reference_ivect_as_tuple'
print ivect.auto_ptr_reference_ivect_as_tuple(aiv)
#
adv = dvect.dvect_as_auto_ptr(dv)
print '1. auto_ptr_reference_dvect_as_tuple'
print ivect.auto_ptr_reference_dvect_as_tuple(adv)
print '2. auto_ptr_reference_dvect_as_tuple'
print ivect.auto_ptr_reference_dvect_as_tuple(adv)
#
siv = dvect.ivect_as_shared_ptr(iv)
print '1. shared_ptr_reference_ivect_as_tuple'
print ivect.shared_ptr_reference_ivect_as_tuple(siv)
print '2. shared_ptr_reference_ivect_as_tuple'
print ivect.shared_ptr_reference_ivect_as_tuple(siv)
#
sdv = dvect.dvect_as_shared_ptr(dv)
print '1. shared_ptr_reference_dvect_as_tuple'
print ivect.shared_ptr_reference_dvect_as_tuple(sdv)
print '2. shared_ptr_reference_dvect_as_tuple'
print ivect.shared_ptr_reference_dvect_as_tuple(sdv)
#
aiv = dvect.ivect_as_auto_ptr(iv)
print '1. auto_ptr_const_reference_ivect_as_tuple'
print ivect.auto_ptr_const_reference_ivect_as_tuple(aiv)
print '2. auto_ptr_const_reference_ivect_as_tuple'
print ivect.auto_ptr_const_reference_ivect_as_tuple(aiv)
#
adv = dvect.dvect_as_auto_ptr(dv)
print '1. auto_ptr_const_reference_dvect_as_tuple'
print ivect.auto_ptr_const_reference_dvect_as_tuple(adv)
print '2. auto_ptr_const_reference_dvect_as_tuple'
print ivect.auto_ptr_const_reference_dvect_as_tuple(adv)
#
siv = dvect.ivect_as_shared_ptr(iv)
print '1. shared_ptr_const_reference_ivect_as_tuple'
print ivect.shared_ptr_const_reference_ivect_as_tuple(siv)
print '2. shared_ptr_const_reference_ivect_as_tuple'
print ivect.shared_ptr_const_reference_ivect_as_tuple(siv)
#
sdv = dvect.dvect_as_shared_ptr(dv)
print '1. shared_ptr_const_reference_dvect_as_tuple'
print ivect.shared_ptr_const_reference_dvect_as_tuple(sdv)
print '2. shared_ptr_const_reference_dvect_as_tuple'
print ivect.shared_ptr_const_reference_dvect_as_tuple(sdv)
if (__name__ == "__main__"):
import sys, string
broken_auto_ptr = 0
n = 1
if (len(sys.argv) > 1):
if (sys.argv[1] == "--broken-auto-ptr"):
broken_auto_ptr = 1
if (len(sys.argv) > 2):
n = string.atoi(sys.argv[2])
else:
n = string.atoi(sys.argv[1])
for i in xrange(n):
f(broken_auto_ptr)

23
example/tst_ivect1.py Normal file
View File

@@ -0,0 +1,23 @@
def f():
import ivect
print ivect.ivect.__converters__
iv = ivect.ivect((1,2,3,4,5))
print iv
print iv.as_tuple()
dv = iv.as_dvect()
print dv
print dv.as_tuple()
print ivect.const_dvect_reference_as_tuple(dv)
adv = ivect.dvect_as_auto_ptr(dv)
print ivect.const_dvect_reference_as_tuple(adv)
sdv = ivect.dvect_as_shared_ptr(dv)
print ivect.const_dvect_reference_as_tuple(sdv)
print adv.as_tuple()
print sdv.as_tuple()
if (__name__ == "__main__"):
import sys, string
n = 1
if (len(sys.argv) > 1): n = string.atoi(sys.argv[1])
for i in xrange(n):
f()

98
example/tst_ivect2.py Normal file
View File

@@ -0,0 +1,98 @@
def f(broken_auto_ptr):
import ivect
import dvect
#
iv = ivect.ivect((1,2,3,4,5))
dv = iv.as_dvect()
#
adv = ivect.dvect_as_auto_ptr(dv)
print '1. auto_ptr_value_dvect_as_tuple'
print dvect.auto_ptr_value_dvect_as_tuple(adv)
print '2. auto_ptr_value_dvect_as_tuple'
if (not broken_auto_ptr):
print dvect.auto_ptr_value_dvect_as_tuple(adv)
else:
print None
#
aiv = ivect.ivect_as_auto_ptr(iv)
print '1. auto_ptr_value_ivect_as_tuple'
print dvect.auto_ptr_value_ivect_as_tuple(aiv)
print '2. auto_ptr_value_ivect_as_tuple'
if (not broken_auto_ptr):
print dvect.auto_ptr_value_ivect_as_tuple(aiv)
else:
print None
#
sdv = ivect.dvect_as_shared_ptr(dv)
print '1. shared_ptr_value_dvect_as_tuple'
print dvect.shared_ptr_value_dvect_as_tuple(sdv)
print '2. shared_ptr_value_dvect_as_tuple'
print dvect.shared_ptr_value_dvect_as_tuple(sdv)
#
siv = ivect.ivect_as_shared_ptr(iv)
print '1. shared_ptr_value_ivect_as_tuple'
print dvect.shared_ptr_value_ivect_as_tuple(siv)
print '2. shared_ptr_value_ivect_as_tuple'
print dvect.shared_ptr_value_ivect_as_tuple(siv)
#
adv = ivect.dvect_as_auto_ptr(dv)
print '1. auto_ptr_reference_dvect_as_tuple'
print dvect.auto_ptr_reference_dvect_as_tuple(adv)
print '2. auto_ptr_reference_dvect_as_tuple'
print dvect.auto_ptr_reference_dvect_as_tuple(adv)
#
aiv = ivect.ivect_as_auto_ptr(iv)
print '1. auto_ptr_reference_ivect_as_tuple'
print dvect.auto_ptr_reference_ivect_as_tuple(aiv)
print '2. auto_ptr_reference_ivect_as_tuple'
print dvect.auto_ptr_reference_ivect_as_tuple(aiv)
#
sdv = ivect.dvect_as_shared_ptr(dv)
print '1. shared_ptr_reference_dvect_as_tuple'
print dvect.shared_ptr_reference_dvect_as_tuple(sdv)
print '2. shared_ptr_reference_dvect_as_tuple'
print dvect.shared_ptr_reference_dvect_as_tuple(sdv)
#
siv = ivect.ivect_as_shared_ptr(iv)
print '1. shared_ptr_reference_ivect_as_tuple'
print dvect.shared_ptr_reference_ivect_as_tuple(siv)
print '2. shared_ptr_reference_ivect_as_tuple'
print dvect.shared_ptr_reference_ivect_as_tuple(siv)
#
adv = ivect.dvect_as_auto_ptr(dv)
print '1. auto_ptr_const_reference_dvect_as_tuple'
print dvect.auto_ptr_const_reference_dvect_as_tuple(adv)
print '2. auto_ptr_const_reference_dvect_as_tuple'
print dvect.auto_ptr_const_reference_dvect_as_tuple(adv)
#
aiv = ivect.ivect_as_auto_ptr(iv)
print '1. auto_ptr_const_reference_ivect_as_tuple'
print dvect.auto_ptr_const_reference_ivect_as_tuple(aiv)
print '2. auto_ptr_const_reference_ivect_as_tuple'
print dvect.auto_ptr_const_reference_ivect_as_tuple(aiv)
#
sdv = ivect.dvect_as_shared_ptr(dv)
print '1. shared_ptr_const_reference_dvect_as_tuple'
print dvect.shared_ptr_const_reference_dvect_as_tuple(sdv)
print '2. shared_ptr_const_reference_dvect_as_tuple'
print dvect.shared_ptr_const_reference_dvect_as_tuple(sdv)
#
siv = ivect.ivect_as_shared_ptr(iv)
print '1. shared_ptr_const_reference_ivect_as_tuple'
print dvect.shared_ptr_const_reference_ivect_as_tuple(siv)
print '2. shared_ptr_const_reference_ivect_as_tuple'
print dvect.shared_ptr_const_reference_ivect_as_tuple(siv)
if (__name__ == "__main__"):
import sys, string
broken_auto_ptr = 0
n = 1
if (len(sys.argv) > 1):
if (sys.argv[1] == "--broken-auto-ptr"):
broken_auto_ptr = 1
if (len(sys.argv) > 2):
n = string.atoi(sys.argv[2])
else:
n = string.atoi(sys.argv[1])
for i in xrange(n):
f(broken_auto_ptr)

View File

@@ -0,0 +1,8 @@
import noncopyable_export
import noncopyable_import
s1 = noncopyable_export.store(1)
print s1.recall()
s2 = noncopyable_export.store(2)
print s2.recall()
s3 = noncopyable_import.add_stores(s1, s2)
print s3.recall()

View File

@@ -1,829 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file was generated for 10-argument python callbacks by gen_callback.python
#ifndef CALLBACK_DWA_052100_H_
# define CALLBACK_DWA_052100_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/conversions.hpp>
namespace boost { namespace python {
namespace detail {
template <class T>
inline void callback_adjust_refcount(PyObject*, type<T>) {}
inline void callback_adjust_refcount(PyObject* p, type<PyObject*>)
{ Py_INCREF(p); }
}
// Calling Python from C++
template <class R>
struct callback
{
static R call_method(PyObject* self, const char* name)
{
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("()")));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
static R call(PyObject* self)
{
ref result(PyEval_CallFunction(self, const_cast<char*>("()")));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1>
static R call_method(PyObject* self, const char* name, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(O)"),
p1.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1>
static R call(PyObject* self, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallFunction(self, const_cast<char*>("(O)"),
p1.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2>
static R call(PyObject* self, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static R call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static R call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
detail::callback_adjust_refcount(result.get(), type<R>());
return from_python(result.get(), type<R>());
}
};
// This specialization wouldn't be needed, but MSVC6 doesn't correctly allow the following:
// void g();
// void f() { return g(); }
template <>
struct callback<void>
{
static void call_method(PyObject* self, const char* name)
{
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("()")));
}
static void call(PyObject* self)
{
ref result(PyEval_CallFunction(self, const_cast<char*>("()")));
}
template <class A1>
static void call_method(PyObject* self, const char* name, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(O)"),
p1.get()));
}
template <class A1>
static void call(PyObject* self, const A1& a1)
{
ref p1(to_python(a1));
ref result(PyEval_CallFunction(self, const_cast<char*>("(O)"),
p1.get()));
}
template <class A1, class A2>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
}
template <class A1, class A2>
static void call(PyObject* self, const A1& a1, const A2& a2)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OO)"),
p1.get(),
p2.get()));
}
template <class A1, class A2, class A3>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
}
template <class A1, class A2, class A3>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOO)"),
p1.get(),
p2.get(),
p3.get()));
}
template <class A1, class A2, class A3, class A4>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
}
template <class A1, class A2, class A3, class A4>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get()));
}
template <class A1, class A2, class A3, class A4, class A5>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
}
template <class A1, class A2, class A3, class A4, class A5>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static void call_method(PyObject* self, const char* name, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallMethod(self, const_cast<char*>(name),
const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static void call(PyObject* self, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
ref p1(to_python(a1));
ref p2(to_python(a2));
ref p3(to_python(a3));
ref p4(to_python(a4));
ref p5(to_python(a5));
ref p6(to_python(a6));
ref p7(to_python(a7));
ref p8(to_python(a8));
ref p9(to_python(a9));
ref p10(to_python(a10));
ref result(PyEval_CallFunction(self, const_cast<char*>("(OOOOOOOOOO)"),
p1.get(),
p2.get(),
p3.get(),
p4.get(),
p5.get(),
p6.get(),
p7.get(),
p8.get(),
p9.get(),
p10.get()));
}
};
// Make it a compile-time error to try to return a const char* from a virtual
// function. The standard conversion
//
// from_python(PyObject* string, boost::python::type<const char*>)
//
// returns a pointer to the character array which is internal to string. The
// problem with trying to do this in a standard callback function is that the
// Python string would likely be destroyed upon return from the calling function
// (boost::python::callback<const char*>::call[_method]) when its reference count is
// decremented. If you absolutely need to do this and you're sure it's safe (it
// usually isn't), you can use
//
// boost::python::string result(boost::python::callback<boost::python::string>::call[_method](...args...));
// ...result.c_str()... // access the char* array
template <>
struct callback<const char*>
{
// Try hard to generate a readable error message
typedef struct unsafe_since_python_string_may_be_destroyed {} call, call_method;
};
}} // namespace boost::python
#endif // CALLBACK_DWA_052100_H_

File diff suppressed because it is too large Load Diff

View File

@@ -1,166 +0,0 @@
// Revision History:
// Mar 03 01 added: pickle safety measures (Ralf W. Grosse-Kunstleve)
#ifndef CLASS_WRAPPER_DWA101000_H_
# define CLASS_WRAPPER_DWA101000_H_
#include <boost/python/detail/extension_class.hpp>
#include <boost/python/operators.hpp>
#include <boost/python/module_builder.hpp>
#include <boost/python/conversions.hpp>
#include <boost/python/detail/cast.hpp>
#include <boost/python/reference.hpp>
namespace boost { namespace python {
// Syntactic sugar to make wrapping classes more convenient
template <class T, class U = detail::held_instance<T> >
class class_builder
: python_extension_class_converters<T, U> // Works around MSVC6.x/GCC2.95.2 bug described below
{
public:
class_builder(module_builder& module, const char* name)
: m_class(new detail::extension_class<T, U>(name))
{
module.add(ref(as_object(m_class.get()), ref::increment_count), name);
}
~class_builder()
{}
inline void dict_defines_state() {
add(ref(BOOST_PYTHON_CONVERSION::to_python(1)), "__dict_defines_state__");
}
inline void getstate_manages_dict() {
add(ref(BOOST_PYTHON_CONVERSION::to_python(1)), "__getstate_manages_dict__");
}
// define constructors
template <class signature>
void def(const signature& s)
{ m_class->def(s); }
// export heterogeneous reverse-argument operators
// (type of lhs: 'left', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>(),
// boost::python::left_operand<int const &>());
template <long which, class left, class right>
void def(operators<which, right> o1, left_operand<left> o2)
{ m_class->def(o1, o2); }
// export heterogeneous operators (type of lhs: 'left', of rhs: 'right')
// usage: foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub), Foo>(),
// boost::python::right_operand<int const &>());
template <long which, class left, class right>
void def(operators<which, left> o1, right_operand<right> o2)
{ m_class->def(o1, o2); }
// define a function that passes Python arguments and keywords
// to C++ verbatim (as a 'tuple const &' and 'dictionary const &'
// respectively). This is useful for manual argument passing.
// It's also the only possibility to pass keyword arguments to C++.
// Fn must have a signatur that is compatible to
// PyObject * (*)(PyObject * aTuple, PyObject * aDictionary)
template <class Fn>
void def_raw(Fn fn, const char* name)
{ m_class->def_raw(fn, name); }
// define member functions. In fact this works for free functions, too -
// they act like static member functions, or if they start with the
// appropriate self argument (as a pointer or reference), they can be used
// just like ordinary member functions -- just like Python!
template <class Fn>
void def(Fn fn, const char* name)
{ m_class->def(fn, name); }
// Define a virtual member function with a default implementation.
// default_fn should be a function which provides the default implementation.
// Be careful that default_fn does not in fact call fn virtually!
template <class Fn, class DefaultFn>
void def(Fn fn, const char* name, DefaultFn default_fn)
{ m_class->def(fn, name, default_fn); }
// Provide a function which implements x.<name>, reading from the given
// member (pm) of the T obj
template <class MemberType>
void def_getter(MemberType T::*pm, const char* name)
{ m_class->def_getter(pm, name); }
// Provide a function which implements assignment to x.<name>, writing to
// the given member (pm) of the T obj
template <class MemberType>
void def_setter(MemberType T::*pm, const char* name)
{ m_class->def_getter(pm, name); }
// Expose the given member (pm) of the T obj as a read-only attribute
template <class MemberType>
void def_readonly(MemberType T::*pm, const char* name)
{ m_class->def_readonly(pm, name); }
// Expose the given member (pm) of the T obj as a read/write attribute
template <class MemberType>
void def_read_write(MemberType T::*pm, const char* name)
{ m_class->def_read_write(pm, name); }
// define the standard coercion needed for operator overloading
void def_standard_coerce()
{ m_class->def_standard_coerce(); }
// declare the given class a base class of this one and register
// conversion functions
template <class S, class V>
void declare_base(class_builder<S, V> const & base)
{
m_class->declare_base(base.get_extension_class());
}
// declare the given class a base class of this one and register
// upcast conversion function
template <class S, class V>
void declare_base(class_builder<S, V> const & base, without_downcast_t)
{
m_class->declare_base(base.get_extension_class(), without_downcast);
}
// get the embedded ExtensioClass object
detail::extension_class<T, U> * get_extension_class() const
{
return m_class.get();
}
// set an arbitrary attribute. Useful for non-function class data members,
// e.g. enums
void add(PyObject* x, const char* name)
{ m_class->set_attribute(name, x); }
void add(ref x, const char* name)
{ m_class->set_attribute(name, x); }
private:
// declare the given class a base class of this one and register
// conversion functions
template <class S, class V>
void declare_base(detail::extension_class<S, V> * base)
{
m_class->declare_base(base);
}
// declare the given class a base class of this one and register
// upcast conversion function
template <class S, class V>
void declare_base(detail::extension_class<S, V> * base, without_downcast_t)
{
m_class->declare_base(base, without_downcast);
}
reference<detail::extension_class<T, U> > m_class;
};
// The bug mentioned at the top of this file is that on certain compilers static
// global functions declared within the body of a class template will only be
// generated when the class template is constructed, and when (for some reason)
// the construction does not occur via a new-expression. Otherwise, we could
// rely on the initialization of the m_class data member to cause all of the
// to_/from_python functions to come into being.
}} // namespace boost::python
#endif // CLASS_WRAPPER_DWA101000_H_

View File

@@ -1,527 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef SUBCLASS_DWA051500_H_
# define SUBCLASS_DWA051500_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/types.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/singleton.hpp>
# include <boost/utility.hpp>
# include <boost/python/conversions.hpp>
# include <boost/python/callback.hpp>
namespace boost { namespace python {
// A simple type which acts something like a built-in Python class obj.
class instance
: public boost::python::detail::python_object
{
public:
instance(PyTypeObject* class_);
~instance();
// Standard Python functions.
PyObject* repr();
int compare(PyObject*);
PyObject* str();
long hash();
PyObject* call(PyObject* args, PyObject* keywords);
PyObject* getattr(const char* name, bool use_special_function = true);
int setattr(const char* name, PyObject* value);
// Mapping methods
int length();
PyObject* get_subscript(PyObject* key);
void set_subscript(PyObject* key, PyObject* value);
// Sequence methods
PyObject* get_slice(int start, int finish);
void set_slice(int start, int finish, PyObject* value);
// Number methods
PyObject* add(PyObject* other);
PyObject* subtract(PyObject* other);
PyObject* multiply(PyObject* other);
PyObject* divide(PyObject* other);
PyObject* remainder(PyObject* other);
PyObject* divmod(PyObject* other);
PyObject* power(PyObject*, PyObject*);
PyObject* negative();
PyObject* positive();
PyObject* absolute();
int nonzero();
PyObject* invert();
PyObject* lshift(PyObject* other);
PyObject* rshift(PyObject* other);
PyObject* do_and(PyObject* other);
PyObject* do_xor(PyObject* other);
PyObject* do_or(PyObject* other);
int coerce(PyObject**, PyObject**);
PyObject* as_int();
PyObject* as_long();
PyObject* as_float();
PyObject* oct();
PyObject* hex();
private: // noncopyable, without the size bloat
instance(const instance&);
void operator=(const instance&);
private: // helper functions
int setattr_dict(PyObject* value);
private:
dictionary m_name_space;
};
template <class T> class meta_class;
namespace detail {
class class_base : public type_object_base
{
public:
class_base(PyTypeObject* meta_class_obj, string name, tuple bases, const dictionary& name_space);
tuple bases() const;
string name() const;
dictionary& dict();
// Standard Python functions.
PyObject* getattr(const char* name);
int setattr(const char* name, PyObject* value);
PyObject* repr() const;
void add_base(ref base);
protected:
bool initialize_instance(instance* obj, PyObject* args, PyObject* keywords);
private: // virtual functions
// Subclasses should override this to delete the particular obj type
virtual void delete_instance(PyObject*) const = 0;
private: // boost::python::type_object_base required interface implementation
void instance_dealloc(PyObject*) const; // subclasses should not override this
private:
string m_name;
tuple m_bases;
dictionary m_name_space;
};
void enable_named_method(class_base* type_obj, const char* name);
}
// A type which acts a lot like a built-in Python class. T is the obj type,
// so class_t<instance> is a very simple "class-alike".
template <class T>
class class_t
: public boost::python::detail::class_base
{
public:
class_t(meta_class<T>* meta_class_obj, string name, tuple bases, const dictionary& name_space);
// Standard Python functions.
PyObject* call(PyObject* args, PyObject* keywords);
private: // Implement mapping methods on instances
PyObject* instance_repr(PyObject*) const;
int instance_compare(PyObject*, PyObject* other) const;
PyObject* instance_str(PyObject*) const;
long instance_hash(PyObject*) const;
int instance_mapping_length(PyObject*) const;
PyObject* instance_mapping_subscript(PyObject*, PyObject*) const;
int instance_mapping_ass_subscript(PyObject*, PyObject*, PyObject*) const;
private: // Implement sequence methods on instances
int instance_sequence_length(PyObject*) const;
PyObject* instance_sequence_item(PyObject* obj, int n) const;
int instance_sequence_ass_item(PyObject* obj, int n, PyObject* value) const;
PyObject* instance_sequence_slice(PyObject*, int start, int finish) const;
int instance_sequence_ass_slice(PyObject*, int start, int finish, PyObject* value) const;
private: // Implement number methods on instances
PyObject* instance_number_add(PyObject*, PyObject*) const;
PyObject* instance_number_subtract(PyObject*, PyObject*) const;
PyObject* instance_number_multiply(PyObject*, PyObject*) const;
PyObject* instance_number_divide(PyObject*, PyObject*) const;
PyObject* instance_number_remainder(PyObject*, PyObject*) const;
PyObject* instance_number_divmod(PyObject*, PyObject*) const;
PyObject* instance_number_power(PyObject*, PyObject*, PyObject*) const;
PyObject* instance_number_negative(PyObject*) const;
PyObject* instance_number_positive(PyObject*) const;
PyObject* instance_number_absolute(PyObject*) const;
int instance_number_nonzero(PyObject*) const;
PyObject* instance_number_invert(PyObject*) const;
PyObject* instance_number_lshift(PyObject*, PyObject*) const;
PyObject* instance_number_rshift(PyObject*, PyObject*) const;
PyObject* instance_number_and(PyObject*, PyObject*) const;
PyObject* instance_number_xor(PyObject*, PyObject*) const;
PyObject* instance_number_or(PyObject*, PyObject*) const;
int instance_number_coerce(PyObject*, PyObject**, PyObject**) const;
PyObject* instance_number_int(PyObject*) const;
PyObject* instance_number_long(PyObject*) const;
PyObject* instance_number_float(PyObject*) const;
PyObject* instance_number_oct(PyObject*) const;
PyObject* instance_number_hex(PyObject*) const;
private: // Miscellaneous "special" methods
PyObject* instance_call(PyObject* obj, PyObject* args, PyObject* keywords) const;
PyObject* instance_getattr(PyObject* obj, const char* name) const;
int instance_setattr(PyObject* obj, const char* name, PyObject* value) const;
private: // Implementation of boost::python::detail::class_base required interface
void delete_instance(PyObject*) const;
private: // noncopyable, without the size bloat
class_t(const class_t<T>&);
void operator=(const class_t&);
};
// The type of a class_t<T> object.
template <class T>
class meta_class
: public boost::python::detail::reprable<
boost::python::detail::callable<
boost::python::detail::getattrable<
boost::python::detail::setattrable<
boost::python::detail::type_object<class_t<T> > > > > >,
boost::noncopyable
{
public:
meta_class();
// Standard Python functions.
PyObject* call(PyObject* args, PyObject* keywords);
struct type_object
: boost::python::detail::singleton<type_object,
boost::python::detail::callable<
boost::python::detail::type_object<meta_class> > >
{
type_object() : singleton_base(&PyType_Type) {}
};
};
//
// Member function implementations.
//
template <class T>
meta_class<T>::meta_class()
: properties(type_object::instance())
{
}
template <class T>
class_t<T>::class_t(meta_class<T>* meta_class_obj, string name, tuple bases, const dictionary& name_space)
: boost::python::detail::class_base(meta_class_obj, name, bases, name_space)
{
}
template <class T>
void class_t<T>::delete_instance(PyObject* obj) const
{
delete downcast<T>(obj);
}
template <class T>
PyObject* class_t<T>::call(PyObject* args, PyObject* keywords)
{
reference<T> result(new T(this));
if (!this->initialize_instance(result.get(), args, keywords))
return 0;
else
return result.release();
}
template <class T>
PyObject* class_t<T>::instance_repr(PyObject* obj) const
{
return downcast<T>(obj)->repr();
}
template <class T>
int class_t<T>::instance_compare(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->compare(other);
}
template <class T>
PyObject* class_t<T>::instance_str(PyObject* obj) const
{
return downcast<T>(obj)->str();
}
template <class T>
long class_t<T>::instance_hash(PyObject* obj) const
{
return downcast<T>(obj)->hash();
}
template <class T>
int class_t<T>::instance_mapping_length(PyObject* obj) const
{
return downcast<T>(obj)->length();
}
template <class T>
int class_t<T>::instance_sequence_length(PyObject* obj) const
{
return downcast<T>(obj)->length();
}
template <class T>
PyObject* class_t<T>::instance_mapping_subscript(PyObject* obj, PyObject* key) const
{
return downcast<T>(obj)->get_subscript(key);
}
template <class T>
PyObject* class_t<T>::instance_sequence_item(PyObject* obj, int n) const
{
ref key(to_python(n));
return downcast<T>(obj)->get_subscript(key.get());
}
template <class T>
int class_t<T>::instance_sequence_ass_item(PyObject* obj, int n, PyObject* value) const
{
ref key(to_python(n));
downcast<T>(obj)->set_subscript(key.get(), value);
return 0;
}
template <class T>
int class_t<T>::instance_mapping_ass_subscript(PyObject* obj, PyObject* key, PyObject* value) const
{
downcast<T>(obj)->set_subscript(key, value);
return 0;
}
void adjust_slice_indices(PyObject* obj, int& start, int& finish);
template <class T>
PyObject* class_t<T>::instance_sequence_slice(PyObject* obj, int start, int finish) const
{
adjust_slice_indices(obj, start, finish);
return downcast<T>(obj)->get_slice(start, finish);
}
template <class T>
int class_t<T>::instance_sequence_ass_slice(PyObject* obj, int start, int finish, PyObject* value) const
{
adjust_slice_indices(obj, start, finish);
downcast<T>(obj)->set_slice(start, finish, value);
return 0;
}
template <class T>
PyObject* class_t<T>::instance_call(PyObject* obj, PyObject* args, PyObject* keywords) const
{
return downcast<T>(obj)->call(args, keywords);
}
template <class T>
PyObject* class_t<T>::instance_getattr(PyObject* obj, const char* name) const
{
return downcast<T>(obj)->getattr(name);
}
template <class T>
int class_t<T>::instance_setattr(PyObject* obj, const char* name, PyObject* value) const
{
return downcast<T>(obj)->setattr(name, value);
}
template <class T>
PyObject* class_t<T>::instance_number_add(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->add(other);
}
template <class T>
PyObject* class_t<T>::instance_number_subtract(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->subtract(other);
}
template <class T>
PyObject* class_t<T>::instance_number_multiply(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->multiply(other);
}
template <class T>
PyObject* class_t<T>::instance_number_divide(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->divide(other);
}
template <class T>
PyObject* class_t<T>::instance_number_remainder(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->remainder(other);
}
template <class T>
PyObject* class_t<T>::instance_number_divmod(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->divmod(other);
}
template <class T>
PyObject* class_t<T>::instance_number_power(PyObject* obj, PyObject* exponent, PyObject* modulus) const
{
return downcast<T>(obj)->power(exponent, modulus);
}
template <class T>
PyObject* class_t<T>::instance_number_negative(PyObject* obj) const
{
return downcast<T>(obj)->negative();
}
template <class T>
PyObject* class_t<T>::instance_number_positive(PyObject* obj) const
{
return downcast<T>(obj)->positive();
}
template <class T>
PyObject* class_t<T>::instance_number_absolute(PyObject* obj) const
{
return downcast<T>(obj)->absolute();
}
template <class T>
int class_t<T>::instance_number_nonzero(PyObject* obj) const
{
return downcast<T>(obj)->nonzero();
}
template <class T>
PyObject* class_t<T>::instance_number_invert(PyObject* obj) const
{
return downcast<T>(obj)->invert();
}
template <class T>
PyObject* class_t<T>::instance_number_lshift(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->lshift(other);
}
template <class T>
PyObject* class_t<T>::instance_number_rshift(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->rshift(other);
}
template <class T>
PyObject* class_t<T>::instance_number_and(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->do_and(other);
}
template <class T>
PyObject* class_t<T>::instance_number_xor(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->do_xor(other);
}
template <class T>
PyObject* class_t<T>::instance_number_or(PyObject* obj, PyObject* other) const
{
return downcast<T>(obj)->do_or(other);
}
template <class T>
int class_t<T>::instance_number_coerce(PyObject* obj, PyObject** x, PyObject** y) const
{
return downcast<T>(obj)->coerce(x, y);
}
template <class T>
PyObject* class_t<T>::instance_number_int(PyObject* obj) const
{
return downcast<T>(obj)->as_int();
}
template <class T>
PyObject* class_t<T>::instance_number_long(PyObject* obj) const
{
return downcast<T>(obj)->as_long();
}
template <class T>
PyObject* class_t<T>::instance_number_float(PyObject* obj) const
{
return downcast<T>(obj)->as_float();
}
template <class T>
PyObject* class_t<T>::instance_number_oct(PyObject* obj) const
{
return downcast<T>(obj)->oct();
}
template <class T>
PyObject* class_t<T>::instance_number_hex(PyObject* obj) const
{
return downcast<T>(obj)->hex();
}
namespace detail {
inline dictionary& class_base::dict()
{
return m_name_space;
}
inline tuple class_base::bases() const
{
return m_bases;
}
}
template <class T>
PyObject* meta_class<T>::call(PyObject* args, PyObject* /*keywords*/)
{
PyObject* name;
PyObject* bases;
PyObject* name_space;
if (!PyArg_ParseTuple(args, const_cast<char*>("O!O!O!"),
&PyString_Type, &name,
&PyTuple_Type, &bases,
&PyDict_Type, &name_space))
{
return 0;
}
return as_object(
new class_t<T>(this, string(ref(name, ref::increment_count)),
tuple(ref(bases, ref::increment_count)),
dictionary(ref(name_space, ref::increment_count)))
);
}
namespace detail {
const string& setattr_string();
const string& getattr_string();
const string& delattr_string();
inline string class_base::name() const
{
return m_name;
}
}
}} // namespace boost::python
#endif

View File

@@ -1,404 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// 04 Mar 01 Fixed std::complex<> stuff to work with MSVC (David Abrahams)
// 03 Mar 01 added: converters for [plain] char and std::complex
// (Ralf W. Grosse-Kunstleve)
#ifndef METHOD_DWA122899_H_
# define METHOD_DWA122899_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/detail/none.hpp>
# include <boost/python/detail/signatures.hpp>
# include <boost/smart_ptr.hpp>
# include <boost/python/errors.hpp>
# include <string>
# ifdef BOOST_MSVC6_OR_EARLIER
# pragma warning(push)
# pragma warning(disable:4275) // disable a bogus warning caused by <complex>
# endif
# include <complex>
# ifdef BOOST_MSVC6_OR_EARLIER
# pragma warning(pop)
# endif
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE // this is a gcc 2.95.2 bug workaround
// This can be instantiated on an enum to provide the to_python/from_python
// conversions, provided the values can fit in a long.
template <class EnumType>
class py_enum_as_int_converters
{
friend EnumType from_python(PyObject* x, boost::python::type<EnumType>)
{
return static_cast<EnumType>(
from_python(x, boost::python::type<long>()));
}
friend EnumType from_python(PyObject* x, boost::python::type<const EnumType&>)
{
return static_cast<EnumType>(
from_python(x, boost::python::type<long>()));
}
friend PyObject* to_python(EnumType x)
{
return to_python(static_cast<long>(x));
}
};
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
template <class EnumType> class enum_as_int_converters
: public BOOST_PYTHON_CONVERSION::py_enum_as_int_converters<EnumType> {};
template <class P, class T> class wrapped_pointer;
//#pragma warn_possunwant off
inline void decref_impl(PyObject* p) { Py_DECREF(p); }
inline void xdecref_impl(PyObject* p) { Py_XDECREF(p); }
//#pragma warn_possunwant reset
template <class T>
inline void decref(T* p)
{
char* const raw_p = reinterpret_cast<char*>(p);
char* const p_base = raw_p - offsetof(PyObject, ob_refcnt);
decref_impl(reinterpret_cast<PyObject*>(p_base));
}
template <class T>
inline void xdecref(T* p)
{
char* const raw_p = reinterpret_cast<char*>(p);
char* const p_base = raw_p - offsetof(PyObject, ob_refcnt);
xdecref_impl(reinterpret_cast<PyObject*>(p_base));
}
namespace detail {
void expect_complex(PyObject*);
template <class T>
std::complex<T> complex_from_python(PyObject* p, boost::python::type<T>)
{
expect_complex(p);
return std::complex<T>(
static_cast<T>(PyComplex_RealAsDouble(p)),
static_cast<T>(PyComplex_ImagAsDouble(p)));
}
template <class T>
PyObject* complex_to_python(const std::complex<T>& sc) {
Py_complex pcc;
pcc.real = sc.real();
pcc.imag = sc.imag();
return PyComplex_FromCComplex(pcc);
}
}
}} // namespace boost::python
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
//
// Converters
//
PyObject* to_python(long);
long from_python(PyObject* p, boost::python::type<long>);
long from_python(PyObject* p, boost::python::type<const long&>);
PyObject* to_python(unsigned long);
unsigned long from_python(PyObject* p, boost::python::type<unsigned long>);
unsigned long from_python(PyObject* p, boost::python::type<const unsigned long&>);
PyObject* to_python(int);
int from_python(PyObject*, boost::python::type<int>);
int from_python(PyObject*, boost::python::type<const int&>);
PyObject* to_python(unsigned int);
unsigned int from_python(PyObject*, boost::python::type<unsigned int>);
unsigned int from_python(PyObject*, boost::python::type<const unsigned int&>);
PyObject* to_python(short);
short from_python(PyObject*, boost::python::type<short>);
short from_python(PyObject*, boost::python::type<const short&>);
PyObject* to_python(unsigned short);
unsigned short from_python(PyObject*, boost::python::type<unsigned short>);
unsigned short from_python(PyObject*, boost::python::type<const unsigned short&>);
PyObject* to_python(char);
char from_python(PyObject*, boost::python::type<char>);
char from_python(PyObject*, boost::python::type<const char&>);
PyObject* to_python(signed char);
signed char from_python(PyObject*, boost::python::type<signed char>);
signed char from_python(PyObject*, boost::python::type<const signed char&>);
PyObject* to_python(unsigned char);
unsigned char from_python(PyObject*, boost::python::type<unsigned char>);
unsigned char from_python(PyObject*, boost::python::type<const unsigned char&>);
PyObject* to_python(float);
float from_python(PyObject*, boost::python::type<float>);
float from_python(PyObject*, boost::python::type<const float&>);
PyObject* to_python(double);
double from_python(PyObject*, boost::python::type<double>);
double from_python(PyObject*, boost::python::type<const double&>);
PyObject* to_python(bool);
bool from_python(PyObject*, boost::python::type<bool>);
bool from_python(PyObject*, boost::python::type<const bool&>);
PyObject* to_python(void);
void from_python(PyObject*, boost::python::type<void>);
PyObject* to_python(const char* s);
const char* from_python(PyObject*, boost::python::type<const char*>);
PyObject* to_python(const std::string& s);
std::string from_python(PyObject*, boost::python::type<std::string>);
std::string from_python(PyObject*, boost::python::type<const std::string&>);
inline PyObject* to_python(const std::complex<float>& x)
{
return boost::python::detail::complex_to_python<float>(x);
}
inline PyObject* to_python(const std::complex<double>& x)
{
return boost::python::detail::complex_to_python<double>(x);
}
inline std::complex<double> from_python(PyObject* p,
boost::python::type<std::complex<double> >) {
return boost::python::detail::complex_from_python(p, boost::python::type<double>());
}
inline std::complex<double> from_python(PyObject* p,
boost::python::type<const std::complex<double>&>) {
return boost::python::detail::complex_from_python(p, boost::python::type<double>());
}
inline std::complex<float> from_python(PyObject* p,
boost::python::type<std::complex<float> >) {
return boost::python::detail::complex_from_python(p, boost::python::type<float>());
}
inline std::complex<float> from_python(PyObject* p,
boost::python::type<const std::complex<float>&>) {
return boost::python::detail::complex_from_python(p, boost::python::type<float>());
}
// For when your C++ function really wants to pass/return a PyObject*
PyObject* to_python(PyObject*);
PyObject* from_python(PyObject*, boost::python::type<PyObject*>);
// Some standard conversions to/from smart pointer types. You can add your own
// from these examples. These are not generated using the friend technique from
// wrapped_pointer because:
//
// 1. We want to be able to extend conversion to/from WrappedPointers using
// arbitrary smart pointer types.
//
// 2. It helps with compilation independence. This way, code which creates
// wrappers for functions accepting and returning smart_ptr<T> does not
// have to have already seen the invocation of wrapped_type<T>.
//
// Unfortunately, MSVC6 is so incredibly lame that we have to rely on the friend
// technique to auto_generate standard pointer conversions for wrapped
// types. This means that you need to write a non-templated function for each
// specific smart_ptr<T> which you want to convert from_python. For example,
//
// namespace boost { namespace python {
// #ifdef MUST_SUPPORT_MSVC
//
// MyPtr<Foo> from_python(PyObject*p, type<MyPtr<Foo> >)
// { return smart_ptr_from_python(p, type<MyPtr<Foo> >(), type<Foo>());}
// }
//
// MyPtr<Bar> from_python(PyObject*p, type<MyPtr<Bar> >)
// { return smart_ptr_from_python(p, type<MyPtr<Bar> >(), type<Bar>());}
//
// ... // definitions for MyPtr<Baz>, MyPtr<Mumble>, etc.
//
// #else
//
// // Just once for all MyPtr<T>
// template <class T>
// MyPtr<T> from_python(PyObject*p, type<MyPtr<T> >)
// {
// return smart_ptr_from_python(p, type<MyPtr<T> >(), type<T>());
// }
//
// #endif
// }} // namespace boost::python
#if !defined(BOOST_MSVC6_OR_EARLIER)
template <class T>
boost::shared_ptr<T> from_python(PyObject*p, boost::python::type<boost::shared_ptr<T> >)
{
return smart_ptr_from_python(p, boost::python::type<boost::shared_ptr<T> >(), boost::python::type<T>());
}
#endif
#if 0
template <class T>
PyObject* to_python(std::auto_ptr<T> p)
{
return new boost::python::wrapped_pointer<std::auto_ptr<T>, T>(p);
}
template <class T>
PyObject* to_python(boost::shared_ptr<T> p)
{
return new boost::python::wrapped_pointer<boost::shared_ptr<T>, T>(p);
}
#endif
//
// inline implementations
//
#ifndef BOOST_MSVC6_OR_EARLIER
inline PyObject* to_python(double d)
{
return PyFloat_FromDouble(d);
}
inline PyObject* to_python(float f)
{
return PyFloat_FromDouble(f);
}
#endif // BOOST_MSVC6_OR_EARLIER
inline PyObject* to_python(long l)
{
return PyInt_FromLong(l);
}
inline PyObject* to_python(int x)
{
return PyInt_FromLong(x);
}
inline PyObject* to_python(short x)
{
return PyInt_FromLong(x);
}
inline PyObject* to_python(bool b)
{
return PyInt_FromLong(b);
}
inline PyObject* to_python(void)
{
return boost::python::detail::none();
}
inline PyObject* to_python(const char* s)
{
return PyString_FromString(s);
}
inline std::string from_python(PyObject* p, boost::python::type<const std::string&>)
{
return from_python(p, boost::python::type<std::string>());
}
inline PyObject* to_python(PyObject* p)
{
Py_INCREF(p);
return p;
}
inline PyObject* from_python(PyObject* p, boost::python::type<PyObject*>)
{
return p;
}
inline const char* from_python(PyObject* p, boost::python::type<const char* const&>)
{
return from_python(p, boost::python::type<const char*>());
}
inline double from_python(PyObject* p, boost::python::type<const double&>)
{
return from_python(p, boost::python::type<double>());
}
inline float from_python(PyObject* p, boost::python::type<const float&>)
{
return from_python(p, boost::python::type<float>());
}
inline int from_python(PyObject* p, boost::python::type<const int&>)
{
return from_python(p, boost::python::type<int>());
}
inline short from_python(PyObject* p, boost::python::type<const short&>)
{
return from_python(p, boost::python::type<short>());
}
inline long from_python(PyObject* p, boost::python::type<const long&>)
{
return from_python(p, boost::python::type<long>());
}
inline bool from_python(PyObject* p, boost::python::type<const bool&>)
{
return from_python(p, boost::python::type<bool>());
}
inline unsigned int from_python(PyObject* p, boost::python::type<const unsigned int&>)
{
return from_python(p, boost::python::type<unsigned int>());
}
inline unsigned short from_python(PyObject* p, boost::python::type<const unsigned short&>)
{
return from_python(p, boost::python::type<unsigned short>());
}
inline char from_python(PyObject* p, boost::python::type<const char&>)
{
return from_python(p, boost::python::type<char>());
}
inline signed char from_python(PyObject* p, boost::python::type<const signed char&>)
{
return from_python(p, boost::python::type<signed char>());
}
inline unsigned char from_python(PyObject* p, boost::python::type<const unsigned char&>)
{
return from_python(p, boost::python::type<unsigned char>());
}
inline unsigned long from_python(PyObject* p, boost::python::type<const unsigned long&>)
{
return from_python(p, boost::python::type<unsigned long>());
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
#endif // METHOD_DWA122899_H_

View File

@@ -1,3 +1,17 @@
/* (C) Copyright Ralf W. Grosse-Kunstleve 2001. Permission to copy, use,
modify, sell and distribute this software is granted provided this
copyright notice appears in all copies. This software is provided
"as is" without express or implied warranty, and with no claim as to
its suitability for any purpose.
Revision History:
17 Apr 01 merged into boost CVS trunk (Ralf W. Grosse-Kunstleve)
*/
/* Implementation of Boost.Python cross-module support.
See root/libs/python/doc/cross_module.html for details.
*/
#ifndef CROSS_MODULE_HPP
# define CROSS_MODULE_HPP
@@ -12,7 +26,7 @@ namespace boost { namespace python { namespace detail {
// Concept: throw exception if api_major is changed
// show warning on stderr if api_minor is changed
const int export_converters_api_major = 2;
const int export_converters_api_major = 4;
const int export_converters_api_minor = 1;
extern const char* converters_attribute_name;
void* import_converter_object(const std::string& module_name,
@@ -32,83 +46,75 @@ template <class T> class import_extension_class;
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
//QUESTIONMARK
// This class is a look-alike of class python_extension_class_converters.
// Is there a formal way to ensure that the siblings stay in sync?
/* This class template is instantiated by import_converters<T>.
This class is a look-alike of class python_extension_class_converters.
The converters in this class are wrappers that call converters
imported from another module.
To ensure that the dynamic loader resolves all symbols in the
intended way, the signature of all friend functions is changed with
respect to the original functions in class
python_extension_class_converters by adding an arbitrary additional
parameter with a default value, in this case "bool sig = false".
See also: comments for class export_converter_object_base below.
*/
template <class T>
class python_import_extension_class_converters
{
public:
friend python_import_extension_class_converters py_extension_class_converters(boost::python::type<T>)
{
friend python_import_extension_class_converters py_extension_class_converters(boost::python::type<T>, bool sig = false) {
return python_import_extension_class_converters();
}
PyObject* to_python(const T& x) const
{
PyObject* to_python(const T& x) const {
return boost::python::detail::import_extension_class<T>::get_converters()->to_python(x);
}
friend T* from_python(PyObject* p, boost::python::type<T*>)
{
return boost::python::detail::import_extension_class<T>::get_converters()->T_pointer_from_python(p);
friend T* from_python(PyObject* p, boost::python::type<T*> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_Ts(p, t);
}
friend const T* from_python(PyObject* p, boost::python::type<const T*> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_cTs(p, t);
}
friend const T* from_python(PyObject* p, boost::python::type<const T*const&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_cTscr(p, t);
}
friend T* from_python(PyObject* p, boost::python::type<T* const&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_Tscr(p, t);
}
friend T& from_python(PyObject* p, boost::python::type<T&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_Tr(p, t);
}
friend const T& from_python(PyObject* p, boost::python::type<const T&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_cTr(p, t);
}
friend const T& from_python(PyObject* p, boost::python::type<T> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_T(p, t);
}
// Convert to const T*
friend const T* from_python(PyObject* p, boost::python::type<const T*>)
{ return from_python(p, boost::python::type<T*>()); }
// Convert to const T* const&
friend const T* from_python(PyObject* p, boost::python::type<const T*const&>)
{ return from_python(p, boost::python::type<const T*>()); }
// Convert to T* const&
friend T* from_python(PyObject* p, boost::python::type<T* const&>)
{ return from_python(p, boost::python::type<T*>()); }
// Convert to T&
friend T& from_python(PyObject* p, boost::python::type<T&>) {
return boost::python::detail::import_extension_class<T>::get_converters()->T_reference_from_python(p);
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T>&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_aTr(p, t);
}
// Convert to const T&
friend const T& from_python(PyObject* p, boost::python::type<const T&>)
{ return from_python(p, boost::python::type<T&>()); }
// Convert to T
friend const T& from_python(PyObject* p, boost::python::type<T>)
{ return from_python(p, boost::python::type<T&>()); }
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T>&>) {
return boost::python::detail::import_extension_class<T>::get_converters()->auto_ptr_reference_from_python(p);
friend std::auto_ptr<T> from_python(PyObject* p, boost::python::type<std::auto_ptr<T> > t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_aT(p, t);
}
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T> >) {
return boost::python::detail::import_extension_class<T>::get_converters()->auto_ptr_value_from_python(p);
friend const std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<const std::auto_ptr<T>&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_caTr(p, t);
}
friend const std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<const std::auto_ptr<T>&>) {
return boost::python::detail::import_extension_class<T>::get_converters()->auto_ptr_value_from_python(p);
}
friend PyObject* to_python(std::auto_ptr<T> x) {
friend PyObject* to_python(std::auto_ptr<T> x, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->to_python(x);
}
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T>&>) {
return boost::python::detail::import_extension_class<T>::get_converters()->shared_ptr_reference_from_python(p);
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T>&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_sTr(p, t);
}
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T> >) {
return boost::python::detail::import_extension_class<T>::get_converters()->shared_ptr_value_from_python(p);
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T> > t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_sT(p, t);
}
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<const boost::shared_ptr<T>&>) {
return boost::python::detail::import_extension_class<T>::get_converters()->shared_ptr_value_from_python(p);
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<const boost::shared_ptr<T>&> t, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->from_python_csTr(p, t);
}
friend PyObject* to_python(boost::shared_ptr<T> x) {
friend PyObject* to_python(boost::shared_ptr<T> x, bool sig = false) {
return boost::python::detail::import_extension_class<T>::get_converters()->to_python(x);
}
};
@@ -119,78 +125,118 @@ namespace boost { namespace python {
BOOST_PYTHON_IMPORT_CONVERSION(python_import_extension_class_converters);
// A pointer to this class is exported/imported via the Python API.
// All functions are virtual. This is, what we really export/import
// is essentially just a pointer to a vtbl.
/* This class template is instantiated by export_converters().
A pointer to this class is exported/imported via the Python API.
Using the Python API ensures maximum portability.
All member functions are virtual. This is, what we export/import
is essentially just a pointer to a vtbl.
To work around a deficiency of Visual C++ 6.0, the name of each
from_python() member functions is made unique by appending a few
characters (derived in a ad-hoc manner from the corresponding type).
*/
template <class T>
struct export_converter_object_base
{
virtual const int get_api_major() const {
return detail::export_converters_api_major; }
virtual const int get_api_minor() const {
return detail::export_converters_api_minor; }
virtual PyObject* to_python(const T& x) = 0;
virtual PyObject* to_python(std::auto_ptr<T> x) = 0;
virtual PyObject* to_python(boost::shared_ptr<T> x) = 0;
virtual T* T_pointer_from_python(PyObject* obj) = 0;
virtual T& T_reference_from_python(PyObject* obj) = 0;
virtual std::auto_ptr<T>& auto_ptr_reference_from_python(PyObject* obj) = 0;
virtual std::auto_ptr<T> auto_ptr_value_from_python(PyObject* obj) = 0;
virtual boost::shared_ptr<T>& shared_ptr_reference_from_python(PyObject* obj) = 0;
virtual boost::shared_ptr<T> shared_ptr_value_from_python(PyObject* obj) = 0;
virtual int get_api_major() const { return detail::export_converters_api_major; }
virtual int get_api_minor() const { return detail::export_converters_api_minor; }
virtual PyObject* to_python(const T& x) = 0;
virtual T* from_python_Ts(PyObject* p, boost::python::type<T*> t) = 0;
virtual const T* from_python_cTs(PyObject* p, boost::python::type<const T*> t) = 0;
virtual const T* from_python_cTscr(PyObject* p, boost::python::type<const T*const&> t) = 0;
virtual T* from_python_Tscr(PyObject* p, boost::python::type<T* const&> t) = 0;
virtual T& from_python_Tr(PyObject* p, boost::python::type<T&> t) = 0;
virtual const T& from_python_cTr(PyObject* p, boost::python::type<const T&> t) = 0;
virtual const T& from_python_T(PyObject* p, boost::python::type<T> t) = 0;
virtual std::auto_ptr<T>& from_python_aTr(PyObject* p, boost::python::type<std::auto_ptr<T>&> t) = 0;
virtual std::auto_ptr<T> from_python_aT(PyObject* p, boost::python::type<std::auto_ptr<T> > t) = 0;
virtual const std::auto_ptr<T>& from_python_caTr(PyObject* p, boost::python::type<const std::auto_ptr<T>&> t) = 0;
virtual PyObject* to_python(std::auto_ptr<T> x) = 0;
virtual boost::shared_ptr<T>& from_python_sTr(PyObject* p, boost::python::type<boost::shared_ptr<T>&> t) = 0;
virtual const boost::shared_ptr<T>& from_python_sT(PyObject* p, boost::python::type<boost::shared_ptr<T> > t) = 0;
virtual const boost::shared_ptr<T>& from_python_csTr(PyObject* p, boost::python::type<const boost::shared_ptr<T>&> t) = 0;
virtual PyObject* to_python(boost::shared_ptr<T> x) = 0;
};
// Converters to be used if T is not copyable.
template <class T>
struct export_converter_object_noncopyable : export_converter_object_base<T>
{
virtual PyObject* to_python(const T& x) {
PyErr_SetString(PyExc_RuntimeError,
"to_python(const T&) converter not exported");
throw import_error();
}
virtual PyObject* to_python(std::auto_ptr<T> x) {
return BOOST_PYTHON_CONVERSION::to_python(x);
}
virtual PyObject* to_python(boost::shared_ptr<T> x) {
return BOOST_PYTHON_CONVERSION::to_python(x);
}
virtual T* T_pointer_from_python(PyObject* obj) {
return BOOST_PYTHON_CONVERSION::from_python(obj, boost::python::type<T*>());
}
virtual T& T_reference_from_python(PyObject* obj) {
return BOOST_PYTHON_CONVERSION::from_python(obj, boost::python::type<T&>());
}
virtual std::auto_ptr<T>& auto_ptr_reference_from_python(PyObject* obj) {
return BOOST_PYTHON_CONVERSION::python_extension_class_converters<T>::smart_ptr_reference(obj, boost::python::type<std::auto_ptr<T> >());
}
virtual std::auto_ptr<T> auto_ptr_value_from_python(PyObject* obj) {
return BOOST_PYTHON_CONVERSION::python_extension_class_converters<T>::smart_ptr_value(obj, boost::python::type<std::auto_ptr<T> >());
}
virtual boost::shared_ptr<T>& shared_ptr_reference_from_python(PyObject* obj) {
return BOOST_PYTHON_CONVERSION::python_extension_class_converters<T>::smart_ptr_reference(obj, boost::python::type<boost::shared_ptr<T> >());
}
virtual boost::shared_ptr<T> shared_ptr_value_from_python(PyObject* obj) {
return BOOST_PYTHON_CONVERSION::python_extension_class_converters<T>::smart_ptr_value(obj, boost::python::type<boost::shared_ptr<T> >());
}
virtual PyObject* to_python(const T& x) {
PyErr_SetString(PyExc_RuntimeError,
"to_python(const T&) converter not exported");
throw import_error();
}
virtual T* from_python_Ts(PyObject* p, boost::python::type<T*> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const T* from_python_cTs(PyObject* p, boost::python::type<const T*> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const T* from_python_cTscr(PyObject* p, boost::python::type<const T*const&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual T* from_python_Tscr(PyObject* p, boost::python::type<T* const&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual T& from_python_Tr(PyObject* p, boost::python::type<T&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const T& from_python_cTr(PyObject* p, boost::python::type<const T&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const T& from_python_T(PyObject* p, boost::python::type<T> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual std::auto_ptr<T>& from_python_aTr(PyObject* p, boost::python::type<std::auto_ptr<T>&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual std::auto_ptr<T> from_python_aT(PyObject* p, boost::python::type<std::auto_ptr<T> > t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const std::auto_ptr<T>& from_python_caTr(PyObject* p, boost::python::type<const std::auto_ptr<T>&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual PyObject* to_python(std::auto_ptr<T> x) {
return BOOST_PYTHON_CONVERSION::to_python(x);
}
virtual boost::shared_ptr<T>& from_python_sTr(PyObject* p, boost::python::type<boost::shared_ptr<T>&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const boost::shared_ptr<T>& from_python_sT(PyObject* p, boost::python::type<boost::shared_ptr<T> > t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual const boost::shared_ptr<T>& from_python_csTr(PyObject* p, boost::python::type<const boost::shared_ptr<T>&> t) {
return BOOST_PYTHON_CONVERSION::from_python(p, t);
}
virtual PyObject* to_python(boost::shared_ptr<T> x) {
return BOOST_PYTHON_CONVERSION::to_python(x);
}
};
// The addditional to_python() converter that can be used if T is copyable.
template <class T>
struct export_converter_object : export_converter_object_noncopyable<T>
{
virtual PyObject* to_python(const T& x) {
BOOST_PYTHON_CONVERSION::python_extension_class_converters<T> cv;
return cv.to_python(x);
}
virtual PyObject* to_python(const T& x) {
return BOOST_PYTHON_CONVERSION::py_extension_class_converters(boost::python::type<T>()).to_python(x);
}
};
namespace detail {
//QUESTIONMARK
// A stripped-down, modified version of class extension_class.
// Would it make sense to establish a formal relationship
// between the two classes?
/* This class template is instantiated by import_converters<T>.
Its purpose is to import the converter_object via the Python API.
The actual import is only done once. The pointer to the
imported converter object is kept in the static data member
imported_converters.
*/
template <class T>
class import_extension_class
: public python_import_extension_class_converters<T>
@@ -237,6 +283,7 @@ import_extension_class<T>::get_converters() {
namespace boost { namespace python {
// Implementation of export_converters().
template <class T, class U>
void export_converters(class_builder<T, U>& cb)
{
@@ -246,6 +293,7 @@ void export_converters(class_builder<T, U>& cb)
detail::converters_attribute_name);
}
// Implementation of export_converters_noncopyable().
template <class T, class U>
void export_converters_noncopyable(class_builder<T, U>& cb)
{
@@ -255,17 +303,17 @@ void export_converters_noncopyable(class_builder<T, U>& cb)
detail::converters_attribute_name);
}
// Implementation of import_converters<T>.
template <class T>
class import_converters
: python_import_extension_class_converters<T>
: python_import_extension_class_converters<T> // Works around MSVC6.x/GCC2.95.2 bug described
// at the bottom of class_builder.hpp.
{
public:
import_converters(const char* module, const char* py_class)
: m_class(new detail::import_extension_class<T>(module, py_class))
{ }
private:
//QUESTIONMARK
//reference<detail::import_extension_class<T> > m_class;
boost::shared_ptr<detail::import_extension_class<T> > m_class;
};

View File

@@ -1,64 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// Mar 01 01 Use PyObject_INIT() instead of trying to hand-initialize (David Abrahams)
#ifndef BASE_OBJECT_DWA051600_H_
# define BASE_OBJECT_DWA051600_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/signatures.hpp> // really just for type<>
# include <boost/python/detail/wrap_python.hpp>
# include <cstring>
namespace boost { namespace python { namespace detail {
// base_object - adds a constructor and non-virtual destructor to a
// base Python type (e.g. PyObject, PyTypeObject).
template <class python_type>
struct base_object : python_type
{
typedef python_type base_python_type;
// Initializes type and reference count. All other fields of base_python_type are 0
base_object(PyTypeObject* type_obj);
// Decrements reference count on the type
~base_object();
};
// Easy typedefs for common usage
typedef base_object<PyObject> python_object;
typedef base_object<PyTypeObject> python_type;
//
// class_t template member function implementations
//
template <class python_type>
base_object<python_type>::base_object(PyTypeObject* type_obj)
{
base_python_type* bp = this;
#if !defined(_MSC_VER) || defined(__STLPORT)
std::
#endif
memset(bp, 0, sizeof(base_python_type));
Py_INCREF(type_obj);
PyObject_INIT(bp, type_obj);
}
template <class python_type>
inline base_object<python_type>::~base_object()
{
Py_DECREF(ob_type);
}
}}} // namespace boost::python::detail
#endif // BASE_OBJECT_DWA051600_H_

View File

@@ -1,81 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef CAST_DWA052500_H_
# define CAST_DWA052500_H_
# include <boost/python/detail/wrap_python.hpp>
# include <boost/operators.hpp>
namespace boost { namespace python {
namespace detail {
// The default way of converting a PyObject* or PyTypeObject* to a T*
template <class T>
struct downcast_traits
{
template <class U>
static T* cast(U* p) { return static_cast<T*>(p); }
};
inline PyTypeObject* as_base_object(const PyTypeObject*, PyObject* p)
{
return reinterpret_cast<PyTypeObject*>(p);
}
inline PyObject* as_base_object(const PyObject*, PyObject* p)
{
return p;
}
inline const PyTypeObject* as_base_object(const PyTypeObject*, const PyObject* p)
{
return reinterpret_cast<const PyTypeObject*>(p);
}
inline const PyObject* as_base_object(const PyObject*, const PyObject* p)
{
return p;
}
} // namespace detail
// Convert a pointer to any type derived from PyObject or PyTypeObject to a PyObject*
inline PyObject* as_object(PyObject* p) { return p; }
inline PyObject* as_object(PyTypeObject* p) { return reinterpret_cast<PyObject*>(p); }
// If I didn't have to support stupid MSVC6 we could just use a simple template function:
// template <class T> T* downcast(PyObject*).
template <class T>
struct downcast : boost::dereferenceable<downcast<T>, T*>
{
downcast(PyObject* p)
: m_p(detail::downcast_traits<T>::cast(detail::as_base_object((T*)0, p)))
{}
downcast(const PyObject* p)
: m_p(detail::downcast_traits<T>::cast(detail::as_base_object((const T*)0, p)))
{}
downcast(PyTypeObject* p)
: m_p(detail::downcast_traits<T>::cast(p))
{}
downcast(const PyTypeObject* p)
: m_p(detail::downcast_traits<T>::cast(p))
{}
operator T*() const { return m_p; }
T* get() const { return m_p; }
T& operator*() const { return *m_p; }
private:
T* m_p;
};
}} // namespace boost::python
#endif // CAST_DWA052500_H_

View File

@@ -1,66 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
// Revision History:
// 04 Mar 01 Some fixes so it will compile with Intel C++ (Dave Abrahams)
#ifndef CONFIG_DWA052200_H_
# define CONFIG_DWA052200_H_
# include <boost/config.hpp>
# include <cstddef>
# ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
// A gcc bug forces some symbols into the global namespace
# define BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
# define BOOST_PYTHON_END_CONVERSION_NAMESPACE
# define BOOST_PYTHON_CONVERSION
# define BOOST_PYTHON_IMPORT_CONVERSION(x) using ::x
# else
# define BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE namespace boost { namespace python {
# define BOOST_PYTHON_END_CONVERSION_NAMESPACE }} // namespace boost::python
# define BOOST_PYTHON_CONVERSION boost::python
# define BOOST_PYTHON_IMPORT_CONVERSION(x) void never_defined() // so we can follow the macro with a ';'
# endif
# if defined(BOOST_MSVC)
# if _MSC_VER <= 1200
# define BOOST_MSVC6_OR_EARLIER 1
# endif
# pragma warning (disable : 4786)
# endif
// Work around the broken library implementation/strict ansi checking on some
// EDG-based compilers (e.g. alpha), which incorrectly warn that the result of
// offsetof() is not an integer constant expression.
# if defined(__DECCXX_VER) && __DECCXX_VER <= 60290024
# define BOOST_OFFSETOF(s_name, s_member) \
((size_t)__INTADDR__(&(((s_name *)0)->s_member)))
# else
# define BOOST_OFFSETOF(s_name, s_member) \
offsetof(s_name, s_member)
# endif
// The STLport puts all of the standard 'C' library names in std (as far as the
// user is concerned), but without it you need a fix if you're using MSVC or
// Intel C++
# if defined(BOOST_MSVC_STD_ITERATOR)
# define BOOST_CSTD_
# else
# define BOOST_CSTD_ std
# endif
#ifdef _WIN32
# define BOOST_PYTHON_MODULE_INIT(name) extern "C" __declspec(dllexport) void init##name()
#else
# define BOOST_PYTHON_MODULE_INIT(name) extern "C" void init##name()
#endif
#endif // CONFIG_DWA052200_H_

View File

@@ -179,7 +179,7 @@ class python_extension_class_converters
// pop up. Now, if T hasn't been wrapped as an extension class, the user
// will see an error message about the lack of an eligible
// py_extension_class_converters() function.
friend python_extension_class_converters py_extension_class_converters(boost::python::type<T>)
friend python_extension_class_converters py_extension_class_converters(boost::python::type<T>, bool sig = false)
{
return python_extension_class_converters();
}
@@ -227,7 +227,7 @@ class python_extension_class_converters
}
// Convert to T*
friend T* from_python(PyObject* obj, boost::python::type<T*>)
friend T* from_python(PyObject* obj, boost::python::type<T*>, bool sig = false)
{
if (obj == Py_None)
return 0;
@@ -295,51 +295,51 @@ class python_extension_class_converters
}
// Convert to const T*
friend const T* from_python(PyObject* p, boost::python::type<const T*>)
friend const T* from_python(PyObject* p, boost::python::type<const T*>, bool sig = false)
{ return from_python(p, boost::python::type<T*>()); }
// Convert to const T* const&
friend const T* from_python(PyObject* p, boost::python::type<const T*const&>)
friend const T* from_python(PyObject* p, boost::python::type<const T*const&>, bool sig = false)
{ return from_python(p, boost::python::type<const T*>()); }
// Convert to T* const&
friend T* from_python(PyObject* p, boost::python::type<T* const&>)
friend T* from_python(PyObject* p, boost::python::type<T* const&>, bool sig = false)
{ return from_python(p, boost::python::type<T*>()); }
// Convert to T&
friend T& from_python(PyObject* p, boost::python::type<T&>)
friend T& from_python(PyObject* p, boost::python::type<T&>, bool sig = false)
{ return *boost::python::detail::check_non_null(non_null_from_python(p, boost::python::type<T*>())); }
// Convert to const T&
friend const T& from_python(PyObject* p, boost::python::type<const T&>)
friend const T& from_python(PyObject* p, boost::python::type<const T&>, bool sig = false)
{ return from_python(p, boost::python::type<T&>()); }
// Convert to T
friend const T& from_python(PyObject* p, boost::python::type<T>)
friend const T& from_python(PyObject* p, boost::python::type<T>, bool sig = false)
{ return from_python(p, boost::python::type<T&>()); }
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T>&>)
friend std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<std::auto_ptr<T>&>, bool sig = false)
{ return smart_ptr_reference(p, boost::python::type<std::auto_ptr<T> >()); }
friend std::auto_ptr<T> from_python(PyObject* p, boost::python::type<std::auto_ptr<T> >)
friend std::auto_ptr<T> from_python(PyObject* p, boost::python::type<std::auto_ptr<T> >, bool sig = false)
{ return smart_ptr_value(p, boost::python::type<std::auto_ptr<T> >()); }
friend const std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<const std::auto_ptr<T>&>)
friend const std::auto_ptr<T>& from_python(PyObject* p, boost::python::type<const std::auto_ptr<T>&>, bool sig = false)
{ return smart_ptr_value(p, boost::python::type<std::auto_ptr<T> >()); }
friend PyObject* to_python(std::auto_ptr<T> x)
friend PyObject* to_python(std::auto_ptr<T> x, bool sig = false)
{ return smart_ptr_to_python(x); }
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T>&>)
friend boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T>&>, bool sig = false)
{ return smart_ptr_reference(p, boost::python::type<boost::shared_ptr<T> >()); }
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T> >)
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<boost::shared_ptr<T> >, bool sig = false)
{ return smart_ptr_value(p, boost::python::type<boost::shared_ptr<T> >()); }
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<const boost::shared_ptr<T>&>)
friend const boost::shared_ptr<T>& from_python(PyObject* p, boost::python::type<const boost::shared_ptr<T>&>, bool sig = false)
{ return smart_ptr_value(p, boost::python::type<boost::shared_ptr<T> >()); }
friend PyObject* to_python(boost::shared_ptr<T> x)
friend PyObject* to_python(boost::shared_ptr<T> x, bool sig = false)
{ return smart_ptr_to_python(x); }
};

View File

@@ -1,306 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef FUNCTIONS_DWA051400_H_
# define FUNCTIONS_DWA051400_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/reference.hpp>
# include <boost/python/detail/signatures.hpp>
# include <boost/python/caller.hpp>
# include <boost/call_traits.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/base_object.hpp>
# include <typeinfo>
# include <vector>
namespace boost { namespace python { namespace detail {
// forward declaration
class extension_instance;
// function --
// the common base class for all overloadable function and method objects
// supplied by the library.
class function : public python_object
{
public:
function();
// function objects are reasonably rare, so we guess we can afford a virtual table.
// This cuts down on the number of distinct type objects which need to be defined.
virtual ~function() {}
PyObject* call(PyObject* args, PyObject* keywords) const;
static void add_to_namespace(reference<function> f, const char* name, PyObject* dict);
private:
virtual PyObject* do_call(PyObject* args, PyObject* keywords) const = 0;
virtual const char* description() const = 0;
private:
struct type_object;
private:
reference<function> m_overloads;
};
// wrapped_function_pointer<> --
// A single function or member function pointer wrapped and presented to
// Python as a callable object.
//
// Template parameters:
// R - the return type of the function pointer
// F - the complete type of the wrapped function pointer
template <class R, class F>
struct wrapped_function_pointer : function
{
typedef F ptr_fun; // pointer-to--function or pointer-to-member-function
wrapped_function_pointer(ptr_fun pf)
: m_pf(pf) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const
{ return caller<R>::call(m_pf, args, keywords); }
const char* description() const
{ return typeid(F).name(); }
private:
const ptr_fun m_pf;
};
// raw_arguments_function
// A function that passes the Python argument tuple and keyword dictionary
// verbatim to C++ (useful for customized argument parsing and variable
// argument lists)
template <class Ret, class Args, class Keywords>
struct raw_arguments_function : function
{
typedef Ret (*ptr_fun)(Args, Keywords);
raw_arguments_function(ptr_fun pf)
: m_pf(pf) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const
{
ref dict(keywords ?
ref(keywords, ref::increment_count) :
ref(PyDict_New()));
return to_python(
(*m_pf)(from_python(args, boost::python::type<Args>()),
from_python(dict.get(), boost::python::type<Keywords>())));
}
const char* description() const
{ return typeid(ptr_fun).name(); }
private:
const ptr_fun m_pf;
};
// virtual_function<> --
// A virtual function with a default implementation wrapped and presented
// to Python as a callable object.
//
// Template parameters:
// T - the type of the target class
// R - the return type of the function pointer
// V - the virtual function pointer being wrapped
// (should be of the form R(T::*)(<args>), or R (*)(T, <args>))
// D - a function which takes a T&, const T&, T*, or const T* first
// parameter and calls T::f on it /non-virtually/, where V
// approximates &T::f.
template <class T, class R, class V, class D>
class virtual_function : public function
{
public:
virtual_function(V virtual_function_ptr, D default_implementation)
: m_virtual_function_ptr(virtual_function_ptr),
m_default_implementation(default_implementation)
{}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const
{ return typeid(V).name(); }
private:
const V m_virtual_function_ptr;
const D m_default_implementation;
};
// A helper function for new_member_function(), below. Implements the core
// functionality once the return type has already been deduced. R is expected to
// be type<X>, where X is the actual return type of pmf.
template <class F, class R>
function* new_wrapped_function_aux(R, F pmf)
{
// We can't just use "typename R::Type" below because MSVC (incorrectly) pukes.
typedef typename R::type return_type;
return new wrapped_function_pointer<return_type, F>(pmf);
}
// Create and return a new member function object wrapping the given
// pointer-to-member function
template <class F>
inline function* new_wrapped_function(F pmf)
{
// Deduce the return type and pass it off to the helper function above
return new_wrapped_function_aux(return_value(pmf), pmf);
}
template <class R, class Args, class keywords>
function* new_raw_arguments_function(R (*pmf)(Args, keywords))
{
return new raw_arguments_function<R, Args, keywords>(pmf);
}
// A helper function for new_virtual_function(), below. Implements the core
// functionality once the return type has already been deduced. R is expected to
// be type<X>, where X is the actual return type of V.
template <class T, class R, class V, class D>
inline function* new_virtual_function_aux(
type<T>, R, V virtual_function_ptr, D default_implementation
)
{
// We can't just use "typename R::Type" below because MSVC (incorrectly) pukes.
typedef typename R::type return_type;
return new virtual_function<T, return_type, V, D>(
virtual_function_ptr, default_implementation);
}
// Create and return a new virtual_function object wrapping the given
// virtual_function_ptr and default_implementation
template <class T, class V, class D>
inline function* new_virtual_function(
type<T>, V virtual_function_ptr, D default_implementation
)
{
// Deduce the return type and pass it off to the helper function above
return new_virtual_function_aux(
type<T>(), return_value(virtual_function_ptr),
virtual_function_ptr, default_implementation);
}
// A function with a bundled "bound target" object. This is what is produced by
// the expression a.b where a is an instance or extension_instance object and b
// is a callable object not found in the obj namespace but on its class or
// a base class.
class bound_function : public python_object
{
public:
static bound_function* create(const ref& target, const ref& fn);
bound_function(const ref& target, const ref& fn);
PyObject* call(PyObject*args, PyObject* keywords) const;
PyObject* getattr(const char* name) const;
private:
struct type_object;
friend struct type_object;
ref m_target;
ref m_unbound_function;
private: // data members for allocation/deallocation optimization
bound_function* m_free_list_link;
static bound_function* free_list;
};
// Special functions designed to access data members of a wrapped C++ object.
template <class ClassType, class MemberType>
class getter_function : public function
{
public:
typedef MemberType ClassType::* pointer_to_member;
getter_function(pointer_to_member pm)
: m_pm(pm) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const
{ return typeid(MemberType (*)(const ClassType&)).name(); }
private:
pointer_to_member m_pm;
};
template <class ClassType, class MemberType>
class setter_function : public function
{
public:
typedef MemberType ClassType::* pointer_to_member;
setter_function(pointer_to_member pm)
: m_pm(pm) {}
private:
PyObject* do_call(PyObject* args, PyObject* keywords) const;
const char* description() const
{ return typeid(void (*)(const ClassType&, const MemberType&)).name(); }
private:
pointer_to_member m_pm;
};
template <class ClassType, class MemberType>
PyObject* getter_function<ClassType, MemberType>::do_call(
PyObject* args, PyObject* /* keywords */) const
{
PyObject* self;
if (!PyArg_ParseTuple(args, const_cast<char*>("O"), &self))
return 0;
return to_python(
from_python(self, type<const ClassType*>())->*m_pm);
}
template <class ClassType, class MemberType>
PyObject* setter_function<ClassType, MemberType>::do_call(
PyObject* args, PyObject* /* keywords */) const
{
PyObject* self;
PyObject* value;
if (!PyArg_ParseTuple(args, const_cast<char*>("OO"), &self, &value))
return 0;
typedef typename boost::call_traits<MemberType>::const_reference extract_type;
from_python(self, type<ClassType*>())->*m_pm
= from_python(value, type<extract_type>());
return none();
}
template <class T, class R, class V, class D>
PyObject* virtual_function<T,R,V,D>::do_call(PyObject* args, PyObject* keywords) const
{
// If the target object is held by pointer, we must call through the virtual
// function pointer to the most-derived override.
PyObject* target = PyTuple_GetItem(args, 0);
if (target != 0)
{
extension_instance* self = get_extension_instance(target);
if (self->wrapped_objects().size() == 1
&& !self->wrapped_objects()[0]->held_by_value())
{
return caller<R>::call(m_virtual_function_ptr, args, keywords);
}
}
return caller<R>::call(m_default_implementation, args, keywords);
}
}}} // namespace boost::python::detail
#endif // FUNCTIONS_DWA051400_H_

View File

@@ -1,507 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file was generated for %d-argument constructors by gen_init_function.python
#ifndef INIT_FUNCTION_DWA052000_H_
# define INIT_FUNCTION_DWA052000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/functions.hpp>
# include <boost/python/detail/signatures.hpp>
# include <typeinfo>
namespace boost { namespace python {
namespace detail {
// parameter_traits - so far, this is a way to pass a const T& when we can be
// sure T is not a reference type, and a raw T otherwise. This should be
// rolled into boost::call_traits. Ordinarily, parameter_traits would be
// written:
//
// template <class T> struct parameter_traits
// {
// typedef const T& const_reference;
// };
//
// template <class T> struct parameter_traits<T&>
// {
// typedef T& const_reference;
// };
//
// template <> struct parameter_traits<void>
// {
// typedef void const_reference;
// };
//
// ...but since we can't partially specialize on reference types, we need this
// long-winded but equivalent incantation.
// const_ref_selector -- an implementation detail of parameter_traits (below). This uses
// the usual "poor man's partial specialization" hack for MSVC.
template <bool is_ref>
struct const_ref_selector
{
template <class T>
struct const_ref
{
typedef const T& type;
};
};
template <>
struct const_ref_selector<true>
{
template <class T>
struct const_ref
{
typedef T type;
};
};
# ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4181)
# endif // BOOST_MSVC
template <class T>
struct parameter_traits
{
private:
typedef const_ref_selector<boost::is_reference<T>::value> selector;
public:
typedef typename selector::template const_ref<T>::type const_reference;
};
# ifdef BOOST_MSVC
# pragma warning(pop)
# endif // BOOST_MSVC
// Full spcialization for void
template <>
struct parameter_traits<void>
{
typedef void const_reference;
};
template <class T>
class reference_parameter
{
typedef typename parameter_traits<T>::const_reference const_reference;
public:
reference_parameter(const_reference value)
: value(value) {}
operator const_reference() { return value; }
private:
const_reference value;
};
class extension_instance;
class instance_holder_base;
class init;
template <class T> struct init0;
template <class T, class A1> struct init1;
template <class T, class A1, class A2> struct init2;
template <class T, class A1, class A2, class A3> struct init3;
template <class T, class A1, class A2, class A3, class A4> struct init4;
template <class T, class A1, class A2, class A3, class A4, class A5> struct init5;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6> struct init6;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7> struct init7;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8> struct init8;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9> struct init9;
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10> struct init10;
template <class T>
struct init_function
{
static init* create(signature0) {
return new init0<T>;
}
template <class A1>
static init* create(signature1<A1>) {
return new init1<T,
detail::parameter_traits<A1>::const_reference>;
}
template <class A1, class A2>
static init* create(signature2<A1, A2>) {
return new init2<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference>;
}
template <class A1, class A2, class A3>
static init* create(signature3<A1, A2, A3>) {
return new init3<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference>;
}
template <class A1, class A2, class A3, class A4>
static init* create(signature4<A1, A2, A3, A4>) {
return new init4<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5>
static init* create(signature5<A1, A2, A3, A4, A5>) {
return new init5<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6>
static init* create(signature6<A1, A2, A3, A4, A5, A6>) {
return new init6<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
static init* create(signature7<A1, A2, A3, A4, A5, A6, A7>) {
return new init7<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
static init* create(signature8<A1, A2, A3, A4, A5, A6, A7, A8>) {
return new init8<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference,
detail::parameter_traits<A8>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
static init* create(signature9<A1, A2, A3, A4, A5, A6, A7, A8, A9>) {
return new init9<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference,
detail::parameter_traits<A8>::const_reference,
detail::parameter_traits<A9>::const_reference>;
}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
static init* create(signature10<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>) {
return new init10<T,
detail::parameter_traits<A1>::const_reference,
detail::parameter_traits<A2>::const_reference,
detail::parameter_traits<A3>::const_reference,
detail::parameter_traits<A4>::const_reference,
detail::parameter_traits<A5>::const_reference,
detail::parameter_traits<A6>::const_reference,
detail::parameter_traits<A7>::const_reference,
detail::parameter_traits<A8>::const_reference,
detail::parameter_traits<A9>::const_reference,
detail::parameter_traits<A10>::const_reference>;
}
};
class init : public function
{
private: // override function hook
PyObject* do_call(PyObject* args, PyObject* keywords) const;
private:
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* tail_args, PyObject* keywords) const = 0;
};
template <class T>
struct init0 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
if (!PyArg_ParseTuple(args, const_cast<char*>("")))
throw argument_error();
return new T(self
);
}
const char* description() const
{ return typeid(void (*)(T&)).name(); }
};
template <class T, class A1>
struct init1 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
if (!PyArg_ParseTuple(args, const_cast<char*>("O"), &a1))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1)).name(); }
};
template <class T, class A1, class A2>
struct init2 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
if (!PyArg_ParseTuple(args, const_cast<char*>("OO"), &a1, &a2))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2)).name(); }
};
template <class T, class A1, class A2, class A3>
struct init3 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOO"), &a1, &a2, &a3))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3)).name(); }
};
template <class T, class A1, class A2, class A3, class A4>
struct init4 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOO"), &a1, &a2, &a3, &a4))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5>
struct init5 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOO"), &a1, &a2, &a3, &a4, &a5))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6>
struct init6 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
struct init7 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
struct init8 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
PyObject* a8;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>())),
boost::python::detail::reference_parameter<A8>(from_python(a8, type<A8>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7, A8)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
struct init9 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
PyObject* a8;
PyObject* a9;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>())),
boost::python::detail::reference_parameter<A8>(from_python(a8, type<A8>())),
boost::python::detail::reference_parameter<A9>(from_python(a9, type<A9>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7, A8, A9)).name(); }
};
template <class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
struct init10 : init
{
virtual instance_holder_base* create_holder(extension_instance* self, PyObject* args, PyObject* /*keywords*/) const
{
PyObject* a1;
PyObject* a2;
PyObject* a3;
PyObject* a4;
PyObject* a5;
PyObject* a6;
PyObject* a7;
PyObject* a8;
PyObject* a9;
PyObject* a10;
if (!PyArg_ParseTuple(args, const_cast<char*>("OOOOOOOOOO"), &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9, &a10))
throw argument_error();
return new T(self,
boost::python::detail::reference_parameter<A1>(from_python(a1, type<A1>())),
boost::python::detail::reference_parameter<A2>(from_python(a2, type<A2>())),
boost::python::detail::reference_parameter<A3>(from_python(a3, type<A3>())),
boost::python::detail::reference_parameter<A4>(from_python(a4, type<A4>())),
boost::python::detail::reference_parameter<A5>(from_python(a5, type<A5>())),
boost::python::detail::reference_parameter<A6>(from_python(a6, type<A6>())),
boost::python::detail::reference_parameter<A7>(from_python(a7, type<A7>())),
boost::python::detail::reference_parameter<A8>(from_python(a8, type<A8>())),
boost::python::detail::reference_parameter<A9>(from_python(a9, type<A9>())),
boost::python::detail::reference_parameter<A10>(from_python(a10, type<A10>()))
);
}
const char* description() const
{ return typeid(void (*)(T&, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)).name(); }
};
}}} // namespace boost::python::detail
#endif // INIT_FUNCTION_DWA052000_H_

View File

@@ -1,21 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef NONE_DWA_052000_H_
# define NONE_DWA_052000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
namespace boost { namespace python { namespace detail {
inline PyObject* none() { Py_INCREF(Py_None); return Py_None; }
}}} // namespace boost::python::detail
#endif // NONE_DWA_052000_H_

View File

@@ -1,251 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// This file automatically generated by gen_signatures.python for 10 arguments.
#ifndef SIGNATURES_DWA050900_H_
# define SIGNATURES_DWA050900_H_
# include <boost/python/detail/config.hpp>
namespace boost { namespace python {
namespace detail {
// A stand-in for the built-in void. This one can be passed to functions and
// (under MSVC, which has a bug, be used as a default template type parameter).
struct void_t {};
}
// An envelope in which type information can be delivered for the purposes
// of selecting an overloaded from_python() function. This is needed to work
// around MSVC's lack of partial specialiation/ordering. Where normally we'd
// want to form a function call like void f<const T&>(), We instead pass
// type<const T&> as one of the function parameters to select a particular
// overload.
//
// The id typedef helps us deal with the lack of partial ordering by generating
// unique types for constructor signatures. In general, type<T>::id is type<T>,
// but type<void_t>::id is just void_t.
template <class T>
struct type
{
typedef type id;
};
template <>
struct type<boost::python::detail::void_t>
{
typedef boost::python::detail::void_t id;
};
namespace detail {
// These basically encapsulate a chain of types, , used to make the syntax of
// add(constructor<T1, ...>()) work. We need to produce a unique type for each number
// of non-default parameters to constructor<>. Q: why not use a recursive
// formulation for infinite extensibility? A: MSVC6 seems to choke on constructs
// that involve recursive template nesting.
//
// signature chaining
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10>
struct signature10 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9>
struct signature9 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class X>
inline signature10<X, T1, T2, T3, T4, T5, T6, T7, T8, T9> prepend(type<X>, signature9<T1, T2, T3, T4, T5, T6, T7, T8, T9>)
{ return signature10<X, T1, T2, T3, T4, T5, T6, T7, T8, T9>(); }
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
struct signature8 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class X>
inline signature9<X, T1, T2, T3, T4, T5, T6, T7, T8> prepend(type<X>, signature8<T1, T2, T3, T4, T5, T6, T7, T8>)
{ return signature9<X, T1, T2, T3, T4, T5, T6, T7, T8>(); }
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7>
struct signature7 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class X>
inline signature8<X, T1, T2, T3, T4, T5, T6, T7> prepend(type<X>, signature7<T1, T2, T3, T4, T5, T6, T7>)
{ return signature8<X, T1, T2, T3, T4, T5, T6, T7>(); }
template <class T1, class T2, class T3, class T4, class T5, class T6>
struct signature6 {};
template <class T1, class T2, class T3, class T4, class T5, class T6, class X>
inline signature7<X, T1, T2, T3, T4, T5, T6> prepend(type<X>, signature6<T1, T2, T3, T4, T5, T6>)
{ return signature7<X, T1, T2, T3, T4, T5, T6>(); }
template <class T1, class T2, class T3, class T4, class T5>
struct signature5 {};
template <class T1, class T2, class T3, class T4, class T5, class X>
inline signature6<X, T1, T2, T3, T4, T5> prepend(type<X>, signature5<T1, T2, T3, T4, T5>)
{ return signature6<X, T1, T2, T3, T4, T5>(); }
template <class T1, class T2, class T3, class T4>
struct signature4 {};
template <class T1, class T2, class T3, class T4, class X>
inline signature5<X, T1, T2, T3, T4> prepend(type<X>, signature4<T1, T2, T3, T4>)
{ return signature5<X, T1, T2, T3, T4>(); }
template <class T1, class T2, class T3>
struct signature3 {};
template <class T1, class T2, class T3, class X>
inline signature4<X, T1, T2, T3> prepend(type<X>, signature3<T1, T2, T3>)
{ return signature4<X, T1, T2, T3>(); }
template <class T1, class T2>
struct signature2 {};
template <class T1, class T2, class X>
inline signature3<X, T1, T2> prepend(type<X>, signature2<T1, T2>)
{ return signature3<X, T1, T2>(); }
template <class T1>
struct signature1 {};
template <class T1, class X>
inline signature2<X, T1> prepend(type<X>, signature1<T1>)
{ return signature2<X, T1>(); }
struct signature0 {};
template <class X>
inline signature1<X> prepend(type<X>, signature0)
{ return signature1<X>(); }
// This one terminates the chain. Prepending void_t to the head of a void_t
// signature results in a void_t signature again.
inline signature0 prepend(void_t, signature0) { return signature0(); }
} // namespace detail
template <class A1 = detail::void_t, class A2 = detail::void_t, class A3 = detail::void_t, class A4 = detail::void_t, class A5 = detail::void_t, class A6 = detail::void_t, class A7 = detail::void_t, class A8 = detail::void_t, class A9 = detail::void_t, class A10 = detail::void_t>
struct constructor
{
};
namespace detail {
// Return value extraction:
// This is just another little envelope for carrying a typedef (see type,
// above). I could have re-used type, but that has a very specific purpose. I
// thought this would be clearer.
template <class T>
struct return_value_select { typedef T type; };
// free functions
template <class R>
return_value_select<R> return_value(R (*)()) { return return_value_select<R>(); }
template <class R, class A1>
return_value_select<R> return_value(R (*)(A1)) { return return_value_select<R>(); }
template <class R, class A1, class A2>
return_value_select<R> return_value(R (*)(A1, A2)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3>
return_value_select<R> return_value(R (*)(A1, A2, A3)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7, A8)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)) { return return_value_select<R>(); }
template <class R, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
return_value_select<R> return_value(R (*)(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)) { return return_value_select<R>(); }
// TODO(?): handle 'const void'
// member functions
template <class R, class T>
return_value_select<R> return_value(R (T::*)()) { return return_value_select<R>(); }
template <class R, class T, class A1>
return_value_select<R> return_value(R (T::*)(A1)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2>
return_value_select<R> return_value(R (T::*)(A1, A2)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3>
return_value_select<R> return_value(R (T::*)(A1, A2, A3)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)) { return return_value_select<R>(); }
template <class R, class T>
return_value_select<R> return_value(R (T::*)() const) { return return_value_select<R>(); }
template <class R, class T, class A1>
return_value_select<R> return_value(R (T::*)(A1) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2>
return_value_select<R> return_value(R (T::*)(A1, A2) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3>
return_value_select<R> return_value(R (T::*)(A1, A2, A3) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const) { return return_value_select<R>(); }
template <class R, class T, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
return_value_select<R> return_value(R (T::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) const) { return return_value_select<R>(); }
}}} // namespace boost::python::detail
#endif

View File

@@ -1,68 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef SINGLETON_DWA051900_H_
# define SINGLETON_DWA051900_H_
# include <boost/python/detail/config.hpp>
namespace boost { namespace python { namespace detail {
struct empty {};
template <class Derived, class Base = empty>
struct singleton : Base
{
typedef singleton singleton_base; // Convenience type for derived class constructors
static Derived* instance();
// Pass-through constructors
singleton() : Base() {}
template <class A1>
singleton(const A1& a1) : Base(a1) {}
template <class A1, class A2>
singleton(const A1& a1, const A2& a2) : Base(a1, a2) {}
template <class A1, class A2, class A3>
singleton(const A1& a1, const A2& a2, const A3& a3) : Base(a1, a2, a3) {}
template <class A1, class A2, class A3, class A4>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4) : Base(a1, a2, a3, a4) {}
template <class A1, class A2, class A3, class A4, class A5>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) : Base(a1, a2, a3, a4, a5) {}
template <class A1, class A2, class A3, class A4, class A5, class A6>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) : Base(a1, a2, a3, a4, a5, a6) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7) : Base(a1, a2, a3, a4, a5, a6, a7) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8) : Base(a1, a2, a3, a4, a5, a6, a7, a8) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9) : Base(a1, a2, a3, a4, a5, a6, a7, a8, a9) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
singleton(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10) : Base(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) {}
};
template <class Derived, class Base>
Derived* singleton<Derived,Base>::instance()
{
static Derived x;
return &x;
}
}}} // namespace boost::python::detail
#endif

View File

@@ -1,389 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef TYPES_DWA051800_H_
# define TYPES_DWA051800_H_
// Usage:
// class X : public
// boost::python::callable<
// boost::python::getattrable <
// boost::python::setattrable<python_object, X> > >
// {
// public:
// ref call(args, kw);
// ref getattr(args, kw);
// ref setattr(args, kw);
// };
# include <boost/python/detail/config.hpp>
# include <boost/python/detail/signatures.hpp> // really just for type<>
# include <boost/python/detail/cast.hpp>
# include <boost/python/detail/base_object.hpp>
# include <typeinfo>
# include <vector>
# include <cassert>
namespace boost { namespace python {
class string;
namespace detail {
class instance_holder_base;
class type_object_base : public python_type
{
public:
explicit type_object_base(PyTypeObject* type_type);
virtual ~type_object_base();
public:
enum capability {
hash, call, str, getattr, setattr, compare, repr,
mapping_length, mapping_subscript, mapping_ass_subscript,
sequence_length, sequence_item, sequence_ass_item,
sequence_concat, sequence_repeat, sequence_slice, sequence_ass_slice,
number_add, number_subtract, number_multiply, number_divide,
number_remainder, number_divmod, number_power, number_negative,
number_positive, number_absolute, number_nonzero, number_invert,
number_lshift, number_rshift, number_and, number_xor, number_or,
number_coerce, number_int, number_long, number_float, number_oct,
number_hex
};
void enable(capability);
//
// type behaviors
//
public: // Callbacks for basic type functionality.
virtual PyObject* instance_repr(PyObject*) const;
virtual int instance_compare(PyObject*, PyObject* other) const;
virtual PyObject* instance_str(PyObject*) const;
virtual long instance_hash(PyObject*) const;
virtual PyObject* instance_call(PyObject* obj, PyObject* args, PyObject* kw) const;
virtual PyObject* instance_getattr(PyObject* obj, const char* name) const;
virtual int instance_setattr(PyObject* obj, const char* name, PyObject* value) const;
// Dealloc is a special case, since every type needs a nonzero tp_dealloc slot.
virtual void instance_dealloc(PyObject*) const = 0;
public: // Callbacks for mapping methods
virtual int instance_mapping_length(PyObject*) const;
virtual PyObject* instance_mapping_subscript(PyObject*, PyObject*) const ;
virtual int instance_mapping_ass_subscript(PyObject*, PyObject*, PyObject*) const;
public: // Callbacks for sequence methods
virtual int instance_sequence_length(PyObject* obj) const;
virtual PyObject* instance_sequence_concat(PyObject* obj, PyObject* other) const;
virtual PyObject* instance_sequence_repeat(PyObject* obj, int n) const;
virtual PyObject* instance_sequence_item(PyObject* obj, int n) const;
virtual PyObject* instance_sequence_slice(PyObject* obj, int start, int finish) const;
virtual int instance_sequence_ass_item(PyObject* obj, int n, PyObject* value) const;
virtual int instance_sequence_ass_slice(PyObject* obj, int start, int finish, PyObject* value) const;
public: // Callbacks for number methods
virtual PyObject* instance_number_add(PyObject*, PyObject*) const;
virtual PyObject* instance_number_subtract(PyObject*, PyObject*) const;
virtual PyObject* instance_number_multiply(PyObject*, PyObject*) const;
virtual PyObject* instance_number_divide(PyObject*, PyObject*) const;
virtual PyObject* instance_number_remainder(PyObject*, PyObject*) const;
virtual PyObject* instance_number_divmod(PyObject*, PyObject*) const;
virtual PyObject* instance_number_power(PyObject*, PyObject*, PyObject*) const;
virtual PyObject* instance_number_negative(PyObject*) const;
virtual PyObject* instance_number_positive(PyObject*) const;
virtual PyObject* instance_number_absolute(PyObject*) const;
virtual int instance_number_nonzero(PyObject*) const;
virtual PyObject* instance_number_invert(PyObject*) const;
virtual PyObject* instance_number_lshift(PyObject*, PyObject*) const;
virtual PyObject* instance_number_rshift(PyObject*, PyObject*) const;
virtual PyObject* instance_number_and(PyObject*, PyObject*) const;
virtual PyObject* instance_number_xor(PyObject*, PyObject*) const;
virtual PyObject* instance_number_or(PyObject*, PyObject*) const;
virtual int instance_number_coerce(PyObject*, PyObject**, PyObject**) const;
virtual PyObject* instance_number_int(PyObject*) const;
virtual PyObject* instance_number_long(PyObject*) const;
virtual PyObject* instance_number_float(PyObject*) const;
virtual PyObject* instance_number_oct(PyObject*) const;
virtual PyObject* instance_number_hex(PyObject*) const;
};
template <class T>
class type_object : public type_object_base
{
public:
typedef T instance;
type_object(PyTypeObject* type_type, const char* name)
: type_object_base(type_type)
{
assert(name != 0);
this->tp_name = const_cast<char*>(name);
}
type_object(PyTypeObject* type_type)
: type_object_base(type_type)
{
this->tp_name = const_cast<char*>(typeid(instance).name());
}
private: // Overridable behaviors.
// Called when the reference count goes to zero. The default implementation
// is "delete p". If you have not allocated your object with operator new or
// you have other constraints, you'll need to override this
virtual void dealloc(T* p) const;
private: // Implementation of type_object_base hooks. Do not reimplement in derived classes.
void instance_dealloc(PyObject*) const;
};
//
// type objects
//
template <class Base>
class callable : public Base
{
public:
typedef callable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
callable(PyTypeObject* type_type, const char* name);
callable(PyTypeObject* type_type);
private:
PyObject* instance_call(PyObject* obj, PyObject* args, PyObject* kw) const;
};
template <class Base>
class getattrable : public Base
{
public:
typedef getattrable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
getattrable(PyTypeObject* type_type, const char* name);
getattrable(PyTypeObject* type_type);
private:
PyObject* instance_getattr(PyObject* obj, const char* name) const;
};
template <class Base>
class setattrable : public Base
{
public:
typedef setattrable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
setattrable(PyTypeObject* type_type, const char* name);
setattrable(PyTypeObject* type_type);
private:
int instance_setattr(PyObject* obj, const char* name, PyObject* value) const;
};
template <class Base>
class reprable : public Base
{
public:
typedef reprable properties; // Convenience for derived class construction
typedef typename Base::instance instance;
reprable(PyTypeObject* type_type, const char* name);
reprable(PyTypeObject* type_type);
private:
PyObject* instance_repr(PyObject* obj) const;
};
//
// Member function definitions
//
// type_object<>
template <class T>
void type_object<T>::instance_dealloc(PyObject* obj) const
{
this->dealloc(downcast<instance>(obj).get());
}
template <class T>
void type_object<T>::dealloc(T* obj) const
{
delete obj;
}
// callable
template <class Base>
callable<Base>::callable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(call);
}
template <class Base>
callable<Base>::callable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(call);
}
template <class Base>
PyObject* callable<Base>::instance_call(PyObject* obj, PyObject* args, PyObject* kw) const
{
return downcast<instance>(obj)->call(args, kw);
}
// getattrable
template <class Base>
getattrable<Base>::getattrable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(getattr);
}
template <class Base>
getattrable<Base>::getattrable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(getattr);
}
template <class Base>
PyObject* getattrable<Base>::instance_getattr(PyObject* obj, const char* name) const
{
return downcast<instance>(obj)->getattr(name);
}
// setattrable
template <class Base>
setattrable<Base>::setattrable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(setattr);
}
template <class Base>
setattrable<Base>::setattrable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(setattr);
}
template <class Base>
int setattrable<Base>::instance_setattr(PyObject* obj, const char* name, PyObject* value) const
{
return downcast<instance>(obj)->setattr(name, value);
}
// reprable
template <class Base>
reprable<Base>::reprable(PyTypeObject* type_type, const char* name)
: Base(type_type, name)
{
this->enable(repr);
}
template <class Base>
reprable<Base>::reprable(PyTypeObject* type_type)
: Base(type_type)
{
this->enable(repr);
}
template <class Base>
PyObject* reprable<Base>::instance_repr(PyObject* obj) const
{
return downcast<instance>(obj)->repr();
}
// Helper class for optimized allocation of PODs: If two PODs
// happen to contain identical byte patterns, they may share their
// memory. Reference counting is used to free unused memory.
// This is useful because method tables of related extension classes tend
// to be identical, so less memory is needed for them.
class shared_pod_manager
{
typedef std::pair<char*, std::size_t> holder;
typedef std::vector<holder> storage;
public:
static shared_pod_manager& obj();
~shared_pod_manager();
// Allocate memory for POD T and fill it with zeros.
// This memory is initially not shared.
template <class T>
static void create(T*& t)
{
t = reinterpret_cast<T*>(obj().create(sizeof(T)));
}
// Decrement the refcount for the memory t points to. If the count
// goes to zero, the memory is freed.
template <class T>
static void dispose(T* t)
{
obj().dec_ref(t, sizeof(T));
}
// Attempt to share the memory t points to. If memory with the same
// contents already exists, t is replaced by a pointer to this memory,
// and t's old memory is disposed. Otherwise, t will be registered for
// potential future sharing.
template <class T>
static void replace_if_equal(T*& t)
{
t = reinterpret_cast<T*>(obj().replace_if_equal(t, sizeof(T)));
}
// Create a copy of t's memory that is guaranteed to be private to t.
// Afterwards t points to the new memory, unless it was already private, in
// which case there is no change (except that t's memory will no longer
// be considered for future sharing - see raplade_if_equal())
// This function *must* be called before the contents of (*t) can
// be overwritten. Otherwise, inconsistencies and crashes may result.
template <class T>
static void make_unique_copy(T*& t)
{
t = reinterpret_cast<T*>(obj().make_unique_copy(t, sizeof(T)));
}
private:
void* replace_if_equal(void* pod, std::size_t size);
void* make_unique_copy(void* pod, std::size_t size);
void* create(std::size_t size);
void dec_ref(void* pod, std::size_t size);
void erase_from_list(void* pod);
struct compare;
struct identical;
private:
shared_pod_manager() {} // instance
#ifdef TYPE_OBJECT_BASE_STANDALONE_TEST
public:
#endif
storage m_storage;
};
void add_capability(type_object_base::capability capability,
PyTypeObject* dest);
// This macro gets the length of an array as a compile-time constant, and will
// fail to compile if the parameter is a pointer.
# define PY_ARRAY_LENGTH(a) \
(sizeof(::boost::python::detail::countof_validate(a, &(a))) ? sizeof(a) / sizeof((a)[0]) : 0)
template<typename T>
inline void countof_validate(T* const, T* const*);
template<typename T>
inline int countof_validate(const void*, T);
}}} // namespace boost::python::detail
#endif // TYPES_DWA051800_H_

View File

@@ -1,94 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
// This file serves as a wrapper around <Python.h> which allows it to be
// compiled with GCC 2.95.2 under Win32 and which disables the default MSVC
// behavior so that a program may be compiled in debug mode without requiring a
// special debugging build of the Python library.
// To use the Python debugging library, #define BOOST_DEBUG_PYTHON on the
// compiler command-line.
// Revision History:
// 05 Mar 01 Suppress warnings under Cygwin with Python 2.0 (Dave Abrahams)
// 04 Mar 01 Rolled in some changes from the Dragon fork (Dave Abrahams)
// 01 Mar 01 define PyObject_INIT() for Python 1.x (Dave Abrahams)
#include <patchlevel.h>
#ifdef _DEBUG
# ifndef BOOST_DEBUG_PYTHON
# undef _DEBUG // Don't let Python force the debug library just because we're debugging.
# define DEBUG_UNDEFINED_FROM_WRAP_PYTHON_H
# endif
#endif
//
// Some things we need in order to get Python.h to work with compilers other
// than MSVC on Win32
//
#if defined(_WIN32)
# ifdef __GNUC__
typedef int pid_t;
# define WORD_BIT 32
# define hypot _hypot
# include <stdio.h>
# if !defined(PY_MAJOR_VERSION) || PY_MAJOR_VERSION < 2
# define HAVE_CLOCK
# define HAVE_STRFTIME
# define HAVE_STRERROR
# endif
# define NT_THREADS
# define WITH_THREAD
# ifndef NETSCAPE_PI
# define USE_SOCKET
# endif
# ifdef USE_DL_IMPORT
# define DL_IMPORT(RTYPE) __declspec(dllimport) RTYPE
# endif
# ifdef USE_DL_EXPORT
# define DL_IMPORT(RTYPE) __declspec(dllexport) RTYPE
# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
# endif
# define HAVE_LONG_LONG 1
# define LONG_LONG long long
# elif defined(__MWERKS__)
# ifndef _MSC_VER
# define PY_MSC_VER_DEFINED_FROM_WRAP_PYTHON_H 1
# define _MSC_VER 900
# endif
# elif defined(_MSC_VER)
# include <limits> // prevents Python.h from defining LONGLONG_MAX, LONGLONG_MIN, and ULONGLONG_MAX
# endif
#endif // _WIN32
#include <Python.h>
#ifdef PY_MSC_VER_DEFINED_FROM_WRAP_PYTHON_H
# undef _MSC_VER
#endif
#ifdef DEBUG_UNDEFINED_FROM_WRAP_PYTHON_H
# undef DEBUG_UNDEFINED_FROM_WRAP_PYTHON_H
# define _DEBUG
#endif
#if !defined(PY_MAJOR_VERSION) || PY_MAJOR_VERSION < 2
# define PyObject_INIT(op, typeobj) \
( (op)->ob_type = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
#endif

View File

@@ -1,30 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef ERRORS_DWA052500_H_
# define ERRORS_DWA052500_H_
namespace boost { namespace python {
struct error_already_set {};
struct argument_error : error_already_set {};
// Handles exceptions caught just before returning to Python code.
void handle_exception();
template <class T>
T* expect_non_null(T* x)
{
if (x == 0)
throw error_already_set();
return x;
}
}} // namespace boost::python
#endif // ERRORS_DWA052500_H_

View File

@@ -1,68 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef MODULE_DWA051000_H_
# define MODULE_DWA051000_H_
# include <boost/python/detail/config.hpp>
# include <boost/python/reference.hpp>
# include <boost/python/objects.hpp>
# include <boost/python/detail/functions.hpp>
namespace boost { namespace python {
class module_builder
{
public:
// Create a module. REQUIRES: only one module_builder is created per module.
module_builder(const char* name);
~module_builder();
// Add elements to the module
void add(detail::function* x, const char* name);
void add(PyTypeObject* x, const char* name = 0);
void add(ref x, const char*name);
template <class Fn>
void def_raw(Fn fn, const char* name)
{
add(detail::new_raw_arguments_function(fn), name);
}
template <class Fn>
void def(Fn fn, const char* name)
{
add(detail::new_wrapped_function(fn), name);
}
// Return true iff a module is currently being built.
static bool initializing();
// Return the name of the module currently being built.
// REQUIRES: initializing() == true
static string name();
// Return a pointer to the Python module object being built
PyObject* module() const;
private:
PyObject* m_module;
static PyMethodDef initial_methods[1];
};
//
// inline implementations
//
inline PyObject* module_builder::module() const
{
return m_module;
}
}} // namespace boost::python
#endif

View File

@@ -1,334 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef OBJECTS_DWA051100_H_
# define OBJECTS_DWA051100_H_
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/detail/config.hpp>
# include <boost/python/reference.hpp>
# include "boost/operators.hpp"
# include <utility>
namespace boost { namespace python {
class object
{
public:
explicit object(ref p);
// Return a reference to the held object
ref reference() const;
// Return a raw pointer to the held object
PyObject* get() const;
private:
ref m_p;
};
class tuple : public object
{
public:
explicit tuple(std::size_t n = 0);
explicit tuple(ref p);
template <class First, class Second>
tuple(const std::pair<First,Second>& x)
: object(ref(PyTuple_New(2)))
{
set_item(0, x.first);
set_item(1, x.second);
}
template <class First, class Second>
tuple(const First& first, const Second& second)
: object(ref(PyTuple_New(2)))
{
set_item(0, first);
set_item(1, second);
}
template <class First, class Second, class Third>
tuple(const First& first, const Second& second, const Third& third)
: object(ref(PyTuple_New(3)))
{
set_item(0, first);
set_item(1, second);
set_item(2, third);
}
template <class First, class Second, class Third, class Fourth>
tuple(const First& first, const Second& second, const Third& third, const Fourth& fourth)
: object(ref(PyTuple_New(4)))
{
set_item(0, first);
set_item(1, second);
set_item(2, third);
set_item(3, fourth);
}
static PyTypeObject* type_obj();
static bool accepts(ref p);
std::size_t size() const;
ref operator[](std::size_t pos) const;
template <class T>
void set_item(std::size_t pos, const T& rhs)
{
this->set_item(pos, make_ref(rhs));
}
void set_item(std::size_t pos, const ref& rhs);
tuple slice(int low, int high) const;
friend tuple operator+(const tuple&, const tuple&);
tuple& operator+=(const tuple& rhs);
};
class list : public object
{
struct proxy;
struct slice_proxy;
public:
explicit list(ref p);
explicit list(std::size_t sz = 0);
static PyTypeObject* type_obj();
static bool accepts(ref p);
std::size_t size();
ref operator[](std::size_t pos) const;
proxy operator[](std::size_t pos);
ref get_item(std::size_t pos) const;
template <class T>
void set_item(std::size_t pos, const T& x)
{ this->set_item(pos, make_ref(x)); }
void set_item(std::size_t pos, const ref& );
// void set_item(std::size_t pos, const object& );
template <class T>
void insert(std::size_t index, const T& x)
{ this->insert(index, make_ref(x)); }
void insert(std::size_t index, const ref& item);
template <class T>
void push_back(const T& item)
{ this->push_back(make_ref(item)); }
void push_back(const ref& item);
template <class T>
void append(const T& item)
{ this->append(make_ref(item)); }
void append(const ref& item);
list slice(int low, int high) const;
slice_proxy slice(int low, int high);
void sort();
void reverse();
tuple as_tuple() const;
};
class string
: public object, public boost::multipliable2<string, unsigned int>
{
public:
// Construct from an owned PyObject*.
// Precondition: p must point to a python string.
explicit string(ref p);
explicit string(const char* s);
string(const char* s, std::size_t length);
string(const string& rhs);
enum interned_t { interned };
string(const char* s, interned_t);
// Get the type object for Strings
static PyTypeObject* type_obj();
// Return true if the given object is a python string
static bool accepts(ref o);
// Return the length of the string.
std::size_t size() const;
// Returns a null-terminated representation of the contents of string.
// The pointer refers to the internal buffer of string, not a copy.
// The data must not be modified in any way. It must not be de-allocated.
const char* c_str() const;
string& operator*=(unsigned int repeat_count);
string& operator+=(const string& rhs);
friend string operator+(string x, string y);
string& operator+=(const char* rhs);
friend string operator+(string x, const char* y);
friend string operator+(const char* x, string y);
void intern();
friend string operator%(const string& format, const tuple& args);
};
class dictionary : public object
{
private:
struct proxy;
public:
explicit dictionary(ref p);
dictionary();
void clear();
static PyTypeObject* type_obj();
static bool accepts(ref p);
public:
template <class Key>
proxy operator[](const Key& key)
{ return this->operator[](make_ref(key)); }
proxy operator[](ref key);
template <class Key>
ref operator[](const Key& key) const
{ return this->operator[](make_ref(key)); }
ref operator[](ref key) const;
template <class Key>
ref get_item(const Key& key) const
{ return this->get_item(make_ref(key)); }
ref get_item(const ref& key) const;
template <class Key, class Default>
ref get_item(const Key& key, const Default& default_) const
{ return this->get_item(make_ref(key), make_ref(default_)); }
ref get_item(const ref& key, const ref& default_) const;
template <class Key, class Value>
void set_item(const Key& key, const Value& value)
{ this->set_item(make_ref(key), make_ref(value)); }
void set_item(const ref& key, const ref& value);
template <class Key>
void erase(const Key& key)
{ this->erase(make_ref(key)); }
void erase(ref key);
// proxy operator[](const object& key);
// ref operator[](const object& key) const;
// ref get_item(const object& key, ref default_ = ref()) const;
// void set_item(const object& key, const ref& value);
// void erase(const object& key);
list items() const;
list keys() const;
list values() const;
std::size_t size() const;
// TODO: iterator support
};
struct dictionary::proxy
{
template <class T>
const ref& operator=(const T& rhs)
{ return (*this) = make_ref(rhs); }
const ref& operator=(const ref& rhs);
operator ref() const;
private:
friend class dictionary;
proxy(const ref& dict, const ref& key);
// This is needed to work around the very strange MSVC error report that the
// return type of the built-in operator= differs from that of the ones
// defined above. Couldn't hurt to make these un-assignable anyway, though.
const ref& operator=(const proxy&); // Not actually implemented
private:
ref m_dict;
ref m_key;
};
struct list::proxy
{
template <class T>
const ref& operator=(const T& rhs)
{ return (*this) = make_ref(rhs); }
const ref& operator=(const ref& rhs);
operator ref() const;
private:
friend class list;
proxy(const ref& list, std::size_t index);
// This is needed to work around the very strange MSVC error report that the
// return type of the built-in operator= differs from that of the ones
// defined above. Couldn't hurt to make these un-assignable anyway, though.
const ref& operator=(const proxy&); // Not actually implemented
private:
list m_list;
std::size_t m_index;
};
struct list::slice_proxy
{
const list& operator=(const list& rhs);
operator ref() const;
operator list() const;
std::size_t size();
ref operator[](std::size_t pos) const;
private:
friend class list;
slice_proxy(const ref& list, int low, int high);
private:
ref m_list;
int m_low, m_high;
};
}} // namespace boost::python
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
PyObject* to_python(const boost::python::tuple&);
boost::python::tuple from_python(PyObject* p, boost::python::type<boost::python::tuple>);
inline boost::python::tuple from_python(PyObject* p, boost::python::type<const boost::python::tuple&>)
{
return from_python(p, boost::python::type<boost::python::tuple>());
}
PyObject* to_python(const boost::python::list&);
boost::python::list from_python(PyObject* p, boost::python::type<boost::python::list>);
inline boost::python::list from_python(PyObject* p, boost::python::type<const boost::python::list&>)
{
return from_python(p, boost::python::type<boost::python::list>());
}
PyObject* to_python(const boost::python::string&);
boost::python::string from_python(PyObject* p, boost::python::type<boost::python::string>);
inline boost::python::string from_python(PyObject* p, boost::python::type<const boost::python::string&>)
{
return from_python(p, boost::python::type<boost::python::string>());
}
PyObject* to_python(const boost::python::dictionary&);
boost::python::dictionary from_python(PyObject* p, boost::python::type<boost::python::dictionary>);
inline boost::python::dictionary from_python(PyObject* p, boost::python::type<const boost::python::dictionary&>)
{
return from_python(p, boost::python::type<boost::python::dictionary>());
}
BOOST_PYTHON_END_CONVERSION_NAMESPACE
#endif // OBJECTS_DWA051100_H_

View File

@@ -1,537 +0,0 @@
// (C) Copyright Ullrich Koethe and David Abrahams 2000-2001. Permission to
// copy, use, modify, sell and distribute this software is granted provided
// this copyright notice appears in all copies. This software is provided "as
// is" without express or implied warranty, and with no claim as to its
// suitability for any purpose.
//
// The authors gratefully acknowlege the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// 23 Jan 2001 - Another stupid typo fix by Ralf W. Grosse-Kunstleve (David Abrahams)
// 20 Jan 2001 - Added a fix from Ralf W. Grosse-Kunstleve (David Abrahams)
#ifndef OPERATORS_UK112000_H_
#define OPERATORS_UK112000_H_
# include <boost/python/reference.hpp>
# include <boost/python/detail/functions.hpp>
// When STLport is used with native streams, _STL::ostringstream().str() is not
// _STL::string, but std::string. This confuses to_python(), so we'll use
// strstream instead. Also, GCC 2.95.2 doesn't have sstream.
# if defined(__SGI_STL_PORT) ? defined(__SGI_STL_OWN_IOSTREAMS) : (!defined(__GNUC__) || __GNUC__ > 2)
# define BOOST_PYTHON_USE_SSTREAM
# endif
#if defined(BOOST_PYTHON_USE_SSTREAM)
# include <sstream>
# else
# include <strstream>
# endif
namespace boost { namespace python {
tuple standard_coerce(ref l, ref r);
namespace detail {
// helper class for automatic operand type detection
// during operator wrapping.
struct auto_operand {};
}
// Define operator ids that can be or'ed together
// (boost::python::op_add | boost::python::op_sub | boost::python::op_mul).
// This allows to wrap several operators in one line.
enum operator_id
{
op_add = 0x1,
op_sub = 0x2,
op_mul = 0x4,
op_div = 0x8,
op_mod = 0x10,
op_divmod =0x20,
op_pow = 0x40,
op_lshift = 0x80,
op_rshift = 0x100,
op_and = 0x200,
op_xor = 0x400,
op_or = 0x800,
op_neg = 0x1000,
op_pos = 0x2000,
op_abs = 0x4000,
op_invert = 0x8000,
op_int = 0x10000,
op_long = 0x20000,
op_float = 0x40000,
op_str = 0x80000,
op_cmp = 0x100000
};
// Wrap the operators given by "which". Usage:
// foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>());
template <long which, class operand = boost::python::detail::auto_operand>
struct operators {};
// Wrap heterogeneous operators with given left operand type. Usage:
// foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>(),
// boost::python::left_operand<int>());
template <class T>
struct left_operand {};
// Wrap heterogeneous operators with given right operand type. Usage:
// foo_class.def(boost::python::operators<(boost::python::op_add | boost::python::op_sub)>(),
// boost::python::right_operand<int>());
template <class T>
struct right_operand {};
namespace detail
{
template <class Specified>
struct operand_select
{
template <class wrapped_type>
struct wrapped
{
typedef Specified type;
};
};
template <>
struct operand_select<auto_operand>
{
template <class wrapped_type>
struct wrapped
{
typedef const wrapped_type& type;
};
};
template <long> struct define_operator;
// Base class which grants access to extension_class_base::add_method() to its derived classes
struct add_operator_base
{
protected:
static inline void add_method(extension_class_base* target, function* method, const char* name)
{ target->add_method(method, name); }
};
//
// choose_op, choose_unary_op, and choose_rop
//
// These templates use "poor man's partial specialization" to generate the
// appropriate add_method() call (if any) for a given operator and argument set.
//
// Usage:
// choose_op<(which & op_add)>::template args<left_t,right_t>::add(ext_class);
//
// (see extension_class<>::def_operators() for more examples).
//
template <long op_selector>
struct choose_op
{
template <class Left, class Right = Left>
struct args : add_operator_base
{
static inline void add(extension_class_base* target)
{
typedef define_operator<op_selector> def_op;
add_method(target,
new typename def_op::template operator_function<Left, Right>(),
def_op::name());
}
};
};
// specialization for 0 has no effect
template <>
struct choose_op<0>
{
template <class Left, class Right = Left>
struct args
{
static inline void add(extension_class_base*)
{
}
};
};
template <long op_selector>
struct choose_unary_op
{
template <class Operand>
struct args : add_operator_base
{
static inline void add(extension_class_base* target)
{
typedef define_operator<op_selector> def_op;
add_method(target,
new typename def_op::template operator_function<Operand>(),
def_op::name());
}
};
};
// specialization for 0 has no effect
template <>
struct choose_unary_op<0>
{
template <class Operand>
struct args
{
static inline void add(extension_class_base*)
{
}
};
};
template <long op_selector>
struct choose_rop
{
template <class Left, class Right = Left>
struct args : add_operator_base
{
static inline void add(extension_class_base* target)
{
typedef define_operator<op_selector> def_op;
add_method(target,
new typename def_op::template roperator_function<Right, Left>(),
def_op::rname());
}
};
};
// specialization for 0 has no effect
template <>
struct choose_rop<0>
{
template <class Left, class Right = Left>
struct args
{
static inline void add(extension_class_base*)
{
}
};
};
// Fully specialize define_operator for all operators defined in operator_id above.
// Every specialization defines one function object for normal operator calls and one
// for operator calls with operands reversed ("__r*__" function variants).
// Specializations for most operators follow a standard pattern: execute the expression
// that uses the operator in question. This standard pattern is realized by the following
// macros so that the actual specialization can be done by just calling a macro.
#define PY_DEFINE_BINARY_OPERATORS(id, oper) \
template <> \
struct define_operator<op_##id> \
{ \
template <class Left, class Right = Left> \
struct operator_function : function \
{ \
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const \
{ \
tuple args(ref(arguments, ref::increment_count)); \
\
return BOOST_PYTHON_CONVERSION::to_python( \
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) oper \
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())); \
} \
\
const char* description() const \
{ return "__" #id "__"; } \
}; \
\
template <class Right, class Left> \
struct roperator_function : function \
{ \
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const \
{ \
tuple args(ref(arguments, ref::increment_count)); \
\
return BOOST_PYTHON_CONVERSION::to_python( \
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) oper \
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())); \
} \
\
const char* description() const \
{ return "__r" #id "__"; } \
\
}; \
\
static const char * name() { return "__" #id "__"; } \
static const char * rname() { return "__r" #id "__"; } \
}
#define PY_DEFINE_UNARY_OPERATORS(id, oper) \
template <> \
struct define_operator<op_##id> \
{ \
template <class operand> \
struct operator_function : function \
{ \
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const \
{ \
tuple args(ref(arguments, ref::increment_count)); \
\
return BOOST_PYTHON_CONVERSION::to_python( \
oper(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<operand>()))); \
} \
\
const char* description() const \
{ return "__" #id "__"; } \
}; \
\
static const char * name() { return "__" #id "__"; } \
}
PY_DEFINE_BINARY_OPERATORS(add, +);
PY_DEFINE_BINARY_OPERATORS(sub, -);
PY_DEFINE_BINARY_OPERATORS(mul, *);
PY_DEFINE_BINARY_OPERATORS(div, /);
PY_DEFINE_BINARY_OPERATORS(mod, %);
PY_DEFINE_BINARY_OPERATORS(lshift, <<);
PY_DEFINE_BINARY_OPERATORS(rshift, >>);
PY_DEFINE_BINARY_OPERATORS(and, &);
PY_DEFINE_BINARY_OPERATORS(xor, ^);
PY_DEFINE_BINARY_OPERATORS(or, |);
PY_DEFINE_UNARY_OPERATORS(neg, -);
PY_DEFINE_UNARY_OPERATORS(pos, +);
PY_DEFINE_UNARY_OPERATORS(abs, abs);
PY_DEFINE_UNARY_OPERATORS(invert, ~);
PY_DEFINE_UNARY_OPERATORS(int, long);
PY_DEFINE_UNARY_OPERATORS(long, PyLong_FromLong);
PY_DEFINE_UNARY_OPERATORS(float, double);
#undef PY_DEFINE_BINARY_OPERATORS
#undef PY_DEFINE_UNARY_OPERATORS
// Some operators need special treatment, e.g. because there is no corresponding
// expression in C++. These are specialized manually.
// pow(): Manual specialization needed because an error message is required if this
// function is called with three arguments. The "power modulo" operator is not
// supported by define_operator, but can be wrapped manually (see special.html).
template <>
struct define_operator<op_pow>
{
template <class Left, class Right = Left>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
if (args.size() == 3 && args[2]->ob_type != Py_None->ob_type)
{
PyErr_SetString(PyExc_TypeError, "expected 2 arguments, got 3");
throw argument_error();
}
return BOOST_PYTHON_CONVERSION::to_python(
pow(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()),
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())));
}
const char* description() const
{ return "__pow__"; }
};
template <class Right, class Left>
struct roperator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
if (args.size() == 3 && args[2]->ob_type != Py_None->ob_type)
{
PyErr_SetString(PyExc_TypeError, "bad operand type(s) for pow()");
throw argument_error();
}
return BOOST_PYTHON_CONVERSION::to_python(
pow(BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()),
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())));
}
const char* description() const
{ return "__rpow__"; }
};
static const char * name() { return "__pow__"; }
static const char * rname() { return "__rpow__"; }
};
// divmod(): Manual specialization needed because we must actually call two operators and
// return a tuple containing both results
template <>
struct define_operator<op_divmod>
{
template <class Left, class Right = Left>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
PyObject * res = PyTuple_New(2);
PyTuple_SET_ITEM(res, 0,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) /
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())));
PyTuple_SET_ITEM(res, 1,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) %
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())));
return res;
}
const char* description() const
{ return "__divmod__"; }
};
template <class Right, class Left>
struct roperator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
PyObject * res = PyTuple_New(2);
PyTuple_SET_ITEM(res, 0,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) /
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())));
PyTuple_SET_ITEM(res, 1,
BOOST_PYTHON_CONVERSION::to_python(
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) %
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())));
return res;
}
const char* description() const
{ return "__rdivmod__"; }
};
static const char * name() { return "__divmod__"; }
static const char * rname() { return "__rdivmod__"; }
};
// cmp(): Manual specialization needed because there is no three-way compare in C++.
// It is implemented by two one-way comparisons with operators reversed in the second.
template <>
struct define_operator<op_cmp>
{
template <class Left, class Right = Left>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
return BOOST_PYTHON_CONVERSION::to_python(
(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>()) <
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>())) ?
- 1 :
(BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Right>()) <
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Left>())) ?
1 :
0) ;
}
const char* description() const
{ return "__cmp__"; }
};
template <class Right, class Left>
struct roperator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject* /* keywords */) const
{
tuple args(ref(arguments, ref::increment_count));
return BOOST_PYTHON_CONVERSION::to_python(
(BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>()) <
BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>())) ?
- 1 :
(BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<Right>()) <
BOOST_PYTHON_CONVERSION::from_python(args[1].get(), boost::python::type<Left>())) ?
1 :
0) ;
}
const char* description() const
{ return "__rcmp__"; }
};
static const char * name() { return "__cmp__"; }
static const char * rname() { return "__rcmp__"; }
};
# ifndef BOOST_PYTHON_USE_SSTREAM
class unfreezer {
public:
unfreezer(std::ostrstream& s) : m_stream(s) {}
~unfreezer() { m_stream.freeze(false); }
private:
std::ostrstream& m_stream;
};
# endif
// str(): Manual specialization needed because the string conversion does not follow
// the standard pattern relized by the macros.
template <>
struct define_operator<op_str>
{
template <class operand>
struct operator_function : function
{
PyObject* do_call(PyObject* arguments, PyObject*) const
{
tuple args(ref(arguments, ref::increment_count));
// When STLport is used with native streams, _STL::ostringstream().str() is not
// _STL::string, but std::string.
# ifdef BOOST_PYTHON_USE_SSTREAM
std::ostringstream s;
s << BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<operand>());
return BOOST_PYTHON_CONVERSION::to_python(s.str());
# else
std::ostrstream s;
s << BOOST_PYTHON_CONVERSION::from_python(args[0].get(), boost::python::type<operand>()) << char();
auto unfreezer unfreeze(s);
return BOOST_PYTHON_CONVERSION::to_python(const_cast<char const *>(s.str()));
# endif
}
const char* description() const
{ return "__str__"; }
};
static const char * name() { return "__str__"; }
};
} // namespace detail
}} // namespace boost::python
# undef BOOST_PYTHON_USE_SSTREAM
#endif /* OPERATORS_UK112000_H_ */

View File

@@ -1,173 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#ifndef PYPTR_DWA050400_H_
# define PYPTR_DWA050400_H_
# include <boost/python/detail/config.hpp>
# include <boost/operators.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/detail/cast.hpp>
# include <cassert>
# include <boost/python/detail/signatures.hpp>
# include <boost/python/errors.hpp>
# include <boost/python/conversions.hpp>
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
template <class T, class Value, class Base>
struct py_ptr_conversions : Base
{
inline friend T from_python(PyObject* x, boost::python::type<const T&>)
{ return T(boost::python::downcast<Value>(x).get(), T::increment_count); }
inline friend T from_python(PyObject* x, boost::python::type<T>)
{ return T(boost::python::downcast<Value>(x).get(), T::increment_count); }
inline friend PyObject* to_python(T x)
{ return boost::python::as_object(x.release()); }
};
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
BOOST_PYTHON_IMPORT_CONVERSION(py_ptr_conversions);
template <class T>
class reference
: public py_ptr_conversions<reference<T>, T,
boost::dereferenceable<reference<T>, T*> > // supplies op->
{
public:
typedef T value_type;
reference(const reference& rhs)
: m_p(rhs.m_p)
{
Py_XINCREF(object());
}
#if !defined(BOOST_MSVC6_OR_EARLIER)
template <class T2>
reference(const reference<T2>& rhs)
: m_p(rhs.object())
{
Py_XINCREF(object());
}
#endif
reference() : m_p(0) {}
// These are two ways of spelling the same thing, that we need to increment
// the reference count on the pointer when we're initialized.
enum increment_count_t { increment_count };
enum allow_null { null_ok };
template <class T2>
explicit reference(T2* x)
: m_p(expect_non_null(x)) {}
template <class T2>
reference(T2* x, increment_count_t)
: m_p(expect_non_null(x)) { Py_INCREF(object()); }
template <class T2>
reference(T2* x, allow_null)
: m_p(x) {}
template <class T2>
reference(T2* x, allow_null, increment_count_t)
: m_p(x) { Py_XINCREF(object()); }
template <class T2>
reference(T2* x, increment_count_t, allow_null)
: m_p(x) { Py_XINCREF(object()); }
#if !defined(BOOST_MSVC6_OR_EARLIER)
template <class T2>
reference& operator=(const reference<T2>& rhs)
{
Py_XDECREF(object());
m_p = rhs.m_p;
Py_XINCREF(object());
return *this;
}
#endif
reference& operator=(const reference& rhs)
{
Py_XINCREF(static_cast<PyObject*>(rhs.m_p));
Py_XDECREF(object());
m_p = rhs.m_p;
return *this;
}
~reference()
{
Py_XDECREF(m_p);
}
T& operator*() const { return *m_p; }
T* get() const { return m_p; }
T* release()
{
T* p = m_p;
m_p = 0;
return p;
}
void reset()
{ Py_XDECREF(m_p); m_p = 0; }
template <class T2>
void reset(T2* x)
{ Py_XDECREF(m_p); m_p = expect_non_null(x);}
template <class T2>
void reset(T2* x, increment_count_t)
{ Py_XDECREF(m_p); m_p = expect_non_null(x); Py_INCREF(object()); }
template <class T2>
void reset(T2* x, allow_null)
{ Py_XDECREF(m_p); m_p = x;}
template <class T2>
void reset(T2* x, allow_null, increment_count_t)
{ Py_XDECREF(m_p); m_p = x; Py_XINCREF(object()); }
template <class T2>
void reset(T2* x, increment_count_t, allow_null)
{ Py_XDECREF(m_p); m_p = x; Py_XINCREF(object()); }
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
private:
template<typename Y> friend class shared_ptr;
#endif
inline PyObject* object() const
{ return as_object(m_p); }
T* m_p;
};
typedef reference<PyObject> ref;
template <class T>
ref make_ref(const T& x)
{
return ref(to_python(x));
}
}} // namespace boost::python
#endif // PYPTR_DWA050400_H_

View File

@@ -1,217 +0,0 @@
2000-11-22 10:00
Ullrich fixed bug in operator_dispatcher<op_long>.
2000-11-21 10:00
Changed all class and function names into lower_case.
Ullrich updated documentation for operator wrapping.
2000-11-20 10:00
Ullrich renamed ExtensionClass:register_coerce() into
ExtensionClass:def_standard_coerce() and made it public
Ullrich improved shared_pod_manager.
2000-11-17 15:04
Changed allocation strategy of shared_pod_manager to make it portable.
Added pickling support + tests thanks to "Ralf W. Grosse-Kunstleve"
<rwgk@cci.lbl.gov>
Added a specialization of Callback<const char*> to prevent unsafe usage.
Fixed Ullrich's operator_dispatcher refcount bug
Removed const char* return values from virtual functions in tests; that
usage was unsafe.
Ullrich changed Module::add() so that it steals a reference (fix of refcount bug)
Ullrich added operator_dispatcher::create() optimization
Ullrich changed design and implementation of TypeObjectBase::enable() (to eliminate low-level
code) and added shared_pod_manager optimization.
2000-11-15 12:01
Fixed refcount bugs in operator calls.
Added callback_adjust_refcount(PyObject*, Type<T>) to account for different ownership
semantics of Callback's return types and Caller's arguments (which both use from_python())
This bug caused refcount errors during operator calls.
Moved operator_dispatcher into extclass.cpp
Gave it shared ownership of the objects it wraps
Introduced sequence points in extension_class_coerce for exception-safety
UPPER_CASE_MACRO_NAMES
MixedCase template type argument names
Changed internal error reporting to use Python exceptions so we don't force the
user to link in iostreams code
Changed error return value of call_cmp to -1
Moved unwrap_* functions out of operator_dispatcher. This was transitional: when
I realized they didn't need to be declared in extclass.h I moved them out, but
now that operator_dispatcher itself is in extclass.cpp they could go back in.
Numerous formatting tweaks
Updated the BoundFunction::create() optimization and enabled it so it could actually be used!
2000-11-15 00:26
Made Ullrich's operators support work with MSVC
Cleaned up operators.h such that invalid define_operator<0> is no longer needed.
Ullrich created operators.h to support wrapping of C++ operators (including the "__r*__" forms).
He added several auxiliary classes to extclass.h and extclass.cpp (most importantly,
py::detail::operator_dispatcher and py::operators)
2000-11-13 22:29
removed obsolete ExtensionClassFromPython for good.
removed unused class ExtensionType forward declaration
2000-11-12 13:08
Added enum_as_int_converters for easier enum wrapping
Introduced new conversion namespace macros:
PY_BEGIN_CONVERSION_NAMESPACE,
PY_END_CONVERSION_NAMESPACE,
PY_CONVERSION
callback.h, gen_callback.py:
Added call() function so that a regular python function (as opposed to
method or other function-as-attribute) can be called.
Added newlines for readability.
class_wrapper.h:
Fixed a bug in add(), which allows non-method class attributes
Ullrich has added def_raw for simple varargs and keyword support.
Fixed version number check for __MWERKS__
Added tests for enums and non-method class attributes
objects.h/objects.cpp:
Added py::String operator*= and operator* for repetition
Change Dict::items(), keys(), and values() to return a List
Added template versions of set_item, etc., methods so that users can optionally
use C++ types that have to_python() functions as parameters.
Changed various Ptr by-value parameters to const Ptr&
======= Release =======
2000-11-06 0:22
Lots of documentation updates
added 4-argument template constructor to py::Tuple
added "add" member function to ClassWrapper<> to allow arbitrary Python
objects to be added to an extension class.
gen_all.py now generates support for n argument member functions and n+1
argument member functions at the suggestion of "Ralf W. Grosse-Kunstleve"
<rwgk@cci.lbl.gov>
Added regression tests and re-ordered declare_base calls to verify that the
phantom base class issue is resolved.
2000-11-04 17:35
Integrated Ullrich Koethe's brilliant from_python_experiment for better
error-reporting in many cases.
extclass.h, gen_extclass.py:
removed special-case MSVC code
added much commentary
removed unused py_copy_to_new_value_holder
init_function.h, gen_init_function.py:
added missing 'template' keyword on type-dependent template member usage
removed special-case MSVC code
added much commentary
2000-11-04 0:36
Removed the need for the phantom base class that screwed up inheritance
hierarchies, introduced error-prone ordering dependencies, and complexified
logic in many places!
extclass.h: Added some explanatory comments, removed wasteful m_self member
of HeldInstance
extclass_demo.cpp: Added #pragmas which allow compilation in ansi strict
mode under Metrowerks
functions.h: Added virtual_function as part of phantom base class removal;
expanded commentary
pyptr.h: Added some missing 'typename's and a GCC workaround fix
subclass.cpp: Added missing string literal const_cast<>s.
2000-11-03 10:58
Fix friend function instantiation bug caught by Metrowerks (thanks
Metrowerks!)
Add proof-of-concept for one technique of wrapping function that return a
pointer
Worked around MSVC optimizer bug by writing to_python(double) and
to_python(float) out-of-line
2000-11-02 23:25
Add /Zm200 option to vc6_prj to deal with MSVC resource limitations
Remove conflicting /Ot option from vc6_prj release build
======= Release =======
2000-11-02 17:42
Added a fix for interactions between default virtual function
implementations and declare_base(). You still need to write your
declare_base() /after/ all member functions have been def()d for the two
classes concerned. Many, many thanks to Ullrich Koethe
<koethe@informatik.uni-hamburg.de> for all his work on this.
Added missing conversions:
to_python(float)
from_python(const char* const&)
from_python(const double&)
from_python(const float&)
Added a Regression test for a reference-counting bug thanks to Mark Evans
(<mark.evans@clarisay.com>)
const-ify ClassBase::getattr()
Add repr() function to Class<T>
Add to_python/from_python conversions for PyPtr<T>
Standardize set_item/get_item interfaces (instead of proxies) for Dict and List
Add Reprable<> template to newtypes.h
Fix a bug wherein the __module__ attribute would be lost for classes that have a
default virtual function implementation.
Remove extra ';' in module.cpp thanks to "Ralf W. Grosse-Kunstleve"
<rwgk@cci.lbl.gov>
Fix a bug in the code of example1.html

View File

@@ -1,931 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// 04 Mar 01 Rolled in const_cast from Dragon fork (Dave Abrahams)
// 03 Mar 01 added: pickle safety measures (Ralf W. Grosse-Kunstleve)
// 03 Mar 01 bug fix: use bound_function::create() (instead of new bound_function)
#include <boost/python/classes.hpp>
#include <boost/python/detail/functions.hpp>
#include <boost/python/detail/singleton.hpp>
#include <cstddef>
#include <boost/python/callback.hpp>
#include <cstring>
#include <boost/python/module_builder.hpp>
namespace boost { namespace python {
namespace detail {
void enable_named_method(boost::python::detail::class_base* type_obj, const char* name);
}
namespace {
// Add the name of the module currently being loaded to the name_space with the
// key "__module__". If no module is being loaded, or if name_space already has
// a key "__module", has no effect. This is not really a useful public
// interface; it's just used for class_t<>::class_t() below.
void add_current_module_name(dictionary&);
bool is_prefix(const char* s1, const char* s2);
bool is_special_name(const char* name);
void enable_special_methods(boost::python::detail::class_base* derived, const tuple& bases, const dictionary& name_space);
void report_ignored_exception(PyObject* source)
{
// This bit of code copied wholesale from classobject.c in the Python source.
PyObject *f, *t, *v, *tb;
PyErr_Fetch(&t, &v, &tb);
f = PySys_GetObject(const_cast<char*>("stderr"));
if (f != NULL)
{
PyFile_WriteString(const_cast<char*>("Exception "), f);
if (t) {
PyFile_WriteObject(t, f, Py_PRINT_RAW);
if (v && v != Py_None) {
PyFile_WriteString(const_cast<char*>(": "), f);
PyFile_WriteObject(v, f, 0);
}
}
PyFile_WriteString(const_cast<char*>(" in "), f);
PyFile_WriteObject(source, f, 0);
PyFile_WriteString(const_cast<char*>(" ignored\n"), f);
PyErr_Clear(); /* Just in case */
}
Py_XDECREF(t);
Py_XDECREF(v);
Py_XDECREF(tb);
}
//
// pickle support courtesy of "Ralf W. Grosse-Kunstleve" <rwgk@cci.lbl.gov>
//
PyObject* class_reduce(PyObject* klass)
{
return PyObject_GetAttrString(klass, const_cast<char*>("__name__"));
}
ref global_class_reduce()
{
return ref(detail::new_wrapped_function(class_reduce));
}
tuple instance_reduce(PyObject* obj)
{
ref instance_class(PyObject_GetAttrString(obj, const_cast<char*>("__class__")));
ref getinitargs(PyObject_GetAttrString(obj, const_cast<char*>("__getinitargs__")),
ref::null_ok);
PyErr_Clear();
ref initargs;
if (getinitargs.get() != 0)
{
initargs = ref(PyEval_CallObject(getinitargs.get(), NULL));
initargs = ref(PySequence_Tuple(initargs.get()));
}
else
{
initargs = ref(PyTuple_New(0));
}
ref getstate(PyObject_GetAttrString(obj, const_cast<char*>("__getstate__")),
ref::null_ok);
PyErr_Clear();
ref dict(PyObject_GetAttrString(obj, const_cast<char*>("__dict__")), ref::null_ok);
PyErr_Clear();
if (getstate.get() != 0)
{
if (dict.get() != 0 && dictionary(dict).size() > 0)
{
ref getstate_manages_dict(PyObject_GetAttrString(instance_class.get(), const_cast<char*>("__getstate_manages_dict__")), ref::null_ok);
PyErr_Clear();
if (getstate_manages_dict.get() == 0)
{
PyErr_SetString(PyExc_RuntimeError, "Incomplete pickle support (__getstate_manages_dict__ not set)");
throw error_already_set();
}
}
ref state = ref(PyEval_CallObject(getstate.get(), NULL));
return tuple(instance_class, initargs, state);
}
if (getinitargs.get() == 0)
{
ref dict_defines_state(PyObject_GetAttrString(instance_class.get(), const_cast<char*>("__dict_defines_state__")), ref::null_ok);
PyErr_Clear();
if (dict_defines_state.get() == 0)
{
PyErr_SetString(PyExc_RuntimeError, "Incomplete pickle support (__dict_defines_state__ not set)");
throw error_already_set();
}
}
if (dict.get() != 0 && dictionary(dict).size() > 0)
{
return tuple(instance_class, initargs, dict);
}
return tuple(instance_class, initargs);
}
ref global_instance_reduce()
{
return ref(detail::new_wrapped_function(instance_reduce));
}
}
namespace detail {
class_base::class_base(PyTypeObject* meta_class_obj, string name, tuple bases, const dictionary& name_space)
: type_object_base(meta_class_obj),
m_name(name),
m_bases(bases),
m_name_space(name_space)
{
this->tp_name = const_cast<char*>(name.c_str());
enable(type_object_base::getattr);
enable(type_object_base::setattr);
add_current_module_name(m_name_space);
static const boost::python::string docstr("__doc__", boost::python::string::interned);
if (PyDict_GetItem(m_name_space.get(), docstr.get())== 0)
{
PyDict_SetItem(m_name_space.get(), docstr.get(), Py_None);
}
enable_special_methods(this, bases, name_space);
}
void class_base::add_base(ref base)
{
tuple new_bases(m_bases.size() + 1);
for (std::size_t i = 0; i < m_bases.size(); ++i)
new_bases.set_item(i, m_bases[i]);
new_bases.set_item(m_bases.size(), base);
m_bases = new_bases;
}
PyObject* class_base::getattr(const char* name)
{
if (!BOOST_CSTD_::strcmp(name, "__dict__"))
{
PyObject* result = m_name_space.get();
Py_INCREF(result);
return result;
}
if (!BOOST_CSTD_::strcmp(name, "__bases__"))
{
PyObject* result = m_bases.get();
Py_INCREF(result);
return result;
}
if (!BOOST_CSTD_::strcmp(name, "__name__"))
{
PyObject* result = m_name.get();
Py_INCREF(result);
return result;
}
// pickle support courtesy of "Ralf W. Grosse-Kunstleve" <rwgk@cci.lbl.gov>
if (!BOOST_CSTD_::strcmp(name, "__safe_for_unpickling__"))
{
return PyInt_FromLong(1);
}
if (!BOOST_CSTD_::strcmp(name, "__reduce__"))
{
ref target(as_object(this), ref::increment_count);
return bound_function::create(target, global_class_reduce());
}
ref local_attribute = m_name_space.get_item(string(name).reference());
if (local_attribute.get())
return local_attribute.release();
// In case there are no bases...
PyErr_SetString(PyExc_AttributeError, name);
// Check bases
for (std::size_t i = 0; i < m_bases.size(); ++i)
{
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear(); // we're going to try a base class
else if (PyErr_Occurred())
break; // Other errors count, though!
PyObject* base_attribute = PyObject_GetAttrString(m_bases[i].get(), const_cast<char*>(name));
if (base_attribute != 0)
{
// Unwind the actual underlying function from unbound Python class
// methods in case of multiple inheritance from real Python
// classes. Python stubbornly insists that the first argument to a
// method must be a true Python instance object otherwise. Do not
// unwrap bound methods; that would interfere with intended semantics.
if (PyMethod_Check(base_attribute)
&& reinterpret_cast<PyMethodObject*>(base_attribute)->im_self == 0)
{
PyObject* function
= reinterpret_cast<PyMethodObject*>(base_attribute)->im_func;
Py_INCREF(function);
Py_DECREF(base_attribute);
return function;
}
else
{
return base_attribute;
}
}
}
return 0;
}
// Mostly copied wholesale from Python's classobject.c
PyObject* class_base::repr() const
{
PyObject *mod = PyDict_GetItemString(
m_name_space.get(), const_cast<char*>("__module__"));
unsigned long address = reinterpret_cast<unsigned long>(this);
string result = (mod == NULL || !PyString_Check(mod))
? string("<extension class %s at %lx>") % tuple(m_name, address)
: string("<extension class %s.%s at %lx>") % tuple(ref(mod, ref::increment_count), m_name, address);
return result.reference().release();
}
int class_base::setattr(const char* name, PyObject* value)
{
if (is_special_name(name)
&& BOOST_CSTD_::strcmp(name, "__doc__") != 0
&& BOOST_CSTD_::strcmp(name, "__name__") != 0)
{
boost::python::string message("Special attribute names other than '__doc__' and '__name__' are read-only, in particular: ");
PyErr_SetObject(PyExc_TypeError, (message + name).get());
throw error_already_set();
}
if (PyCallable_Check(value))
detail::enable_named_method(this, name);
return PyDict_SetItemString(
m_name_space.reference().get(), const_cast<char*>(name), value);
}
bool class_base::initialize_instance(instance* obj, PyObject* args, PyObject* keywords)
{
// Getting the init function off the obj should result in a
// bound method.
PyObject* const init_function = obj->getattr("__init__", false);
if (init_function == 0)
{
if (PyErr_Occurred() && PyErr_ExceptionMatches(PyExc_AttributeError)) {
PyErr_Clear(); // no __init__? That's legal.
}
else {
return false; // Something else? Keep the error
}
}
else
{
// Manage the reference to the bound function
ref init_function_holder(init_function);
// Declare a ref to manage the result of calling __init__ (which should be None).
ref init_result(
PyEval_CallObjectWithKeywords(init_function, args, keywords));
}
return true;
}
void class_base::instance_dealloc(PyObject* obj) const
{
Py_INCREF(obj); // This allows a __del__ function to revive the obj
PyObject* exc_type;
PyObject* exc_value;
PyObject* exc_traceback;
PyErr_Fetch(&exc_type, &exc_value, &exc_traceback);
// This scope ensures that the reference held by del_function doesn't release
// the last reference and delete the object recursively (infinitely).
{
ref del_function;
try {
instance* const target = boost::python::downcast<boost::python::instance>(obj);
del_function = ref(target->getattr("__del__", false), ref::null_ok);
}
catch(...) {
}
if (del_function.get() != 0)
{
ref result(PyEval_CallObject(del_function.get(), (PyObject *)NULL), ref::null_ok);
if (result.get() == NULL)
report_ignored_exception(del_function.get());
}
}
PyErr_Restore(exc_type, exc_value, exc_traceback);
if (--obj->ob_refcnt <= 0)
delete_instance(obj);
}
}
instance::instance(PyTypeObject* class_)
: boost::python::detail::base_object<PyObject>(class_)
{
}
instance::~instance()
{
}
PyObject* instance::getattr(const char* name, bool use_special_function)
{
if (!BOOST_CSTD_::strcmp(name, "__dict__"))
{
if (PyEval_GetRestricted()) {
PyErr_SetString(PyExc_RuntimeError,
"instance.__dict__ not accessible in restricted mode");
return 0;
}
Py_INCREF(m_name_space.get());
return m_name_space.get();
}
if (!BOOST_CSTD_::strcmp(name, "__class__"))
{
Py_INCREF(this->ob_type);
return as_object(this->ob_type);
}
if (!BOOST_CSTD_::strcmp(name, "__reduce__"))
{
return detail::bound_function::create(ref(this, ref::increment_count), global_instance_reduce());
}
ref local_attribute = m_name_space.get_item(string(name).reference());
if (local_attribute.get())
return local_attribute.release();
// Check its class.
PyObject* function =
PyObject_GetAttrString(as_object(this->ob_type), const_cast<char*>(name));
if (function == 0 && !use_special_function)
{
return 0;
}
ref class_attribute;
if (function != 0)
{
// This will throw if the attribute wasn't found
class_attribute = ref(function);
}
else
{
// Clear the error while we try special methods method (if any).
PyErr_Clear();
// First we try the special method that comes from concatenating
// "__getattr__" and <name> and 2 trailing underscores. This is an
// extension to regular Python class functionality.
const string specific_getattr_name(detail::getattr_string() + name + "__");
PyObject* getattr_method = PyObject_GetAttr(
as_object(this->ob_type), specific_getattr_name.get());
// Use just the first arg to PyEval_CallFunction if found
char* arg_format = const_cast<char*>("(O)");
// Try for the regular __getattr__ method if not found
if (getattr_method == 0)
{
PyErr_Clear();
getattr_method = PyObject_GetAttrString(
as_object(this->ob_type), const_cast<char*>("__getattr__"));
// Use both args to PyEval_CallFunction
arg_format = const_cast<char*>("(Os)");
}
// If there is no such method, throw now.
if (PyErr_Occurred())
{
PyErr_SetString(PyExc_AttributeError, name);
return 0;
}
// Take ownership of the method
ref owner(getattr_method);
// Call it to get the attribute.
return PyEval_CallFunction(getattr_method, arg_format, this, name);
}
if (!PyCallable_Check(class_attribute.get()))
{
PyErr_Clear();
return class_attribute.release();
}
else
{
return detail::bound_function::create(ref(this, ref::increment_count), class_attribute);
}
}
// instance::setattr_dict
//
// Implements setattr() functionality for the "__dict__" attribute
//
int instance::setattr_dict(PyObject* value)
{
if (PyEval_GetRestricted())
{
PyErr_SetString(PyExc_RuntimeError,
"__dict__ not accessible in restricted mode");
return -1;
}
if (value == 0 || !PyDict_Check(value))
{
PyErr_SetString(PyExc_TypeError,
"__dict__ must be set to a dictionary");
return -1;
}
m_name_space = dictionary(ref(value, ref::increment_count));
return 0;
}
// instance::setattr -
//
// Implements the setattr() and delattr() functionality for our own instance
// objects, using the standard Python interface: if value == 0, we are deleting
// the attribute, and returns 0 unless an error occurred.
int instance::setattr(const char* name, PyObject* value)
{
if (BOOST_CSTD_::strcmp(name, "__class__") == 0)
{
PyErr_SetString(PyExc_TypeError, "__class__ attribute is read-only");
throw error_already_set();
}
if (BOOST_CSTD_::strcmp(name, "__dict__") == 0)
return setattr_dict(value);
// Try to find an appropriate "specific" setter or getter method, either
// __setattr__<name>__(value) or __delattr__<name>__(). This is an extension
// to regular Python class functionality.
const string& base_name = value ? detail::setattr_string() : detail::delattr_string();
const string specific_method_name(base_name + name + "__");
ref special_method(
PyObject_GetAttr(as_object(this->ob_type), specific_method_name.get()),
ref::null_ok);
PyObject* result_object = 0;
if (special_method.get() != 0)
{
// The specific function was found; call it now. Note that if value is
// not included in the format string, it is ignored.
char* format_string = const_cast<char*>(value ? "(OO)" : "(O)");
result_object = PyEval_CallFunction(special_method.get(), format_string, this, value);
}
else
{
// If not found, try the usual __setattr__(name, value) or
// __delattr__(name) functions.
PyErr_Clear();
special_method.reset(
PyObject_GetAttr(as_object(this->ob_type), base_name.get()),
ref::null_ok);
if (special_method.get() != 0)
{
// The special function was found; call it now. Note that if value
// is not included in the format string, it is ignored.
char* format_string = const_cast<char*>(value ? "(OsO)" : "(Os)");
result_object = PyEval_CallFunction(
special_method.get(), format_string, this, name, value);
}
}
// If we found an appropriate special method, handle the return value.
if (special_method.get() != 0)
{
ref manage_result(result_object);
return 0;
}
PyErr_Clear(); // Nothing was found; clear the python error state
if (value == 0) // Try to remove the attribute from our name space
{
const int result = PyDict_DelItemString(m_name_space.reference().get(),
const_cast<char*>(name));
if (result < 0)
{
PyErr_Clear();
PyErr_SetString(PyExc_AttributeError, "delete non-existing instance attribute");
}
return result;
}
else // Change the specified item in our name space
{
return PyDict_SetItemString(m_name_space.reference().get(),
const_cast<char*>(name), value);
}
}
PyObject* instance::call(PyObject* args, PyObject* keywords)
{
return PyEval_CallObjectWithKeywords(
ref(getattr("__call__")).get(), // take possession of the result from getattr()
args, keywords);
}
PyObject* instance::repr()
{
return callback<PyObject*>::call_method(this, "__repr__");
}
int instance::compare(PyObject* other)
{
return callback<int>::call_method(this, "__cmp__", other);
}
PyObject* instance::str()
{
return callback<PyObject*>::call_method(this, "__str__");
}
long instance::hash()
{
return callback<long>::call_method(this, "__hash__");
}
int instance::length()
{
return callback<int>::call_method(this, "__len__");
}
PyObject* instance::get_subscript(PyObject* key)
{
return callback<PyObject*>::call_method(this, "__getitem__", key);
}
void instance::set_subscript(PyObject* key, PyObject* value)
{
if (value == 0)
callback<void>::call_method(this, "__delitem__", key);
else
callback<void>::call_method(this, "__setitem__", key, value);
}
PyObject* instance::get_slice(int start, int finish)
{
return callback<PyObject*>::call_method(this, "__getslice__", start, finish);
}
void instance::set_slice(int start, int finish, PyObject* value)
{
if (value == 0)
callback<void>::call_method(this, "__delslice__", start, finish);
else
callback<void>::call_method(this, "__setslice__", start, finish, value);
}
PyObject* instance::add(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__add__", other);
}
PyObject* instance::subtract(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__sub__", other);
}
PyObject* instance::multiply(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__mul__", other);
}
PyObject* instance::divide(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__div__", other);
}
PyObject* instance::remainder(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__mod__", other);
}
PyObject* instance::divmod(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__divmod__", other);
}
PyObject* instance::power(PyObject* exponent, PyObject* modulus)
{
if (as_object(modulus->ob_type) == Py_None)
return callback<PyObject*>::call_method(this, "__pow__", exponent);
else
return callback<PyObject*>::call_method(this, "__pow__", exponent, modulus);
}
PyObject* instance::negative()
{
return callback<PyObject*>::call_method(this, "__neg__");
}
PyObject* instance::positive()
{
return callback<PyObject*>::call_method(this, "__pos__");
}
PyObject* instance::absolute()
{
return callback<PyObject*>::call_method(this, "__abs__");
}
int instance::nonzero()
{
return callback<bool>::call_method(this, "__nonzero__");
}
PyObject* instance::invert()
{
return callback<PyObject*>::call_method(this, "__invert__");
}
PyObject* instance::lshift(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__lshift__", other);
}
PyObject* instance::rshift(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__rshift__", other);
}
PyObject* instance::do_and(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__and__", other);
}
PyObject* instance::do_xor(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__xor__", other);
}
PyObject* instance::do_or(PyObject* other)
{
return callback<PyObject*>::call_method(this, "__or__", other);
}
int instance::coerce(PyObject** x, PyObject** y)
{
assert(this == *x);
// Coerce must return a tuple
tuple result(callback<tuple>::call_method(this, "__coerce__", *y));
*x = result[0].release();
*y = result[1].release();
return 0;
}
PyObject* instance::as_int()
{
return callback<PyObject*>::call_method(this, "__int__");
}
PyObject* instance::as_long()
{
return callback<PyObject*>::call_method(this, "__long__");
}
PyObject* instance::as_float()
{
return callback<PyObject*>::call_method(this, "__float__");
}
PyObject* instance::oct()
{
return callback<PyObject*>::call_method(this, "__oct__");
}
PyObject* instance::hex()
{
return callback<PyObject*>::call_method(this, "__hex__");
}
namespace {
struct named_capability
{
const char* name;
detail::type_object_base::capability capability;
};
const named_capability enablers[] =
{
{ "__hash__", detail::type_object_base::hash },
{ "__cmp__", detail::type_object_base::compare },
{ "__repr__", detail::type_object_base::repr },
{ "__str__", detail::type_object_base::str },
{ "__call__", detail::type_object_base::call },
{ "__getattr__", detail::type_object_base::getattr },
{ "__setattr__", detail::type_object_base::setattr },
{ "__len__", detail::type_object_base::mapping_length },
{ "__len__", detail::type_object_base::sequence_length },
{ "__getitem__", detail::type_object_base::mapping_subscript },
{ "__getitem__", detail::type_object_base::sequence_item },
{ "__setitem__", detail::type_object_base::mapping_ass_subscript },
{ "__setitem__", detail::type_object_base::sequence_ass_item },
{ "__delitem__", detail::type_object_base::mapping_ass_subscript },
{ "__delitem__", detail::type_object_base::sequence_ass_item },
{ "__getslice__", detail::type_object_base::sequence_slice },
{ "__setslice__", detail::type_object_base::sequence_ass_slice },
{ "__delslice__", detail::type_object_base::sequence_ass_slice },
{ "__add__", detail::type_object_base::number_add },
{ "__sub__", detail::type_object_base::number_subtract },
{ "__mul__", detail::type_object_base::number_multiply },
{ "__div__", detail::type_object_base::number_divide },
{ "__mod__", detail::type_object_base::number_remainder },
{ "__divmod__", detail::type_object_base::number_divmod },
{ "__pow__", detail::type_object_base::number_power },
{ "__neg__", detail::type_object_base::number_negative },
{ "__pos__", detail::type_object_base::number_positive },
{ "__abs__", detail::type_object_base::number_absolute },
{ "__nonzero__", detail::type_object_base::number_nonzero },
{ "__invert__", detail::type_object_base::number_invert },
{ "__lshift__", detail::type_object_base::number_lshift },
{ "__rshift__", detail::type_object_base::number_rshift },
{ "__and__", detail::type_object_base::number_and },
{ "__xor__", detail::type_object_base::number_xor },
{ "__or__", detail::type_object_base::number_or },
{ "__coerce__", detail::type_object_base::number_coerce },
{ "__int__", detail::type_object_base::number_int },
{ "__long__", detail::type_object_base::number_long },
{ "__float__", detail::type_object_base::number_float },
{ "__oct__", detail::type_object_base::number_oct },
{ "__hex__", detail::type_object_base::number_hex }
};
bool is_prefix(const char* s1, const char* s2)
{
while (*s1 != 0 && *s2 != 0 && *s1 == *s2)
++s1, ++s2;
return *s1 == 0;
}
bool is_special_name(const char* name)
{
if (name[0] != '_' || name[1] != '_' || name[2] == 0 || name[3] == 0)
return false;
std::size_t name_length = BOOST_CSTD_::strlen(name);
return name[name_length - 1] == '_' && name[name_length - 2] == '_';
}
}
namespace detail {
// Enable the special handler for methods of the given name, if any.
void enable_named_method(boost::python::detail::class_base* type_obj, const char* name)
{
const std::size_t num_enablers = sizeof(enablers) / sizeof(enablers[0]);
// Make sure this ends with "__" since we'll only compare the head of the
// string. This is done to make the __getattr__<name>__/__setattr__<name>__
// extension work.
if (!is_special_name(name))
return;
for (std::size_t i = 0; i < num_enablers; ++i)
{
if (is_prefix(enablers[i].name + 2, name + 2))
{
type_obj->enable(enablers[i].capability);
}
}
}
}
namespace {
// Enable any special methods which are enabled in the base class.
void enable_special_methods(boost::python::detail::class_base* derived, const tuple& bases, const dictionary& name_space)
{
for (std::size_t i = 0; i < bases.size(); ++i)
{
PyObject* base = bases[i].get();
for (std::size_t n = 0; n < PY_ARRAY_LENGTH(enablers); ++n)
{
ref attribute(
PyObject_GetAttrString(base, const_cast<char*>(enablers[n].name)),
ref::null_ok);
PyErr_Clear();
if (attribute.get() != 0 && PyCallable_Check(attribute.get()))
detail::add_capability(enablers[n].capability, derived);
}
}
list keys(name_space.keys());
for (std::size_t j = 0, len = keys.size(); j < len; ++j)
{
string name_obj(keys.get_item(j));
const char* name = name_obj.c_str();
if (!is_special_name(name))
continue;
for (std::size_t i = 0; i < PY_ARRAY_LENGTH(enablers); ++i)
{
if (is_prefix(enablers[i].name + 2, name + 2))
{
detail::add_capability(enablers[i].capability, derived);
}
}
}
}
void add_current_module_name(dictionary& name_space)
{
static string module_key("__module__", string::interned);
// If the user didn't specify a __module__ attribute already
if (name_space.get_item(module_key).get() == 0)
{
if (module_builder::initializing())
{
// The global __name__ is not properly set in this case
name_space.set_item(module_key, module_builder::name());
}
else
{
// Get the module name from the global __name__
PyObject *globals = PyEval_GetGlobals();
if (globals != NULL)
{
PyObject *module_name = PyDict_GetItemString(globals, const_cast<char*>("__name__"));
if (module_name != NULL)
name_space.set_item(module_key, module_name);
}
}
}
}
}
void adjust_slice_indices(PyObject* obj, int& start, int& finish)
{
int length = callback<int>::call_method(obj, "__len__");
// This is standard Python class behavior.
if (start < 0)
start += length;
if (finish < 0)
finish += length;
// This is not
if (start < 0)
start = 0;
if (finish < 0)
finish = 0;
}
namespace detail {
const string& setattr_string()
{
static string x("__setattr__", string::interned);
return x;
}
const string& getattr_string()
{
static string x("__getattr__", string::interned);
return x;
}
const string& delattr_string()
{
static string x("__delattr__", string::interned);
return x;
}
}
}} // namespace boost::python

View File

@@ -1,278 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// 12 Mar 01 Python 1.5.2 fixes (Ralf W. Grosse-Kunstleve)
// 11 Mar 01 std::string *MAY* include nulls (Alex Martelli)
// 04 Mar 01 std::complex<> fixes for MSVC (Dave Abrahams)
// 03 Mar 01 added: converters for [plain] char (Ralf W. Grosse-Kunstleve)
#include <boost/python/conversions.hpp>
#include <typeinfo>
#include <exception>
#ifndef BOOST_NO_LIMITS
# include <boost/cast.hpp>
#endif
namespace boost { namespace python {
// IMPORTANT: this function may only be called from within a catch block!
void handle_exception()
{
try {
// re-toss the current exception so we can find out what type it is.
// NOTE: a heinous bug in MSVC6 causes exception objects re-thrown in
// this way to be double-destroyed. Thus, you must only use objects that
// can tolerate double-destruction with that compiler. Metrowerks
// Codewarrior doesn't suffer from this problem.
throw;
}
catch(const boost::python::error_already_set&)
{
// The python error reporting has already been handled.
}
catch(const std::bad_alloc&)
{
PyErr_NoMemory();
}
catch(const std::exception& x)
{
PyErr_SetString(PyExc_RuntimeError, x.what());
}
catch(...)
{
PyErr_SetString(PyExc_RuntimeError, "unidentifiable C++ exception");
}
}
namespace detail {
void expect_complex(PyObject* p)
{
if (!PyComplex_Check(p))
{
PyErr_SetString(PyExc_TypeError, "expected a complex number");
throw boost::python::argument_error();
}
}
} // namespace boost::python::detail
}} // namespace boost::python
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
long from_python(PyObject* p, boost::python::type<long>)
{
// Why am I clearing the error here before trying to convert? I know there's a reason...
long result;
{
result = PyInt_AsLong(p);
if (PyErr_Occurred())
throw boost::python::argument_error();
}
return result;
}
double from_python(PyObject* p, boost::python::type<double>)
{
double result;
{
result = PyFloat_AsDouble(p);
if (PyErr_Occurred())
throw boost::python::argument_error();
}
return result;
}
template <class T>
T integer_from_python(PyObject* p, boost::python::type<T>)
{
const long long_result = from_python(p, boost::python::type<long>());
#ifndef BOOST_NO_LIMITS
try
{
return boost::numeric_cast<T>(long_result);
}
catch(const boost::bad_numeric_cast&)
#else
if (static_cast<T>(long_result) == long_result)
{
return static_cast<T>(long_result);
}
else
#endif
{
char buffer[256];
const char message[] = "%ld out of range for %s";
sprintf(buffer, message, long_result, typeid(T).name());
PyErr_SetString(PyExc_ValueError, buffer);
throw boost::python::argument_error();
}
#if defined(__MWERKS__) && __MWERKS__ <= 0x2400
return 0; // Not smart enough to know that the catch clause always rethrows
#endif
}
template <class T>
PyObject* integer_to_python(T value)
{
long value_as_long;
#ifndef BOOST_NO_LIMITS
try
{
value_as_long = boost::numeric_cast<long>(value);
}
catch(const boost::bad_numeric_cast&)
#else
value_as_long = static_cast<long>(value);
if (value_as_long != value)
#endif
{
const char message[] = "value out of range for Python int";
PyErr_SetString(PyExc_ValueError, message);
throw boost::python::error_already_set();
}
return to_python(value_as_long);
}
int from_python(PyObject* p, boost::python::type<int> type)
{
return integer_from_python(p, type);
}
PyObject* to_python(unsigned int i)
{
return integer_to_python(i);
}
unsigned int from_python(PyObject* p, boost::python::type<unsigned int> type)
{
return integer_from_python(p, type);
}
short from_python(PyObject* p, boost::python::type<short> type)
{
return integer_from_python(p, type);
}
float from_python(PyObject* p, boost::python::type<float>)
{
return static_cast<float>(from_python(p, boost::python::type<double>()));
}
PyObject* to_python(unsigned short i)
{
return integer_to_python(i);
}
unsigned short from_python(PyObject* p, boost::python::type<unsigned short> type)
{
return integer_from_python(p, type);
}
PyObject* to_python(char c)
{
if (c == '\0') return PyString_FromString("");
return PyString_FromStringAndSize(&c, 1);
}
char from_python(PyObject* p, boost::python::type<char>)
{
int l = -1;
if (PyString_Check(p)) l = PyString_Size(p);
if (l < 0 || l > 1) {
PyErr_SetString(PyExc_TypeError, "expected string of length 0 or 1");
throw boost::python::argument_error();
}
if (l == 0) return '\0';
return PyString_AsString(p)[0];
}
PyObject* to_python(unsigned char i)
{
return integer_to_python(i);
}
unsigned char from_python(PyObject* p, boost::python::type<unsigned char> type)
{
return integer_from_python(p, type);
}
PyObject* to_python(signed char i)
{
return integer_to_python(i);
}
signed char from_python(PyObject* p, boost::python::type<signed char> type)
{
return integer_from_python(p, type);
}
PyObject* to_python(unsigned long x)
{
return integer_to_python(x);
}
unsigned long from_python(PyObject* p, boost::python::type<unsigned long> type)
{
return integer_from_python(p, type);
}
void from_python(PyObject* p, boost::python::type<void>)
{
if (p != Py_None) {
PyErr_SetString(PyExc_TypeError, "expected argument of type None");
throw boost::python::argument_error();
}
}
const char* from_python(PyObject* p, boost::python::type<const char*>)
{
const char* s = PyString_AsString(p);
if (!s)
throw boost::python::argument_error();
return s;
}
PyObject* to_python(const std::string& s)
{
return PyString_FromStringAndSize(s.data(), s.size());
}
std::string from_python(PyObject* p, boost::python::type<std::string>)
{
return std::string(PyString_AsString(p), PyString_Size(p));
}
bool from_python(PyObject* p, boost::python::type<bool>)
{
int value = from_python(p, boost::python::type<int>());
if (value == 0)
return false;
return true;
}
#ifdef BOOST_MSVC6_OR_EARLIER
// An optimizer bug prevents these from being inlined.
PyObject* to_python(double d)
{
return PyFloat_FromDouble(d);
}
PyObject* to_python(float f)
{
return PyFloat_FromDouble(f);
}
#endif // BOOST_MSVC6_OR_EARLIER
BOOST_PYTHON_END_CONVERSION_NAMESPACE

View File

@@ -1,3 +1,13 @@
/* (C) Copyright Ralf W. Grosse-Kunstleve 2001. Permission to copy, use,
modify, sell and distribute this software is granted provided this
copyright notice appears in all copies. This software is provided
"as is" without express or implied warranty, and with no claim as to
its suitability for any purpose.
Revision History:
17 Apr 01 merged into boost CVS trunk (Ralf W. Grosse-Kunstleve)
*/
# include <boost/python/cross_module.hpp>
namespace python = boost::python;
# include <stdio.h> // MSVC6.0SP4 does not know std::fprintf

View File

@@ -1,683 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// 04 Mar 01 Use PyObject_INIT() instead of trying to hand-initialize (David Abrahams)
#include <boost/python/detail/extension_class.hpp>
#include <cstring>
#include <boost/utility.hpp>
namespace boost { namespace python {
namespace detail {
struct operator_dispatcher
: public PyObject
{
static PyTypeObject type_obj;
static PyNumberMethods number_methods;
static operator_dispatcher* create(const ref& o, const ref& s);
ref m_object;
ref m_self;
// data members for allocation/deallocation optimization
operator_dispatcher* m_free_list_link;
static operator_dispatcher* free_list;
private:
// only accessible through create()
operator_dispatcher(const ref& o, const ref& s);
};
operator_dispatcher* operator_dispatcher::free_list = 0;
}}} // namespace boost::python::detail
BOOST_PYTHON_BEGIN_CONVERSION_NAMESPACE
inline PyObject* to_python(boost::python::detail::operator_dispatcher* n) { return n; }
BOOST_PYTHON_END_CONVERSION_NAMESPACE
namespace boost { namespace python {
tuple standard_coerce(ref l, ref r)
{
// Introduced sequence points for exception-safety.
ref first(detail::operator_dispatcher::create(l, l));
ref second(r->ob_type == &detail::operator_dispatcher::type_obj
? r
: ref(detail::operator_dispatcher::create(r, ref())));
return tuple(first, second);
}
namespace detail {
enum { unwrap_exception_code = -1000 };
int unwrap_args(PyObject* left, PyObject* right, PyObject*& self, PyObject*& other)
{
if (left->ob_type != &operator_dispatcher::type_obj ||
right->ob_type != &operator_dispatcher::type_obj)
{
PyErr_SetString(PyExc_RuntimeError, "operator_dispatcher::unwrap_args(): expecting operator_dispatcher arguments only!");
return unwrap_exception_code;
}
typedef reference<operator_dispatcher> DPtr;
DPtr lwrapper(static_cast<operator_dispatcher*>(left), DPtr::increment_count);
DPtr rwrapper(static_cast<operator_dispatcher*>(right), DPtr::increment_count);
if (lwrapper->m_self.get() != 0)
{
self = lwrapper->m_self.get();
other = rwrapper->m_object.get();
return 0;
}
else
{
self = rwrapper->m_self.get();
other = lwrapper->m_object.get();
return 1;
}
}
int unwrap_pow_args(PyObject* left, PyObject* right, PyObject* m,
PyObject*& self, PyObject*& first, PyObject*& second)
{
if (left->ob_type != &operator_dispatcher::type_obj ||
right->ob_type != &operator_dispatcher::type_obj ||
m->ob_type != &operator_dispatcher::type_obj)
{
PyErr_SetString(PyExc_RuntimeError, "operator_dispatcher::unwrap_pow_args(): expecting operator_dispatcher arguments only!");
return unwrap_exception_code;
}
typedef reference<operator_dispatcher> DPtr;
DPtr lwrapper(static_cast<operator_dispatcher*>(left), DPtr::increment_count);
DPtr rwrapper(static_cast<operator_dispatcher*>(right), DPtr::increment_count);
DPtr mwrapper(static_cast<operator_dispatcher*>(m), DPtr::increment_count);
if (lwrapper->m_self.get() != 0)
{
self = lwrapper->m_self.get();
first = rwrapper->m_object.get();
second = mwrapper->m_object.get();
return 0;
}
else if (rwrapper->m_self.get() != 0)
{
self = rwrapper->m_self.get();
first = lwrapper->m_object.get();
second = mwrapper->m_object.get();
return 1;
}
else
{
self = mwrapper->m_self.get();
first = lwrapper->m_object.get();
second = rwrapper->m_object.get();
return 2;
}
}
extension_instance* get_extension_instance(PyObject* p)
{
// The object's type will just be some class_t<extension_instance> object,
// but if its meta-type is right, then it is an extension_instance.
if (p->ob_type->ob_type != extension_meta_class())
{
PyErr_SetString(PyExc_TypeError, p->ob_type->tp_name);
throw boost::python::argument_error();
}
return static_cast<extension_instance*>(p);
}
void
extension_instance::add_implementation(std::auto_ptr<instance_holder_base> holder)
{
for (held_objects::const_iterator p = m_wrapped_objects.begin();
p != m_wrapped_objects.end(); ++p)
{
if (typeid(*holder) == typeid(**p))
{
PyErr_SetString(PyExc_RuntimeError, "Base class already initialized");
throw error_already_set();
}
}
m_wrapped_objects.push_back(holder.release());
}
extension_instance::extension_instance(PyTypeObject* class_)
: instance(class_)
{
}
extension_instance::~extension_instance()
{
for (held_objects::const_iterator p = m_wrapped_objects.begin(),
finish = m_wrapped_objects.end();
p != finish; ++p)
{
delete *p;
}
}
meta_class<extension_instance>* extension_meta_class()
{
static meta_class<extension_instance> result;
return &result;
}
typedef class_t<extension_instance> extension_class_t;
bool is_subclass(const extension_class_t* derived,
const PyObject* possible_base)
{
tuple bases = derived->bases();
for (std::size_t i = 0, size = bases.size(); i < size; ++i)
{
const PyObject* base = bases[i].get();
if (base == possible_base)
return true;
if (base->ob_type == extension_meta_class())
{
const extension_class_t* base_class = downcast<const extension_class_t>(base);
if (is_subclass(base_class, possible_base))
return true;
}
}
return false;
}
// Return true iff obj is an obj of target_class
bool is_instance(extension_instance* obj,
class_t<extension_instance>* target_class)
{
if (obj->ob_type == target_class)
return true;
else
{
return is_subclass(
downcast<class_t<extension_instance> >(obj->ob_type).get(),
as_object(target_class));
}
}
void two_string_error(PyObject* exception_object, const char* format, const char* s1, const char* s2)
{
char buffer[256];
std::size_t format_length = BOOST_CSTD_::strlen(format);
std::size_t length1 = BOOST_CSTD_::strlen(s1);
std::size_t length2 = BOOST_CSTD_::strlen(s2);
std::size_t additional_length = length1 + length2;
if (additional_length + format_length > format_length - 1)
{
std::size_t difference = sizeof(buffer) - 1 - additional_length;
length1 -= difference / 2;
additional_length -= difference / 2;
}
sprintf(buffer, format, length1, s1, length2, s2);
PyErr_SetString(exception_object, buffer);
if (exception_object == PyExc_TypeError)
throw argument_error();
else
throw error_already_set();
}
// This is called when an attempt has been made to convert the given obj to
// a C++ type for which it doesn't have any obj data. In that case, either
// the obj was not derived from the target_class, or the appropriate
// __init__ function wasn't called to initialize the obj data of the target class.
void report_missing_instance_data(
extension_instance* obj, // The object being converted
class_t<extension_instance>* target_class, // the extension class of the C++ type
const std::type_info& target_typeid, // The typeid of the C++ type
bool target_is_ptr)
{
char buffer[256];
if (is_instance(obj, target_class))
{
if (target_is_ptr)
{
two_string_error(PyExc_RuntimeError,
"Object of extension class '%.*s' does not wrap <%.*s>.",
obj->ob_type->tp_name, target_typeid.name());
}
else
{
const char message[] = "__init__ function for extension class '%.*s' was never called.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1,
target_class->tp_name);
}
PyErr_SetString(PyExc_RuntimeError, buffer);
}
else if (target_class == 0)
{
const char message[] = "Cannot convert to <%.*s>; its Python class was never created or has been deleted.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1, target_typeid.name());
PyErr_SetString(PyExc_RuntimeError, buffer);
}
else
{
two_string_error(PyExc_TypeError, "extension class '%.*s' is not convertible into '%.*s'.",
obj->ob_type->tp_name, target_class->tp_name);
}
}
void report_missing_instance_data(
extension_instance* obj, // The object being converted
class_t<extension_instance>* target_class, // the extension class of the C++ type
const std::type_info& target_typeid) // The typeid of the C++ type
{
report_missing_instance_data(obj, target_class, target_typeid, false);
}
void report_missing_ptr_data(
extension_instance* obj, // The object being converted
class_t<extension_instance>* target_class, // the extension class of the C++ type
const std::type_info& target_typeid) // The typeid of the C++ type
{
report_missing_instance_data(obj, target_class, target_typeid, true);
}
void report_missing_class_object(const std::type_info& info)
{
char buffer[256];
const char message[] = "Cannot convert <%.*s> to python; its Python class was never created or has been deleted.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1, info.name());
PyErr_SetString(PyExc_RuntimeError, buffer);
throw error_already_set();
}
void report_released_smart_pointer(const std::type_info& info)
{
char buffer[256];
const char message[] = "Converting from python, pointer or smart pointer to <%.*s> is NULL.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1, info.name());
PyErr_SetString(PyExc_RuntimeError, buffer);
throw argument_error();
}
read_only_setattr_function::read_only_setattr_function(const char* name)
: m_name(name)
{
}
PyObject* read_only_setattr_function::do_call(PyObject* /*args*/, PyObject* /*keywords*/) const
{
PyErr_SetObject(PyExc_AttributeError, ("'" + m_name + "' attribute is read-only").get());
return 0;
}
const char* read_only_setattr_function::description() const
{
return "uncallable";
}
extension_class_base::extension_class_base(const char* name)
: class_t<extension_instance>(
extension_meta_class(), string(name), tuple(), dictionary())
{
}
// This function is used in from_python() to convert wrapped classes that are
// related by inheritance. The problem is this: although C++ provides all necessary
// conversion operators, source and target of a conversion must be known at compile
// time. However, in Python we want to convert classes at runtime. The solution is to
// generate conversion functions at compile time, register them within the appropriate
// class objects and call them when a particular runtime conversion is required.
// If functions for any possible conversion have to be stored, their number will grow
// qudratically. To reduce this number, we actually store only conversion functions
// between adjacent levels in the inheritance tree. By traversing the tree recursively,
// we can build any allowed conversion as a concatenation of simple conversions. This
// traversal is done in the functions try_base_class_conversions() and
// try_derived_class_conversions(). If a particular conversion is impossible, all
// conversion functions will return a NULL pointer.
// The function extract_object_from_holder() attempts to actually extract the pointer
// to the contained object from an instance_holder_base (a wrapper class). A conversion
// of the held object to 'T *' is allowed when the conversion
// 'dynamic_cast<instance_holder<T> *>(an_instance_holder_base)' succeeds.
void* extension_class_base::try_class_conversions(instance_holder_base* object) const
{
void* result = try_derived_class_conversions(object);
if (result)
return result;
if (!object->held_by_value())
return try_base_class_conversions(object);
else
return 0;
}
void* extension_class_base::try_base_class_conversions(instance_holder_base* object) const
{
for (std::size_t i = 0; i < base_classes().size(); ++i)
{
if (base_classes()[i].convert == 0)
continue;
void* result1 = base_classes()[i].class_object->extract_object_from_holder(object);
if (result1)
return (*base_classes()[i].convert)(result1);
void* result2 = base_classes()[i].class_object->try_base_class_conversions(object);
if (result2)
return (*base_classes()[i].convert)(result2);
}
return 0;
}
void* extension_class_base::try_derived_class_conversions(instance_holder_base* object) const
{
for (std::size_t i = 0; i < derived_classes().size(); ++i)
{
void* result1 = derived_classes()[i].class_object->extract_object_from_holder(object);
if (result1)
return (*derived_classes()[i].convert)(result1);
void* result2 = derived_classes()[i].class_object->try_derived_class_conversions(object);
if (result2)
return (*derived_classes()[i].convert)(result2);
}
return 0;
}
void extension_class_base::add_method(function* method, const char* name)
{
add_method(reference<function>(method), name);
}
void extension_class_base::add_method(reference<function> method, const char* name)
{
// Add the attribute to the computed target
function::add_to_namespace(method, name, this->dict().get());
// If it is a special member function it should be enabled both here and there.
detail::enable_named_method(this, name);
}
void extension_class_base::add_constructor_object(function* init_fn)
{
add_method(init_fn, "__init__");
}
void extension_class_base::add_setter_method(function* setter_, const char* name)
{
reference<function> setter(setter_);
add_method(setter, (detail::setattr_string() + name + "__").c_str());
}
void extension_class_base::add_getter_method(function* getter_, const char* name)
{
reference<function> getter(getter_);
add_method(getter, (detail::getattr_string() + name + "__").c_str());
}
void extension_class_base::set_attribute(const char* name, PyObject* x_)
{
ref x(x_);
set_attribute(name, x);
}
void extension_class_base::set_attribute(const char* name, ref x)
{
dict().set_item(string(name), x);
if (PyCallable_Check(x.get()))
detail::enable_named_method(this, name);
}
operator_dispatcher::operator_dispatcher(const ref& o, const ref& s)
: m_object(o), m_self(s), m_free_list_link(0)
{
PyObject* self = this;
PyObject_INIT(self, &type_obj);
}
operator_dispatcher*
operator_dispatcher::create(const ref& object, const ref& self)
{
operator_dispatcher* const result = free_list;
if (result == 0)
return new operator_dispatcher(object, self);
free_list = result->m_free_list_link;
result->m_object = object;
result->m_self = self;
PyObject* result_as_pyobject = result;
PyObject_INIT(result_as_pyobject, &type_obj);
return result;
}
extern "C"
{
void operator_dispatcher_dealloc(PyObject* self)
{
operator_dispatcher* obj = static_cast<operator_dispatcher*>(self);
obj->m_free_list_link = operator_dispatcher::free_list;
operator_dispatcher::free_list = obj;
obj->m_object.reset();
obj->m_self.reset();
}
int operator_dispatcher_coerce(PyObject** l, PyObject** r)
{
Py_INCREF(*l);
try
{
*r = operator_dispatcher::create(ref(*r, ref::increment_count), ref());
}
catch(...)
{
handle_exception();
return -1;
}
return 0;
}
#define PY_DEFINE_OPERATOR(id, symbol) \
PyObject* operator_dispatcher_call_##id(PyObject* left, PyObject* right) \
{ \
/* unwrap the arguments from their OperatorDispatcher */ \
PyObject* self; \
PyObject* other; \
int reverse = unwrap_args(left, right, self, other); \
if (reverse == unwrap_exception_code) \
return 0; \
\
/* call the function */ \
PyObject* result = \
PyEval_CallMethod(self, \
const_cast<char*>(reverse ? "__r" #id "__" : "__" #id "__"), \
const_cast<char*>("(O)"), \
other); \
if (result == 0 && PyErr_GivenExceptionMatches(PyErr_Occurred(), PyExc_AttributeError)) \
{ \
PyErr_Clear(); \
PyErr_SetString(PyExc_TypeError, "bad operand type(s) for " #symbol); \
} \
return result; \
}
PY_DEFINE_OPERATOR(add, +)
PY_DEFINE_OPERATOR(sub, -)
PY_DEFINE_OPERATOR(mul, *)
PY_DEFINE_OPERATOR(div, /)
PY_DEFINE_OPERATOR(mod, %)
PY_DEFINE_OPERATOR(divmod, divmod)
PY_DEFINE_OPERATOR(lshift, <<)
PY_DEFINE_OPERATOR(rshift, >>)
PY_DEFINE_OPERATOR(and, &)
PY_DEFINE_OPERATOR(xor, ^)
PY_DEFINE_OPERATOR(or, |)
/* coercion rules for heterogeneous pow():
pow(Foo, int): left, right coerced; m: None => reverse = 0
pow(int, Foo): left, right coerced; m: None => reverse = 1
pow(Foo, int, int): left, right, m coerced => reverse = 0
pow(int, Foo, int): left, right, m coerced => reverse = 1
pow(int, int, Foo): left, right, m coerced => reverse = 2
pow(Foo, Foo, int): left, right coerced; m coerced twice => reverse = 0
pow(Foo, int, Foo): left, right, m coerced => reverse = 0
pow(int, Foo, Foo): left, right, m coerced => reverse = 1
*/
PyObject* operator_dispatcher_call_pow(PyObject* left, PyObject* right, PyObject* m)
{
int reverse;
PyObject* self;
PyObject* first;
PyObject* second;
if (m->ob_type == Py_None->ob_type)
{
reverse = unwrap_args(left, right, self, first);
second = m;
}
else
{
reverse = unwrap_pow_args(left, right, m, self, first, second);
}
if (reverse == unwrap_exception_code)
return 0;
// call the function
PyObject* result =
PyEval_CallMethod(self,
const_cast<char*>((reverse == 0)
? "__pow__"
: (reverse == 1)
? "__rpow__"
: "__rrpow__"),
const_cast<char*>("(OO)"),
first, second);
if (result == 0 &&
(PyErr_GivenExceptionMatches(PyErr_Occurred(), PyExc_TypeError) ||
PyErr_GivenExceptionMatches(PyErr_Occurred(), PyExc_AttributeError)))
{
PyErr_Clear();
PyErr_SetString(PyExc_TypeError, "bad operand type(s) for pow()");
}
return result;
}
int operator_dispatcher_call_cmp(PyObject* left, PyObject* right)
{
// unwrap the arguments from their OperatorDispatcher
PyObject* self;
PyObject* other;
int reverse = unwrap_args(left, right, self, other);
if (reverse == unwrap_exception_code)
return -1;
// call the function
PyObject* result =
PyEval_CallMethod(self,
const_cast<char*>(reverse ? "__rcmp__" : "__cmp__"),
const_cast<char*>("(O)"),
other);
if (result == 0)
{
PyErr_Clear();
PyErr_SetString(PyExc_TypeError, "bad operand type(s) for cmp() or <");
return -1;
}
else
{
try
{
return BOOST_PYTHON_CONVERSION::from_python(result, type<int>());
}
catch(...)
{
PyErr_Clear();
PyErr_SetString(PyExc_TypeError, "cmp() didn't return int");
return -1;
}
}
}
} // extern "C"
PyTypeObject operator_dispatcher::type_obj =
{
PyObject_HEAD_INIT(&PyType_Type)
0,
const_cast<char*>("operator_dispatcher"),
sizeof(operator_dispatcher),
0,
&operator_dispatcher_dealloc,
0,
0,
0,
&operator_dispatcher_call_cmp,
0,
&operator_dispatcher::number_methods,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
};
PyNumberMethods operator_dispatcher::number_methods =
{
&operator_dispatcher_call_add,
&operator_dispatcher_call_sub,
&operator_dispatcher_call_mul,
&operator_dispatcher_call_div,
&operator_dispatcher_call_mod,
&operator_dispatcher_call_divmod,
&operator_dispatcher_call_pow,
0,
0,
0,
0,
0,
&operator_dispatcher_call_lshift,
&operator_dispatcher_call_rshift,
&operator_dispatcher_call_and,
&operator_dispatcher_call_xor,
&operator_dispatcher_call_or,
&operator_dispatcher_coerce,
0,
0,
0,
0,
0
};
} // namespace detail
}} // namespace boost::python

View File

@@ -1,172 +0,0 @@
// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
//
// Revision History:
// Mar 01 01 Use PyObject_INIT() instead of trying to hand-initialize (David Abrahams)
#include <boost/python/detail/functions.hpp>
#include <boost/python/detail/types.hpp>
#include <boost/python/detail/singleton.hpp>
#include <boost/python/objects.hpp>
#include <boost/python/errors.hpp>
namespace boost { namespace python { namespace detail {
struct function::type_object :
singleton<function::type_object, callable<boost::python::detail::type_object<function> > >
{
type_object() : singleton_base(&PyType_Type) {}
};
void function::add_to_namespace(reference<function> new_function, const char* name, PyObject* dict)
{
dictionary d(ref(dict, ref::increment_count));
string key(name);
ref existing_object = d.get_item(key.reference());
if (existing_object.get() == 0)
{
d[key] = ref(new_function.get(), ref::increment_count);
}
else
{
if (existing_object->ob_type == type_object::instance())
{
function* f = static_cast<function*>(existing_object.get());
while (f->m_overloads.get() != 0)
f = f->m_overloads.get();
f->m_overloads = new_function;
}
else
{
PyErr_SetObject(PyExc_RuntimeError,
(string("Attempt to overload ") + name
+ " failed. The existing attribute has type "
+ existing_object->ob_type->tp_name).get());
throw error_already_set();
}
}
}
function::function()
: python_object(type_object::instance())
{
}
PyObject* function::call(PyObject* args, PyObject* keywords) const
{
for (const function* f = this; f != 0; f = f->m_overloads.get())
{
PyErr_Clear();
try
{
PyObject* const result = f->do_call(args, keywords);
if (result != 0)
return result;
}
catch(const argument_error&)
{
}
}
if (m_overloads.get() == 0)
return 0;
PyErr_Clear();
string message("No overloaded functions match (");
tuple arguments(ref(args, ref::increment_count));
for (std::size_t i = 0; i < arguments.size(); ++i)
{
if (i != 0)
message += ", ";
message += arguments[i]->ob_type->tp_name;
}
message += "). Candidates are:\n";
for (const function* f1 = this; f1 != 0; f1 = f1->m_overloads.get())
{
if (f1 != this)
message += "\n";
message += f1->description();
}
PyErr_SetObject(PyExc_TypeError, message.get());
return 0;
}
// The instance class whose obj represents the type of bound_function
// objects in Python. bound_functions must be GetAttrable so the __doc__
// attribute of built-in Python functions can be accessed when bound.
struct bound_function::type_object :
singleton<bound_function::type_object,
getattrable<callable<boost::python::detail::type_object<bound_function> > > >
{
type_object() : singleton_base(&PyType_Type) {}
private: // type_object<bound_function> hook override
void dealloc(bound_function*) const;
};
bound_function* bound_function::create(const ref& target, const ref& fn)
{
bound_function* const result = free_list;
if (result == 0)
return new bound_function(target, fn);
free_list = result->m_free_list_link;
result->m_target = target;
result->m_unbound_function = fn;
PyObject* self = result;
PyObject_INIT(self, type_object::instance());
return result;
}
bound_function::bound_function(const ref& target, const ref& fn)
: python_object(type_object::instance()),
m_target(target),
m_unbound_function(fn),
m_free_list_link(0)
{
}
PyObject*
bound_function::call(PyObject* args, PyObject* keywords) const
{
// Build a new tuple which prepends the target to the arguments
tuple tail_arguments(ref(args, ref::increment_count));
ref all_arguments(PyTuple_New(tail_arguments.size() + 1));
PyTuple_SET_ITEM(all_arguments.get(), 0, m_target.get());
Py_INCREF(m_target.get());
for (std::size_t i = 0; i < tail_arguments.size(); ++i)
{
PyTuple_SET_ITEM(all_arguments.get(), i + 1, tail_arguments[i].get());
Py_INCREF(tail_arguments[i].get());
}
return PyEval_CallObjectWithKeywords(m_unbound_function.get(), all_arguments.get(), keywords);
}
PyObject* bound_function::getattr(const char* name) const
{
return PyObject_GetAttrString(m_unbound_function.get(), const_cast<char*>(name));
}
void bound_function::type_object::dealloc(bound_function* obj) const
{
obj->m_free_list_link = free_list;
free_list = obj;
obj->m_target.reset();
obj->m_unbound_function.reset();
}
bound_function* bound_function::free_list;
}}} // namespace boost::python::detail

Some files were not shown because too many files have changed in this diff Show More