2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-20 04:42:28 +00:00

Compare commits

..

8 Commits

Author SHA1 Message Date
Dave Abrahams
480aaf6400 gcc-3.0.x needs to use typeid(x).name() instead of type_info directly for cross-shared-lib RTTI.
[SVN r12126]
2001-12-19 22:23:39 +00:00
Dave Abrahams
26b15fe373 initial checkin
[SVN r12123]
2001-12-19 16:06:31 +00:00
Dave Abrahams
eadcc79089 workaround for missing 'C' standard headers
[SVN r12104]
2001-12-18 14:10:06 +00:00
Dave Abrahams
35fd3dfaa1 Integrated Scott Snyder's nested class patch
[SVN r12080]
2001-12-17 05:49:24 +00:00
Dave Abrahams
3505ac2516 initial checkin
[SVN r12077]
2001-12-16 18:38:05 +00:00
Dave Abrahams
946ed17ae1 initial checkin
[SVN r12075]
2001-12-16 18:18:58 +00:00
Dave Abrahams
a4747eb10a *** empty log message ***
[SVN r12074]
2001-12-16 18:09:42 +00:00
nobody
4d6772dac2 This commit was manufactured by cvs2svn to create branch 'newbpl'.
[SVN r8341]
2000-11-27 08:04:06 +00:00
167 changed files with 5399 additions and 7267 deletions

57
Jamfile Normal file
View File

@@ -0,0 +1,57 @@
subproject libs/python ;
# bring in the rules for python
SEARCH on <module@>python.jam = $(BOOST_BUILD_PATH) ;
include <module@>python.jam ;
PYTHON_PROPERTIES
+= <metrowerks><*><cxxflags>"-inline deferred"
<cxx><*><include>$(BOOST_ROOT)/boost/compatibility/cpp_c_headers
;
local export-bpl ;
if $(NT)
{
# Stick this in the property set to deal with gcc
export-bpl = export-bpl-logic ;
rule export-bpl-logic ( toolset variant : properties * )
{
if $(toolset) != gcc
{
properties += <define>BOOST_PYTHON_EXPORT=__declspec(dllexport) ;
}
else
{
properties += <define>BOOST_PYTHON_EXPORT= ;
}
return $(properties) ;
}
}
dll bpl
:
src/converter/body.cpp
src/converter/handle.cpp
src/converter/registry.cpp
src/converter/wrapper.cpp
src/converter/unwrap.cpp
src/converter/unwrapper.cpp
src/converter/type_id.cpp
src/object/class.cpp
src/object/function.cpp
:
$(PYTHON_PROPERTIES)
$(export-bpl)
# <define>BOOST_PYTHON_TRACE
;
extension m1 : test/m1.cpp <lib>bpl # <define>BOOST_PYTHON_TRACE
: <gcc><*><define>BOOST_PYTHON_EXPORT=
: debug-python ;
extension m2 : test/m2.cpp <lib>bpl # <define>BOOST_PYTHON_TRACE
: <gcc><*><define>BOOST_PYTHON_EXPORT=
: debug-python ;
boost-python-runtest try : test/newtest.py <lib>m1 <lib>m2 : : debug-python ;

308
doc/new-conversions.html Normal file
View File

@@ -0,0 +1,308 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>A New Type Conversion Mechanism for Boost.Python</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<p><img border="0" src="../../../c++boost.gif" width="277" height="86"
alt="boost logo"></p>
<h1>A New Type Conversion Mechanism for Boost.Python</h1>
<p>By <a href="../../../people/dave_abrahams.htm">David Abrahams</a>.
<h2>Introduction</h2>
This document describes a redesign of the mechanism for automatically
converting objects between C++ and Python. The current implementation
uses two functions for any type <tt>T</tt>:
<blockquote><pre>
U from_python(PyObject*, type&lt;T&gt;);
void to_python(V);
</pre></blockquote>
where U is convertible to T and T is convertible to V. These functions
are at the heart of C++/Python interoperability in Boost.Python, so
why would we want to change them? There are many reasons:
<h3>Bugs</h3>
<p>Firstly, the current mechanism relies on a common C++ compiler
bug. This is not just embarrassing: as compilers get to be more
conformant, the library stops working. The issue, in detail, is the
use of inline friend functions in templates to generate
conversions. It is a very powerful, and legal technique as long as
it's used correctly:
<blockquote><pre>
template &lt;class Derived&gt;
struct add_some_functions
{
friend <i>return-type</i> some_function1(..., Derived <i>cv-*-&amp;-opt</i>, ...);
friend <i>return-type</i> some_function2(..., Derived <i>cv-*-&amp;-opt</i>, ...);
};
template &lt;class T&gt;
struct some_template : add_some_functions&lt;some_template&lt;T&gt; &gt;
{
};
</pre></blockquote>
The <tt>add_some_functions</tt> template generates free functions
which operate on <tt>Derived</tt>, or on related types. Strictly
speaking the related types are not just cv-qualified <tt>Derived</tt>
values, pointers and/or references. Section 3.4.2 in the standard
describes exactly which types you must use as parameters to these
functions if you want the functions to be found
(there is also a less-technical description in section 11.5.1 of
C++PL3 <a href="#ref_1">[1]</a>). Suffice it to say that
with the current design, the <tt>from_python</tt> and
<tt>to_python</tt> functions are not supposed to be callable under any
conditions!
<h3>Compilation and Linking Time</h3>
The conversion functions generated for each wrapped class using the
above technique are not function templates, but regular functions. The
upshot is that they must <i>all</i> be generated regardless of whether
they are actually used. Generating all of those functions can slow
down module compilation, and resolving the references can slow down
linking.
<h3>Efficiency</h3>
The conversion functions are primarily used in (member) function
wrappers to convert the arguments and return values. Being functions,
converters have no interface which allows us to ask &quot;will the
conversion succeed?&quot; without calling the function. Since the
return value of the function must be the object to be passed as an
argument, Boost.Python currently uses C++ exception-handling to detect
an unsuccessful conversion. It's not a particularly good use of
exception-handling, since the failure is not handled very far from
where it occurred. More importantly, it means that C++ exceptions are
thrown during overload resolution as we seek an overload that matches
the arguments passed. Depending on the implementation, this approach
can result in significant slowdowns.
<p>It is also unclear that the current library generates a minimal
amount of code for any type conversion. Many of the conversion
functions are nontrivial, and partly because of compiler limitations,
they are declared <tt>inline</tt>. Also, we could have done a better
job separating the type-specific conversion code from the code which
is type-independent.
<h3>Cross-module Support</h3>
The current strategy requires every module to contain the definition
of conversions it uses. In general, a new module can never supply
conversion code which is used by another module. Ralf Grosse-Kunstleve
designed a clever system which imports conversions directly from one
library into another using some explicit declarations, but it has some
disadvantages also:
<ol>
<li>The system Ullrich Koethe designed for implicit conversion between
wrapped classes related through inheritance does not currently work if
the classes are defined in separate modules.
<li>The writer of the importing module is required to know the name of
the module supplying the imported conversions.
<li>There can be only one way to extract any given C++ type from a
Python object in a given module.
</ol>
The first item might be addressed by moving Boost.Python into a shared
library, but the other two cannot. Ralf turned the limitation in item
two into a feature: the required module is loaded implicitly when a
conversion it defines is invoked. We will probably want to provide
that functionality anyway, but it's not clear that we should require
the declaration of all such conversions. The final item is a more
serious limitation. If, for example, new numeric types are defined in
separate modules, and these types can all be converted to
<tt>double</tt>s, we have to choose just one conversion method.
<h3>Ease-of-use</h3>
One persistent source of confusion for users of Boost.Python has been
the fact that conversions for a class are not be visible at
compile-time until the declaration of that class has been seen. When
the user tries to expose a (member) function operating on or returning
an instance of the class in question, compilation fails...even though
the user goes on to expose the class in the same translation unit!
<p>
The new system lifts all compile-time checks for the existence of
particular type conversions and replaces them with runtime checks, in
true Pythonic style. While this might seem cavalier, the compile-time
checks are actually not much use in the current system if many classes
are wrapped in separate modules, since the checks are based only on
the user's declaration that the conversions exist.
<h2>The New Design</h2>
<h3>Motivation</h3>
The new design was heavily influenced by a desire to generate as
little code as possible in extension modules. Some of Boost.Python's
clients are enormous projects where link time is proportional to the
amount of object code, and there are many Python extension modules. As
such, we try to keep type-specific conversion code out of modules
other than the one the converters are defined in, and rely as much as
possible on centralized control through a shared library.
<h3>The Basics</h3>
The library contains a <tt>registry</tt> which maps runtime type
identifiers (actually an extension of <tt>std::type_info</tt> which
preserves references and constness) to entries containing type
converters. An <tt>entry</tt> can contain only one converter from C++ to Python
(<tt>wrapper</tt>), but many converters from Python to C++
(<tt>unwrapper</tt>s). <font color="#ff0000">What should happen if
multiple modules try to register wrappers for the same type?</font>. Wrappers
and unwrappers are known as <tt>body</tt> objects, and are accessed
by the user and the library (in its function-wrapping code) through
corresponding <tt>handle</tt> (<tt>wrap&lt;T&gt;</tt> and
<tt>unwrap&lt;T&gt;</tt>) objects. The <tt>handle</tt> objects are
extremely lightweight, and delegate <i>all</i> of their operations to
the corresponding <tt>body</tt>.
<p>
When a <tt>handle</tt> object is constructed, it accesses the
registry to find a corresponding <tt>body</tt> that can convert the
handle's constructor argument. Actually the registry record for any
type
<tt>T</tt>used in a module is looked up only once and stored in a
static <tt>registration&lt;T&gt;</tt> object for efficiency. For
example, if the handle is an <tt>unwrap&lt;Foo&amp;&gt;</tt> object,
the <tt>entry</tt> for <tt>Foo&amp;</tt> is looked up in the
<tt>registry</tt>, and each <tt>unwrapper</tt> it contains is queried
to determine if it can convert the
<tt>PyObject*</tt> with which the <tt>unwrap</tt> was constructed. If
a body object which can perform the conversion is found, a pointer to
it is stored in the handle. A body object may at any point store
additional data in the handle to speed up the conversion process.
<p>
Now that the handle has been constructed, the user can ask it whether
the conversion can be performed. All handles can be tested as though
they were convertible to <tt>bool</tt>; a <tt>true</tt> value
indicates success. If the user forges ahead and tries to do the
conversion without checking when no conversion is possible, an
exception will be thrown as usual. The conversion itself is performed
by the body object.
<h3>Handling complex conversions</h3>
<p>Some conversions may require a dynamic allocation. For example,
when a Python tuple is converted to a <tt>std::vector&lt;double&gt;
const&amp;</tt>, we need some storage into which to construct the
vector so that a reference to it can be formed. Furthermore, multiple
conversions of the same type may need to be &quot;active&quot;
simultaneously, so we can't keep a single copy of the storage
anywhere. We could keep the storage in the <tt>body</tt> object, and
have the body clone itself in case the storage is used, but in that
case the storage in the body which lives in the registry is never
used. If the storage was actually an object of the target type (the
safest way in C++), we'd have to find a way to construct one for the
body in the registry, since it may not have a default constructor.
<p>
The most obvious way out of this quagmire is to allocate the object using a
<i>new-expression</i>, and store a pointer to it in the handle. Since
the <tt>body</tt> object knows everything about the data it needs to
allocate (if any), it is also given responsibility for destroying that
data. When the <tt>handle</tt> is destroyed it asks the <tt>body</tt>
object to tear down any data it may have stored there. In many ways,
you can think of the <tt>body</tt> as a &quot;dynamically-determined
vtable&quot; for the handle.
<h3>Eliminating Redundancy</h3>
If you look at the current Boost.Python code, you'll see that there
are an enormous number of conversion functions generated for each
wrapped class. For a given class <tt>T</tt>, functions are generated
to extract the following types <tt>from_python</tt>:
<blockquote><pre>
T*
T const*
T const* const&amp;
T* const&amp;
T&amp;
T const&amp;
T
std::auto_ptr&lt;T&gt;&amp;
std::auto_ptr&lt;T&gt;
std::auto_ptr&lt;T&gt; const&amp;
boost::shared_ptr&lt;T&gt;&amp;
boost::shared_ptr&lt;T&gt;
boost::shared_ptr&lt;T&gt; const&amp;
</pre></blockquote>
Most of these are implemented in terms of just a few conversions, and
<t>if you're lucky</t>, they will be inlined and cause no extra
overhead. In the new system, however, a significant amount of data
will be associated with each type that needs to be converted. We
certainly don't want to register a separate unwrapper object for all
of the above types.
<p>Fortunately, much of the redundancy can be eliminated. For example,
if we generate an unwrapper for <tt>T&</tt>, we don't need an
unwrapper for <tt>T const&</tt> or <tt>T</tt>. Accordingly, the user's
request to wrap/unwrap a given type is translated at compile-time into
a request which helps to eliminate redundancy. The rules used to
<tt>unwrap</tt> a type are:
<ol>
<li> Treat built-in types specially: when unwrapping a value or
constant reference to one of these, use a value for the target
type. It will bind to a const reference if neccessary, and more
importantly, avoids having to dynamically allocate room for
an lvalue of types which can be cheaply copied.
<li>
Reduce everything else to a reference to an un-cv-qualified type
where possible. Since cv-qualification is lost on Python
anyway, there's no point in trying to convert to a
<tt>const&amp;</tt>. <font color="#ff0000">What about conversions
to values like the tuple-&gt;vector example above? It seems to me
that we don't want to make a <tt>vector&lt;double&gt;&amp;</tt>
(non-const) converter available for that case. We may need to
rethink this slightly.</font>
</ol>
<h3>Efficient Argument Conversion</h3>
Since type conversions are primarily used in function wrappers, an
optimization is provided for the case where a group of conversions are
used together. Each <tt>handle</tt> class has a corresponding
&quot;<tt>_more</tt>&quot; class which does the same job, but has a
trivial destructor. Instead of asking each &quot;<tt>_more</tt>&quot;
handle to destroy its own body, it is linked into an endogenous list
managed by the first (ordinary) handle. The <tt>wrap</tt> and
<tt>unwrap</tt> destructors are responsible for traversing that list
and asking each <tt>body</tt> class to tear down its
<tt>handle</tt>. This mechanism is also used to determine if all of
the argument/return-value conversions can succeed with a single
function call in the function wrapping code. <font color="#ff0000">We
might need to handle return values in a separate step for Python
callbacks, since the availablility of a conversion won't be known
until the result object is retrieved.</font>
<br>
<hr>
<h2>References</h2>
<p><a name="ref_1">[1]</a>B. Stroustrup, The C++ Programming Language
Special Edition Addison-Wesley, ISBN 0-201-70073-5.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->19 December 2001<!--webbot bot="Timestamp" endspan i-checksum="31283" --></p>
<p>© Copyright David Abrahams, 2001</p>
</body>
</html>

111
doc/new-conversions.txt Normal file
View File

@@ -0,0 +1,111 @@
This hierarchy contains converter handle classes.
+-------------+
| noncopyable |
+-------------+
^
| A common base class used so that
+--------+--------+ conversions can be linked into a
| conversion_base | chain for efficient argument
+-----------------+ conversion
^
|
+---------+-----------+
| |
+-----------+----+ +------+-------+ only used for
| unwrap_more<T> | | wrap_more<T> | chaining, and don't manage any
+----------------+ +--------------+ resources.
^ ^
| |
+-----+-----+ +-------+-+ These converters are what users
| unwrap<T> | | wrap<T> | actually touch, but they do so
+-----------+ +---------+ through a type generator which
minimizes the number of converters
that must be generated, so they
Each unwrap<T>, unwrap_more<T>, wrap<T>, wrap_more<T> converter holds
a reference to an appropriate converter object
This hierarchy contains converter body classes
Exposes use/release which
are needed in case the converter
+-----------+ in the registry needs to be
| converter | cloned. That occurs when a
+-----------+ unwrap target type is not
^ contained within the Python object.
|
+------------------+-----+
| |
+--------+-------+ Exposes |
| unwrapper_base | convertible() |
+----------------+ |
^ |
| |
+--------+----+ +-----+-----+
| unwrapper<T>| | wrapper<T>|
+-------------+ +-----------+
Exposes T convert(PyObject*) Exposes PyObject* convert(T)
unwrap:
constructed with a PyObject*, whose reference count is
incremented.
find the registry entry for the target type
look in the collection of converters for one which claims to be
able to convert the PyObject to the target type.
stick a pointer to the unwrapper in the unwrap object
when unwrap is queried for convertibility, it checks to see
if it has a pointer to an unwrapper.
on conversion, the unwrapper is asked to allocate an
implementation if the unwrap object isn't already holding
one. The unwrap object "takes ownership" of the unwrapper's
implementation. No memory allocation will actually take place
unless this is a value conversion.
on destruction, the unwrapper is asked to free any implementation
held by the unwrap object. No memory deallocation actually
takes place unless this is a value conversion
on destruction, the reference count on the held PyObject is
decremented.
We need to make sure that by default, you can't instantiate
callback<> for reference and pointer return types: although the
unwrappers may exist, they may convert by-value, which would cause
the referent to be destroyed upon return.
wrap:
find the registry entry for the source type
see if there is a converter. If found, stick a pointer to it in
the wrap object.
when queried for convertibility, it checks to see if it has a
pointer to a converter.
on conversion, a reference to the target PyObject is held by the
converter. Generally, the PyObject will have been created by the
converter, but in certain cases it may be a pre-existing object,
whose reference count will have been incremented.
when a wrap<T> x is used to return from a C++ function,
x.release() is returned so that x no longer holds a reference to
the PyObject when destroyed.
Otherwise, on destruction, any PyObject still held has its
reference-count decremented.
When a converter is created by the user, the appropriate element must
be added to the registry; when it is destroyed, it must be removed
from the registry.

View File

@@ -0,0 +1,210 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// This work was funded in part by Lawrence Berkeley National Labs
//
// This file generated for 5-argument member functions and 6-argument free
// functions by gen_call.py
#ifndef CALL_DWA20011214_HPP
# define CALL_DWA20011214_HPP
# include <boost/python/detail/returning.hpp>
namespace boost { namespace python {
template <class R>
PyObject* call(R (*f)(), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0>
PyObject* call(R (*f)(A0), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1>
PyObject* call(R (*f)(A0, A1), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2>
PyObject* call(R (*f)(A0, A1, A2), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3>
PyObject* call(R (*f)(A0, A1, A2, A3), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4>
PyObject* call(R (*f)(A0, A1, A2, A3, A4), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
PyObject* call(R (*f)(A0, A1, A2, A3, A4, A5), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
// Member functions
template <class R, class A0>
PyObject* call(R (A0::*f)(), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1>
PyObject* call(R (A0::*f)(A1), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2>
PyObject* call(R (A0::*f)(A1, A2), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3>
PyObject* call(R (A0::*f)(A1, A2, A3), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4>
PyObject* call(R (A0::*f)(A1, A2, A3, A4), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
PyObject* call(R (A0::*f)(A1, A2, A3, A4, A5), PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0>
PyObject* call(R (A0::*f)() const, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1>
PyObject* call(R (A0::*f)(A1) const, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2>
PyObject* call(R (A0::*f)(A1, A2) const, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3>
PyObject* call(R (A0::*f)(A1, A2, A3) const, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4>
PyObject* call(R (A0::*f)(A1, A2, A3, A4) const, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
PyObject* call(R (A0::*f)(A1, A2, A3, A4, A5) const, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0>
PyObject* call(R (A0::*f)() volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1>
PyObject* call(R (A0::*f)(A1) volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2>
PyObject* call(R (A0::*f)(A1, A2) volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3>
PyObject* call(R (A0::*f)(A1, A2, A3) volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4>
PyObject* call(R (A0::*f)(A1, A2, A3, A4) volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
PyObject* call(R (A0::*f)(A1, A2, A3, A4, A5) volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0>
PyObject* call(R (A0::*f)() const volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1>
PyObject* call(R (A0::*f)(A1) const volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2>
PyObject* call(R (A0::*f)(A1, A2) const volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3>
PyObject* call(R (A0::*f)(A1, A2, A3) const volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4>
PyObject* call(R (A0::*f)(A1, A2, A3, A4) const volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
PyObject* call(R (A0::*f)(A1, A2, A3, A4, A5) const volatile, PyObject* args, PyObject* keywords)
{
return detail::returning<R>::call(f, args, keywords);
}
}} // namespace boost::python
#endif // CALL_DWA20011214_HPP

View File

@@ -0,0 +1,82 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef CONVERT_DWA20011129_HPP
# define CONVERT_DWA20011129_HPP
# include <boost/python/converter/target.hpp>
# include <boost/python/converter/source.hpp>
# include <boost/python/converter/wrap.hpp>
# include <boost/python/converter/unwrap.hpp>
namespace boost { namespace python {
namespace detail
{
template <class T>
struct converter_gen
{
typedef T value_type;
typedef typename converter::source<value_type>::type source;
typedef converter::wrap_<source> wrap;
typedef converter::wrap_more_<source> wrap_more;
typedef typename converter::target<value_type>::type target;
typedef converter::unwrap_<target> unwrap;
typedef converter::unwrap_more_<target> unwrap_more;
};
}
template <class T>
struct wrap : detail::converter_gen<T>::wrap
{
typedef typename detail::converter_gen<T>::wrap base;
};
template <class T>
struct wrap_more : detail::converter_gen<T>::wrap_more
{
typedef typename detail::converter_gen<T>::wrap_more base;
wrap_more(converter::handle& prev);
};
template <class T>
struct unwrap : detail::converter_gen<T>::unwrap
{
typedef typename detail::converter_gen<T>::unwrap base;
unwrap(PyObject*);
};
template <class T>
struct unwrap_more : detail::converter_gen<T>::unwrap_more
{
typedef typename detail::converter_gen<T>::unwrap_more base;
unwrap_more(PyObject*, converter::handle& prev);
};
//
// implementations
//
template <class T>
inline wrap_more<T>::wrap_more(converter::handle& prev)
: base(prev)
{
}
template <class T>
inline unwrap<T>::unwrap(PyObject* source)
: base(source)
{
}
template <class T>
inline unwrap_more<T>::unwrap_more(PyObject* source, converter::handle& prev)
: base(source, prev)
{
}
}} // namespace boost::python
#endif // CONVERT_DWA20011129_HPP

View File

@@ -0,0 +1,46 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef BODY_DWA2001127_HPP
# define BODY_DWA2001127_HPP
# include <boost/config.hpp>
# include <boost/python/converter/type_id.hpp>
# include <boost/python/export.hpp>
namespace boost { namespace python { namespace converter {
struct BOOST_PYTHON_EXPORT handle;
struct BOOST_PYTHON_EXPORT body
{
public:
body(type_id_t key);
virtual ~body() {}
// default implementation is a no-op
virtual void destroy_handle(handle*) const;
type_id_t key() const;
private:
type_id_t m_key;
};
//
// implementations
//
inline body::body(type_id_t key)
: m_key(key)
{
}
inline type_id_t body::key() const
{
return m_key;
}
}}} // namespace boost::python::converter
#endif // BODY_DWA2001127_HPP

View File

@@ -0,0 +1,56 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef CLASS_DWA20011215_HPP
# define CLASS_DWA20011215_HPP
# include <boost/python/object/class.hpp>
# include <boost/python/converter/unwrapper.hpp>
namespace boost { namespace python { namespace converter {
struct class_unwrapper_base
{
class_unwrapper_base(type_id_t sought_type);
void*
};
template <class T>
struct class_unwrapper
{
struct ref_unwrapper : unwrapper<T&>
{
bool convertible(PyObject* p) const
{
return p->ob_type == &SimpleType;
}
simple const& convert(PyObject* p, void*&) const
{
return static_cast<SimpleObject*>(p)->x;
}
};
# ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
struct const_ref_unwrapper : unwrapper<T const&>
{
bool convertible(PyObject* p) const
{
return p->ob_type == &SimpleType;
}
simple const& convert(PyObject* p, void*&) const
{
return static_cast<SimpleObject*>(p)->x;
}
};
# endif
};
}}} // namespace boost::python::converter
#endif // CLASS_DWA20011215_HPP

View File

@@ -0,0 +1,91 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef HANDLE_DWA20011130_HPP
# define HANDLE_DWA20011130_HPP
# include <boost/python/export.hpp>
# include <boost/utility.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/export.hpp>
namespace boost { namespace python { namespace converter {
struct BOOST_PYTHON_EXPORT body;
// The common base class for unwrap_ and wrap_ handle objects. They
// share a common base so that handles can be linked into a chain
// within a function wrapper which is managed by a single object.
struct BOOST_PYTHON_EXPORT handle : boost::noncopyable
{
public: // member functions
// All constructors take a body* passed from the derived class.
//
// Constructors taking a handle links this into a chain of
// handles, for more efficient management in function wrappers
handle(body* body);
handle(body* body, handle& prev);
// returns true iff all handles in the chain can convert their
// arguments
bool convertible() const;
// safe_bool idiom from Peter Dimov: provides handles to/from
// bool without enabling handles to integer types/void*.
private:
struct dummy { inline void nonnull() {} };
typedef void (dummy::*safe_bool)();
public:
inline operator safe_bool() const;
inline safe_bool operator!() const;
protected: // member functions for derived classes
// Get the body we hold
inline body* get_body() const;
// Release all bodies in the chain, in reverse order of
// initialization. Only actually called for the head of the chain.
void destroy();
private:
// Holds implementation
body* m_body;
// handle for next argument, if any.
handle* m_next;
};
//
// implementations
//
inline handle::handle(body* body, handle& prev)
: m_body(body), m_next(0)
{
prev.m_next = this;
}
inline handle::handle(body* body)
: m_body(body), m_next(0)
{
}
inline handle::operator handle::safe_bool() const
{
return convertible() ? &dummy::nonnull : 0;
}
inline handle::safe_bool handle::operator!() const
{
return convertible() ? 0 : &dummy::nonnull;
}
inline body* handle::get_body() const
{
return m_body;
}
}}} // namespace boost::python::converter
#endif // HANDLE_DWA20011130_HPP

View File

@@ -0,0 +1,83 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef REGISTRATION_DWA20011130_HPP
# define REGISTRATION_DWA20011130_HPP
# include <boost/config.hpp>
# include <boost/python/converter/registry.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/export.hpp>
# ifdef BOOST_PYTHON_TRACE
# include <iostream>
# endif
namespace boost { namespace python { namespace converter {
struct BOOST_PYTHON_EXPORT wrapper_base;
struct BOOST_PYTHON_EXPORT unwrapper_base;
// This class is really sort of a "templated namespace". It manages a
// static data member which refers to the registry entry for T. This
// reference is acquired once to reduce the burden of multiple
// dictionary lookups at runtime.
template <class T>
struct registration
{
public: // member functions
// Return a converter which can convert the given Python object to
// T, or 0 if no such converter exists
static unwrapper_base* unwrapper(PyObject*);
// Return a converter which can convert T to a Python object, or 0
// if no such converter exists
static wrapper_base* wrapper();
private: // helper functions
static registry::entry* entry();
static registry::entry* find_entry();
private: // data members
static registry::entry* m_registry_entry;
};
// because this is static POD data it will be initialized to zero
template <class T>
registry::entry* registration<T>::m_registry_entry;
template <class T>
registry::entry* registration<T>::find_entry()
{
return registry::find(type_id<T>());
}
template <class T>
inline registry::entry* registration<T>::entry()
{
if (!m_registry_entry)
m_registry_entry = find_entry();
return m_registry_entry;
}
template <class T>
unwrapper_base* registration<T>::unwrapper(PyObject* p)
{
# ifdef BOOST_PYTHON_TRACE
std::cout << "retrieving unwrapper for " << type_id<T>() << std::endl;
# endif
return entry()->unwrapper(p);
}
template <class T>
wrapper_base* registration<T>::wrapper()
{
# ifdef BOOST_PYTHON_TRACE
std::cout << "retrieving wrapper for " << type_id<T>() << std::endl;
# endif
return entry()->wrapper();
}
}}} // namespace boost::python::converter
#endif // REGISTRATION_DWA20011130_HPP

View File

@@ -0,0 +1,74 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef REGISTRY_DWA20011127_HPP
# define REGISTRY_DWA20011127_HPP
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/converter/type_id.hpp>
# include <boost/python/export.hpp>
# include <list>
# include <memory>
namespace boost { namespace python { namespace converter {
struct BOOST_PYTHON_EXPORT wrapper_base;
struct BOOST_PYTHON_EXPORT unwrapper_base;
// This namespace acts as a sort of singleton
namespace registry
{
// These are the elements stored in the registry
class BOOST_PYTHON_EXPORT entry
{
public: // member functions
entry();
~entry();
// Return a converter appropriate for converting the given
// Python object from_python to the C++ type with which this
// converter is associated in the registry, or 0 if no such
// converter exists.
unwrapper_base* unwrapper(PyObject*) const;
// Return a converter appropriate for converting a C++ object
// whose type this entry is associated with in the registry to a
// Python object, or 0 if no such converter exists.
wrapper_base* wrapper() const;
// Conversion classes use these functions to register
// themselves.
void insert(wrapper_base&);
void remove(wrapper_base&);
void insert(unwrapper_base&);
void remove(unwrapper_base&);
private: // types
typedef std::list<unwrapper_base*> unwrappers;
private: // helper functions
unwrappers::iterator find(unwrapper_base const&);
private: // data members
// The collection of from_python converters for the associated
// C++ type.
unwrappers m_unwrappers;
// The unique to_python converter for the associated C++ type.
converter::wrapper_base* m_wrapper;
};
BOOST_PYTHON_EXPORT entry* find(type_id_t);
BOOST_PYTHON_EXPORT void insert(wrapper_base& x);
BOOST_PYTHON_EXPORT void insert(unwrapper_base& x);
BOOST_PYTHON_EXPORT void remove(wrapper_base& x);
BOOST_PYTHON_EXPORT void remove(unwrapper_base& x);
}
}}} // namespace boost::python::converter
#endif // REGISTRY_DWA20011127_HPP

View File

@@ -0,0 +1,80 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef SOURCE_DWA20011119_HPP
# define SOURCE_DWA20011119_HPP
# include <boost/type_traits/cv_traits.hpp>
# include <boost/type_traits/transform_traits.hpp>
# include <boost/mpl/select_type.hpp>
namespace boost { namespace python { namespace converter {
// source --
//
// This type generator (see
// ../../../more/generic_programming.html#type_generator) is used
// to select the argument type to use when converting T to a PyObject*
template <class T> struct source;
# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// Since for some strange reason temporaries can't be bound to const
// volatile references (8.5.3/5 in the C++ standard), we cannot use a
// const volatile reference as the standard for values and references.
template <class T>
struct source
{
typedef T const& type;
};
// This will handle the following:
// T const volatile& -> T const volatile&
// T volatile& -> T const volatile&
// T const& -> T const&
// T& -> T const&
template <class T>
struct source<T&>
{
typedef T const& type;
};
template <class T>
struct source<T*>
{
typedef T const* type;
};
template <class T>
struct source<T* const>
{
typedef T const* type;
};
// Deal with references to pointers
template <class T>
struct source<T*&>
{
typedef T const* type;
};
template <class T>
struct source<T* const&>
{
typedef T const* type;
};
# else
template <class T>
struct source
{
typedef typename add_reference<
typename add_const<T>::type
>::type type;
};
# endif
}}} // namespace boost::python::converter
#endif // SOURCE_DWA20011119_HPP

View File

@@ -0,0 +1,24 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef SOURCE_HOLDER_DWA20011215_HPP
# define SOURCE_HOLDER_DWA20011215_HPP
namespace boost { namespace python { namespace converter {
struct source_holder_base
{
};
template <class T>
struct source_holder : source_holder_base
{
source_holder(T x) : value(x) {}
T value;
};
}}} // namespace boost::python::converter
#endif // SOURCE_HOLDER_DWA20011215_HPP

View File

@@ -0,0 +1,172 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef TARGET_DWA20011119_HPP
# define TARGET_DWA20011119_HPP
# include <boost/type_traits/cv_traits.hpp>
# include <boost/type_traits/transform_traits.hpp>
# include <boost/type_traits/object_traits.hpp>
# include <boost/mpl/select_type.hpp>
# include <boost/type_traits/same_traits.hpp>
namespace boost { namespace python { namespace converter {
// target --
//
// This type generator (see
// ../../../more/generic_programming.html#type_generator) is used
// to select the return type of the appropriate converter for
// unwrapping a given type.
// Strategy:
//
// 1. reduce everything to a common, un-cv-qualified reference
// type where possible. This will save on registering many different
// converter types.
//
// 2. Treat built-in types specially: when unwrapping a value or
// constant reference to one of these, use a value for the target
// type. It will bind to a const reference if neccessary, and more
// importantly, avoids having to dynamically allocate room for
// an lvalue of types which can be cheaply copied.
//
// In the tables below, "cv" stands for the set of all possible
// cv-qualifications.
// Target Source
// int int
// int const& int
// int& int&
// int volatile& int volatile&
// int const volatile& int const volatile&
// On compilers supporting partial specialization:
//
// Target Source
// T T&
// T cv& T&
// T cv* T*
// T cv*const& T*
// T cv*& T*& <- should this be legal?
// T cv*volatile& T*& <- should this be legal?
// T cv*const volatile& T*& <- should this be legal?
// On others:
//
// Target Source
// T T&
// T cv& T cv&
// T cv* T cv*
// T cv*cv& T cv*cv&
// As you can see, in order to handle the same range of types without
// partial specialization, more converters need to be registered.
template <class T>
struct target
{
// Some pointer types are handled in a more sophisticated way on
// compilers supporting partial specialization.
BOOST_STATIC_CONSTANT(bool, use_identity = (::boost::is_scalar<T>::value));
typedef typename mpl::select_type<
use_identity
, T
, typename add_reference<typename remove_cv<T>::type>::type
>::type type;
};
// When partial specialization is not present, we'll simply need to
// register many more converters.
# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T>
struct target<T&>
{
typedef typename remove_cv<T>::type& type;
};
template <class T>
struct target<T*>
{
typedef typename remove_cv<T>::type* type;
};
// Handle T*-cv for completeness. Function arguments in a signature
// are never actually cv-qualified, but who knows how this might be
// used, or what compiler bugs may lurk?
template <class T>
struct target<T* const>
{
typedef typename remove_cv<T>::type* type;
};
template <class T>
struct target<T* volatile>
{
typedef typename remove_cv<T>::type* type;
};
template <class T>
struct target<T* const volatile>
{
typedef typename remove_cv<T>::type* type;
};
// non-const references to pointers should be handled by the
// specialization for T&, above.
template <class T>
struct target<T* const&>
{
typedef typename remove_cv<T>::type* type;
};
# endif
// Fortunately, we can handle T const& where T is an arithmetic type
// by explicit specialization. These specializations will cause value
// and const& arguments to be converted to values, rather than to
// references.
# define BOOST_PYTHON_UNWRAP_VALUE(T) \
template <> \
struct target<T> \
{ \
typedef T type; \
}; \
template <> \
struct target<T const> \
{ \
typedef T type; \
}; \
template <> \
struct target<T volatile> \
{ \
typedef T type; \
}; \
template <> \
struct target<T const volatile> \
{ \
typedef T type; \
}; \
template <> \
struct target<T const&> \
{ \
typedef T type; \
}
BOOST_PYTHON_UNWRAP_VALUE(char);
BOOST_PYTHON_UNWRAP_VALUE(unsigned char);
BOOST_PYTHON_UNWRAP_VALUE(signed char);
BOOST_PYTHON_UNWRAP_VALUE(unsigned int);
BOOST_PYTHON_UNWRAP_VALUE(signed int);
BOOST_PYTHON_UNWRAP_VALUE(unsigned short);
BOOST_PYTHON_UNWRAP_VALUE(signed short);
BOOST_PYTHON_UNWRAP_VALUE(unsigned long);
BOOST_PYTHON_UNWRAP_VALUE(signed long);
BOOST_PYTHON_UNWRAP_VALUE(char const*);
}}} // namespace boost::python::converter
#endif // TARGET_DWA20011119_HPP

View File

@@ -0,0 +1,200 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef TYPE_ID_DWA20011127_HPP
# define TYPE_ID_DWA20011127_HPP
# include <boost/config.hpp>
# include <boost/python/export.hpp>
# include <boost/mpl/select_type.hpp>
# include <boost/type_traits/cv_traits.hpp>
# include <boost/type_traits/composite_traits.hpp>
# include <boost/python/export.hpp>
# include <boost/operators.hpp>
# include <typeinfo>
# include <iosfwd>
# include <cstring>
namespace boost { namespace python { namespace converter {
// a portable mechanism for identifying types at runtime across modules.
namespace detail
{
template <class T> class dummy;
}
// for this compiler at least, cross-shared-library type_info
// comparisons don't work, so use typeid(x).name() instead. It's not
// yet clear what the best default strategy is.
# if defined(__GNUC__) && __GNUC__ >= 3
# define BOOST_PYTHON_TYPE_ID_NAME
# endif
# if 1
struct type_id_t : totally_ordered<type_id_t>
{
enum decoration { const_ = 0x1, volatile_ = 0x2, reference = 0x4 };
# ifdef BOOST_PYTHON_TYPE_ID_NAME
typedef char const* base_id_t;
# else
typedef std::type_info const* base_id_t;
# endif
type_id_t(base_id_t, decoration decoration);
bool operator<(type_id_t const& rhs) const;
bool operator==(type_id_t const& rhs) const;
friend BOOST_PYTHON_EXPORT std::ostream& operator<<(std::ostream&, type_id_t const&);
private:
decoration m_decoration;
base_id_t m_base_type;
};
# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T>
struct is_reference_to_const
{
BOOST_STATIC_CONSTANT(bool, value = false);
};
template <class T>
struct is_reference_to_const<T const&>
{
BOOST_STATIC_CONSTANT(bool, value = true);
};
template <class T>
struct is_reference_to_volatile
{
BOOST_STATIC_CONSTANT(bool, value = false);
};
template <class T>
struct is_reference_to_volatile<T volatile&>
{
BOOST_STATIC_CONSTANT(bool, value = true);
};
# else
template <typename V>
struct is_const_help
{
typedef typename mpl::select_type<
is_const<V>::value
, type_traits::yes_type
, type_traits::no_type
>::type type;
};
template <typename V>
struct is_volatile_help
{
typedef typename mpl::select_type<
is_volatile<V>::value
, type_traits::yes_type
, type_traits::no_type
>::type type;
};
template <typename V>
typename is_const_help<V>::type reference_to_const_helper(V&);
type_traits::no_type
reference_to_const_helper(...);
template <class T>
struct is_reference_to_const
{
static T t;
BOOST_STATIC_CONSTANT(
bool, value
= sizeof(reference_to_const_helper(t)) == sizeof(type_traits::yes_type));
};
template <typename V>
typename is_volatile_help<V>::type reference_to_volatile_helper(V&);
type_traits::no_type reference_to_volatile_helper(...);
template <class T>
struct is_reference_to_volatile
{
static T t;
BOOST_STATIC_CONSTANT(
bool, value
= sizeof(reference_to_volatile_helper(t)) == sizeof(type_traits::yes_type));
};
# endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T>
inline type_id_t type_id(detail::dummy<T>* = 0)
{
return type_id_t(
# ifdef BOOST_PYTHON_TYPE_ID_NAME
typeid(T).name()
# else
&typeid(T)
# endif
, type_id_t::decoration(
(is_const<T>::value || is_reference_to_const<T>::value
? type_id_t::const_ : 0)
| (is_volatile<T>::value || is_reference_to_volatile<T>::value
? type_id_t::volatile_ : 0)
| (is_reference<T>::value ? type_id_t::reference : 0)
)
);
}
inline type_id_t::type_id_t(base_id_t base_t, decoration decoration)
: m_decoration(decoration)
, m_base_type(base_t)
{
}
inline bool type_id_t::operator<(type_id_t const& rhs) const
{
return m_decoration < rhs.m_decoration
|| m_decoration == rhs.m_decoration
# ifdef BOOST_PYTHON_TYPE_ID_NAME
&& std::strcmp(m_base_type, rhs.m_base_type) < 0;
# else
&& m_base_type->before(*rhs.m_base_type);
# endif
}
inline bool type_id_t::operator==(type_id_t const& rhs) const
{
return m_decoration == rhs.m_decoration
# ifdef BOOST_PYTHON_TYPE_ID_NAME
&& !std::strcmp(m_base_type, rhs.m_base_type);
# else
&& *m_base_type == *rhs.m_base_type;
# endif
}
# else
// This is the type which is used to identify a type
typedef char const* type_id_t;
// This is a workaround for a silly MSVC bug
// Converts a compile-time type to its corresponding runtime identifier.
template <class T>
type_id_t type_id(detail::dummy<T>* = 0)
{
return typeid(T).name();
}
# endif
struct BOOST_PYTHON_EXPORT type_id_before
{
bool operator()(type_id_t const& x, type_id_t const& y) const;
};
BOOST_PYTHON_EXPORT std::ostream& operator<<(std::ostream&, type_id_t const&);
}}} // namespace boost::python::converter
#endif // TYPE_ID_DWA20011127_HPP

View File

@@ -0,0 +1,192 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef UNWRAP_BASE_DWA20011130_HPP
# define UNWRAP_BASE_DWA20011130_HPP
# include <boost/python/converter/unwrapper_base.hpp>
# include <boost/python/converter/unwrapper.hpp>
# include <boost/python/converter/handle.hpp>
# include <boost/python/converter/registration.hpp>
# include <boost/python/converter/type_id.hpp>
# include <boost/python/export.hpp>
namespace boost { namespace python { namespace converter {
template <class T> struct unwrapper;
struct BOOST_PYTHON_EXPORT body;
struct BOOST_PYTHON_EXPORT unwrap_base : handle
{
public: // member functions
inline unwrap_base(PyObject* source, body*, handle& prev);
inline unwrap_base(PyObject* source, body*);
inline PyObject* source() const;
private: // data members
PyObject* m_source;
};
// These converters will be used by the function wrappers. They don't
// manage any resources, but are instead linked into a chain which is
// managed by an instance of unwrap_ or wrap_.
template <class T>
struct unwrap_more_ : unwrap_base
{
public: // member functions
// Construction
unwrap_more_(PyObject* source, handle& prev);
// invoke the conversion or throw an exception if unsuccessful
T operator*();
protected: // constructor
// this constructor is only for the use of unwrap_
unwrap_more_(PyObject* source);
private: // helper functions
// Return the unwrapper which will convert the given Python object
// to T, or 0 if no such converter exists
static unwrapper_base* lookup(PyObject*);
private:
// unspecified storage which may be allocated by the unwrapper to
// do value conversions.
mutable void* m_storage;
friend class unwrapper<T>;
};
// specialization for PyObject*
template <>
struct unwrap_more_<PyObject*>
: unwrap_base
{
public: // member functions
// Construction
unwrap_more_(PyObject* source, handle& prev)
: unwrap_base(source, m_unwrapper, prev)
{
}
// invoke the conversion or throw an exception if unsuccessful
PyObject* operator*()
{
return source();
}
bool convertible(PyObject*) const
{
return true;
}
protected: // constructor
// this constructor is only for the use of unwrap_
unwrap_more_(PyObject* source)
: unwrap_base(source, m_unwrapper)
{
}
private:
static BOOST_PYTHON_EXPORT unwrapper_base* m_unwrapper;
};
template <class T>
struct unwrap_ : unwrap_more_<T>
{
unwrap_(PyObject* source);
~unwrap_();
};
//
// implementations
//
inline unwrap_base::unwrap_base(PyObject* source, body* body, handle& prev)
: handle(body, prev)
, m_source(source)
{
}
inline unwrap_base::unwrap_base(PyObject* source, body* body)
: handle(body)
, m_source(source)
{
}
inline PyObject* unwrap_base::source() const
{
return m_source;
}
template <class T>
inline unwrapper_base* unwrap_more_<T>::lookup(PyObject* source)
{
// Find the converters registered for T and get a unwrapper
// appropriate for the source object
return registration<T>::unwrapper(source);
}
template <class T>
unwrap_more_<T>::unwrap_more_(PyObject* source, handle& prev)
: unwrap_base(source, lookup(source), prev)
, m_storage(0)
{
}
template <class T>
unwrap_more_<T>::unwrap_more_(PyObject* source)
: unwrap_base(source, lookup(source))
, m_storage(0)
{
}
# if 0
template <>
inline unwrap_more_<PyObject*>::unwrap_more_(PyObject* source, handle& prev)
: unwrap_base(source, m_unwrapper, prev)
{
}
template <>
inline unwrap_more_<PyObject*>::unwrap_more_(PyObject* source)
: unwrap_base(source, m_unwrapper)
{
}
template <>
inline PyObject* unwrap_more_<PyObject*>::operator*()
{
return source();
}
template <>
inline bool unwrap_more_<PyObject*>::convertible(PyObject*) const
{
return true;
}
# endif
template <class T>
inline unwrap_<T>::unwrap_(PyObject* source)
: unwrap_more_<T>(source)
{
}
template <class T>
T unwrap_more_<T>::operator*()
{
return static_cast<unwrapper<T>*>(
get_body())->do_conversion(this);
}
template <class T>
unwrap_<T>::~unwrap_()
{
destroy();
}
}}} // namespace boost::python::converter
#endif // UNWRAP_BASE_DWA20011130_HPP

View File

@@ -0,0 +1,53 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef UNWRAPPER_DWA2001127_HPP
# define UNWRAPPER_DWA2001127_HPP
# include <boost/python/converter/unwrapper_base.hpp>
# include <boost/python/converter/unwrap.hpp>
# include <boost/python/converter/body.hpp>
namespace boost { namespace python { namespace converter {
template <class T> struct unwrap_more_;
// Abstract base for all unwrappers of Ts
template <class T>
struct unwrapper : unwrapper_base
{
public:
unwrapper();
T do_conversion(unwrap_more_<T> const* handle) const;
private:
virtual T convert(PyObject*, void*&) const = 0;
private: // body required interface implementation
void destroy_handle(handle*) const {}
};
//
// implementations
//
template <class T>
unwrapper<T>::unwrapper()
: unwrapper_base(type_id<T>())
{
}
// We could think about making this virtual in an effort to get its
// code generated in the module where the unwrapper is defined, but
// it's not clear that it's a good tradeoff.
template <class T>
T unwrapper<T>::do_conversion(unwrap_more_<T> const* handle) const
{
return convert(handle->source(), handle->m_storage);
}
}}} // namespace boost::python::converter
#endif // UNWRAPPER_DWA2001127_HPP

View File

@@ -0,0 +1,25 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef UNWRAPPER_BASE_DWA20011215_HPP
# define UNWRAPPER_BASE_DWA20011215_HPP
# include <boost/python/converter/type_id.hpp>
# include <boost/python/converter/body.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/export.hpp>
namespace boost { namespace python { namespace converter {
struct BOOST_PYTHON_EXPORT unwrapper_base : body
{
public:
unwrapper_base(type_id_t); // registers
~unwrapper_base(); // unregisters
virtual bool convertible(PyObject*) const = 0;
};
}}} // namespace boost::python::converter
#endif // UNWRAPPER_BASE_DWA20011215_HPP

View File

@@ -0,0 +1,145 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef WRAP_DWA2001127_HPP
# define WRAP_DWA2001127_HPP
# include <boost/python/converter/registration.hpp>
# include <boost/python/converter/handle.hpp>
# include <boost/python/converter/body.hpp>
# include <boost/python/converter/wrapper.hpp>
# include <boost/python/export.hpp>
# include <boost/python/converter/source_holder.hpp>
# include <cassert>
namespace boost { namespace python { namespace converter {
struct BOOST_PYTHON_EXPORT wrapper_base;
template <class T> struct wrapper;
struct wrap_base : handle
{
public: // member functions
wrap_base(body*, handle& prev);
wrap_base(body*);
PyObject* release();
public: // accessor, really only for wrappers
PyObject*& target() const;
protected:
void hold_result(PyObject*) const;
private:
mutable PyObject* m_target;
};
template <class T>
struct wrap_more_ : wrap_base
{
protected:
typedef T source_t;
public: // member functions
wrap_more_(handle& prev);
PyObject* operator()(source_t) const;
protected: // constructor for wrap_<T>, below
wrap_more_();
private: // helper functions
static wrapper_base* lookup();
private:
friend class wrapper<T>;
};
template <class T>
struct wrap_ : wrap_more_<T>
{
typedef typename wrap_more_<T>::source_t source_t;
public: // member functions
wrap_();
~wrap_();
};
//
// implementations
//
inline wrap_base::wrap_base(body* body, handle& prev)
: handle(body, prev),
m_target(0)
{
}
inline wrap_base::wrap_base(body* body)
: handle(body),
m_target(0)
{
}
inline PyObject*& wrap_base::target() const
{
return m_target;
}
inline void wrap_base::hold_result(PyObject* p) const
{
assert(m_target == 0);
m_target = p;
}
inline PyObject* wrap_base::release()
{
PyObject* result = m_target;
m_target = 0;
return result;
}
template <class T>
inline wrapper_base* wrap_more_<T>::lookup()
{
// Find the converters registered for T and get a wrapper
// appropriate for the source object
return registration<T>::wrapper();
}
template <class T>
inline wrap_more_<T>::wrap_more_(handle& prev)
: wrap_base(lookup(), prev)
{
}
template <class T>
PyObject* wrap_more_<T>::operator()(source_t x) const
{
return static_cast<wrapper<T>*>(
get_body())->do_conversion(*this, source_holder<T>(x));
}
template <class T>
wrap_more_<T>::wrap_more_()
: wrap_base(lookup())
{
}
template <class T>
wrap_<T>::wrap_()
: wrap_more_<T>()
{
}
template <class T>
wrap_<T>::~wrap_()
{
destroy();
}
}}} // namespace boost::python::converter
#endif // WRAP_DWA2001127_HPP

View File

@@ -0,0 +1,69 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef WRAPPER_DWA2001127_HPP
# define WRAPPER_DWA2001127_HPP
# include <boost/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/converter/body.hpp>
# include <boost/python/converter/type_id.hpp>
# include <boost/python/converter/wrap.hpp>
# include <boost/python/converter/source_holder.hpp>
# include <boost/python/export.hpp>
namespace boost { namespace python { namespace converter {
struct source_holder_base;
struct wrap_base;
template <class T> struct wrap_more_;
struct BOOST_PYTHON_EXPORT wrapper_base : body
{
public:
wrapper_base(type_id_t); // registers
~wrapper_base(); // unregisters
virtual PyObject* do_conversion(wrap_base const&, source_holder_base const&) const = 0;
};
template <class T>
struct wrapper : wrapper_base
{
public:
wrapper();
PyObject* do_conversion(wrap_base const&, source_holder_base const&) const;
// This does the actual conversion
virtual PyObject* convert(T source) const = 0;
};
//
// implementations
//
template <class T>
wrapper<T>::wrapper()
: wrapper_base(type_id<T>())
{
}
template <class T>
PyObject* wrapper<T>::do_conversion(wrap_base const& handle_, source_holder_base const& data_) const
{
// Casting pointers instead of references suppresses a CWPro7 bug.
wrap_more_<T> const& handle = *static_cast<wrap_more_<T> const*>(&handle_);
source_holder<T> const& data = *static_cast<source_holder<T> const*>(&data_);
if (handle.target() == 0)
{
handle.hold_result(convert(data.value));
}
return handle.target();
}
}}} // namespace boost::python::converter
#endif // WRAPPER_DWA2001127_HPP

View File

@@ -0,0 +1,233 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// This work was funded in part by Lawrence Berkeley National Labs
//
// This file generated for 5-argument member functions and 6-argument free
// functions by gen_arg_tuple_size.python
#ifndef ARG_TUPLE_SIZE_DWA20011201_HPP
# define ARG_TUPLE_SIZE_DWA20011201_HPP
namespace boost { namespace python { namespace detail {
// Computes (at compile-time) the number of elements that a Python
// argument tuple must have in order to be passed to a wrapped C++
// (member) function of the given type.
template <class F> struct arg_tuple_size;
# if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(__BORLANDC__)
template <class R>
struct arg_tuple_size<R (*)()>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 0);
};
template <class R, class A1>
struct arg_tuple_size<R (*)(A1)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 1);
};
template <class R, class A1, class A2>
struct arg_tuple_size<R (*)(A1, A2)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 2);
};
template <class R, class A1, class A2, class A3>
struct arg_tuple_size<R (*)(A1, A2, A3)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 3);
};
template <class R, class A1, class A2, class A3, class A4>
struct arg_tuple_size<R (*)(A1, A2, A3, A4)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 4);
};
template <class R, class A1, class A2, class A3, class A4, class A5>
struct arg_tuple_size<R (*)(A1, A2, A3, A4, A5)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 5);
};
template <class R, class A1, class A2, class A3, class A4, class A5, class A6>
struct arg_tuple_size<R (*)(A1, A2, A3, A4, A5, A6)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 6);
};
template <class R, class A0>
struct arg_tuple_size<R (A0::*)()>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 1);
};
template <class R, class A0, class A1>
struct arg_tuple_size<R (A0::*)(A1)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 2);
};
template <class R, class A0, class A1, class A2>
struct arg_tuple_size<R (A0::*)(A1, A2)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 3);
};
template <class R, class A0, class A1, class A2, class A3>
struct arg_tuple_size<R (A0::*)(A1, A2, A3)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 4);
};
template <class R, class A0, class A1, class A2, class A3, class A4>
struct arg_tuple_size<R (A0::*)(A1, A2, A3, A4)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 5);
};
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
struct arg_tuple_size<R (A0::*)(A1, A2, A3, A4, A5)>
{
BOOST_STATIC_CONSTANT(std::size_t, value = 6);
};
# else
// We will use the "sizeof() trick" to work around the lack of
// partial specialization in MSVC6 and its broken-ness in borland.
// See http://opensource.adobe.com or
// http://groups.yahoo.com/group/boost/message/5441 for
// more examples
// This little package is used to transmit the number of arguments
// from the helper functions below to the sizeof() expression below.
// Because we can never have an array of fewer than 1 element, we
// add 1 to n and then subtract 1 from the result of sizeof() below.
template <int n>
struct char_array
{
char elements[n+1];
};
// The following helper functions are never actually called, since
// they are only used within a sizeof() expression, but the type of
// their return value is used to discriminate between various free
// and member function pointers at compile-time.
template <class R>
char_array<0> arg_tuple_size_helper(R (*)());
template <class R, class A1>
char_array<1> arg_tuple_size_helper(R (*)(A1));
template <class R, class A1, class A2>
char_array<2> arg_tuple_size_helper(R (*)(A1, A2));
template <class R, class A1, class A2, class A3>
char_array<3> arg_tuple_size_helper(R (*)(A1, A2, A3));
template <class R, class A1, class A2, class A3, class A4>
char_array<4> arg_tuple_size_helper(R (*)(A1, A2, A3, A4));
template <class R, class A1, class A2, class A3, class A4, class A5>
char_array<5> arg_tuple_size_helper(R (*)(A1, A2, A3, A4, A5));
template <class R, class A1, class A2, class A3, class A4, class A5, class A6>
char_array<6> arg_tuple_size_helper(R (*)(A1, A2, A3, A4, A5, A6));
template <class R, class A0>
char_array<1> arg_tuple_size_helper(R (A0::*)());
template <class R, class A0, class A1>
char_array<2> arg_tuple_size_helper(R (A0::*)(A1));
template <class R, class A0, class A1, class A2>
char_array<3> arg_tuple_size_helper(R (A0::*)(A1, A2));
template <class R, class A0, class A1, class A2, class A3>
char_array<4> arg_tuple_size_helper(R (A0::*)(A1, A2, A3));
template <class R, class A0, class A1, class A2, class A3, class A4>
char_array<5> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4));
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
char_array<6> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4, A5));
template <class R, class A0>
char_array<1> arg_tuple_size_helper(R (A0::*)() const);
template <class R, class A0, class A1>
char_array<2> arg_tuple_size_helper(R (A0::*)(A1) const);
template <class R, class A0, class A1, class A2>
char_array<3> arg_tuple_size_helper(R (A0::*)(A1, A2) const);
template <class R, class A0, class A1, class A2, class A3>
char_array<4> arg_tuple_size_helper(R (A0::*)(A1, A2, A3) const);
template <class R, class A0, class A1, class A2, class A3, class A4>
char_array<5> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4) const);
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
char_array<6> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4, A5) const);
template <class R, class A0>
char_array<1> arg_tuple_size_helper(R (A0::*)() volatile);
template <class R, class A0, class A1>
char_array<2> arg_tuple_size_helper(R (A0::*)(A1) volatile);
template <class R, class A0, class A1, class A2>
char_array<3> arg_tuple_size_helper(R (A0::*)(A1, A2) volatile);
template <class R, class A0, class A1, class A2, class A3>
char_array<4> arg_tuple_size_helper(R (A0::*)(A1, A2, A3) volatile);
template <class R, class A0, class A1, class A2, class A3, class A4>
char_array<5> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4) volatile);
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
char_array<6> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4, A5) volatile);
template <class R, class A0>
char_array<1> arg_tuple_size_helper(R (A0::*)() const volatile);
template <class R, class A0, class A1>
char_array<2> arg_tuple_size_helper(R (A0::*)(A1) const volatile);
template <class R, class A0, class A1, class A2>
char_array<3> arg_tuple_size_helper(R (A0::*)(A1, A2) const volatile);
template <class R, class A0, class A1, class A2, class A3>
char_array<4> arg_tuple_size_helper(R (A0::*)(A1, A2, A3) const volatile);
template <class R, class A0, class A1, class A2, class A3, class A4>
char_array<5> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4) const volatile);
template <class R, class A0, class A1, class A2, class A3, class A4, class A5>
char_array<6> arg_tuple_size_helper(R (A0::*)(A1, A2, A3, A4, A5) const volatile);
template <class F>
struct arg_tuple_size
{
// The sizeof() magic happens here
BOOST_STATIC_CONSTANT(std::size_t, value
= sizeof(arg_tuple_size_helper(F(0)).elements) - 1);
};
# endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
}}} // namespace boost::python::detail
#endif // ARG_TUPLE_SIZE_DWA20011201_HPP

View File

@@ -0,0 +1,27 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef CALLER_DWA20011214_HPP
# define CALLER_DWA20011214_HPP
# include <boost/python/call.hpp>
# include <boost/python/detail/wrap_python.hpp>
namespace boost { namespace python { namespace detail {
struct caller
{
typedef PyObject* result_type;
template <class F>
PyObject* operator()(F f, PyObject* args, PyObject* keywords)
{
return call(f, args, keywords);
}
};
}}} // namespace boost::python::detail
#endif // CALLER_DWA20011214_HPP

View File

@@ -0,0 +1,846 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// This work was funded in part by Lawrence Berkeley National Labs
//
// This file generated for 5-argument member functions and 6-argument free
// functions by gen_returning.py
#ifndef RETURNING_DWA20011201_HPP
# define RETURNING_DWA20011201_HPP
//# include <boost/python/detail/config.hpp>
# include <boost/python/detail/wrap_python.hpp>
# include <boost/config.hpp>
# include <boost/python/convert.hpp>
# include <boost/python/detail/none.hpp>
namespace boost { namespace python { namespace detail {
// Calling C++ from Python
template <class R>
struct returning
{
template <class A0>
static PyObject* call(R (A0::*pmf)(), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
// find the result converter
wrap_more<R> r(c0);
if (!c0) return 0;
return r( ((*c0).*pmf)() );
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
// find the result converter
wrap_more<R> r(c1);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1) );
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
// find the result converter
wrap_more<R> r(c2);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2) );
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
// find the result converter
wrap_more<R> r(c3);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3) );
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
// find the result converter
wrap_more<R> r(c4);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4) );
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
// find the result converter
wrap_more<R> r(c5);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5) );
};
template <class A0>
static PyObject* call(R (A0::*pmf)() const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
// find the result converter
wrap_more<R> r(c0);
if (!c0) return 0;
return r( ((*c0).*pmf)() );
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
// find the result converter
wrap_more<R> r(c1);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1) );
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
// find the result converter
wrap_more<R> r(c2);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2) );
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
// find the result converter
wrap_more<R> r(c3);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3) );
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
// find the result converter
wrap_more<R> r(c4);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4) );
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
// find the result converter
wrap_more<R> r(c5);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5) );
};
template <class A0>
static PyObject* call(R (A0::*pmf)() volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
// find the result converter
wrap_more<R> r(c0);
if (!c0) return 0;
return r( ((*c0).*pmf)() );
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
// find the result converter
wrap_more<R> r(c1);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1) );
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
// find the result converter
wrap_more<R> r(c2);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2) );
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
// find the result converter
wrap_more<R> r(c3);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3) );
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
// find the result converter
wrap_more<R> r(c4);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4) );
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
// find the result converter
wrap_more<R> r(c5);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5) );
};
// missing const volatile type traits
# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class A0>
static PyObject* call(R (A0::*pmf)() const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
// find the result converter
wrap_more<R> r(c0);
if (!c0) return 0;
return r( ((*c0).*pmf)() );
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
// find the result converter
wrap_more<R> r(c1);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1) );
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
// find the result converter
wrap_more<R> r(c2);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2) );
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
// find the result converter
wrap_more<R> r(c3);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3) );
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
// find the result converter
wrap_more<R> r(c4);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4) );
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
// find the result converter
wrap_more<R> r(c5);
if (!c0) return 0;
return r( ((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5) );
};
# endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
static PyObject* call(R (*pf)(), PyObject*, PyObject* /* keywords */ )
{
// find the result converter
wrap<R> r;
return r( (*pf)() );
};
template <class A0>
static PyObject* call(R (*pf)(A0), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
// find the result converter
wrap_more<R> r(c0);
if (!c0) return 0;
return r( (*pf)(*c0) );
};
template <class A0, class A1>
static PyObject* call(R (*pf)(A0, A1), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
// find the result converter
wrap_more<R> r(c1);
if (!c0) return 0;
return r( (*pf)(*c0, *c1) );
};
template <class A0, class A1, class A2>
static PyObject* call(R (*pf)(A0, A1, A2), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
// find the result converter
wrap_more<R> r(c2);
if (!c0) return 0;
return r( (*pf)(*c0, *c1, *c2) );
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (*pf)(A0, A1, A2, A3), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
// find the result converter
wrap_more<R> r(c3);
if (!c0) return 0;
return r( (*pf)(*c0, *c1, *c2, *c3) );
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (*pf)(A0, A1, A2, A3, A4), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
// find the result converter
wrap_more<R> r(c4);
if (!c0) return 0;
return r( (*pf)(*c0, *c1, *c2, *c3, *c4) );
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (*pf)(A0, A1, A2, A3, A4, A5), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
// find the result converter
wrap_more<R> r(c5);
if (!c0) return 0;
return r( (*pf)(*c0, *c1, *c2, *c3, *c4, *c5) );
};
};
template <>
struct returning<void>
{
typedef void R;
template <class A0>
static PyObject* call(R (A0::*pmf)(), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
if (!c0) return 0;
((*c0).*pmf)();
return detail::none();
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
if (!c0) return 0;
((*c0).*pmf)(*c1);
return detail::none();
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2);
return detail::none();
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5);
return detail::none();
};
template <class A0>
static PyObject* call(R (A0::*pmf)() const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
if (!c0) return 0;
((*c0).*pmf)();
return detail::none();
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
if (!c0) return 0;
((*c0).*pmf)(*c1);
return detail::none();
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2);
return detail::none();
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5) const, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5);
return detail::none();
};
template <class A0>
static PyObject* call(R (A0::*pmf)() volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
if (!c0) return 0;
((*c0).*pmf)();
return detail::none();
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
if (!c0) return 0;
((*c0).*pmf)(*c1);
return detail::none();
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2);
return detail::none();
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5) volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5);
return detail::none();
};
// missing const volatile type traits
# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class A0>
static PyObject* call(R (A0::*pmf)() const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
if (!c0) return 0;
((*c0).*pmf)();
return detail::none();
};
template <class A0, class A1>
static PyObject* call(R (A0::*pmf)(A1) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
if (!c0) return 0;
((*c0).*pmf)(*c1);
return detail::none();
};
template <class A0, class A1, class A2>
static PyObject* call(R (A0::*pmf)(A1, A2) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2);
return detail::none();
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (A0::*pmf)(A1, A2, A3) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (A0::*pmf)(A1, A2, A3, A4, A5) const volatile, PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0 const volatile&> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
if (!c0) return 0;
((*c0).*pmf)(*c1, *c2, *c3, *c4, *c5);
return detail::none();
};
# endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
static PyObject* call(R (*pf)(), PyObject*, PyObject* /* keywords */ )
{
(*pf)();
return detail::none();
};
template <class A0>
static PyObject* call(R (*pf)(A0), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
if (!c0) return 0;
(*pf)(*c0);
return detail::none();
};
template <class A0, class A1>
static PyObject* call(R (*pf)(A0, A1), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
if (!c0) return 0;
(*pf)(*c0, *c1);
return detail::none();
};
template <class A0, class A1, class A2>
static PyObject* call(R (*pf)(A0, A1, A2), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
if (!c0) return 0;
(*pf)(*c0, *c1, *c2);
return detail::none();
};
template <class A0, class A1, class A2, class A3>
static PyObject* call(R (*pf)(A0, A1, A2, A3), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
if (!c0) return 0;
(*pf)(*c0, *c1, *c2, *c3);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4>
static PyObject* call(R (*pf)(A0, A1, A2, A3, A4), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
if (!c0) return 0;
(*pf)(*c0, *c1, *c2, *c3, *c4);
return detail::none();
};
template <class A0, class A1, class A2, class A3, class A4, class A5>
static PyObject* call(R (*pf)(A0, A1, A2, A3, A4, A5), PyObject* args, PyObject* /* keywords */ )
{
// check that each of the arguments is convertible
unwrap<A0> c0(PyTuple_GET_ITEM(args, 0));
unwrap_more<A1> c1(PyTuple_GET_ITEM(args, 1), c0);
unwrap_more<A2> c2(PyTuple_GET_ITEM(args, 2), c1);
unwrap_more<A3> c3(PyTuple_GET_ITEM(args, 3), c2);
unwrap_more<A4> c4(PyTuple_GET_ITEM(args, 4), c3);
unwrap_more<A5> c5(PyTuple_GET_ITEM(args, 5), c4);
if (!c0) return 0;
(*pf)(*c0, *c1, *c2, *c3, *c4, *c5);
return detail::none();
};
};
}}} // namespace boost::python::detail
#endif // RETURNING_DWA20011201_HPP

View File

@@ -0,0 +1,20 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef EXPORT_DWA20011120_HPP
# define EXPORT_DWA20011120_HPP
# include <boost/config.hpp>
# include <boost/preprocessor/if.hpp>
# include <boost/preprocessor/cat.hpp>
# if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__)
# ifndef BOOST_PYTHON_EXPORT
# define BOOST_PYTHON_EXPORT __declspec(dllimport)
# endif
# else
# define BOOST_PYTHON_EXPORT
# endif
#endif // EXPORT_DWA20011120_HPP

View File

@@ -0,0 +1,41 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef MAKE_FUNCTION_DWA20011214_HPP
# define MAKE_FUNCTION_DWA20011214_HPP
# include <boost/bind.hpp>
# include <boost/python/object/function.hpp>
# include <boost/python/object/make_holder.hpp>
# include <boost/python/detail/caller.hpp>
# include <boost/mpl/size.hpp>
namespace boost { namespace python {
template <class F>
PyObject* make_function(F f)
{
return new object::function(
object::py_function(
bind<PyObject*>(detail::caller(), f, _1, _2)));
}
template <class T, class ArgList, class Generator>
PyObject* make_constructor(T* = 0, ArgList* = 0, Generator* = 0)
{
return new object::function(
object::py_function(
bind<PyObject*>(detail::caller()
, object::make_holder<
mpl::size<ArgList>::value
>::template apply<
T, Generator, ArgList
>::execute
, _1, _2)));
}
}} // namespace boost::python
#endif // MAKE_FUNCTION_DWA20011214_HPP

View File

@@ -0,0 +1,37 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef MODULE_DWA2001128_HPP
# define MODULE_DWA2001128_HPP
# include <boost/config.hpp>
#if defined(_WIN32) || defined(__CYGWIN__)
# define BOOST_PYTHON_MODULE_INIT(name) \
void init_module_##name(); \
extern "C" __declspec(dllexport) void init##name() \
{ \
/*boost::python::handle_exception(*/init_module_##name()/*)*/; \
} \
void init_module_##name()
#else
# define BOOST_PYTHON_MODULE_INIT(name) \
void init_module_##name(); \
extern "C" void init##name() \
{ \
/*boost::python::handle_exception(*/init_module_##name()/*)*/; \
} \
void init_module_##name()
#endif
namespace boost { namespace python {
}} // namespace boost::python
#endif // MODULE_DWA2001128_HPP

View File

@@ -0,0 +1,76 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef CLASS_DWA20011214_HPP
# define CLASS_DWA20011214_HPP
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/export.hpp>
# include <boost/utility.hpp>
# include <boost/python/converter/type_id.hpp>
namespace boost { namespace python { namespace object {
template <class T> struct holder;
// Base class for all holders
struct BOOST_PYTHON_EXPORT holder_base : noncopyable
{
public:
holder_base(converter::type_id_t id);
virtual ~holder_base();
virtual bool held_by_value() const = 0;
holder_base* next() const;
converter::type_id_t type() const;
void install(PyObject* inst);
private:
converter::type_id_t m_type;
holder_base* m_next;
};
// Abstract base class which holds a Held, somehow. Provides a uniform
// way to get a pointer to the held object
template <class Held>
struct holder : holder_base
{
typedef Held held_type;
holder();
virtual Held* target() = 0;
};
// Each extension instance will be one of these
struct instance
{
PyObject_HEAD
holder_base* objects;
};
extern BOOST_PYTHON_EXPORT PyTypeObject class_metatype;
extern BOOST_PYTHON_EXPORT PyTypeObject class_type;
//
// implementation
//
inline holder_base* holder_base::next() const
{
return m_next;
}
inline converter::type_id_t holder_base::type() const
{
return m_type;
}
template <class Held>
holder<Held>::holder()
: holder_base(converter::type_id<Held>())
{
}
}}} // namespace boost::python::object
#endif // CLASS_DWA20011214_HPP

View File

@@ -0,0 +1,24 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef CONSTRUCT_DWA20011215_HPP
# define CONSTRUCT_DWA20011215_HPP
namespace boost { namespace python { namespace object {
template <class T, class ArgList>
struct construct
{
static
template <class
void operator()(PyObject* args, PyObject* keywords)
{
}
};
}}} // namespace boost::python::object
#endif // CONSTRUCT_DWA20011215_HPP

View File

@@ -0,0 +1,33 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef FORWARD_DWA20011215_HPP
# define FORWARD_DWA20011215_HPP
# include <boost/mpl/select_type.hpp>
# include <boost/type_traits/object_traits.hpp>
# include <boost/type_traits/composite_traits.hpp>
# include <boost/type_traits/transform_traits.hpp>
namespace boost { namespace python { namespace object {
// A little metaprogram which selects the type to pass through an
// intermediate forwarding function when the destination argument type
// is T.
template <class T>
struct forward
{
typedef typename mpl::select_type<
is_scalar<T>::value | is_reference<T>::value
, T
, reference_wrapper<
typename add_const<T>::type
>
>::type type;
};
}}} // namespace boost::python::object
#endif // FORWARD_DWA20011215_HPP

View File

@@ -0,0 +1,36 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef FUNCTION_DWA20011214_HPP
# define FUNCTION_DWA20011214_HPP
# include <boost/python/detail/wrap_python.hpp>
# include <boost/python/export.hpp>
# include <boost/function.hpp>
namespace boost { namespace python { namespace object {
// We use boost::function to avoid generating lots of virtual tables
typedef boost::function2<PyObject*, PyObject*, PyObject*> py_function;
struct BOOST_PYTHON_EXPORT function : PyObject
{
function(py_function);
~function();
PyObject* call(PyObject*, PyObject*) const;
private:
py_function m_fn;
};
extern BOOST_PYTHON_EXPORT PyTypeObject function_type;
//
// implementations
//
}}} // namespace boost::python::object
#endif // FUNCTION_DWA20011214_HPP

View File

@@ -0,0 +1,124 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef MAKE_HOLDER_DWA20011215_HPP
# define MAKE_HOLDER_DWA20011215_HPP
# include <boost/mpl/at.hpp>
# include <boost/python/object/forward.hpp>
# include <boost/python/object/class.hpp>
# include <boost/python/detail/wrap_python.hpp>
namespace boost { namespace python { namespace object {
template <class T> struct undefined;
template <class UnaryMetaFunction, class T>
struct eval
{
# if defined(BOOST_MSVC) && BOOST_MSVC <= 1200
// based on the (non-conforming) MSVC trick from MPL
template<bool>
struct unarymetafunction_vc : UnaryMetaFunction {};
// illegal C++ which causes VC to admit that unarymetafunction_vc
// can have a nested template:
template<>
struct unarymetafunction_vc<true>
{
template<class> struct apply;
};
typedef typename unarymetafunction_vc<
::boost::mpl::detail::msvc_never_true<UnaryMetaFunction>::value
>::template apply<T>::type type;
# else
typedef typename UnaryMetaFunction::template apply<T>::type type;
# endif
};
template <int nargs> struct make_holder;
template <>
struct make_holder<0>
{
template <class T, class Generator, class ArgList>
struct apply
{
typedef typename eval<Generator,T>::type holder;
static void execute(
PyObject* p)
{
(new holder(p))->install(p);
}
};
};
template <>
struct make_holder<1>
{
template <class T, class Generator, class ArgList>
struct apply
{
typedef typename eval<Generator,T>::type holder;
typedef typename mpl::at<0,ArgList>::type t0;
typedef typename forward<t0>::type f0;
static void execute(
PyObject* p
, t0 a0)
{
(new holder(p, f0(a0)))->install(p);
}
};
};
template <>
struct make_holder<2>
{
template <class T, class Generator, class ArgList>
struct apply
{
typedef typename eval<Generator,T>::type holder;
typedef typename mpl::at<0,ArgList>::type t0;
typedef typename forward<t0>::type f0;
typedef typename mpl::at<1,ArgList>::type t1;
typedef typename forward<t1>::type f1;
static void execute(
PyObject* p, t0 a0, t1 a1)
{
(new holder(p, f0(a0), f1(a1)))->install(p);
}
};
};
template <>
struct make_holder<3>
{
template <class T, class Generator, class ArgList>
struct apply
{
typedef typename eval<Generator,T>::type holder;
typedef typename mpl::at<0,ArgList>::type t0;
typedef typename forward<t0>::type f0;
typedef typename mpl::at<1,ArgList>::type t1;
typedef typename forward<t1>::type f1;
typedef typename mpl::at<2,ArgList>::type t2;
typedef typename forward<t2>::type f2;
static void execute(
PyObject* p, t0 a0, t1 a1, t2 a2)
{
(new holder(p, f0(a0), f1(a1), f2(a2)))->install(p);
}
};
};
}}} // namespace boost::python::object
#endif // MAKE_HOLDER_DWA20011215_HPP

View File

@@ -0,0 +1,80 @@
// Copyright David Abrahams 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef VALUE_HOLDER_DWA20011215_HPP
# define VALUE_HOLDER_DWA20011215_HPP
# include <boost/python/object/class.hpp>
namespace boost { namespace python { namespace object {
template <class Held>
struct value_holder : holder<Held>
{
// Forward construction to the held object
value_holder(PyObject*)
: m_held() {}
template <class A1>
value_holder(PyObject*, A1 a1)
: m_held(a1) {}
template <class A1, class A2>
value_holder(PyObject*, A1 a1, A2 a2)
: m_held(a1, a2) {}
template <class A1, class A2, class A3>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3)
: m_held(a1, a2, a3) {}
template <class A1, class A2, class A3, class A4>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4)
: m_held(a1, a2, a3, a4) {}
template <class A1, class A2, class A3, class A4, class A5>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5)
: m_held(a1, a2, a3, a4, a5) {}
template <class A1, class A2, class A3, class A4, class A5, class A6>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6)
: m_held(a1, a2, a3, a4, a5, a6) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7)
: m_held(a1, a2, a3, a4, a5, a6, a7) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8)
: m_held(a1, a2, a3, a4, a5, a6, a7, a8) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9)
: m_held(a1, a2, a3, a4, a5, a6, a7, a8, a9) {}
template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
value_holder(PyObject*, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, A10 a10)
: m_held(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) {}
private: // required holder implementation
Held* target() { return &m_held; }
bool held_by_value() const { return true; }
private: // data members
Held m_held;
};
// A generator metafunction which can be passed to make_holder
struct value_holder_generator
{
template <class Held>
struct apply
{
typedef value_holder<Held> type;
};
};
}}} // namespace boost::python::object
#endif // VALUE_HOLDER_DWA20011215_HPP

View File

@@ -1,107 +0,0 @@
7 July 2003
Applied 2 patches by Prabhu Ramachandran: a fix in the new --multiple method,
and two new functions "hold_with_shared_ptr" and its counterpart for auto_ptr.
Thanks a lot Prabhu!
Fixed a bug where the macro BOOST_PYTHON_OPAQUE_SPECIALIZED_TYPE_ID was being
called multiple times for the same type.
Thanks to Gottfried Ganßauge for reporting this!
Fixed bug where using AllFromHeader didn't use bases<> when exporting
hierarchies.
Fixed the staticmethod bug.
5 July 2003
Changed how --multiple works: now it generates one cpp file for each pyste
file, makeing easier to integrate Pyste with build systems.
4 July 2003
Applied patch that solved a bug in ClassExporter and added a distutils install
script (install/setup.py), both contributed by Prabhu Ramachandran.
Thanks Prabhu!
2 July 2003
Jim Wilson found a bug where types like "char**" were being interpreted as
"char*". Thanks Jim!
16 June 2003
Thanks to discussions with David Abrahams and Roman Sulzhyk, some behaviours
have changed:
- If you export a derived class without exporting its base classes, the derived
class will explicitly export the bases's methods and attributes. Before, if
you were interested in the bases's methods, you had to export the base
classes too.
- Added a new function, no_override. When a member function is specified as
"no_override", no virtual wrappers are generated for it, improving
performance and letting the code more clean.
- There was a bug in which the policy of virtual member functions was being
ignored (patch by Roman Sulzhyk).
Thanks again to Roman Sulzhyk for the patches and discussion in the c++-sig.
4 June 2003
Major improvements in memory usage.
3 June 2003
Appliced a patch from Giulio Eulisse that allows unnamed enumerations to be
exported with an AllFromHeader construct. Thanks a lot Giulio!
2 June 2003
Added a new construct, add_method. See documentation.
23 May 2003
Support for global variables added.
Various bug fixes.
08 May 2003
Fixed bug where in a certain cases the GCCXMLParser would end up with multiple
declarations of the same class
22 Apr 2003
- Now shows a warning when the user tries to export a forward-declared class.
Forward-declared classes are ignored by the AllFromHeader construct.
- Fixed a bug where classes, functions and enums where being exported, even if
excluded from a AllFromHeader construct.
16 Apr 2003
Added a more generic (but ugly) code to declare the smart pointer converters.
07 Apr 2003
- Removed the warnings about forward declarations: it was not accurate enough.
Another strategy must be thought of.
- Fixed bug in the --multiple mode, where the order of the class instantiations
could end up wrong.
- Lots of fixes in the documentation, pointed out by Dirk Gerrits. Thanks Dirk!
- Fixed support for the return_opaque_pointer policy (the support macro was not
being declared).
06 Apr 2003
Support for the improved static data members support of Boost.Python.
05 Apr 2003
New option for generating the bindings: --multiple.
02 Apr 2003
Forward declarations are now detected and a warning is generated.
24 Mar 2003
Default policy for functions/methods that return const T& is now
return_value_policy<copy_const_reference>().
22 Mar 2003
Exporting virtual methods of the base classes in the derived classes too.
21 Mar 2003
Added manual support for boost::shared_ptr and std::auto_ptr (see doc).
19 Mar 2003
Added support for int, double, float and long operators acting as expected in
python.
14 Mar 2003
Fixed bug: Wrappers for protected and virtual methods were not being generated.

View File

@@ -1,31 +0,0 @@
Pyste - Python Semi-Automatic Exporter
======================================
Pyste is a Boost.Python code generator. The user specifies the classes and
functions to be exported using a simple interface file, which following the
Boost.Python's philosophy, is simple Python code. Pyste then uses GCCXML to
parse all the headers and extract the necessary information to automatically
generate C++ code.
The documentation can be found in the file index.html accompaning this README.
Enjoy!
Bruno da Silva de Oliveira (nicodemus@globalite.com.br)
Thanks
======
- David Abrahams, creator of Boost.Python, for tips on the syntax of the interface
file and support.
- Marcelo Camelo, for design tips, support and inspiration for this project.
Also, the name was his idea. 8)
- Brad King, creator of the excellent GCCXML (http://www.gccxml.org)
- Fredrik Lundh, creator of the elementtree library (http://effbot.org)
Bugs
====
Pyste is a young tool, so please help it to get better! Send bug reports to
nicodemus@globalite.com.br, accompaining the stack trace in case of exceptions.
If possible, run pyste with --debug, and send the resulting xmls too (pyste
will output a xml file with the same of each header it parsed).

View File

@@ -1,10 +0,0 @@
- Make Pyste accept already-generated xml files
- throw() declaration in virtual wrapper's member functions
- Allow protected methods to be overriden in Python
- Expose programmability to the Pyste files (listing members of a class, for
instance)
- Virtual operators

View File

@@ -1,2 +0,0 @@
*.zip
*.pyc

View File

@@ -1,51 +0,0 @@
import os
import sys
import shutil
import fnmatch
from zipfile import ZipFile, ZIP_DEFLATED
def findfiles(directory, mask):
def visit(files, dir, names):
for name in names:
if fnmatch.fnmatch(name, mask):
files.append(os.path.join(dir, name))
files = []
os.path.walk(directory, visit, files)
return files
def main():
# test if PyXML is installed
try:
import _xmlplus.parsers.expat
pyxml = '--includes _xmlplus.parsers.expat'
except ImportError:
pyxml = ''
# create exe
status = os.system('python setup.py py2exe %s >& build.log' % pyxml)
if status != 0:
raise RuntimeError, 'Error creating EXE'
# create distribution
import pyste
version = pyste.__VERSION__
zip = ZipFile('pyste-%s.zip' % version, 'w', ZIP_DEFLATED)
# include the base files
dist_dir = 'dist/pyste'
for basefile in os.listdir(dist_dir):
zip.write(os.path.join(dist_dir, basefile), os.path.join('pyste', basefile))
# include documentation
for doc_file in findfiles('../doc', '*.*'):
dest_name = os.path.join('pyste/doc', doc_file[3:])
zip.write(doc_file, dest_name)
zip.write('../index.html', 'pyste/doc/index.html')
zip.close()
# cleanup
os.remove('build.log')
shutil.rmtree('build')
shutil.rmtree('dist')
if __name__ == '__main__':
sys.path.append('../src')
main()

6
pyste/dist/setup.py vendored
View File

@@ -1,6 +0,0 @@
from distutils.core import setup
import py2exe
import sys
sys.path.append('../src')
setup(name='pyste', scripts=['../src/pyste.py'])

View File

@@ -1,79 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Adding New Methods</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="global_variables.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Adding New Methods</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="global_variables.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><img src="theme/r_arr_disabled.gif" border="0"></td>
</tr>
</table>
<p>
Suppose that you want to add a function to a class, turning it into a member
function:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>World
</span><span class=special>{
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>) { </span><span class=keyword>this</span><span class=special>-&gt;</span><span class=identifier>msg </span><span class=special>= </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>;
};
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>greet</span><span class=special>(</span><span class=identifier>World</span><span class=special>&amp; </span><span class=identifier>w</span><span class=special>)
{
</span><span class=keyword>return </span><span class=identifier>w</span><span class=special>.</span><span class=identifier>msg</span><span class=special>;
}
</span></pre></code>
<p>
Here, we want to make <tt>greet</tt> work as a member function of the class <tt>World</tt>. We do
that using the <tt>add_method</tt> construct:</p>
<code><pre>
<span class=identifier>W </span><span class=special>= </span><span class=identifier>Class</span><span class=special>(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>add_method</span><span class=special>(</span><span class=identifier>W</span><span class=special>, </span><span class=string>&quot;greet&quot;</span><span class=special>)
</span></pre></code>
<p>
Notice also that then you can rename it, set its policy, just like a regular
member function:</p>
<code><pre>
<span class=identifier>rename</span><span class=special>(</span><span class=identifier>W</span><span class=special>.</span><span class=identifier>greet</span><span class=special>, </span><span class=literal>'Greet'</span><span class=special>)
</span></pre></code>
<p>
Now from Python:</p>
<code><pre>
<span class=special>&gt;&gt;&gt; </span><span class=identifier>import </span><span class=identifier>hello
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>w </span><span class=special>= </span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>World</span><span class=special>()
&gt;&gt;&gt; </span><span class=identifier>w</span><span class=special>.</span><span class=identifier>set</span><span class=special>(</span><span class=literal>'Ni'</span><span class=special>)
&gt;&gt;&gt; </span><span class=identifier>w</span><span class=special>.</span><span class=identifier>greet</span><span class=special>()
</span><span class=literal>'Ni'
</span><span class=special>&gt;&gt;&gt; </span><span class=identifier>print </span><span class=literal>'Oh no! The knights who say Ni!'
</span><span class=identifier>Oh </span><span class=identifier>no</span><span class=special>! </span><span class=identifier>The </span><span class=identifier>knights </span><span class=identifier>who </span><span class=identifier>say </span><span class=identifier>Ni</span><span class=special>!
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="global_variables.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><img src="theme/r_arr_disabled.gif" border="0"></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,77 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Exporting An Entire Header</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="wrappers.html">
<link rel="next" href="smart_pointers.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Exporting An Entire Header</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="wrappers.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="smart_pointers.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Pyste also supports a mechanism to export all declarations found in a header
file. Suppose again our file, <tt>hello.h</tt>:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>World
</span><span class=special>{
</span><span class=identifier>World</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>): </span><span class=identifier>msg</span><span class=special>(</span><span class=identifier>msg</span><span class=special>) {}
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>) { </span><span class=keyword>this</span><span class=special>-&gt;</span><span class=identifier>msg </span><span class=special>= </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>greet</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>;
};
</span><span class=keyword>enum </span><span class=identifier>choice </span><span class=special>{ </span><span class=identifier>red</span><span class=special>, </span><span class=identifier>blue </span><span class=special>};
</span><span class=keyword>void </span><span class=identifier>show</span><span class=special>(</span><span class=identifier>choice </span><span class=identifier>c</span><span class=special>) { </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>cout </span><span class=special>&lt;&lt; </span><span class=string>&quot;value: &quot; </span><span class=special>&lt;&lt; (</span><span class=keyword>int</span><span class=special>)</span><span class=identifier>c </span><span class=special>&lt;&lt; </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>endl</span><span class=special>; }
</span></pre></code>
<p>
You can just use the <tt>AllFromHeader</tt> construct:</p>
<code><pre>
<span class=identifier>hello </span><span class=special>= </span><span class=identifier>AllFromHeader</span><span class=special>(</span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span></pre></code>
<p>
this will export all the declarations found in <tt>hello.h</tt>, which is equivalent
to write:</p>
<code><pre>
<span class=identifier>Class</span><span class=special>(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>Enum</span><span class=special>(</span><span class=string>&quot;choice&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>Function</span><span class=special>(</span><span class=string>&quot;show&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span></pre></code>
<p>
Note that you can still use the functions <tt>rename</tt>, <tt>set_policy</tt>, <tt>exclude</tt>, etc. Just access
the members of the header object like this:</p>
<code><pre>
<span class=identifier>rename</span><span class=special>(</span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>World</span><span class=special>.</span><span class=identifier>greet</span><span class=special>, </span><span class=string>&quot;Greet&quot;</span><span class=special>)
</span><span class=identifier>exclude</span><span class=special>(</span><span class=identifier>hello</span><span class=special>.</span><span class=identifier>World</span><span class=special>.</span><span class=identifier>set</span><span class=special>, </span><span class=string>&quot;Set&quot;</span><span class=special>)
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="wrappers.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="smart_pointers.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,50 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Global Variables</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="smart_pointers.html">
<link rel="next" href="adding_new_methods.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Global Variables</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="smart_pointers.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="adding_new_methods.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
To export global variables, use the <tt>Var</tt> construct:</p>
<code><pre>
<span class=identifier>Var</span><span class=special>(</span><span class=string>&quot;myglobal&quot;</span><span class=special>, </span><span class=string>&quot;foo.h&quot;</span><span class=special>)
</span></pre></code>
<p>
Beware of non-const global variables: changes in Python won't reflect in C++!
If you really must change them in Python, you will have to write some accessor
functions, and export those.</p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="smart_pointers.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="adding_new_methods.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,74 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Introduction</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="next" href="running_pyste.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Introduction</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><img src="theme/l_arr_disabled.gif" border="0"></td>
<td width="20"><a href="running_pyste.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<a name="what_is_pyste_"></a><h2>What is Pyste?</h2><p>
Pyste is a <a href="../../index.html">
Boost.Python</a> code generator. The user specifies the classes and
functions to be exported using a simple <i>interface file</i>, which following the
<a href="../../index.html">
Boost.Python</a>'s philosophy, is simple Python code. Pyste then uses <a href="http://www.gccxml.org">
GCCXML</a> to
parse all the headers and extract the necessary information to automatically
generate C++ code.</p>
<a name="example"></a><h2>Example</h2><p>
Let's borrow the class <tt>World</tt> from the <a href="../../doc/tutorial/doc/exposing_classes.html">
tutorial</a>: </p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>World
</span><span class=special>{
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>) { </span><span class=keyword>this</span><span class=special>-&gt;</span><span class=identifier>msg </span><span class=special>= </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>greet</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>;
};
</span></pre></code>
<p>
Here's the interface file for it, named <tt>world.pyste</tt>:</p>
<code><pre>
<span class=identifier>Class</span><span class=special>(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=string>&quot;world.h&quot;</span><span class=special>)
</span></pre></code>
<p>
and that's it!</p>
<p>
The next step is invoke Pyste in the command-line:</p>
<code><pre>python pyste.py --module=hello world.pyste</pre></code><p>
this will create a file &quot;<tt>hello.cpp</tt>&quot; in the directory where the command was
run. </p>
<p>
Pyste supports the following features:</p>
<ul><li>Functions</li><li>Classes</li><li>Class Templates</li><li>Virtual Methods</li><li>Overloading</li><li>Attributes </li><li>Enums (both &quot;free&quot; enums and class enums)</li><li>Nested Classes</li><li>Support for <tt>boost::shared_ptr</tt> and <tt>std::auto_ptr</tt></li><li>Global Variables</li></ul><table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><img src="theme/l_arr_disabled.gif" border="0"></td>
<td width="20"><a href="running_pyste.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,91 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Policies</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="renaming_and_excluding.html">
<link rel="next" href="templates.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Policies</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="renaming_and_excluding.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="templates.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Even thought Pyste can identify various elements in the C++ code, like virtual
member functions, attributes, and so on, one thing that it can't do is to
guess the semantics of functions that return pointers or references. In this
case, the user must manually specify the policy. Policies are explained in the
<a href="../../doc/tutorial/doc/call_policies.html">
tutorial</a>.</p>
<p>
The policies in Pyste are named exactly as in <a href="../../index.html">
Boost.Python</a>, only the syntax is
slightly different. For instance, this policy:</p>
<code><pre>
<span class=identifier>return_internal_reference</span><span class=special>&lt;</span><span class=number>1</span><span class=special>, </span><span class=identifier>with_custodian_and_ward</span><span class=special>&lt;</span><span class=number>1</span><span class=special>, </span><span class=number>2</span><span class=special>&gt; &gt;()
</span></pre></code>
<p>
becomes in Pyste: </p>
<code><pre>
<span class=identifier>return_internal_reference</span><span class=special>(</span><span class=number>1</span><span class=special>, </span><span class=identifier>with_custodian_and_ward</span><span class=special>(</span><span class=number>1</span><span class=special>, </span><span class=number>2</span><span class=special>))
</span></pre></code>
<p>
The user can specify policies for functions and virtual member functions with
the <tt>set_policy</tt> function:</p>
<code><pre>
<span class=identifier>set_policy</span><span class=special>(</span><span class=identifier>f</span><span class=special>, </span><span class=identifier>return_internal_reference</span><span class=special>())
</span><span class=identifier>set_policy</span><span class=special>(</span><span class=identifier>C</span><span class=special>.</span><span class=identifier>foo</span><span class=special>, </span><span class=identifier>return_value_policy</span><span class=special>(</span><span class=identifier>manage_new_object</span><span class=special>))
</span></pre></code>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img> <b>What if a function or member function needs a policy and
the user doesn't set one?</b><br><br> If a function needs a policy and one
was not set, Pyste will issue a error. The user should then go in the
interface file and set the policy for it, otherwise the generated cpp won't
compile.
</td>
</tr>
</table>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img>
Note that, for functions that return <tt>const T&amp;</tt>, the policy
<tt>return_value_policy&lt;copy_const_reference&gt;()</tt> wil be used by default, because
that's normally what you want. You can change it to something else if you need
to, though.
</td>
</tr>
</table>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="renaming_and_excluding.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="templates.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,541 +0,0 @@
[doc Pyste Documentation]
[def GCCXML [@http://www.gccxml.org GCCXML]]
[def Boost.Python [@../../index.html Boost.Python]]
[page Introduction]
[h2 What is Pyste?]
Pyste is a Boost.Python code generator. The user specifies the classes and
functions to be exported using a simple ['interface file], which following the
Boost.Python's philosophy, is simple Python code. Pyste then uses GCCXML to
parse all the headers and extract the necessary information to automatically
generate C++ code.
[h2 Example]
Let's borrow the class [^World] from the [@../../doc/tutorial/doc/exposing_classes.html tutorial]:
struct World
{
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
Here's the interface file for it, named [^world.pyste]:
Class("World", "world.h")
and that's it!
The next step is invoke Pyste in the command-line:
[pre python pyste.py --module=hello world.pyste]
this will create a file "[^hello.cpp]" in the directory where the command was
run.
Pyste supports the following features:
* Functions
* Classes
* Class Templates
* Virtual Methods
* Overloading
* Attributes
* Enums (both "free" enums and class enums)
* Nested Classes
* Support for [^boost::shared_ptr] and [^std::auto_ptr]
* Global Variables
[page Running Pyste]
To run Pyste, you will need:
* Python 2.2, available at [@http://www.python.org python's website].
* The great [@http://effbot.org elementtree] library, from Fredrik Lundh.
* The excellent GCCXML, from Brad King.
Installation for the tools is available in their respective webpages.
[blurb
[$theme/note.gif] GCCXML must be accessible in the PATH environment variable, so
that Pyste can call it. How to do this varies from platform to platform.
]
[h2 Ok, now what?]
Well, now let's fire it up:
[pre
'''
>python pyste.py
Pyste version 0.6.5
Usage:
pyste [options] --module=<name> interface-files
where options are:
-I <path> add an include path
-D <symbol> define symbol
--multiple create various cpps (one for each pyste file), instead
of only one (useful during development)
--out specify output filename (default: <module>.cpp)
in --multiple mode, this will be a directory
--no-using do not declare "using namespace boost";
use explicit declarations instead
--pyste-ns=<name> set the namespace where new types will be declared;
default is the empty namespace
--debug writes the xml for each file parsed in the current
directory
-h, --help print this help and exit
-v, --version print version information
'''
]
Options explained:
The [^-I] and [^-D] are preprocessor flags, which are needed by GCCXML to parse
the header files correctly and by Pyste to find the header files declared in the
interface files.
[^--multiple] tells Pyste to generate multiple cpps for this module (one for
each header parsed) in the directory named by [^--out], instead of the usual
single cpp file. This mode is useful during development of a binding, because
you are constantly changing source files, re-generating the bindings and
recompiling. This saves a lot of time in compiling.
[^--out] names the output file (default: [^<module>.cpp]), or in multiple mode,
names a output directory for the files (default: [^<module>]).
[^--no-using] tells Pyste to don't declare "[^using namespace boost;]" in the
generated cpp, using the namespace boost::python explicitly in all declarations.
Use only if you're having a name conflict in one of the files.
Use [^--pyste-ns] to change the namespace where new types are declared (for
instance, the virtual wrappers). Use only if you are having any problems. By
default, Pyste uses the empty namespace.
[^--debug] will write in the current directory a xml file as outputted by GCCXML
for each header parsed. Useful for bug reports.
[^-h, --help, -v, --version] are self-explaining, I believe. ;)
So, the usage is simple enough:
[pre >python pyste.py --module=mymodule file.pyste file2.pyste ...]
will generate a file [^mymodule.cpp] in the same dir where the command was
executed. Now you can compile the file using the same instructions of the
[@../../doc/tutorial/doc/building_hello_world.html tutorial]. Or, if you prefer:
[pre >python pyste.py --module=mymodule --multiple file.pyste file2.pyste ...]
will create a directory named "mymodule" in the current directory, and will
generate a bunch of cpp files, one for each header exported. You can then
compile them all into a single shared library (or dll).
[h2 Wait... how do I set those I and D flags?]
Don't worry: normally GCCXML is already configured correctly for your plataform,
so the search path to the standard libraries and the standard defines should
already be set. You only have to set the paths to other libraries that your code
needs, like Boost, for example.
Plus, Pyste automatically uses the contents of the environment variable
[^INCLUDE] if it exists. Visual C++ users should run the [^Vcvars32.bat] file,
which for Visual C++ 6 is normally located at:
C:\Program Files\Microsoft Visual Studio\VC98\bin\Vcvars32.bat
with that, you should have little trouble setting up the flags.
[blurb [$theme/note.gif][*A note about Psyco][br][br]
Although you don't have to install [@http://psyco.sourceforge.net/ Psyco] to use Pyste, if you do, Pyste will make use of it to speed up the wrapper generation. Speed ups of 30% can be achieved, so it's highly recommended.
]
[page The Interface Files]
The interface files are the heart of Pyste. The user creates one or more
interface files declaring the classes and functions he wants to export, and then
invokes Pyste passing the interface files to it. Pyste then generates a single
cpp file with Boost.Python code, with all the classes and functions exported.
Besides declaring the classes and functions, the user has a number of other
options, like renaming e excluding classes and member functionis. Those are
explained later on.
[h2 Basics]
Suppose we have a class and some functions that we want to expose to Python
declared in the header [^hello.h]:
struct World
{
World(std::string msg): msg(msg) {}
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
enum choice { red, blue };
namespace test {
void show(choice c) { std::cout << "value: " << (int)c << std::endl; }
}
We create a file named [^hello.pyste] and create instances of the classes
[^Function], [^Class] and [^Enum]:
Function("test::show", "hello.h")
Class("World", "hello.h")
Enum("choice", "hello.h")
That will expose the class, the free function and the enum found in [^hello.h].
[page:1 Renaming and Excluding]
You can easily rename functions, classes, member functions, attributes, etc. Just use the
function [^rename], like this:
World = Class("World", "hello.h")
rename(World, "IWorld")
show = Function("choice", "hello.h")
rename(show, "Show")
You can rename member functions and attributes using this syntax:
rename(World.greet, "Greet")
rename(World.set, "Set")
choice = Enum("choice", "hello.h")
rename(choice.red, "Red")
rename(choice.blue, "Blue")
You can exclude functions, classes, member functions, attributes, etc, in the same way,
with the function [^exclude]:
exclude(World.greet)
exclude(World.msg)
To access the operators of a class, access the member [^operator] like this
(supposing that [^C] is a class being exported):
exclude(C.operator['+'])
exclude(C.operator['*'])
exclude(C.operator['<<'])
The string inside the brackets is the same as the name of the operator in C++.[br]
[h2 Virtual Member Functions]
Pyste automatically generates wrappers for virtual member functions, but you
may want to disable this behaviour (for performance reasons, or to let the
code more clean) if you do not plan to override the functions in Python. To do
this, use the function [^final]:
C = Class('C', 'C.h')
final(C.foo) # C::foo is a virtual member function
No virtual wrapper code will be generated for the virtual member function
C::foo that way.
[page:1 Policies]
Even thought Pyste can identify various elements in the C++ code, like virtual
member functions, attributes, and so on, one thing that it can't do is to
guess the semantics of functions that return pointers or references. In this
case, the user must manually specify the policy. Policies are explained in the
[@../../doc/tutorial/doc/call_policies.html tutorial].
The policies in Pyste are named exactly as in Boost.Python, only the syntax is
slightly different. For instance, this policy:
return_internal_reference<1, with_custodian_and_ward<1, 2> >()
becomes in Pyste:
return_internal_reference(1, with_custodian_and_ward(1, 2))
The user can specify policies for functions and virtual member functions with
the [^set_policy] function:
set_policy(f, return_internal_reference())
set_policy(C.foo, return_value_policy(manage_new_object))
[blurb
[$theme/note.gif] [*What if a function or member function needs a policy and
the user doesn't set one?][br][br] If a function needs a policy and one
was not set, Pyste will issue a error. The user should then go in the
interface file and set the policy for it, otherwise the generated cpp won't
compile.
]
[blurb
[$theme/note.gif]
Note that, for functions that return [^const T&], the policy
[^return_value_policy<copy_const_reference>()] wil be used by default, because
that's normally what you want. You can change it to something else if you need
to, though.
]
[page:1 Templates]
Template classes can easily be exported too, but you can't export the template
itself... you have to export instantiations of it! So, if you want to export a
[^std::vector], you will have to export vectors of int, doubles, etc.
Suppose we have this code:
template <class T>
struct Point
{
T x;
T y;
};
And we want to export [^Point]s of int and double:
Point = Template("Point", "point.h")
Point("int")
Point("double")
Pyste will assign default names for each instantiation. In this example, those
would be "[^Point_int]" and "[^Point_double]", but most of the time users will want to
rename the instantiations:
Point("int", "IPoint") // renames the instantiation
double_inst = Point("double") // another way to do the same
rename(double_inst, "DPoint")
Note that you can rename, exclude, set policies, etc, in the [^Template] object
like you would do with a [^Function] or a [^Class]. This changes affect all
[*future] instantiations:
Point = Template("Point", "point.h")
Point("float", "FPoint") // will have x and y as data members
rename(Point.x, "X")
rename(Point.y, "Y")
Point("int", "IPoint") // will have X and Y as data members
Point("double", "DPoint") // also will have X and Y as data member
If you want to change a option of a particular instantiation, you can do so:
Point = Template("Point", "point.h")
Point("int", "IPoint")
d_inst = Point("double", "DPoint")
rename(d_inst.x, "X") // only DPoint is affect by this renames,
rename(d_inst.y, "Y") // IPoint stays intact
[blurb [$theme/note.gif] [*What if my template accepts more than one type?]
[br][br]
When you want to instantiate a template with more than one type, you can pass
either a string with the types separated by whitespace, or a list of strings
'''("int double" or ["int", "double"]''' would both work).
]
[page:1 Wrappers]
Suppose you have this function:
std::vector<std::string> names();
But you don't want to export [^std::vector<std::string>], you want this function
to return a python list of strings. Boost.Python has excellent support for
that:
list names_wrapper()
{
list result;
// call original function
vector<string> v = names();
// put all the strings inside the python list
vector<string>::iterator it;
for (it = v.begin(); it != v.end(); ++it){
result.append(*it);
}
return result;
}
BOOST_PYTHON_MODULE(test)
{
def("names", &names_wrapper);
}
Nice heh? Pyste supports this mechanism too. You declare the [^names_wrapper]
function in a header named "[^test_wrappers.h]" and in the interface file:
Include("test_wrappers.h")
names = Function("names", "test.h")
set_wrapper(names, "names_wrapper")
You can optionally declare the function in the interface file itself:
names_wrapper = Wrapper("names_wrapper",
"""
list names_wrapper()
{
// code to call name() and convert the vector to a list...
}
""")
names = Function("names", "test.h")
set_wrapper(names, names_wrapper)
The same mechanism can be used with member functions too. Just remember that
the first parameter of wrappers for member functions is a pointer to the
class, as in:
struct C
{
std::vector<std::string> names();
}
list names_wrapper(C* c)
{
// same as before, calling c->names() and converting result to a list
}
And then in the interface file:
C = Class("C", "test.h")
set_wrapper(C.names, "names_wrapper")
[blurb
[$theme/note.gif]Even though Boost.Python accepts either a pointer or a
reference to the class in wrappers for member functions as the first parameter,
Pyste expects them to be a [*pointer]. Doing otherwise will prevent your
code to compile when you set a wrapper for a virtual member function.
]
[page:1 Exporting An Entire Header]
Pyste also supports a mechanism to export all declarations found in a header
file. Suppose again our file, [^hello.h]:
struct World
{
World(std::string msg): msg(msg) {}
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
enum choice { red, blue };
void show(choice c) { std::cout << "value: " << (int)c << std::endl; }
You can just use the [^AllFromHeader] construct:
hello = AllFromHeader("hello.h")
this will export all the declarations found in [^hello.h], which is equivalent
to write:
Class("World", "hello.h")
Enum("choice", "hello.h")
Function("show", "hello.h")
Note that you can still use the functions [^rename], [^set_policy], [^exclude], etc. Just access
the members of the header object like this:
rename(hello.World.greet, "Greet")
exclude(hello.World.set, "Set")
[page:1 Smart Pointers]
Pyste for now has manual support for smart pointers. Suppose:
struct C
{
int value;
};
boost::shared_ptr<C> newC(int value)
{
boost::shared_ptr<C> c( new C() );
c->value = value;
return c;
}
void printC(boost::shared_ptr<C> c)
{
std::cout << c->value << std::endl;
}
To make [^newC] and [^printC] work correctly, you have to tell Pyste that a
convertor for [^boost::shared_ptr<C>] is needed.
C = Class('C', 'C.h')
use_shared_ptr(C)
Function('newC', 'C.h')
Function('printC', 'C.h')
For [^std::auto_ptr]'s, use the function [^use_auto_ptr].
This system is temporary, and in the future the converters will automatically be
exported if needed, without the need to tell Pyste about them explicitly.
[h2 Holders]
If only the converter for the smart pointers is not enough and you need to
specify the smart pointer as the holder for a class, use the functions
[^hold_with_shared_ptr] and [^hold_with_auto_ptr]:
C = Class('C', 'C.h')
hold_with_shared_ptr(C)
Function('newC', 'C.h')
Function('printC', 'C.h')
[page:1 Global Variables]
To export global variables, use the [^Var] construct:
Var("myglobal", "foo.h")
Beware of non-const global variables: changes in Python won't reflect in C++!
If you really must change them in Python, you will have to write some accessor
functions, and export those.
[page:1 Adding New Methods]
Suppose that you want to add a function to a class, turning it into a member
function:
struct World
{
void set(std::string msg) { this->msg = msg; }
std::string msg;
};
std::string greet(World& w)
{
return w.msg;
}
Here, we want to make [^greet] work as a member function of the class [^World]. We do
that using the [^add_method] construct:
W = Class("World", "hello.h")
add_method(W, "greet")
Notice also that then you can rename it, set its policy, just like a regular
member function:
rename(W.greet, 'Greet')
Now from Python:
>>> import hello
>>> w = hello.World()
>>> w.set('Ni')
>>> w.greet()
'Ni'
>>> print 'Oh no! The knights who say Ni!'
Oh no! The knights who say Ni!

View File

@@ -1,88 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Renaming and Excluding</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="the_interface_files.html">
<link rel="next" href="policies.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Renaming and Excluding</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="the_interface_files.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="policies.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
You can easily rename functions, classes, member functions, attributes, etc. Just use the
function <tt>rename</tt>, like this:</p>
<code><pre>
<span class=identifier>World </span><span class=special>= </span><span class=identifier>Class</span><span class=special>(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>World</span><span class=special>, </span><span class=string>&quot;IWorld&quot;</span><span class=special>)
</span><span class=identifier>show </span><span class=special>= </span><span class=identifier>Function</span><span class=special>(</span><span class=string>&quot;choice&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>show</span><span class=special>, </span><span class=string>&quot;Show&quot;</span><span class=special>)
</span></pre></code>
<p>
You can rename member functions and attributes using this syntax:</p>
<code><pre>
<span class=identifier>rename</span><span class=special>(</span><span class=identifier>World</span><span class=special>.</span><span class=identifier>greet</span><span class=special>, </span><span class=string>&quot;Greet&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>World</span><span class=special>.</span><span class=identifier>set</span><span class=special>, </span><span class=string>&quot;Set&quot;</span><span class=special>)
</span><span class=identifier>choice </span><span class=special>= </span><span class=identifier>Enum</span><span class=special>(</span><span class=string>&quot;choice&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>choice</span><span class=special>.</span><span class=identifier>red</span><span class=special>, </span><span class=string>&quot;Red&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>choice</span><span class=special>.</span><span class=identifier>blue</span><span class=special>, </span><span class=string>&quot;Blue&quot;</span><span class=special>)
</span></pre></code>
<p>
You can exclude functions, classes, member functions, attributes, etc, in the same way,
with the function <tt>exclude</tt>:</p>
<code><pre>
<span class=identifier>exclude</span><span class=special>(</span><span class=identifier>World</span><span class=special>.</span><span class=identifier>greet</span><span class=special>)
</span><span class=identifier>exclude</span><span class=special>(</span><span class=identifier>World</span><span class=special>.</span><span class=identifier>msg</span><span class=special>)
</span></pre></code>
<p>
To access the operators of a class, access the member <tt>operator</tt> like this
(supposing that <tt>C</tt> is a class being exported):</p>
<code><pre>
<span class=identifier>exclude</span><span class=special>(</span><span class=identifier>C</span><span class=special>.</span><span class=keyword>operator</span><span class=special>[</span><span class=literal>'+'</span><span class=special>])
</span><span class=identifier>exclude</span><span class=special>(</span><span class=identifier>C</span><span class=special>.</span><span class=keyword>operator</span><span class=special>[</span><span class=literal>'*'</span><span class=special>])
</span><span class=identifier>exclude</span><span class=special>(</span><span class=identifier>C</span><span class=special>.</span><span class=keyword>operator</span><span class=special>[</span><span class=literal>'&lt;&lt;'</span><span class=special>])
</span></pre></code>
<p>
The string inside the brackets is the same as the name of the operator in C++.<br></p>
<a name="virtual_member_functions"></a><h2>Virtual Member Functions</h2><p>
Pyste automatically generates wrappers for virtual member functions, but you
may want to disable this behaviour (for performance reasons, or to let the
code more clean) if you do not plan to override the functions in Python. To do
this, use the function <tt>final</tt>:</p>
<code><pre>
<span class=identifier>C </span><span class=special>= </span><span class=identifier>Class</span><span class=special>(</span><span class=literal>'C'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span><span class=identifier>final</span><span class=special>(</span><span class=identifier>C</span><span class=special>.</span><span class=identifier>foo</span><span class=special>) </span>##<span class=identifier>C</span><span class=special>::</span><span class=identifier>foo </span><span class=identifier>is </span><span class=identifier>a </span><span class=keyword>virtual </span><span class=identifier>member </span><span class=identifier>function
</span></pre></code>
<p>
No virtual wrapper code will be generated for the virtual member function
C::foo that way.</p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="the_interface_files.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="policies.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,150 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Running Pyste</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="introduction.html">
<link rel="next" href="the_interface_files.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Running Pyste</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="introduction.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="the_interface_files.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
To run Pyste, you will need:</p>
<ul><li>Python 2.2, available at <a href="http://www.python.org">
python's website</a>.</li><li>The great <a href="http://effbot.org">
elementtree</a> library, from Fredrik Lundh.</li><li>The excellent <a href="http://www.gccxml.org">
GCCXML</a>, from Brad King.</li></ul><p>
Installation for the tools is available in their respective webpages.</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img> <a href="http://www.gccxml.org">
GCCXML</a> must be accessible in the PATH environment variable, so
that Pyste can call it. How to do this varies from platform to platform.
</td>
</tr>
</table>
<a name="ok__now_what_"></a><h2>Ok, now what?</h2><p>
Well, now let's fire it up:</p>
<code><pre>
&gt;python pyste.py
Pyste version 0.6.5
Usage:
pyste [options] --module=&lt;name&gt; interface-files
where options are:
-I &lt;path&gt; add an include path
-D &lt;symbol&gt; define symbol
--multiple create various cpps (one for each pyste file), instead
of only one (useful during development)
--out specify output filename (default: &lt;module&gt;.cpp)
in --multiple mode, this will be a directory
--no-using do not declare &quot;using namespace boost&quot;;
use explicit declarations instead
--pyste-ns=&lt;name&gt; set the namespace where new types will be declared;
default is the empty namespace
--debug writes the xml for each file parsed in the current
directory
-h, --help print this help and exit
-v, --version print version information
</pre></code><p>
Options explained:</p>
<p>
The <tt>-I</tt> and <tt>-D</tt> are preprocessor flags, which are needed by <a href="http://www.gccxml.org">
GCCXML</a> to parse
the header files correctly and by Pyste to find the header files declared in the
interface files.</p>
<p>
<tt>--multiple</tt> tells Pyste to generate multiple cpps for this module (one for
each header parsed) in the directory named by <tt>--out</tt>, instead of the usual
single cpp file. This mode is useful during development of a binding, because
you are constantly changing source files, re-generating the bindings and
recompiling. This saves a lot of time in compiling.</p>
<p>
<tt>--out</tt> names the output file (default: <tt>&lt;module&gt;.cpp</tt>), or in multiple mode,
names a output directory for the files (default: <tt>&lt;module&gt;</tt>).</p>
<p>
<tt>--no-using</tt> tells Pyste to don't declare &quot;<tt>using namespace boost;</tt>&quot; in the
generated cpp, using the namespace boost::python explicitly in all declarations.
Use only if you're having a name conflict in one of the files.</p>
<p>
Use <tt>--pyste-ns</tt> to change the namespace where new types are declared (for
instance, the virtual wrappers). Use only if you are having any problems. By
default, Pyste uses the empty namespace.</p>
<p>
<tt>--debug</tt> will write in the current directory a xml file as outputted by <a href="http://www.gccxml.org">
GCCXML</a>
for each header parsed. Useful for bug reports.</p>
<p>
<tt>-h, --help, -v, --version</tt> are self-explaining, I believe. ;)</p>
<p>
So, the usage is simple enough:</p>
<code><pre>&gt;python pyste.py --module=mymodule file.pyste file2.pyste ...</pre></code><p>
will generate a file <tt>mymodule.cpp</tt> in the same dir where the command was
executed. Now you can compile the file using the same instructions of the
<a href="../../doc/tutorial/doc/building_hello_world.html">
tutorial</a>. Or, if you prefer:</p>
<code><pre>&gt;python pyste.py --module=mymodule --multiple file.pyste file2.pyste ...</pre></code><p>
will create a directory named &quot;mymodule&quot; in the current directory, and will
generate a bunch of cpp files, one for each header exported. You can then
compile them all into a single shared library (or dll).</p>
<a name="wait____how_do_i_set_those_i_and_d_flags_"></a><h2>Wait... how do I set those I and D flags?</h2><p>
Don't worry: normally <a href="http://www.gccxml.org">
GCCXML</a> is already configured correctly for your plataform,
so the search path to the standard libraries and the standard defines should
already be set. You only have to set the paths to other libraries that your code
needs, like Boost, for example.</p>
<p>
Plus, Pyste automatically uses the contents of the environment variable
<tt>INCLUDE</tt> if it exists. Visual C++ users should run the <tt>Vcvars32.bat</tt> file,
which for Visual C++ 6 is normally located at:</p>
<code><pre>
<span class=identifier>C</span><span class=special>:\</span><span class=identifier>Program </span><span class=identifier>Files</span><span class=special>\</span><span class=identifier>Microsoft </span><span class=identifier>Visual </span><span class=identifier>Studio</span><span class=special>\</span><span class=identifier>VC98</span><span class=special>\</span><span class=identifier>bin</span><span class=special>\</span><span class=identifier>Vcvars32</span><span class=special>.</span><span class=identifier>bat
</span></pre></code>
<p>
with that, you should have little trouble setting up the flags.</p>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img><b>A note about Psyco</b><br><br>
Although you don't have to install <a href="http://psyco.sourceforge.net/">
Psyco</a> to use Pyste, if you do, Pyste will make use of it to speed up the wrapper generation. Speed ups of 30% can be achieved, so it's highly recommended.
</td>
</tr>
</table>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="introduction.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="the_interface_files.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,85 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Smart Pointers</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="exporting_an_entire_header.html">
<link rel="next" href="global_variables.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Smart Pointers</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="exporting_an_entire_header.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="global_variables.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Pyste for now has manual support for smart pointers. Suppose:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>C
</span><span class=special>{
</span><span class=keyword>int </span><span class=identifier>value</span><span class=special>;
};
</span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>shared_ptr</span><span class=special>&lt;</span><span class=identifier>C</span><span class=special>&gt; </span><span class=identifier>newC</span><span class=special>(</span><span class=keyword>int </span><span class=identifier>value</span><span class=special>)
{
</span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>shared_ptr</span><span class=special>&lt;</span><span class=identifier>C</span><span class=special>&gt; </span><span class=identifier>c</span><span class=special>( </span><span class=keyword>new </span><span class=identifier>C</span><span class=special>() );
</span><span class=identifier>c</span><span class=special>-&gt;</span><span class=identifier>value </span><span class=special>= </span><span class=identifier>value</span><span class=special>;
</span><span class=keyword>return </span><span class=identifier>c</span><span class=special>;
}
</span><span class=keyword>void </span><span class=identifier>printC</span><span class=special>(</span><span class=identifier>boost</span><span class=special>::</span><span class=identifier>shared_ptr</span><span class=special>&lt;</span><span class=identifier>C</span><span class=special>&gt; </span><span class=identifier>c</span><span class=special>)
{
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>cout </span><span class=special>&lt;&lt; </span><span class=identifier>c</span><span class=special>-&gt;</span><span class=identifier>value </span><span class=special>&lt;&lt; </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>endl</span><span class=special>;
}
</span></pre></code>
<p>
To make <tt>newC</tt> and <tt>printC</tt> work correctly, you have to tell Pyste that a
convertor for <tt>boost::shared_ptr&lt;C&gt;</tt> is needed.</p>
<code><pre>
<span class=identifier>C </span><span class=special>= </span><span class=identifier>Class</span><span class=special>(</span><span class=literal>'C'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span><span class=identifier>use_shared_ptr</span><span class=special>(</span><span class=identifier>C</span><span class=special>)
</span><span class=identifier>Function</span><span class=special>(</span><span class=literal>'newC'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span><span class=identifier>Function</span><span class=special>(</span><span class=literal>'printC'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span></pre></code>
<p>
For <tt>std::auto_ptr</tt>'s, use the function <tt>use_auto_ptr</tt>.</p>
<p>
This system is temporary, and in the future the converters will automatically be
exported if needed, without the need to tell Pyste about them explicitly.</p>
<a name="holders"></a><h2>Holders</h2><p>
If only the converter for the smart pointers is not enough and you need to
specify the smart pointer as the holder for a class, use the functions
<tt>hold_with_shared_ptr</tt> and <tt>hold_with_auto_ptr</tt>:</p>
<code><pre>
<span class=identifier>C </span><span class=special>= </span><span class=identifier>Class</span><span class=special>(</span><span class=literal>'C'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span><span class=identifier>hold_with_shared_ptr</span><span class=special>(</span><span class=identifier>C</span><span class=special>)
</span><span class=identifier>Function</span><span class=special>(</span><span class=literal>'newC'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span><span class=identifier>Function</span><span class=special>(</span><span class=literal>'printC'</span><span class=special>, </span><span class=literal>'C.h'</span><span class=special>)
</span></pre></code>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="exporting_an_entire_header.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="global_variables.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,103 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Templates</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="policies.html">
<link rel="next" href="wrappers.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Templates</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="policies.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="wrappers.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Template classes can easily be exported too, but you can't export the template
itself... you have to export instantiations of it! So, if you want to export a
<tt>std::vector</tt>, you will have to export vectors of int, doubles, etc.</p>
<p>
Suppose we have this code:</p>
<code><pre>
<span class=keyword>template </span><span class=special>&lt;</span><span class=keyword>class </span><span class=identifier>T</span><span class=special>&gt;
</span><span class=keyword>struct </span><span class=identifier>Point
</span><span class=special>{
</span><span class=identifier>T </span><span class=identifier>x</span><span class=special>;
</span><span class=identifier>T </span><span class=identifier>y</span><span class=special>;
};
</span></pre></code>
<p>
And we want to export <tt>Point</tt>s of int and double:</p>
<code><pre>
<span class=identifier>Point </span><span class=special>= </span><span class=identifier>Template</span><span class=special>(</span><span class=string>&quot;Point&quot;</span><span class=special>, </span><span class=string>&quot;point.h&quot;</span><span class=special>)
</span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;int&quot;</span><span class=special>)
</span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;double&quot;</span><span class=special>)
</span></pre></code>
<p>
Pyste will assign default names for each instantiation. In this example, those
would be &quot;<tt>Point_int</tt>&quot; and &quot;<tt>Point_double</tt>&quot;, but most of the time users will want to
rename the instantiations:</p>
<code><pre>
<span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;int&quot;</span><span class=special>, </span><span class=string>&quot;IPoint&quot;</span><span class=special>) // </span><span class=identifier>renames </span><span class=identifier>the </span><span class=identifier>instantiation
</span><span class=identifier>double_inst </span><span class=special>= </span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;double&quot;</span><span class=special>) // </span><span class=identifier>another </span><span class=identifier>way </span><span class=identifier>to </span><span class=keyword>do </span><span class=identifier>the </span><span class=identifier>same
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>double_inst</span><span class=special>, </span><span class=string>&quot;DPoint&quot;</span><span class=special>)
</span></pre></code>
<p>
Note that you can rename, exclude, set policies, etc, in the <tt>Template</tt> object
like you would do with a <tt>Function</tt> or a <tt>Class</tt>. This changes affect all
<b>future</b> instantiations:</p>
<code><pre>
<span class=identifier>Point </span><span class=special>= </span><span class=identifier>Template</span><span class=special>(</span><span class=string>&quot;Point&quot;</span><span class=special>, </span><span class=string>&quot;point.h&quot;</span><span class=special>)
</span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;float&quot;</span><span class=special>, </span><span class=string>&quot;FPoint&quot;</span><span class=special>) // </span><span class=identifier>will </span><span class=identifier>have </span><span class=identifier>x </span><span class=keyword>and </span><span class=identifier>y </span><span class=identifier>as </span><span class=identifier>data </span><span class=identifier>members
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>Point</span><span class=special>.</span><span class=identifier>x</span><span class=special>, </span><span class=string>&quot;X&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>Point</span><span class=special>.</span><span class=identifier>y</span><span class=special>, </span><span class=string>&quot;Y&quot;</span><span class=special>)
</span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;int&quot;</span><span class=special>, </span><span class=string>&quot;IPoint&quot;</span><span class=special>) // </span><span class=identifier>will </span><span class=identifier>have </span><span class=identifier>X </span><span class=keyword>and </span><span class=identifier>Y </span><span class=identifier>as </span><span class=identifier>data </span><span class=identifier>members
</span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;double&quot;</span><span class=special>, </span><span class=string>&quot;DPoint&quot;</span><span class=special>) // </span><span class=identifier>also </span><span class=identifier>will </span><span class=identifier>have </span><span class=identifier>X </span><span class=keyword>and </span><span class=identifier>Y </span><span class=identifier>as </span><span class=identifier>data </span><span class=identifier>member
</span></pre></code>
<p>
If you want to change a option of a particular instantiation, you can do so:</p>
<code><pre>
<span class=identifier>Point </span><span class=special>= </span><span class=identifier>Template</span><span class=special>(</span><span class=string>&quot;Point&quot;</span><span class=special>, </span><span class=string>&quot;point.h&quot;</span><span class=special>)
</span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;int&quot;</span><span class=special>, </span><span class=string>&quot;IPoint&quot;</span><span class=special>)
</span><span class=identifier>d_inst </span><span class=special>= </span><span class=identifier>Point</span><span class=special>(</span><span class=string>&quot;double&quot;</span><span class=special>, </span><span class=string>&quot;DPoint&quot;</span><span class=special>)
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>d_inst</span><span class=special>.</span><span class=identifier>x</span><span class=special>, </span><span class=string>&quot;X&quot;</span><span class=special>) // </span><span class=identifier>only </span><span class=identifier>DPoint </span><span class=identifier>is </span><span class=identifier>affect </span><span class=identifier>by </span><span class=keyword>this </span><span class=identifier>renames</span><span class=special>,
</span><span class=identifier>rename</span><span class=special>(</span><span class=identifier>d_inst</span><span class=special>.</span><span class=identifier>y</span><span class=special>, </span><span class=string>&quot;Y&quot;</span><span class=special>) // </span><span class=identifier>IPoint </span><span class=identifier>stays </span><span class=identifier>intact
</span></pre></code>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img> <b>What if my template accepts more than one type?</b>
<br><br>
When you want to instantiate a template with more than one type, you can pass
either a string with the types separated by whitespace, or a list of strings
(&quot;int double&quot; or [&quot;int&quot;, &quot;double&quot;] would both work).
</td>
</tr>
</table>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="policies.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="wrappers.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,81 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>The Interface Files</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="running_pyste.html">
<link rel="next" href="renaming_and_excluding.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>The Interface Files</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="running_pyste.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="renaming_and_excluding.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
The interface files are the heart of Pyste. The user creates one or more
interface files declaring the classes and functions he wants to export, and then
invokes Pyste passing the interface files to it. Pyste then generates a single
cpp file with <a href="../../index.html">
Boost.Python</a> code, with all the classes and functions exported.</p>
<p>
Besides declaring the classes and functions, the user has a number of other
options, like renaming e excluding classes and member functionis. Those are
explained later on.</p>
<a name="basics"></a><h2>Basics</h2><p>
Suppose we have a class and some functions that we want to expose to Python
declared in the header <tt>hello.h</tt>:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>World
</span><span class=special>{
</span><span class=identifier>World</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>): </span><span class=identifier>msg</span><span class=special>(</span><span class=identifier>msg</span><span class=special>) {}
</span><span class=keyword>void </span><span class=identifier>set</span><span class=special>(</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>) { </span><span class=keyword>this</span><span class=special>-&gt;</span><span class=identifier>msg </span><span class=special>= </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>greet</span><span class=special>() { </span><span class=keyword>return </span><span class=identifier>msg</span><span class=special>; }
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string </span><span class=identifier>msg</span><span class=special>;
};
</span><span class=keyword>enum </span><span class=identifier>choice </span><span class=special>{ </span><span class=identifier>red</span><span class=special>, </span><span class=identifier>blue </span><span class=special>};
</span><span class=keyword>namespace </span><span class=identifier>test </span><span class=special>{
</span><span class=keyword>void </span><span class=identifier>show</span><span class=special>(</span><span class=identifier>choice </span><span class=identifier>c</span><span class=special>) { </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>cout </span><span class=special>&lt;&lt; </span><span class=string>&quot;value: &quot; </span><span class=special>&lt;&lt; (</span><span class=keyword>int</span><span class=special>)</span><span class=identifier>c </span><span class=special>&lt;&lt; </span><span class=identifier>std</span><span class=special>::</span><span class=identifier>endl</span><span class=special>; }
}
</span></pre></code>
<p>
We create a file named <tt>hello.pyste</tt> and create instances of the classes
<tt>Function</tt>, <tt>Class</tt> and <tt>Enum</tt>:</p>
<code><pre>
<span class=identifier>Function</span><span class=special>(</span><span class=string>&quot;test::show&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>Class</span><span class=special>(</span><span class=string>&quot;World&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span><span class=identifier>Enum</span><span class=special>(</span><span class=string>&quot;choice&quot;</span><span class=special>, </span><span class=string>&quot;hello.h&quot;</span><span class=special>)
</span></pre></code>
<p>
That will expose the class, the free function and the enum found in <tt>hello.h</tt>. </p>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="running_pyste.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="renaming_and_excluding.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 577 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 944 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 151 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 879 B

View File

@@ -1,170 +0,0 @@
body
{
background-image: url(bkd.gif);
background-color: #FFFFFF;
margin: 1em 2em 1em 2em;
}
h1 { font-family: Verdana, Arial, Helvetica, sans-serif; font-weight: bold; text-align: left; }
h2 { font: 140% sans-serif; font-weight: bold; text-align: left; }
h3 { font: 120% sans-serif; font-weight: bold; text-align: left; }
h4 { font: bold 100% sans-serif; font-weight: bold; text-align: left; }
h5 { font: italic 100% sans-serif; font-weight: bold; text-align: left; }
h6 { font: small-caps 100% sans-serif; font-weight: bold; text-align: left; }
pre
{
border-top: gray 1pt solid;
border-right: gray 1pt solid;
border-left: gray 1pt solid;
border-bottom: gray 1pt solid;
padding-top: 2pt;
padding-right: 2pt;
padding-left: 2pt;
padding-bottom: 2pt;
display: block;
font-family: "courier new", courier, mono;
background-color: #eeeeee; font-size: small
}
code
{
font-family: "Courier New", Courier, mono;
font-size: small
}
tt
{
display: inline;
font-family: "Courier New", Courier, mono;
color: #000099;
font-size: small
}
p
{
text-align: justify;
font-family: Georgia, "Times New Roman", Times, serif
}
ul
{
list-style-image: url(bullet.gif);
font-family: Georgia, "Times New Roman", Times, serif
}
ol
{
font-family: Georgia, "Times New Roman", Times, serif
}
a
{
font-weight: bold;
color: #003366;
text-decoration: none;
}
a:hover { color: #8080FF; }
.literal { color: #666666; font-style: italic}
.keyword { color: #000099}
.identifier {}
.comment { font-style: italic; color: #990000}
.special { color: #800040}
.preprocessor { color: #FF0000}
.string { font-style: italic; color: #666666}
.copyright { color: #666666; font-size: small}
.white_bkd { background-color: #FFFFFF}
.dk_grey_bkd { background-color: #999999}
.quotes { color: #666666; font-style: italic; font-weight: bold}
.note_box
{
display: block;
border-top: gray 1pt solid;
border-right: gray 1pt solid;
border-left: gray 1pt solid;
border-bottom: gray 1pt solid;
padding-right: 12pt;
padding-left: 12pt;
padding-bottom: 12pt;
padding-top: 12pt;
font-family: Arial, Helvetica, sans-serif;
background-color: #E2E9EF;
font-size: small; text-align: justify
}
.table_title
{
background-color: #648CCA;
font-family: Verdana, Arial, Helvetica, sans-serif; color: #FFFFFF;
font-weight: bold
; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 4px
}
.table_cells
{
background-color: #E2E9EF;
font-family: Geneva, Arial, Helvetica, san-serif;
font-size: small
; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 4px
}
.toc
{
DISPLAY: block;
background-color: #E2E9EF
font-family: Arial, Helvetica, sans-serif;
border-top: gray 1pt solid;
border-left: gray 1pt solid;
border-bottom: gray 1pt solid;
border-right: gray 1pt solid;
padding-top: 24pt;
padding-right: 24pt;
padding-left: 24pt;
padding-bottom: 24pt;
}
.toc_title
{
background-color: #648CCA;
padding-top: 4px;
padding-right: 4px;
padding-bottom: 4px;
padding-left: 4px;
font-family: Geneva, Arial, Helvetica, san-serif;
color: #FFFFFF;
font-weight: bold
}
.toc_cells
{
background-color: #E2E9EF;
padding-top: 4px;
padding-right: 4px;
padding-bottom: 4px;
padding-left: 4px;
font-family: Geneva, Arial, Helvetica, san-serif;
font-size: small
}
div.logo
{
float: right;
}
.toc_cells_L0 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 4px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L1 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 44px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L2 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 88px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L3 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 122px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }
.toc_cells_L4 { background-color: #E2E9EF; padding-top: 4px; padding-right: 4px; padding-bottom: 4px; padding-left: 166px; font-family: Geneva, Arial, Helvetica, san-serif; font-size: small }

Binary file not shown.

Before

Width:  |  Height:  |  Size: 170 B

View File

@@ -1,124 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Wrappers</title>
<link rel="stylesheet" href="theme/style.css" type="text/css">
<link rel="prev" href="templates.html">
<link rel="next" href="exporting_an_entire_header.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Wrappers</b></font>
</td>
</tr>
</table>
<br>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="templates.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="exporting_an_entire_header.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<p>
Suppose you have this function:</p>
<code><pre>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt; </span><span class=identifier>names</span><span class=special>();
</span></pre></code>
<p>
But you don't want to export <tt>std::vector&lt;std::string&gt;</tt>, you want this function
to return a python list of strings. <a href="../../index.html">
Boost.Python</a> has excellent support for
that:</p>
<code><pre>
<span class=identifier>list </span><span class=identifier>names_wrapper</span><span class=special>()
{
</span><span class=identifier>list </span><span class=identifier>result</span><span class=special>;
// </span><span class=identifier>call </span><span class=identifier>original </span><span class=identifier>function
</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=identifier>string</span><span class=special>&gt; </span><span class=identifier>v </span><span class=special>= </span><span class=identifier>names</span><span class=special>();
// </span><span class=identifier>put </span><span class=identifier>all </span><span class=identifier>the </span><span class=identifier>strings </span><span class=identifier>inside </span><span class=identifier>the </span><span class=identifier>python </span><span class=identifier>list
</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=identifier>string</span><span class=special>&gt;::</span><span class=identifier>iterator </span><span class=identifier>it</span><span class=special>;
</span><span class=keyword>for </span><span class=special>(</span><span class=identifier>it </span><span class=special>= </span><span class=identifier>v</span><span class=special>.</span><span class=identifier>begin</span><span class=special>(); </span><span class=identifier>it </span><span class=special>!= </span><span class=identifier>v</span><span class=special>.</span><span class=identifier>end</span><span class=special>(); ++</span><span class=identifier>it</span><span class=special>){
</span><span class=identifier>result</span><span class=special>.</span><span class=identifier>append</span><span class=special>(*</span><span class=identifier>it</span><span class=special>);
}
</span><span class=keyword>return </span><span class=identifier>result</span><span class=special>;
}
</span><span class=identifier>BOOST_PYTHON_MODULE</span><span class=special>(</span><span class=identifier>test</span><span class=special>)
{
</span><span class=identifier>def</span><span class=special>(</span><span class=string>&quot;names&quot;</span><span class=special>, &amp;</span><span class=identifier>names_wrapper</span><span class=special>);
}
</span></pre></code>
<p>
Nice heh? Pyste supports this mechanism too. You declare the <tt>names_wrapper</tt>
function in a header named &quot;<tt>test_wrappers.h</tt>&quot; and in the interface file:</p>
<code><pre>
<span class=identifier>Include</span><span class=special>(</span><span class=string>&quot;test_wrappers.h&quot;</span><span class=special>)
</span><span class=identifier>names </span><span class=special>= </span><span class=identifier>Function</span><span class=special>(</span><span class=string>&quot;names&quot;</span><span class=special>, </span><span class=string>&quot;test.h&quot;</span><span class=special>)
</span><span class=identifier>set_wrapper</span><span class=special>(</span><span class=identifier>names</span><span class=special>, </span><span class=string>&quot;names_wrapper&quot;</span><span class=special>)
</span></pre></code>
<p>
You can optionally declare the function in the interface file itself:</p>
<code><pre>
<span class=identifier>names_wrapper </span><span class=special>= </span><span class=identifier>Wrapper</span><span class=special>(</span><span class=string>&quot;names_wrapper&quot;</span><span class=special>,
</span><span class=string>&quot;&quot;</span><span class=string>&quot;
list names_wrapper()
{
// code to call name() and convert the vector to a list...
}
&quot;</span><span class=string>&quot;&quot;</span><span class=special>)
</span><span class=identifier>names </span><span class=special>= </span><span class=identifier>Function</span><span class=special>(</span><span class=string>&quot;names&quot;</span><span class=special>, </span><span class=string>&quot;test.h&quot;</span><span class=special>)
</span><span class=identifier>set_wrapper</span><span class=special>(</span><span class=identifier>names</span><span class=special>, </span><span class=identifier>names_wrapper</span><span class=special>)
</span></pre></code>
<p>
The same mechanism can be used with member functions too. Just remember that
the first parameter of wrappers for member functions is a pointer to the
class, as in:</p>
<code><pre>
<span class=keyword>struct </span><span class=identifier>C
</span><span class=special>{
</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>vector</span><span class=special>&lt;</span><span class=identifier>std</span><span class=special>::</span><span class=identifier>string</span><span class=special>&gt; </span><span class=identifier>names</span><span class=special>();
}
</span><span class=identifier>list </span><span class=identifier>names_wrapper</span><span class=special>(</span><span class=identifier>C</span><span class=special>* </span><span class=identifier>c</span><span class=special>)
{
// </span><span class=identifier>same </span><span class=identifier>as </span><span class=identifier>before</span><span class=special>, </span><span class=identifier>calling </span><span class=identifier>c</span><span class=special>-&gt;</span><span class=identifier>names</span><span class=special>() </span><span class=keyword>and </span><span class=identifier>converting </span><span class=identifier>result </span><span class=identifier>to </span><span class=identifier>a </span><span class=identifier>list
</span><span class=special>}
</span></pre></code>
<p>
And then in the interface file:</p>
<code><pre>
<span class=identifier>C </span><span class=special>= </span><span class=identifier>Class</span><span class=special>(</span><span class=string>&quot;C&quot;</span><span class=special>, </span><span class=string>&quot;test.h&quot;</span><span class=special>)
</span><span class=identifier>set_wrapper</span><span class=special>(</span><span class=identifier>C</span><span class=special>.</span><span class=identifier>names</span><span class=special>, </span><span class=string>&quot;names_wrapper&quot;</span><span class=special>)
</span></pre></code>
<table width="80%" border="0" align="center">
<tr>
<td class="note_box">
<img src="theme/note.gif"></img>Even though <a href="../../index.html">
Boost.Python</a> accepts either a pointer or a
reference to the class in wrappers for member functions as the first parameter,
Pyste expects them to be a <b>pointer</b>. Doing otherwise will prevent your
code to compile when you set a wrapper for a virtual member function.
</td>
</tr>
</table>
<table border="0">
<tr>
<td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
<td width="30"><a href="templates.html"><img src="theme/l_arr.gif" border="0"></a></td>
<td width="20"><a href="exporting_an_entire_header.html"><img src="theme/r_arr.gif" border="0"></a></td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,86 +0,0 @@
<html>
<head>
<!-- Generated by the Spirit (http://spirit.sf.net) QuickDoc -->
<title>Pyste Documentation</title>
<link rel="stylesheet" href="doc/theme/style.css" type="text/css">
<link rel="next" href="introduction.html">
</head>
<body>
<table width="100%" height="48" border="0" cellspacing="2">
<tr>
<td><img src="doc/theme/c%2B%2Bboost.gif">
</td>
<td width="85%">
<font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Pyste Documentation</b></font>
</td>
</tr>
</table>
<br>
<table width="80%" border="0" align="center">
<tr>
<td class="toc_title">Table of contents</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/introduction.html">Introduction</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/running_pyste.html">Running Pyste</a>
</td>
</tr>
<tr>
<td class="toc_cells_L0">
<a href="doc/the_interface_files.html">The Interface Files</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/renaming_and_excluding.html">Renaming and Excluding</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/policies.html">Policies</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/templates.html">Templates</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/wrappers.html">Wrappers</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/exporting_an_entire_header.html">Exporting An Entire Header</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/smart_pointers.html">Smart Pointers</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/global_variables.html">Global Variables</a>
</td>
</tr>
<tr>
<td class="toc_cells_L1">
<a href="doc/adding_new_methods.html">Adding New Methods</a>
</td>
</tr>
</table>
<br>
<hr size="1"><p class="copyright">Copyright &copy; 2003 Bruno da Silva de Oliveira<br>Copyright &copy; 2002-2003 Joel de Guzman<br><br>
<font size="2">Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies. This document
is provided &quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose. </font> </p>
</body>
</html>

View File

@@ -1,4 +0,0 @@
#!/usr/bin/env python
from Pyste import pyste
pyste.main()

View File

@@ -1,18 +0,0 @@
# contributed by Prabhu Ramachandran
from distutils.core import setup
import sys
setup (name = "Pyste",
version = "0.9.10",
description = "Pyste - Python Semi-Automatic Exporter",
maintainer = "Bruno da Silva de Oliveira",
maintainer_email = "nicodemus@globalite.com.br",
licence = "Boost License",
long_description = "Pyste is a Boost.Python code generator",
url = "http://www.boost.org/libs/python/pyste/index.html",
platforms = ['Any'],
packages = ['Pyste'],
scripts = ['pyste.py'],
package_dir = {'Pyste': '../src/Pyste'},
)

View File

@@ -1 +0,0 @@
*.pyc

View File

@@ -1,863 +0,0 @@
import exporters
from Exporter import Exporter
from declarations import *
from settings import *
from policies import *
from SingleCodeUnit import SingleCodeUnit
from EnumExporter import EnumExporter
from utils import makeid, enumerate
import copy
import exporterutils
import re
#==============================================================================
# ClassExporter
#==============================================================================
class ClassExporter(Exporter):
'Generates boost.python code to export a class declaration'
def __init__(self, info, parser_tail=None):
Exporter.__init__(self, info, parser_tail)
# sections of code
self.sections = {}
# template: each item in the list is an item into the class_<...>
# section.
self.sections['template'] = []
# constructor: each item in the list is a parameter to the class_
# constructor, like class_<C>(...)
self.sections['constructor'] = []
# inside: everything within the class_<> statement
self.sections['inside'] = []
# scope: items outside the class statement but within its scope.
# scope* s = new scope(class<>());
# ...
# delete s;
self.sections['scope'] = []
# declarations: outside the BOOST_PYTHON_MODULE macro
self.sections['declaration'] = []
self.sections['declaration-outside'] = []
self.sections['include'] = []
# a list of Constructor instances
self.constructors = []
self.wrapper_generator = None
# a list of code units, generated by nested declarations
self.nested_codeunits = []
def ScopeName(self):
return makeid(self.class_.FullName()) + '_scope'
def Unit(self):
return makeid(self.class_.name)
def Name(self):
return self.class_.FullName()
def SetDeclarations(self, declarations):
Exporter.SetDeclarations(self, declarations)
decl = self.GetDeclaration(self.info.name)
if isinstance(decl, Typedef):
self.class_ = self.GetDeclaration(decl.type.name)
if not self.info.rename:
self.info.rename = decl.name
else:
self.class_ = decl
self.class_ = copy.deepcopy(self.class_)
def ClassBases(self):
all_bases = []
for level in self.class_.hierarchy:
for base in level:
all_bases.append(base)
return [self.GetDeclaration(x.name) for x in all_bases]
def Order(self):
'''Return the TOTAL number of bases that this class has, including the
bases' bases. Do this because base classes must be instantialized
before the derived classes in the module definition.
'''
return '%s_%s' % (len(self.ClassBases()), self.class_.FullName())
def Export(self, codeunit, exported_names):
self.InheritMethods(exported_names)
self.MakeNonVirtual()
if not self.info.exclude:
self.ExportBasics()
self.ExportBases(exported_names)
self.ExportConstructors()
self.ExportVariables()
self.ExportVirtualMethods()
self.ExportMethods()
self.ExportOperators()
self.ExportNestedClasses(exported_names)
self.ExportNestedEnums(exported_names)
self.ExportSmartPointer()
self.ExportOpaquePointerPolicies()
self.Write(codeunit)
exported_names[self.class_.FullName()] = 1
def InheritMethods(self, exported_names):
'''Go up in the class hierarchy looking for classes that were not
exported yet, and then add their public members to this classes
members, as if they were members of this class. This allows the user to
just export one type and automatically get all the members from the
base classes.
'''
valid_members = (Method, ClassVariable, NestedClass, ClassOperator,
ConverterOperator, ClassEnumeration)
for level in self.class_.hierarchy:
level_exported = False
for base in level:
base = self.GetDeclaration(base.name)
if base.FullName() not in exported_names:
for member in base:
if type(member) in valid_members:
member = copy.deepcopy(member)
#if type(member) not in (ClassVariable,:
# member.class_ = self.class_.FullName()
self.class_.AddMember(member)
else:
level_exported = True
if level_exported:
break
def IsValid(member):
return isinstance(member, valid_members) and member.visibility == Scope.public
self.public_members = [x for x in self.class_ if IsValid(x)]
def Write(self, codeunit):
indent = self.INDENT
boost_ns = namespaces.python
pyste_ns = namespaces.pyste
code = ''
# begin a scope for this class if needed
nested_codeunits = self.nested_codeunits
needs_scope = self.sections['scope'] or nested_codeunits
if needs_scope:
scope_name = self.ScopeName()
code += indent + boost_ns + 'scope* %s = new %sscope(\n' %\
(scope_name, boost_ns)
# export the template section
template_params = ', '.join(self.sections['template'])
code += indent + boost_ns + 'class_< %s >' % template_params
# export the constructor section
constructor_params = ', '.join(self.sections['constructor'])
code += '(%s)\n' % constructor_params
# export the inside section
in_indent = indent*2
for line in self.sections['inside']:
code += in_indent + line + '\n'
# write the scope section and end it
if not needs_scope:
code += indent + ';\n'
else:
code += indent + ');\n'
for line in self.sections['scope']:
code += indent + line + '\n'
# write the contents of the nested classes
for nested_unit in nested_codeunits:
code += '\n' + nested_unit.Section('module')
# close the scope
code += indent + 'delete %s;\n' % scope_name
# write the code to the module section in the codeunit
codeunit.Write('module', code + '\n')
# write the declarations to the codeunit
declarations = '\n'.join(self.sections['declaration'])
for nested_unit in nested_codeunits:
declarations += nested_unit.Section('declaration')
if declarations:
codeunit.Write('declaration', declarations + '\n')
declarations_outside = '\n'.join(self.sections['declaration-outside'])
if declarations_outside:
codeunit.Write('declaration-outside', declarations_outside + '\n')
# write the includes to the codeunit
includes = '\n'.join(self.sections['include'])
for nested_unit in nested_codeunits:
includes += nested_unit.Section('include')
if includes:
codeunit.Write('include', includes)
def Add(self, section, item):
'Add the item into the corresponding section'
self.sections[section].append(item)
def ExportBasics(self):
'''Export the name of the class and its class_ statement.
Also export the held_type if specified.'''
class_name = self.class_.FullName()
self.Add('template', class_name)
held_type = self.info.held_type
if held_type:
held_type = held_type % class_name
self.Add('template', held_type)
name = self.info.rename or self.class_.name
self.Add('constructor', '"%s"' % name)
def ExportBases(self, exported_names):
'Expose the bases of the class into the template section'
hierarchy = self.class_.hierarchy
for level in hierarchy:
exported = []
for base in level:
if base.visibility == Scope.public and base.name in exported_names:
exported.append(base.name)
if exported:
code = namespaces.python + 'bases< %s > ' % (', '.join(exported))
self.Add('template', code)
def ExportConstructors(self):
'''Exports all the public contructors of the class, plus indicates if the
class is noncopyable.
'''
py_ns = namespaces.python
indent = self.INDENT
def init_code(cons):
'return the init<>() code for the given contructor'
param_list = [p.FullName() for p in cons.parameters]
min_params_list = param_list[:cons.minArgs]
max_params_list = param_list[cons.minArgs:]
min_params = ', '.join(min_params_list)
max_params = ', '.join(max_params_list)
init = py_ns + 'init< '
init += min_params
if max_params:
if min_params:
init += ', '
init += py_ns + ('optional< %s >' % max_params)
init += ' >()'
return init
constructors = [x for x in self.public_members if isinstance(x, Constructor)]
self.constructors = constructors[:]
# don't export the copy constructor if the class is abstract
if self.class_.abstract:
for cons in constructors:
if cons.IsCopy():
constructors.remove(cons)
break
if not constructors:
# declare no_init
self.Add('constructor', py_ns + 'no_init')
else:
# write the constructor with less parameters to the constructor section
smaller = None
for cons in constructors:
if smaller is None or len(cons.parameters) < len(smaller.parameters):
smaller = cons
assert smaller is not None
self.Add('constructor', init_code(smaller))
constructors.remove(smaller)
# write the rest to the inside section, using def()
for cons in constructors:
code = '.def(%s)' % init_code(cons)
self.Add('inside', code)
# check if the class is copyable
if not self.class_.HasCopyConstructor() or self.class_.abstract:
self.Add('template', namespaces.boost + 'noncopyable')
def ExportVariables(self):
'Export the variables of the class, both static and simple variables'
vars = [x for x in self.public_members if isinstance(x, Variable)]
for var in vars:
if self.info[var.name].exclude:
continue
name = self.info[var.name].rename or var.name
fullname = var.FullName()
if var.type.const:
def_ = '.def_readonly'
else:
def_ = '.def_readwrite'
code = '%s("%s", &%s)' % (def_, name, fullname)
self.Add('inside', code)
def OverloadName(self, method):
'Returns the name of the overloads struct for the given method'
name = makeid(method.FullName())
overloads = '_overloads_%i_%i' % (method.minArgs, method.maxArgs)
return name + overloads
def GetAddedMethods(self):
added_methods = self.info.__added__
result = []
if added_methods:
for name, rename in added_methods:
decl = self.GetDeclaration(name)
self.info[name].rename = rename
result.append(decl)
return result
def ExportMethods(self):
'''Export all the non-virtual methods of this class, plus any function
that is to be exported as a method'''
declared = {}
def DeclareOverloads(m):
'Declares the macro for the generation of the overloads'
if (isinstance(m, Method) and m.static) or type(m) == Function:
func = m.FullName()
macro = 'BOOST_PYTHON_FUNCTION_OVERLOADS'
else:
func = m.name
macro = 'BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS'
code = '%s(%s, %s, %i, %i)\n' % (macro, self.OverloadName(m), func, m.minArgs, m.maxArgs)
if code not in declared:
declared[code] = True
self.Add('declaration', code)
def Pointer(m):
'returns the correct pointer declaration for the method m'
# check if this method has a wrapper set for him
wrapper = self.info[m.name].wrapper
if wrapper:
return '&' + wrapper.FullName()
else:
return m.PointerDeclaration()
def IsExportable(m):
'Returns true if the given method is exportable by this routine'
ignore = (Constructor, ClassOperator, Destructor)
return isinstance(m, Function) and not isinstance(m, ignore) and not m.virtual
methods = [x for x in self.public_members if IsExportable(x)]
methods.extend(self.GetAddedMethods())
staticmethods = {}
for method in methods:
method_info = self.info[method.name]
# skip this method if it was excluded by the user
if method_info.exclude:
continue
# rename the method if the user requested
name = method_info.rename or method.name
# warn the user if this method needs a policy and doesn't have one
method_info.policy = exporterutils.HandlePolicy(method, method_info.policy)
# check for policies
policy = method_info.policy or ''
if policy:
policy = ', %s%s()' % (namespaces.python, policy.Code())
# check for overloads
overload = ''
if method.minArgs != method.maxArgs:
# add the overloads for this method
DeclareOverloads(method)
overload_name = self.OverloadName(method)
overload = ', %s%s()' % (namespaces.pyste, overload_name)
# build the .def string to export the method
pointer = Pointer(method)
code = '.def("%s", %s' % (name, pointer)
code += policy
code += overload
code += ')'
self.Add('inside', code)
# static method
if isinstance(method, Method) and method.static:
staticmethods[name] = 1
# add wrapper code if this method has one
wrapper = method_info.wrapper
if wrapper and wrapper.code:
self.Add('declaration', wrapper.code)
# export staticmethod statements
for name in staticmethods:
code = '.staticmethod("%s")' % name
self.Add('inside', code)
def MakeNonVirtual(self):
'''Make all methods that the user indicated to no_override no more virtual, delegating their
export to the ExportMethods routine'''
for member in self.class_:
if type(member) == Method and member.virtual:
member.virtual = not self.info[member.name].no_override
def ExportVirtualMethods(self):
# check if this class has any virtual methods
has_virtual_methods = False
for member in self.class_:
if type(member) == Method and member.virtual:
has_virtual_methods = True
break
if has_virtual_methods:
generator = _VirtualWrapperGenerator(self.class_, self.ClassBases(), self.info)
self.Add('template', generator.FullName())
for definition in generator.GenerateDefinitions():
self.Add('inside', definition)
self.Add('declaration', generator.GenerateVirtualWrapper(self.INDENT))
# operators natively supported by boost
BOOST_SUPPORTED_OPERATORS = '+ - * / % ^ & ! ~ | < > == != <= >= << >> && || += -='\
'*= /= %= ^= &= |= <<= >>='.split()
# create a map for faster lookup
BOOST_SUPPORTED_OPERATORS = dict(zip(BOOST_SUPPORTED_OPERATORS, range(len(BOOST_SUPPORTED_OPERATORS))))
# a dict of operators that are not directly supported by boost, but can be exposed
# simply as a function with a special name
BOOST_RENAME_OPERATORS = {
'()' : '__call__',
}
# converters which have a special name in python
# it's a map of a regular expression of the converter's result to the
# appropriate python name
SPECIAL_CONVERTERS = {
re.compile(r'(const)?\s*double$') : '__float__',
re.compile(r'(const)?\s*float$') : '__float__',
re.compile(r'(const)?\s*int$') : '__int__',
re.compile(r'(const)?\s*long$') : '__long__',
re.compile(r'(const)?\s*char\s*\*?$') : '__str__',
re.compile(r'(const)?.*::basic_string<.*>\s*(\*|\&)?$') : '__str__',
}
def ExportOperators(self):
'Export all member operators and free operators related to this class'
def GetFreeOperators():
'Get all the free (global) operators related to this class'
operators = []
for decl in self.declarations:
if isinstance(decl, Operator):
# check if one of the params is this class
for param in decl.parameters:
if param.name == self.class_.FullName():
operators.append(decl)
break
return operators
def GetOperand(param):
'Returns the operand of this parameter (either "self", or "other<type>")'
if param.name == self.class_.FullName():
return namespaces.python + 'self'
else:
return namespaces.python + ('other< %s >()' % param.name)
def HandleSpecialOperator(operator):
# gatter information about the operator and its parameters
result_name = operator.result.name
param1_name = ''
if operator.parameters:
param1_name = operator.parameters[0].name
# check for str
ostream = 'basic_ostream'
is_str = result_name.find(ostream) != -1 and param1_name.find(ostream) != -1
if is_str:
namespace = namespaces.python + 'self_ns::'
self_ = namespaces.python + 'self'
return '.def(%sstr(%s))' % (namespace, self_)
# is not a special operator
return None
frees = GetFreeOperators()
members = [x for x in self.public_members if type(x) == ClassOperator]
all_operators = frees + members
operators = [x for x in all_operators if not self.info['operator'][x.name].exclude]
for operator in operators:
# gatter information about the operator, for use later
wrapper = self.info['operator'][operator.name].wrapper
if wrapper:
pointer = '&' + wrapper.FullName()
if wrapper.code:
self.Add('declaration', wrapper.code)
else:
pointer = operator.PointerDeclaration()
rename = self.info['operator'][operator.name].rename
# check if this operator will be exported as a method
export_as_method = wrapper or rename or operator.name in self.BOOST_RENAME_OPERATORS
# check if this operator has a special representation in boost
special_code = HandleSpecialOperator(operator)
has_special_representation = special_code is not None
if export_as_method:
# export this operator as a normal method, renaming or using the given wrapper
if not rename:
if wrapper:
rename = wrapper.name
else:
rename = self.BOOST_RENAME_OPERATORS[operator.name]
policy = ''
policy_obj = self.info['operator'][operator.name].policy
if policy_obj:
policy = ', %s()' % policy_obj.Code()
self.Add('inside', '.def("%s", %s%s)' % (rename, pointer, policy))
elif has_special_representation:
self.Add('inside', special_code)
elif operator.name in self.BOOST_SUPPORTED_OPERATORS:
# export this operator using boost's facilities
op = operator
is_unary = isinstance(op, Operator) and len(op.parameters) == 1 or\
isinstance(op, ClassOperator) and len(op.parameters) == 0
if is_unary:
self.Add('inside', '.def( %s%sself )' % \
(operator.name, namespaces.python))
else:
# binary operator
if len(operator.parameters) == 2:
left_operand = GetOperand(operator.parameters[0])
right_operand = GetOperand(operator.parameters[1])
else:
left_operand = namespaces.python + 'self'
right_operand = GetOperand(operator.parameters[0])
self.Add('inside', '.def( %s %s %s )' % \
(left_operand, operator.name, right_operand))
# export the converters.
# export them as simple functions with a pre-determined name
converters = [x for x in self.public_members if type(x) == ConverterOperator]
def ConverterMethodName(converter):
result_fullname = converter.result.FullName()
result_name = converter.result.name
for regex, method_name in self.SPECIAL_CONVERTERS.items():
if regex.match(result_fullname):
return method_name
else:
# extract the last name from the full name
result_name = makeid(result_name)
return 'to_' + result_name
for converter in converters:
info = self.info['operator'][converter.result.FullName()]
# check if this operator should be excluded
if info.exclude:
continue
special_code = HandleSpecialOperator(converter)
if info.rename or not special_code:
# export as method
name = info.rename or ConverterMethodName(converter)
pointer = converter.PointerDeclaration()
policy_code = ''
if info.policy:
policy_code = ', %s()' % info.policy.Code()
self.Add('inside', '.def("%s", %s%s)' % (name, pointer, policy_code))
elif special_code:
self.Add('inside', special_code)
def ExportNestedClasses(self, exported_names):
nested_classes = [x for x in self.public_members if isinstance(x, NestedClass)]
for nested_class in nested_classes:
nested_info = self.info[nested_class.name]
nested_info.include = self.info.include
nested_info.name = nested_class.FullName()
exporter = ClassExporter(nested_info)
exporter.SetDeclarations(self.declarations)
codeunit = SingleCodeUnit(None, None)
exporter.Export(codeunit, exported_names)
self.nested_codeunits.append(codeunit)
def ExportNestedEnums(self, exported_names):
nested_enums = [x for x in self.public_members if isinstance(x, ClassEnumeration)]
for enum in nested_enums:
enum_info = self.info[enum.name]
enum_info.include = self.info.include
enum_info.name = enum.FullName()
exporter = EnumExporter(enum_info)
exporter.SetDeclarations(self.declarations)
codeunit = SingleCodeUnit(None, None)
exporter.Export(codeunit, exported_names)
self.nested_codeunits.append(codeunit)
def ExportSmartPointer(self):
smart_ptr = self.info.smart_ptr
if smart_ptr:
class_name = self.class_.FullName()
smart_ptr = smart_ptr % class_name
self.Add('scope', '%s::register_ptr_to_python< %s >();' % (namespaces.python, smart_ptr))
def ExportOpaquePointerPolicies(self):
# check all methods for 'return_opaque_pointer' policies
methods = [x for x in self.public_members if isinstance(x, Method)]
for method in methods:
return_opaque_policy = return_value_policy(return_opaque_pointer)
if self.info[method.name].policy == return_opaque_policy:
macro = exporterutils.EspecializeTypeID(method.result.name)
if macro:
self.Add('declaration-outside', macro)
#==============================================================================
# Virtual Wrapper utils
#==============================================================================
def _ParamsInfo(m, count=None):
if count is None:
count = len(m.parameters)
param_names = ['p%i' % i for i in range(count)]
param_types = [x.FullName() for x in m.parameters[:count]]
params = ['%s %s' % (t, n) for t, n in zip(param_types, param_names)]
#for i, p in enumerate(m.parameters[:count]):
# if p.default is not None:
# #params[i] += '=%s' % p.default
# params[i] += '=%s' % (p.name + '()')
params = ', '.join(params)
return params, param_names, param_types
class _VirtualWrapperGenerator(object):
'Generates code to export the virtual methods of the given class'
def __init__(self, class_, bases, info):
self.class_ = class_
self.bases = bases[:]
self.info = info
self.wrapper_name = makeid(class_.FullName()) + '_Wrapper'
self.virtual_methods = None
self._method_count = {}
self.GenerateVirtualMethods()
def DefaultImplementationNames(self, method):
'''Returns a list of default implementations for this method, one for each
number of default arguments. Always returns at least one name, and return from
the one with most arguments to the one with the least.
'''
base_name = 'default_' + method.name
minArgs = method.minArgs
maxArgs = method.maxArgs
if minArgs == maxArgs:
return [base_name]
else:
return [base_name + ('_%i' % i) for i in range(minArgs, maxArgs+1)]
def Declaration(self, method, indent):
'''Returns a string with the declarations of the virtual wrapper and
its default implementations. This string must be put inside the Wrapper
body.
'''
pyste = namespaces.pyste
python = namespaces.python
rename = self.info[method.name].rename or method.name
result = method.result.FullName()
return_str = 'return '
if result == 'void':
return_str = ''
params, param_names, param_types = _ParamsInfo(method)
constantness = ''
if method.const:
constantness = ' const'
# call_method callback
decl = indent + '%s %s(%s)%s {\n' % (result, method.name, params, constantness)
param_names_str = ', '.join(param_names)
if param_names_str:
param_names_str = ', ' + param_names_str
decl += indent*2 + '%s%scall_method< %s >(self, "%s"%s);\n' %\
(return_str, python, result, rename, param_names_str)
decl += indent + '}\n'
# default implementations (with overloading)
def DefaultImpl(method, param_names):
'Return the body of a default implementation wrapper'
wrapper = self.info[method.name].wrapper
if not wrapper:
# return the default implementation of the class
return '%s%s(%s);\n' % \
(return_str, method.FullName(), ', '.join(param_names))
else:
# return a call for the wrapper
params = ', '.join(['this'] + param_names)
return '%s%s(%s);\n' % (return_str, wrapper.FullName(), params)
if not method.abstract and method.visibility != Scope.private:
minArgs = method.minArgs
maxArgs = method.maxArgs
impl_names = self.DefaultImplementationNames(method)
for impl_name, argNum in zip(impl_names, range(minArgs, maxArgs+1)):
params, param_names, param_types = _ParamsInfo(method, argNum)
decl += '\n'
decl += indent + '%s %s(%s)%s {\n' % (result, impl_name, params, constantness)
decl += indent*2 + DefaultImpl(method, param_names)
decl += indent + '}\n'
return decl
def MethodDefinition(self, method):
'''Returns a list of lines, which should be put inside the class_
statement to export this method.'''
# dont define abstract methods
pyste = namespaces.pyste
rename = self.info[method.name].rename or method.name
default_names = self.DefaultImplementationNames(method)
class_name = self.class_.FullName()
wrapper_name = pyste + self.wrapper_name
result = method.result.FullName()
is_method_unique = method.is_unique
constantness = ''
if method.const:
constantness = ' const'
# create a list of default-impl pointers
minArgs = method.minArgs
maxArgs = method.maxArgs
if is_method_unique:
default_pointers = ['&%s::%s' % (wrapper_name, x) for x in default_names]
else:
default_pointers = []
for impl_name, argNum in zip(default_names, range(minArgs, maxArgs+1)):
param_list = [x.FullName() for x in method.parameters[:argNum]]
params = ', '.join(param_list)
signature = '%s (%s::*)(%s)%s' % (result, wrapper_name, params, constantness)
default_pointer = '(%s)&%s::%s' % (signature, wrapper_name, impl_name)
default_pointers.append(default_pointer)
# get the pointer of the method
pointer = method.PointerDeclaration()
# Add policy to overloaded methods also
policy = self.info[method.name].policy or ''
if policy:
policy = ', %s%s()' % (namespaces.python, policy.Code())
# generate the defs
definitions = []
# basic def
definitions.append('.def("%s", %s, %s%s)' % (rename, pointer, default_pointers[-1], policy))
for default_pointer in default_pointers[:-1]:
definitions.append('.def("%s", %s%s)' % (rename, default_pointer, policy))
return definitions
def FullName(self):
return namespaces.pyste + self.wrapper_name
def GenerateVirtualMethods(self):
'''To correctly export all virtual methods, we must also make wrappers
for the virtual methods of the bases of this class, as if the methods
were from this class itself.
This method creates the instance variable self.virtual_methods.
'''
def IsVirtual(m):
return type(m) is Method and \
m.virtual and \
m.visibility != Scope.private
all_methods = [x for x in self.class_ if IsVirtual(x)]
for base in self.bases:
base_methods = [copy.deepcopy(x) for x in base if IsVirtual(x)]
for base_method in base_methods:
base_method.class_ = self.class_.FullName()
all_methods.append(base_method)
# extract the virtual methods, avoiding duplications. The duplication
# must take in account the full signature without the class name, so
# that inherited members are correctly excluded if the subclass overrides
# them.
def MethodSig(method):
if method.const:
const = 'const'
else:
const = ''
if method.result:
result = method.result.FullName()
else:
result = ''
params = ', '.join([x.FullName() for x in method.parameters])
return '%s %s(%s) %s' % (result, method.name, params, const)
self.virtual_methods = []
already_added = {}
for member in all_methods:
sig = MethodSig(member)
if IsVirtual(member) and not sig in already_added:
self.virtual_methods.append(member)
already_added[sig] = 0
def Constructors(self):
return self.class_.Constructors(publics_only=True)
def GenerateDefinitions(self):
defs = []
for method in self.virtual_methods:
exclude = self.info[method.name].exclude
# generate definitions only for public methods and non-abstract methods
if method.visibility == Scope.public and not method.abstract and not exclude:
defs.extend(self.MethodDefinition(method))
return defs
def GenerateVirtualWrapper(self, indent):
'Return the wrapper for this class'
# generate the class code
class_name = self.class_.FullName()
code = 'struct %s: %s\n' % (self.wrapper_name, class_name)
code += '{\n'
# generate constructors (with the overloads for each one)
for cons in self.Constructors(): # only public constructors
minArgs = cons.minArgs
maxArgs = cons.maxArgs
# from the min number of arguments to the max number, generate
# all version of the given constructor
cons_code = ''
for argNum in range(minArgs, maxArgs+1):
params, param_names, param_types = _ParamsInfo(cons, argNum)
if params:
params = ', ' + params
cons_code += indent + '%s(PyObject* self_%s):\n' % \
(self.wrapper_name, params)
cons_code += indent*2 + '%s(%s), self(self_) {}\n\n' % \
(class_name, ', '.join(param_names))
code += cons_code
# generate the body
body = []
for method in self.virtual_methods:
if not self.info[method.name].exclude:
body.append(self.Declaration(method, indent))
body = '\n'.join(body)
code += body + '\n'
# add the self member
code += indent + 'PyObject* self;\n'
code += '};\n'
return code

View File

@@ -1,94 +0,0 @@
from GCCXMLParser import ParseDeclarations
import tempfile
import shutil
import os
import os.path
import settings
class CppParserError(Exception): pass
class CppParser:
'Parses a header file and returns a list of declarations'
def __init__(self, includes=None, defines=None):
'includes and defines ar the directives given to gcc'
if includes is None:
includes = []
if defines is None:
defines = []
self.includes = includes
self.defines = defines
def _includeparams(self, filename):
includes = self.includes[:]
filedir = os.path.dirname(filename)
if not filedir:
filedir = '.'
includes.insert(0, filedir)
includes = ['-I "%s"' % x for x in includes]
return ' '.join(includes)
def _defineparams(self):
defines = ['-D "%s"' % x for x in self.defines]
return ' '.join(defines)
def FindFileName(self, include):
if os.path.isfile(include):
return include
for path in self.includes:
filename = os.path.join(path, include)
if os.path.isfile(filename):
return filename
name = os.path.basename(include)
raise RuntimeError, 'Header file "%s" not found!' % name
def parse(self, include, tail=None, decl_name=None):
'''Parses the given filename, and returns (declaration, header). The
header returned is normally the same as the given to this method,
except if tail is not None: in this case, the header is copied to a temp
filename and the tail code is appended to it before being passed on to gcc.
This temp filename is then returned.
'''
filename = self.FindFileName(include)
# copy file to temp folder, if needed
if tail:
tempfilename = tempfile.mktemp('.h')
infilename = tempfilename
shutil.copyfile(filename, infilename)
f = file(infilename, 'a')
f.write('\n\n'+tail)
f.close()
else:
infilename = filename
xmlfile = tempfile.mktemp('.xml')
try:
# get the params
includes = self._includeparams(filename)
defines = self._defineparams()
# call gccxml
cmd = 'gccxml %s %s %s -fxml=%s' \
% (includes, defines, infilename, xmlfile)
if decl_name is not None:
cmd += ' "-fxml-start=%s"' % decl_name
status = os.system(cmd)
if status != 0 or not os.path.isfile(xmlfile):
raise CppParserError, 'Error executing gccxml'
# parse the resulting xml
declarations = ParseDeclarations(xmlfile)
# return the declarations
return declarations, infilename
finally:
if settings.DEBUG and os.path.isfile(xmlfile):
filename = os.path.basename(include)
shutil.copy(xmlfile, os.path.splitext(filename)[0] + '.xml')
# delete the temporary files
try:
os.remove(xmlfile)
if tail:
os.remove(tempfilename)
except OSError: pass

View File

@@ -1,45 +0,0 @@
from Exporter import Exporter
from settings import *
import utils
#==============================================================================
# EnumExporter
#==============================================================================
class EnumExporter(Exporter):
'Exports enumerators'
def __init__(self, info):
Exporter.__init__(self, info)
def SetDeclarations(self, declarations):
Exporter.SetDeclarations(self, declarations)
self.enum = self.GetDeclaration(self.info.name)
def Export(self, codeunit, exported_names):
if not self.info.exclude:
indent = self.INDENT
in_indent = self.INDENT*2
rename = self.info.rename or self.enum.name
full_name = self.enum.FullName()
if rename == "$_0" or rename == '._0':
full_name = "int"
rename = "unnamed"
code = indent + namespaces.python
code += 'enum_< %s >("%s")\n' % (full_name, rename)
for name in self.enum.values:
rename = self.info[name].rename or name
value_fullname = self.enum.ValueFullName(name)
code += in_indent + '.value("%s", %s)\n' % (rename, value_fullname)
code += indent + ';\n\n'
codeunit.Write('module', code)
exported_names[self.enum.FullName()] = 1
def Unit(self):
return utils.makeid(self.info.include)
def Order(self):
return self.info.name

View File

@@ -1,84 +0,0 @@
import os.path
#==============================================================================
# Exporter
#==============================================================================
class Exporter(object):
'Base class for objects capable to generate boost.python code.'
INDENT = ' ' * 4
def __init__(self, info, parser_tail=None):
self.info = info
self.parser_tail = parser_tail
self.interface_file = None
def Name(self):
return self.info.name
def Tail(self):
return self.parser_tail
def Parse(self, parser):
self.parser = parser
header = self.info.include
tail = self.parser_tail
declarations, parser_header = parser.parse(header, tail)
self.parser_header = parser_header
self.SetDeclarations(declarations)
def SetParsedHeader(self, parsed_header):
self.parser_header = parsed_header
def SetDeclarations(self, declarations):
self.declarations = declarations
def GenerateCode(self, codeunit, exported_names):
self.WriteInclude(codeunit)
self.Export(codeunit, exported_names)
def WriteInclude(self, codeunit):
codeunit.Write('include', '#include <%s>\n' % self.info.include)
def Export(self, codeunit, exported_names):
'subclasses must override this to do the real work'
pass
def GetDeclarations(self, fullname):
decls = []
for decl in self.declarations:
if decl.FullName() == fullname:
decls.append(decl)
if not decls:
raise RuntimeError, 'no %s declaration found!' % fullname
return decls
def GetDeclaration(self, fullname):
decls = self.GetDeclarations(fullname)
#assert len(decls) == 1
return decls[0]
def Order(self):
'''Returns a string that uniquely identifies this instance. All
exporters will be sorted by Order before being exported.
'''
raise NotImplementedError
def Unit(self):
return self.info.include
def Header(self):
return self.info.include

View File

@@ -1,90 +0,0 @@
from Exporter import Exporter
from policies import *
from declarations import *
from settings import *
import utils
import exporterutils
#==============================================================================
# FunctionExporter
#==============================================================================
class FunctionExporter(Exporter):
'Generates boost.python code to export the given function.'
def __init__(self, info, tail=None):
Exporter.__init__(self, info, tail)
def Export(self, codeunit, exported_names):
if not self.info.exclude:
decls = self.GetDeclarations(self.info.name)
for decl in decls:
self.info.policy = exporterutils.HandlePolicy(decl, self.info.policy)
self.ExportDeclaration(decl, len(decls) == 1, codeunit)
self.ExportOpaquePointer(decl, codeunit)
self.GenerateOverloads(decls, codeunit)
exported_names[decl.FullName()] = 1
def ExportDeclaration(self, decl, unique, codeunit):
name = self.info.rename or decl.name
defs = namespaces.python + 'def("%s", ' % name
wrapper = self.info.wrapper
if wrapper:
pointer = '&' + wrapper.FullName()
else:
pointer = decl.PointerDeclaration()
defs += pointer
defs += self.PolicyCode()
overload = self.OverloadName(decl)
if overload:
defs += ', %s()' % (namespaces.pyste + overload)
defs += ');'
codeunit.Write('module', self.INDENT + defs + '\n')
# add the code of the wrapper
if wrapper and wrapper.code:
codeunit.Write('declaration', code + '\n')
def OverloadName(self, decl):
if decl.minArgs != decl.maxArgs:
return '%s_overloads_%i_%i' % \
(decl.name, decl.minArgs, decl.maxArgs)
else:
return ''
def GenerateOverloads(self, declarations, codeunit):
codes = {}
for decl in declarations:
overload = self.OverloadName(decl)
if overload and overload not in codes:
code = 'BOOST_PYTHON_FUNCTION_OVERLOADS(%s, %s, %i, %i)' %\
(overload, decl.FullName(), decl.minArgs, decl_.maxArgs)
codeunit.Write('declaration', code + '\n')
codes[overload] = None
def PolicyCode(self):
policy = self.info.policy
if policy is not None:
assert isinstance(policy, Policy)
return ', %s()' % policy.Code()
else:
return ''
def ExportOpaquePointer(self, function, codeunit):
if self.info.policy == return_value_policy(return_opaque_pointer):
typename = function.result.name
macro = exporterutils.EspecializeTypeID(typename)
if macro:
codeunit.Write('declaration-outside', macro)
def Order(self):
return self.info.name
def Unit(self):
return utils.makeid(self.info.include)

View File

@@ -1,448 +0,0 @@
from declarations import *
from elementtree.ElementTree import ElementTree
from xml.parsers.expat import ExpatError
from copy import deepcopy
from utils import enumerate
#==============================================================================
# Exceptions
#==============================================================================
class InvalidXMLError(Exception): pass
class ParserError(Exception): pass
class InvalidContextError(ParserError): pass
#==============================================================================
# GCCXMLParser
#==============================================================================
class GCCXMLParser(object):
'Parse a GCC_XML file and extract the top-level declarations.'
interested_tags = {'Class':0, 'Function':0, 'Variable':0, 'Enumeration':0}
def Parse(self, filename):
self.elements = self.GetElementsFromXML(filename)
# high level declarations
self.declarations = []
self._names = {}
# parse the elements
for id in self.elements:
element, decl = self.elements[id]
if decl is None:
try:
self.ParseElement(id, element)
except InvalidContextError:
pass # ignore those nodes with invalid context
# (workaround gccxml bug)
def Declarations(self):
return self.declarations
def AddDecl(self, decl):
if decl.FullName() in self._names:
decl.is_unique= False
for d in self.declarations:
if d.FullName() == decl.FullName():
d.is_unique = False
self._names[decl.FullName()] = 0
self.declarations.append(decl)
def ParseElement(self, id, element):
method = 'Parse' + element.tag
if hasattr(self, method):
func = getattr(self, method)
func(id, element)
else:
self.ParseUnknown(id, element)
def GetElementsFromXML(self,filename):
'Extracts a dictionary of elements from the gcc_xml file.'
tree = ElementTree()
try:
tree.parse(filename)
except ExpatError:
raise InvalidXMLError, 'Not a XML file: %s' % filename
root = tree.getroot()
if root.tag != 'GCC_XML':
raise InvalidXMLError, 'Not a valid GCC_XML file'
# build a dictionary of id -> element, None
elementlist = root.getchildren()
elements = {}
for element in elementlist:
id = element.get('id')
if id:
elements[id] = element, None
return elements
def GetDecl(self, id):
if id not in self.elements:
if id == '_0':
raise InvalidContextError, 'Invalid context found in the xml file.'
else:
msg = 'ID not found in elements: %s' % id
raise ParserError, msg
elem, decl = self.elements[id]
if decl is None:
self.ParseElement(id, elem)
elem, decl = self.elements[id]
if decl is None:
raise ParserError, 'Could not parse element: %s' % elem.tag
return decl
def GetType(self, id):
def Check(id, feature):
pos = id.find(feature)
if pos != -1:
id = id[:pos] + id[pos+1:]
return True, id
else:
return False, id
const, id = Check(id, 'c')
volatile, id = Check(id, 'v')
restricted, id = Check(id, 'r')
decl = self.GetDecl(id)
if isinstance(decl, Type):
res = deepcopy(decl)
if const:
res.const = const
if volatile:
res.volatile = volatile
if restricted:
res.restricted = restricted
else:
res = Type(decl.FullName(), const)
res.volatile = volatile
res.restricted = restricted
return res
def GetLocation(self, location):
file, line = location.split(':')
file = self.GetDecl(file)
return file, int(line)
def Update(self, id, decl):
element, _ = self.elements[id]
self.elements[id] = element, decl
def ParseUnknown(self, id, element):
name = '__Unknown_Element_%s' % id
decl = Unknown(name)
self.Update(id, decl)
def ParseNamespace(self, id, element):
namespace = element.get('name')
context = element.get('context')
if context:
outer = self.GetDecl(context)
if not outer.endswith('::'):
outer += '::'
namespace = outer + namespace
if namespace.startswith('::'):
namespace = namespace[2:]
self.Update(id, namespace)
def ParseFile(self, id, element):
filename = element.get('name')
self.Update(id, filename)
def ParseVariable(self, id, element):
# in gcc_xml, a static Field is declared as a Variable, so we check
# this and call the Field parser.
context = self.GetDecl(element.get('context'))
if isinstance(context, Class):
self.ParseField(id, element)
elem, decl = self.elements[id]
decl.static = True
else:
namespace = context
name = element.get('name')
type_ = self.GetType(element.get('type'))
location = self.GetLocation(element.get('location'))
variable = Variable(type_, name, namespace)
variable.location = location
self.AddDecl(variable)
self.Update(id, variable)
def GetArguments(self, element):
args = []
for child in element:
if child.tag == 'Argument':
type = self.GetType(child.get('type'))
type.default = child.get('default')
args.append(type)
return args
def ParseFunction(self, id, element, functionType=Function):
'''functionType is used because a Operator is identical to a normal
function, only the type of the function changes.'''
name = element.get('name')
returns = self.GetType(element.get('returns'))
namespace = self.GetDecl(element.get('context'))
location = self.GetLocation(element.get('location'))
params = self.GetArguments(element)
incomplete = bool(int(element.get('incomplete', 0)))
function = functionType(name, namespace, returns, params)
function.location = location
self.AddDecl(function)
self.Update(id, function)
def ParseOperatorFunction(self, id, element):
self.ParseFunction(id, element, Operator)
def GetHierarchy(self, bases):
'''Parses the string "bases" from the xml into a list of tuples of Base
instances. The first tuple is the most direct inheritance, and then it
goes up in the hierarchy.
'''
if bases is None:
return []
base_names = bases.split()
this_level = []
next_levels = []
for base in base_names:
# get the visibility
split = base.split(':')
if len(split) == 2:
visib = split[0]
base = split[1]
else:
visib = Scope.public
decl = self.GetDecl(base)
if not isinstance(decl, Class):
# on windows, there are some classes which "bases" points to an
# "Unimplemented" tag, but we are not interested in this classes
# anyway
continue
base = Base(decl.FullName(), visib)
this_level.append(base)
# normalize with the other levels
for index, level in enumerate(decl.hierarchy):
if index < len(next_levels):
next_levels[index] = next_levels[index] + level
else:
next_levels.append(level)
hierarchy = []
if this_level:
hierarchy.append(tuple(this_level))
if next_levels:
hierarchy.extend(next_levels)
return hierarchy
def GetMembers(self, member_list):
# members must be a string with the ids of the members
if member_list is None:
return []
members = []
for member in member_list.split():
decl = self.GetDecl(member)
if type(decl) in Class.ValidMemberTypes():
if type(decl) is str:
print decl
members.append(decl)
return members
def ParseClass(self, id, element):
name = element.get('name')
abstract = bool(int(element.get('abstract', '0')))
location = self.GetLocation(element.get('location'))
context = self.GetDecl(element.get('context'))
incomplete = bool(int(element.get('incomplete', 0)))
if isinstance(context, str):
class_ = Class(name, context, [], abstract)
else:
# a nested class
visib = element.get('access', Scope.public)
class_ = NestedClass(
name, context.FullName(), visib, [], abstract)
class_.incomplete = incomplete
# we have to add the declaration of the class before trying
# to parse its members and bases, to avoid recursion.
self.AddDecl(class_)
class_.location = location
self.Update(id, class_)
# now we can get the members and the bases
class_.hierarchy = self.GetHierarchy(element.get('bases'))
if class_.hierarchy:
class_.bases = class_.hierarchy[0]
members = self.GetMembers(element.get('members'))
for member in members:
if type(member) is str:
print member
class_.AddMember(member)
def ParseStruct(self, id, element):
self.ParseClass(id, element)
def ParseFundamentalType(self, id, element):
name = element.get('name')
type_ = FundamentalType(name)
self.Update(id, type_)
def ParseArrayType(self, id, element):
type = self.GetType(element.get('type'))
min = element.get('min')
max = element.get('max')
array = ArrayType(type.name, type.const, min, max)
self.Update(id, array)
def ParseReferenceType(self, id, element):
type = self.GetType(element.get('type'))
expand = not isinstance(type, FunctionType)
ref = ReferenceType(type.name, type.const, None, expand, type.suffix)
self.Update(id, ref)
def ParsePointerType(self, id, element):
type = self.GetType(element.get('type'))
expand = not isinstance(type, FunctionType)
ref = PointerType(type.name, type.const, None, expand, type.suffix)
self.Update(id, ref)
def ParseFunctionType(self, id, element):
result = self.GetType(element.get('returns'))
args = self.GetArguments(element)
func = FunctionType(result, args)
self.Update(id, func)
def ParseMethodType(self, id, element):
class_ = self.GetDecl(element.get('basetype')).FullName()
result = self.GetType(element.get('returns'))
args = self.GetArguments(element)
method = MethodType(result, args, class_)
self.Update(id, method)
def ParseField(self, id, element):
name = element.get('name')
visib = element.get('access', Scope.public)
classname = self.GetDecl(element.get('context')).FullName()
type_ = self.GetType(element.get('type'))
static = bool(int(element.get('extern', '0')))
location = self.GetLocation(element.get('location'))
var = ClassVariable(type_, name, classname, visib, static)
var.location = location
self.Update(id, var)
def ParseMethod(self, id, element, methodType=Method):
name = element.get('name')
result = self.GetType(element.get('returns'))
classname = self.GetDecl(element.get('context')).FullName()
visib = element.get('access', Scope.public)
static = bool(int(element.get('static', '0')))
virtual = bool(int(element.get('virtual', '0')))
abstract = bool(int(element.get('pure_virtual', '0')))
const = bool(int(element.get('const', '0')))
location = self.GetLocation(element.get('location'))
params = self.GetArguments(element)
method = methodType(
name, classname, result, params, visib, virtual, abstract, static, const)
method.location = location
self.Update(id, method)
def ParseOperatorMethod(self, id, element):
self.ParseMethod(id, element, ClassOperator)
def ParseConstructor(self, id, element):
name = element.get('name')
visib = element.get('access', Scope.public)
classname = self.GetDecl(element.get('context')).FullName()
location = self.GetLocation(element.get('location'))
params = self.GetArguments(element)
ctor = Constructor(name, classname, params, visib)
ctor.location = location
self.Update(id, ctor)
def ParseDestructor(self, id, element):
name = element.get('name')
visib = element.get('access', Scope.public)
classname = self.GetDecl(element.get('context')).FullName()
virtual = bool(int(element.get('virtual', '0')))
location = self.GetLocation(element.get('location'))
des = Destructor(name, classname, visib, virtual)
des.location = location
self.Update(id, des)
def ParseConverter(self, id, element):
self.ParseMethod(id, element, ConverterOperator)
def ParseTypedef(self, id, element):
name = element.get('name')
type = self.GetType(element.get('type'))
context = self.GetDecl(element.get('context'))
if isinstance(context, Class):
context = context.FullName()
typedef = Typedef(type, name, context)
self.Update(id, typedef)
self.AddDecl(typedef)
def ParseEnumeration(self, id, element):
name = element.get('name')
location = self.GetLocation(element.get('location'))
context = self.GetDecl(element.get('context'))
incomplete = bool(int(element.get('incomplete', 0)))
if isinstance(context, str):
enum = Enumeration(name, context)
else:
visib = element.get('access', Scope.public)
enum = ClassEnumeration(name, context.FullName(), visib)
self.AddDecl(enum)
enum.location = location
for child in element:
if child.tag == 'EnumValue':
name = child.get('name')
value = int(child.get('init'))
enum.values[name] = value
enum.incomplete = incomplete
self.Update(id, enum)
def ParseDeclarations(filename):
'Returns a list of the top declarations found in the gcc_xml file.'
parser = GCCXMLParser()
parser.Parse(filename)
return parser.Declarations()
if __name__ == '__main__':
ParseDeclarations(r'D:\Programming\Libraries\boost-cvs\boost\libs\python\pyste\example\test.xml')

View File

@@ -1,82 +0,0 @@
from Exporter import Exporter
from ClassExporter import ClassExporter
from FunctionExporter import FunctionExporter
from EnumExporter import EnumExporter
from VarExporter import VarExporter
from infos import *
from declarations import *
import os.path
import exporters
import MultipleCodeUnit
#==============================================================================
# HeaderExporter
#==============================================================================
class HeaderExporter(Exporter):
'Exports all declarations found in the given header'
def __init__(self, info, parser_tail=None):
Exporter.__init__(self, info, parser_tail)
def WriteInclude(self, codeunit):
pass
def IsInternalName(self, name):
'''Returns true if the given name looks like a internal compiler
structure'''
return name.startswith('_')
def Export(self, codeunit, exported_names):
header = os.path.normpath(self.parser_header)
for decl in self.declarations:
# check if this declaration is in the header
location = os.path.normpath(decl.location[0])
if location == header and not self.IsInternalName(decl.name):
# ok, check the type of the declaration and export it accordingly
self.HandleDeclaration(decl, codeunit, exported_names)
def HandleDeclaration(self, decl, codeunit, exported_names):
'''Dispatch the declaration to the appropriate method, that must create
a suitable info object for a Exporter, create a Exporter, set its
declarations and append it to the list of exporters.
'''
dispatch_table = {
Class : ClassExporter,
Enumeration : EnumExporter,
Function : FunctionExporter,
Variable : VarExporter,
}
exporter_class = dispatch_table.get(type(decl))
if exporter_class is not None:
self.HandleExporter(decl, exporter_class, codeunit, exported_names)
def HandleExporter(self, decl, exporter_type, codeunit, exported_names):
# only export complete declarations
if not decl.incomplete:
info = self.info[decl.name]
info.name = decl.FullName()
info.include = self.info.include
exporter = exporter_type(info)
exporter.SetDeclarations(self.declarations)
exporter.SetParsedHeader(self.parser_header)
if isinstance(codeunit, MultipleCodeUnit.MultipleCodeUnit):
codeunit.SetCurrent(self.interface_file, exporter.Unit())
else:
codeunit.SetCurrent(exporter.Unit())
exporter.GenerateCode(codeunit, exported_names)
def Unit(self):
return None # doesn't write anything by itself
def Order(self):
return self.info.include

View File

@@ -1,27 +0,0 @@
import os.path
from Exporter import Exporter
#==============================================================================
# IncludeExporter
#==============================================================================
class IncludeExporter(Exporter):
'''Writes an include declaration to the module. Useful to add extra code
for use in the Wrappers.
This class just reimplements the Parse method to do nothing: the
WriteInclude in Exporter already does the work for us.
'''
def __init__(self, info, parser_tail=None):
Exporter.__init__(self, info, parser_tail)
def Parse(self, parser):
pass
def Order(self):
return self.info.include
def Unit(self):
return '__all__' # include it in all generated cpps (multiple mode)
def Header(self):
return None # means "don't try to parse me!"

View File

@@ -1,125 +0,0 @@
from SingleCodeUnit import SingleCodeUnit
import os
import utils
from SmartFile import SmartFile
#==============================================================================
# MultipleCodeUnit
#==============================================================================
class MultipleCodeUnit(object):
'''
Represents a bunch of cpp files, where each cpp file represents a header
to be exported by pyste. Another cpp, named <module>.cpp is created too.
'''
def __init__(self, modulename, outdir):
self.modulename = modulename
self.outdir = outdir
self.codeunits = {} # maps from a (filename, function) to a SingleCodeUnit
self.functions = []
self._current = None
self.all = SingleCodeUnit(None, None)
def _FunctionName(self, export_name):
return 'Export_%s' % utils.makeid(export_name)
def _FileName(self, interface_file):
filename = os.path.basename(interface_file)
filename = '_%s.cpp' % os.path.splitext(filename)[0]
return os.path.join(self.outdir, filename)
def SetCurrent(self, interface_file, export_name):
'Changes the current code unit'
if export_name is None:
self._current = None
elif export_name is '__all__':
self._current = self.all
else:
filename = self._FileName(interface_file)
function = self._FunctionName(export_name)
try:
codeunit = self.codeunits[(filename, function)]
except KeyError:
codeunit = SingleCodeUnit(None, filename)
codeunit.module_definition = 'void %s()' % function
self.codeunits[(filename, function)] = codeunit
if function not in self.functions:
self.functions.append(function)
self._current = codeunit
def Current(self):
return self._current
current = property(Current, SetCurrent)
def Write(self, section, code):
if self._current is not None:
self.current.Write(section, code)
def Section(self, section):
if self._current is not None:
return self.current.Section(section)
def _CreateOutputDir(self):
try:
os.mkdir(self.outdir)
except OSError: pass # already created
def Save(self):
# create the directory where all the files will go
self._CreateOutputDir();
# order all code units by filename, and merge them all
codeunits = {} # filename => list of codeunits
# While ordering all code units by file name, the first code
# unit in the list of code units is used as the main unit
# which dumps all the include, declaration and
# declaration-outside sections at the top of the file.
for (filename, _), codeunit in self.codeunits.items():
if filename not in codeunits:
# this codeunit is the main codeunit.
codeunits[filename] = [codeunit]
codeunit.Merge(self.all)
else:
main_unit = codeunits[filename][0]
for section in ('include', 'declaration', 'declaration-outside'):
main_unit.code[section] = main_unit.code[section] + codeunit.code[section]
codeunit.code[section] = ''
codeunits[filename].append(codeunit)
# Now write all the codeunits appending them correctly.
for file_units in codeunits.values():
append = False
for codeunit in file_units:
codeunit.Save(append)
if not append:
append = True
# generate the main cpp
filename = os.path.join(self.outdir, '_main.cpp')
fout = SmartFile(filename, 'w')
fout.write(utils.left_equals('Include'))
fout.write('#include <boost/python.hpp>\n\n')
fout.write(utils.left_equals('Exports'))
for function in self.functions:
fout.write('void %s();\n' % function)
fout.write('\n')
fout.write(utils.left_equals('Module'))
fout.write('BOOST_PYTHON_MODULE(%s)\n' % self.modulename)
fout.write('{\n')
indent = ' ' * 4
for function in self.functions:
fout.write(indent)
fout.write('%s();\n' % function)
fout.write('}\n')

View File

@@ -1,97 +0,0 @@
from settings import namespaces
import settings
from utils import remove_duplicated_lines, left_equals
from SmartFile import SmartFile
#==============================================================================
# SingleCodeUnit
#==============================================================================
class SingleCodeUnit:
'''
Represents a cpp file, where other objects can write in one of the
predefined sections.
The avaiable sections are:
include - The include area of the cpp file
declaration - The part before the module definition
module - Inside the BOOST_PYTHON_MODULE macro
'''
def __init__(self, modulename, filename):
self.modulename = modulename
self.filename = filename
# define the avaiable sections
self.code = {}
# include section
self.code['include'] = '#include <boost/python.hpp>\n'
# declaration section (inside namespace)
self.code['declaration'] = ''
# declaration (outside namespace)
self.code['declaration-outside'] = ''
# inside BOOST_PYTHON_MACRO
self.code['module'] = ''
# create the default module definition
self.module_definition = 'BOOST_PYTHON_MODULE(%s)' % modulename
def Write(self, section, code):
'write the given code in the section of the code unit'
if section not in self.code:
raise RuntimeError, 'Invalid CodeUnit section: %s' % section
self.code[section] += code
def Merge(self, other):
for section in ('include', 'declaration', 'declaration-outside', 'module'):
self.code[section] = self.code[section] + other.code[section]
def Section(self, section):
return self.code[section]
def SetCurrent(self, current):
pass
def Current(self):
pass
def Save(self, append=False):
'Writes this code unit to the filename'
space = '\n\n'
if not append:
flag = 'w'
else:
flag = 'a'
fout = SmartFile(self.filename, flag)
# includes
if self.code['include']:
includes = remove_duplicated_lines(self.code['include'])
fout.write('\n' + left_equals('Includes'))
fout.write(includes)
fout.write(space)
# using
if settings.USING_BOOST_NS and not append:
fout.write(left_equals('Using'))
fout.write('using namespace boost::python;\n\n')
# declarations
declaration = self.code['declaration']
declaration_outside = self.code['declaration-outside']
if declaration_outside or declaration:
fout.write(left_equals('Declarations'))
if declaration_outside:
fout.write(declaration_outside + '\n\n')
if declaration:
pyste_namespace = namespaces.pyste[:-2]
fout.write('namespace %s {\n\n\n' % pyste_namespace)
fout.write(declaration)
fout.write('\n\n}// namespace %s\n' % pyste_namespace)
fout.write(space)
# module
fout.write(left_equals('Module'))
fout.write(self.module_definition + '\n')
fout.write('{\n')
fout.write(self.code['module'])
fout.write('}\n')

View File

@@ -1,55 +0,0 @@
import os
import md5
#==============================================================================
# SmartFile
#==============================================================================
class SmartFile(object):
'''
A file-like object used for writing files. The given file will only be
actually written to disk if there's not a file with the same name, or if
the existing file is *different* from the file to be written.
'''
def __init__(self, filename, mode='w'):
self.filename = filename
self.mode = mode
self._contents = []
self._closed = False
def __del__(self):
if not self._closed:
self.close()
def write(self, string):
self._contents.append(string)
def _dowrite(self, contents):
f = file(self.filename, self.mode)
f.write(contents)
f.close()
def _GetMD5(self, string):
return md5.new(string).digest()
def close(self):
# if the filename doesn't exist, write the file right away
this_contents = ''.join(self._contents)
if not os.path.isfile(self.filename):
self._dowrite(this_contents)
else:
# read the contents of the file already in disk
f = file(self.filename)
other_contents = f.read()
f.close()
# test the md5 for both files
this_md5 = self._GetMD5(this_contents)
other_md5 = self._GetMD5(other_contents)
if this_md5 != other_md5:
self._dowrite(this_contents)
self._closed = True

View File

@@ -1,35 +0,0 @@
from Exporter import Exporter
from settings import *
import utils
#==============================================================================
# VarExporter
#==============================================================================
class VarExporter(Exporter):
'''Exports a global variable.
'''
def __init__(self, info):
Exporter.__init__(self, info)
def Export(self, codeunit, exported_names):
if self.info.exclude: return
decl = self.GetDeclaration(self.info.name)
if not decl.type.const:
msg = '---> Warning: The global variable "%s" is non-const:\n' \
' changes in Python will not reflect in C++.'
print msg % self.info.name
print
rename = self.info.rename or self.info.name
code = self.INDENT + namespaces.python
code += 'scope().attr("%s") = %s;\n' % (rename, self.info.name)
codeunit.Write('module', code)
def Order(self):
return self.info.name
def Unit(self):
return utils.makeid(self.info.include)

View File

@@ -1,624 +0,0 @@
'''
Defines classes that represent declarations found in C++ header files.
'''
#==============================================================================
# Declaration
#==============================================================================
class Declaration(object):
'''Base class for all declarations.
@ivar name: The name of the declaration.
@ivar namespace: The namespace of the declaration.
'''
def __init__(self, name, namespace):
'''
@type name: string
@param name: The name of this declaration
@type namespace: string
@param namespace: the full namespace where this declaration resides.
'''
self.name = name
self.namespace = namespace
self.location = '', -1 # (filename, line)
self.incomplete = False
self.is_unique = True
def FullName(self):
'''
Returns the full qualified name: "boost::inner::Test"
@rtype: string
@return: The full name of the declaration.
'''
namespace = self.namespace or ''
if namespace and not namespace.endswith('::'):
namespace += '::'
return namespace + self.name
def __repr__(self):
return '<Declaration %s at %s>' % (self.FullName(), id(self))
def __str__(self):
return 'Declaration of %s' % self.FullName()
#==============================================================================
# Class
#==============================================================================
class Class(Declaration):
'''
Represents a C++ class or struct. Iteration through it yields its members.
@type abstract: bool
@ivar abstract: if the class has any abstract methods.
@type bases: tuple
@ivar bases: tuple with L{Base} instances, representing the most direct
inheritance.
@type hierarchy: list
@ivar hierarchy: a list of tuples of L{Base} instances, representing
the entire hierarchy tree of this object. The first tuple is the parent
classes, and the other ones go up in the hierarchy.
'''
def __init__(self, name, namespace, members, abstract):
Declaration.__init__(self, name, namespace)
self.__members = members
self.__member_names = {}
self.abstract = abstract
self.bases = ()
self.hierarchy = ()
self.operator = {}
def __iter__(self):
'''iterates through the class' members.
'''
return iter(self.__members)
def Constructors(self, publics_only=True):
'''Returns a list of the constructors for this class.
@rtype: list
'''
constructors = []
for member in self:
if isinstance(member, Constructor):
if publics_only and member.visibility != Scope.public:
continue
constructors.append(member)
return constructors
def HasCopyConstructor(self):
'''Returns true if this class has a public copy constructor.
@rtype: bool
'''
for cons in self.Constructors():
if cons.IsCopy():
return True
return False
def HasDefaultConstructor(self):
'''Returns true if this class has a public default constructor.
@rtype: bool
'''
for cons in self.Constructors():
if cons.IsDefault():
return True
return False
def AddMember(self, member):
if member.name in self.__member_names:
member.is_unique = False
for m in self:
if m.name == member.name:
m.is_unique = False
else:
member.is_unique = True
self.__member_names[member.name] = 1
self.__members.append(member)
if isinstance(member, ClassOperator):
self.operator[member.name] = member
def ValidMemberTypes():
return (NestedClass, Method, Constructor, Destructor, ClassVariable,
ClassOperator, ConverterOperator, ClassEnumeration)
ValidMemberTypes = staticmethod(ValidMemberTypes)
#==============================================================================
# NestedClass
#==============================================================================
class NestedClass(Class):
'''The declaration of a class/struct inside another class/struct.
@type class: string
@ivar class: fullname of the class where this class is contained.
@type visibility: L{Scope}
@ivar visibility: the visibility of this class.
'''
def __init__(self, name, class_, visib, members, abstract):
Class.__init__(self, name, None, members, abstract)
self.class_ = class_
self.visibility = visib
def FullName(self):
'''The full name of this class, like ns::outer::inner.
@rtype: string
'''
return '%s::%s' % (self.class_, self.name)
#==============================================================================
# Scope
#==============================================================================
class Scope:
'''Used to represent the visibility of various members inside a class.
@cvar public: public visibility
@cvar private: private visibility
@cvar protected: protected visibility
'''
public = 'public'
private = 'private'
protected = 'protected'
#==============================================================================
# Base
#==============================================================================
class Base:
'''Represents a base class of another class.
@ivar _name: the full name of the base class.
@ivar _visibility: the visibility of the derivation.
'''
def __init__(self, name, visibility=Scope.public):
self.name = name
self.visibility = visibility
#==============================================================================
# Function
#==============================================================================
class Function(Declaration):
'''The declaration of a function.
@ivar _result: instance of L{Type} or None.
@ivar _parameters: list of L{Type} instances.
'''
def __init__(self, name, namespace, result, params):
Declaration.__init__(self, name, namespace)
# the result type: instance of Type, or None (constructors)
self.result = result
# the parameters: instances of Type
self.parameters = params
def PointerDeclaration(self, force=False):
'''Returns a declaration of a pointer to this function.
@param force: If True, returns a complete pointer declaration regardless
if this function is unique or not.
'''
if self.is_unique and not force:
return '&%s' % self.FullName()
else:
result = self.result.FullName()
params = ', '.join([x.FullName() for x in self.parameters])
return '(%s (*)(%s))&%s' % (result, params, self.FullName())
def MinArgs(self):
min = 0
for arg in self.parameters:
if arg.default is None:
min += 1
return min
minArgs = property(MinArgs)
def MaxArgs(self):
return len(self.parameters)
maxArgs = property(MaxArgs)
#==============================================================================
# Operator
#==============================================================================
class Operator(Function):
'''The declaration of a custom operator. Its name is the same as the
operator name in C++, ie, the name of the declaration "operator+(..)" is
"+".
'''
def FullName(self):
namespace = self.namespace or ''
if not namespace.endswith('::'):
namespace += '::'
return namespace + 'operator' + self.name
#==============================================================================
# Method
#==============================================================================
class Method(Function):
'''The declaration of a method.
@ivar _visibility: the visibility of this method.
@ivar _virtual: if this method is declared as virtual.
@ivar _abstract: if this method is virtual but has no default implementation.
@ivar _static: if this method is static.
@ivar _class: the full name of the class where this method was declared.
@ivar _const: if this method is declared as const.
'''
def __init__(self, name, class_, result, params, visib, virtual, abstract, static, const):
Function.__init__(self, name, None, result, params)
self.visibility = visib
self.virtual = virtual
self.abstract = abstract
self.static = static
self.class_ = class_
self.const = const
def FullName(self):
return self.class_ + '::' + self.name
def PointerDeclaration(self, force=False):
'''Returns a declaration of a pointer to this member function.
@param force: If True, returns a complete pointer declaration regardless
if this function is unique or not.
'''
if self.static:
# static methods are like normal functions
return Function.PointerDeclaration(self, force)
if self.is_unique and not force:
return '&%s' % self.FullName()
else:
result = self.result.FullName()
params = ', '.join([x.FullName() for x in self.parameters])
const = ''
if self.const:
const = 'const'
return '(%s (%s::*)(%s) %s)&%s' %\
(result, self.class_, params, const, self.FullName())
#==============================================================================
# Constructor
#==============================================================================
class Constructor(Method):
'''A class' constructor.
'''
def __init__(self, name, class_, params, visib):
Method.__init__(self, name, class_, None, params, visib, False, False, False, False)
def IsDefault(self):
'''Returns True if this constructor is a default constructor.
'''
return len(self.parameters) == 0 and self.visibility == Scope.public
def IsCopy(self):
'''Returns True if this constructor is a copy constructor.
'''
if len(self.parameters) != 1:
return False
param = self.parameters[0]
class_as_param = self.parameters[0].name == self.class_
param_reference = isinstance(param, ReferenceType)
is_public = self.visibility = Scope.public
return param_reference and class_as_param and param.const and is_public
#==============================================================================
# Destructor
#==============================================================================
class Destructor(Method):
'The destructor of a class.'
def __init__(self, name, class_, visib, virtual):
Method.__init__(self, name, class_, None, [], visib, virtual, False, False, False)
def FullName(self):
return self.class_ + '::~' + self.name
#==============================================================================
# ClassOperator
#==============================================================================
class ClassOperator(Method):
'A custom operator in a class.'
def FullName(self):
return self.class_ + '::operator ' + self.name
#==============================================================================
# ConverterOperator
#==============================================================================
class ConverterOperator(ClassOperator):
'An operator in the form "operator OtherClass()".'
def FullName(self):
return self.class_ + '::operator ' + self.result.FullName()
#==============================================================================
# Type
#==============================================================================
class Type(Declaration):
'''Represents the type of a variable or parameter.
@ivar _const: if the type is constant.
@ivar _default: if this type has a default value associated with it.
@ivar _volatile: if this type was declared with the keyword volatile.
@ivar _restricted: if this type was declared with the keyword restricted.
@ivar _suffix: Suffix to get the full type name. '*' for pointers, for
example.
'''
def __init__(self, name, const=False, default=None, suffix=''):
Declaration.__init__(self, name, None)
# whatever the type is constant or not
self.const = const
# used when the Type is a function argument
self.default = default
self.volatile = False
self.restricted = False
self.suffix = suffix
def __repr__(self):
if self.const:
const = 'const '
else:
const = ''
return '<Type ' + const + self.name + '>'
def FullName(self):
if self.const:
const = 'const '
else:
const = ''
return const + self.name + self.suffix
#==============================================================================
# ArrayType
#==============================================================================
class ArrayType(Type):
'''Represents an array.
@ivar min: the lower bound of the array, usually 0. Can be None.
@ivar max: the upper bound of the array. Can be None.
'''
def __init__(self, name, const, min, max):
'min and max can be None.'
Type.__init__(self, name, const)
self.min = min
self.max = max
#==============================================================================
# ReferenceType
#==============================================================================
class ReferenceType(Type):
'''A reference type.'''
def __init__(self, name, const=False, default=None, expandRef=True, suffix=''):
Type.__init__(self, name, const, default)
if expandRef:
self.suffix = suffix + '&'
#==============================================================================
# PointerType
#==============================================================================
class PointerType(Type):
'A pointer type.'
def __init__(self, name, const=False, default=None, expandPointer=False, suffix=''):
Type.__init__(self, name, const, default)
if expandPointer:
self.suffix = suffix + '*'
#==============================================================================
# FundamentalType
#==============================================================================
class FundamentalType(Type):
'One of the fundamental types, like int, void, etc.'
def __init__(self, name, const=False, default=None):
Type.__init__(self, name, const, default)
#==============================================================================
# FunctionType
#==============================================================================
class FunctionType(Type):
'''A pointer to a function.
@ivar _result: the return value
@ivar _parameters: a list of Types, indicating the parameters of the function.
@ivar _name: the name of the function.
'''
def __init__(self, result, parameters):
Type.__init__(self, '', False)
self.result = result
self.parameters = parameters
self.name = self.FullName()
def FullName(self):
full = '%s (*)' % self.result.FullName()
params = [x.FullName() for x in self.parameters]
full += '(%s)' % ', '.join(params)
return full
#==============================================================================
# MethodType
#==============================================================================
class MethodType(FunctionType):
'''A pointer to a member function of a class.
@ivar _class: The fullname of the class that the method belongs to.
'''
def __init__(self, result, parameters, class_):
self.class_ = class_
FunctionType.__init__(self, result, parameters)
def FullName(self):
full = '%s (%s::*)' % (self.result.FullName(), self.class_)
params = [x.FullName() for x in self.parameters]
full += '(%s)' % ', '.join(params)
return full
#==============================================================================
# Variable
#==============================================================================
class Variable(Declaration):
'''Represents a global variable.
@type _type: L{Type}
@ivar _type: The type of the variable.
'''
def __init__(self, type, name, namespace):
Declaration.__init__(self, name, namespace)
self.type = type
#==============================================================================
# ClassVariable
#==============================================================================
class ClassVariable(Variable):
'''Represents a class variable.
@type _visibility: L{Scope}
@ivar _visibility: The visibility of this variable within the class.
@type _static: bool
@ivar _static: Indicates if the variable is static.
@ivar _class: Full name of the class that this variable belongs to.
'''
def __init__(self, type, name, class_, visib, static):
Variable.__init__(self, type, name, None)
self.visibility = visib
self.static = static
self.class_ = class_
def FullName(self):
return self.class_ + '::' + self.name
#==============================================================================
# Enumeration
#==============================================================================
class Enumeration(Declaration):
'''Represents an enum.
@type _values: dict of str => int
@ivar _values: holds the values for this enum.
'''
def __init__(self, name, namespace):
Declaration.__init__(self, name, namespace)
self.values = {} # dict of str => int
def ValueFullName(self, name):
'''Returns the full name for a value in the enum.
'''
assert name in self.values
namespace = self.namespace
if namespace:
namespace += '::'
return namespace + name
#==============================================================================
# ClassEnumeration
#==============================================================================
class ClassEnumeration(Enumeration):
'''Represents an enum inside a class.
@ivar _class: The full name of the class where this enum belongs.
@ivar _visibility: The visibility of this enum inside his class.
'''
def __init__(self, name, class_, visib):
Enumeration.__init__(self, name, None)
self.class_ = class_
self.visibility = visib
def FullName(self):
return '%s::%s' % (self.class_, self.name)
def ValueFullName(self, name):
assert name in self.values
return '%s::%s' % (self.class_, name)
#==============================================================================
# Typedef
#==============================================================================
class Typedef(Declaration):
'''A Typedef declaration.
@type _type: L{Type}
@ivar _type: The type of the typedef.
@type _visibility: L{Scope}
@ivar _visibility: The visibility of this typedef.
'''
def __init__(self, type, name, namespace):
Declaration.__init__(self, name, namespace)
self.type = type
self.visibility = Scope.public
#==============================================================================
# Unknown
#==============================================================================
class Unknown(Declaration):
'''A declaration that Pyste does not know how to handle.
'''
def __init__(self, name):
Declaration.__init__(self, name, None)

View File

@@ -1,5 +0,0 @@
# a list of Exporter instances
exporters = []
current_interface = None # the current interface file being processed

View File

@@ -1,82 +0,0 @@
'''
Various helpers for interface files.
'''
from settings import *
from policies import *
from declarations import *
#==============================================================================
# FunctionWrapper
#==============================================================================
class FunctionWrapper(object):
'''Holds information about a wrapper for a function or a method. It is
divided in 2 parts: the name of the Wrapper, and its code. The code is
placed in the declaration section of the module, while the name is used to
def' the function or method (with the pyste namespace prepend to it). If
code is None, the name is left unchanged.
'''
def __init__(self, name, code=None):
self.name = name
self.code = code
def FullName(self):
if self.code:
return namespaces.pyste + self.name
else:
return self.name
_printed_warnings = {} # used to avoid double-prints of warnings
#==============================================================================
# HandlePolicy
#==============================================================================
def HandlePolicy(function, policy):
'''Show a warning to the user if the function needs a policy and doesn't
have one. Return a policy to the function, which is the given policy itself
if it is not None, or a default policy for this method.
'''
def IsString(type):
'Return True if the Type instance can be considered a string'
return type.FullName() == 'const char*'
def IsPyObject(type):
return type.FullName() == '_object *' # internal name of PyObject
result = function.result
# if the function returns const char*, a policy is not needed
if IsString(result) or IsPyObject(result):
return policy
# if returns a const T&, set the default policy
if policy is None and result.const and isinstance(result, ReferenceType):
policy = return_value_policy(copy_const_reference)
# basic test if the result type demands a policy
needs_policy = isinstance(result, (ReferenceType, PointerType))
# show a warning to the user, if needed
if needs_policy and policy is None:
global _printed_warnings
warning = '---> Error: %s returns a pointer or a reference, ' \
'but no policy was specified.' % function.FullName()
if warning not in _printed_warnings:
print warning
print
# avoid double prints of the same warning
_printed_warnings[warning] = 1
return policy
#==============================================================================
# EspecializeTypeID
#==============================================================================
_exported_type_ids = {}
def EspecializeTypeID(typename):
global _exported_type_ids
macro = 'BOOST_PYTHON_OPAQUE_SPECIALIZED_TYPE_ID(%s)\n' % typename
if macro not in _exported_type_ids:
_exported_type_ids[macro] = 1
return macro
else:
return None

View File

@@ -1,232 +0,0 @@
import os.path
import copy
import exporters
from ClassExporter import ClassExporter
from FunctionExporter import FunctionExporter
from IncludeExporter import IncludeExporter
from EnumExporter import EnumExporter
from HeaderExporter import HeaderExporter
from VarExporter import VarExporter
from exporterutils import FunctionWrapper
from utils import makeid
#==============================================================================
# DeclarationInfo
#==============================================================================
class DeclarationInfo:
def __init__(self, otherInfo=None):
self.__infos = {}
self.__attributes = {}
if otherInfo is not None:
self.__infos = copy.deepcopy(otherInfo.__infos)
self.__attributes = copy.deepcopy(otherInfo.__attributes)
def __getitem__(self, name):
'Used to access sub-infos'
if name.startswith('__'):
raise AttributeError
default = DeclarationInfo()
default._Attribute('name', name)
return self.__infos.setdefault(name, default)
def __getattr__(self, name):
return self[name]
def _Attribute(self, name, value=None):
if value is None:
# get value
return self.__attributes.get(name)
else:
# set value
self.__attributes[name] = value
#==============================================================================
# FunctionInfo
#==============================================================================
class FunctionInfo(DeclarationInfo):
def __init__(self, name, include, tail=None, otherOption=None):
DeclarationInfo.__init__(self, otherOption)
self._Attribute('name', name)
self._Attribute('include', include)
self._Attribute('exclude', False)
# create a FunctionExporter
exporter = FunctionExporter(InfoWrapper(self), tail)
exporters.exporters.append(exporter)
exporter.interface_file = exporters.current_interface
#==============================================================================
# ClassInfo
#==============================================================================
class ClassInfo(DeclarationInfo):
def __init__(self, name, include, tail=None, otherInfo=None):
DeclarationInfo.__init__(self, otherInfo)
self._Attribute('name', name)
self._Attribute('include', include)
self._Attribute('exclude', False)
# create a ClassExporter
exporter = ClassExporter(InfoWrapper(self), tail)
exporters.exporters.append(exporter)
exporter.interface_file = exporters.current_interface
#==============================================================================
# IncludeInfo
#==============================================================================
class IncludeInfo(DeclarationInfo):
def __init__(self, include):
DeclarationInfo.__init__(self)
self._Attribute('include', include)
exporter = IncludeExporter(InfoWrapper(self))
exporters.exporters.append(exporter)
exporter.interface_file = exporters.current_interface
#==============================================================================
# templates
#==============================================================================
def GenerateName(name, type_list):
name = name.replace('::', '_')
names = [name] + type_list
return makeid('_'.join(names))
class ClassTemplateInfo(DeclarationInfo):
def __init__(self, name, include):
DeclarationInfo.__init__(self)
self._Attribute('name', name)
self._Attribute('include', include)
def Instantiate(self, type_list, rename=None):
if not rename:
rename = GenerateName(self._Attribute('name'), type_list)
# generate code to instantiate the template
types = ', '.join(type_list)
tail = 'typedef %s< %s > %s;\n' % (self._Attribute('name'), types, rename)
tail += 'void __instantiate_%s()\n' % rename
tail += '{ sizeof(%s); }\n\n' % rename
# create a ClassInfo
class_ = ClassInfo(rename, self._Attribute('include'), tail, self)
return class_
def __call__(self, types, rename=None):
if isinstance(types, str):
types = types.split()
return self.Instantiate(types, rename)
#==============================================================================
# EnumInfo
#==============================================================================
class EnumInfo(DeclarationInfo):
def __init__(self, name, include):
DeclarationInfo.__init__(self)
self._Attribute('name', name)
self._Attribute('include', include)
self._Attribute('exclude', False)
exporter = EnumExporter(InfoWrapper(self))
exporters.exporters.append(exporter)
exporter.interface_file = exporters.current_interface
#==============================================================================
# HeaderInfo
#==============================================================================
class HeaderInfo(DeclarationInfo):
def __init__(self, include):
DeclarationInfo.__init__(self)
self._Attribute('include', include)
exporter = HeaderExporter(InfoWrapper(self))
exporters.exporters.append(exporter)
exporter.interface_file = exporters.current_interface
#==============================================================================
# VarInfo
#==============================================================================
class VarInfo(DeclarationInfo):
def __init__(self, name, include):
DeclarationInfo.__init__(self)
self._Attribute('name', name)
self._Attribute('include', include)
exporter = VarExporter(InfoWrapper(self))
exporters.exporters.append(exporter)
exporter.interface_file = exporters.current_interface
#==============================================================================
# InfoWrapper
#==============================================================================
class InfoWrapper:
'Provides a nicer interface for a info'
def __init__(self, info):
self.__dict__['_info'] = info # so __setattr__ is not called
def __getitem__(self, name):
return InfoWrapper(self._info[name])
def __getattr__(self, name):
return self._info._Attribute(name)
def __setattr__(self, name, value):
self._info._Attribute(name, value)
#==============================================================================
# Functions
#==============================================================================
def exclude(info):
info._Attribute('exclude', True)
def set_policy(info, policy):
info._Attribute('policy', policy)
def rename(info, name):
info._Attribute('rename', name)
def set_wrapper(info, wrapper):
if isinstance(wrapper, str):
wrapper = FunctionWrapper(wrapper)
info._Attribute('wrapper', wrapper)
def instantiate(template, types, rename=None):
if isinstance(types, str):
types = types.split()
return template.Instantiate(types, rename)
def use_shared_ptr(info):
info._Attribute('smart_ptr', 'boost::shared_ptr< %s >')
def use_auto_ptr(info):
info._Attribute('smart_ptr', 'std::auto_ptr< %s >')
def hold_with_shared_ptr(info):
info._Attribute('held_type', 'boost::shared_ptr< %s >')
def hold_with_auto_ptr(info):
info._Attribute('held_type', 'std::auto_ptr< %s >')
def add_method(info, name, rename=None):
added = info._Attribute('__added__')
if added is None:
info._Attribute('__added__', [(name, rename)])
else:
added.append((name, rename))
def final(info):
info._Attribute('no_override', True)

View File

@@ -1,83 +0,0 @@
class Policy:
'Represents one of the call policies of boost.python.'
def __init__(self):
raise RuntimeError, "Can't create an instance of the class Policy"
def Code(self):
'Returns the string corresponding to a instancialization of the policy.'
pass
def _next(self):
if self.next is not None:
return ', %s >' % self.next.Code()
else:
return ' >'
def __eq__(self, other):
try:
return self.Code() == other.Code()
except AttributeError:
return False
class return_internal_reference(Policy):
'Ties the return value to one of the parameters.'
def __init__(self, param=1, next=None):
'''
param is the position of the parameter, or None for "self".
next indicates the next policy, or None.
'''
self.param = param
self.next=next
def Code(self):
c = 'return_internal_reference< %i' % self.param
c += self._next()
return c
class with_custodian_and_ward(Policy):
'Ties lifetime of two arguments of a function.'
def __init__(self, custodian, ward, next=None):
self.custodian = custodian
self.ward = ward
self.next = next
def Code(self):
c = 'with_custodian_and_ward< %i, %i' % (self.custodian, self.ward)
c += self._next()
return c
class return_value_policy(Policy):
'Policy to convert return values.'
def __init__(self, which, next=None):
self.which = which
self.next = next
def Code(self):
c = 'return_value_policy< %s' % self.which
c += self._next()
return c
# values for return_value_policy
reference_existing_object = 'reference_existing_object'
copy_const_reference = 'copy_const_reference'
copy_non_const_reference = 'copy_non_const_reference'
manage_new_object = 'manage_new_object'
return_opaque_pointer = 'return_opaque_pointer'

View File

@@ -1,17 +0,0 @@
import profile
import pstats
import pyste
import psyco
import elementtree.XMLTreeBuilder as XMLTreeBuilder
import GCCXMLParser
if __name__ == '__main__':
#psyco.bind(XMLTreeBuilder.fixtext)
#psyco.bind(XMLTreeBuilder.fixname)
#psyco.bind(XMLTreeBuilder.TreeBuilder)
#psyco.bind(GCCXMLParser.GCCXMLParser)
profile.run('pyste.Main()', 'profile')
p = pstats.Stats('profile')
p.strip_dirs().sort_stats(-1).print_stats()

View File

@@ -1,249 +0,0 @@
'''
Pyste version %s
Usage:
pyste [options] interface-files
where options are:
--module=<name> the name of the module that will be generated.
Defaults to the first interface filename, without
the extension.
-I <path> add an include path
-D <symbol> define symbol
--multiple create various cpps, instead of only one
(useful during development)
--out specify output filename (default: <module>.cpp)
in --multiple mode, this will be a directory
--no-using do not declare "using namespace boost";
use explicit declarations instead
--pyste-ns=<name> set the namespace where new types will be declared;
default is the empty namespace
--debug writes the xml for each file parsed in the current
directory
-h, --help print this help and exit
-v, --version print version information
'''
import sys
import os
import getopt
import exporters
import SingleCodeUnit
import MultipleCodeUnit
import infos
import exporterutils
import settings
import gc
import sys
from policies import *
from CppParser import CppParser, CppParserError
import time
__VERSION__ = '0.9.10'
def RecursiveIncludes(include):
'Return a list containg the include dir and all its subdirectories'
dirs = [include]
def visit(arg, dir, names):
# ignore CVS dirs
if os.path.split(dir)[1] != 'CVS':
dirs.append(dir)
os.path.walk(include, visit, None)
return dirs
def GetDefaultIncludes():
if 'INCLUDE' in os.environ:
include = os.environ['INCLUDE']
return include.split(os.pathsep)
else:
return []
def ParseArguments():
def Usage():
print __doc__ % __VERSION__
sys.exit(1)
try:
options, files = getopt.getopt(
sys.argv[1:],
'R:I:D:vh',
['module=', 'multiple', 'out=', 'no-using', 'pyste-ns=', 'debug', 'version', 'help'])
except getopt.GetoptError, e:
print
print 'ERROR:', e
Usage()
includes = GetDefaultIncludes()
defines = []
module = None
out = None
multiple = False
for opt, value in options:
if opt == '-I':
includes.append(value)
elif opt == '-D':
defines.append(value)
elif opt == '-R':
includes.extend(RecursiveIncludes(value))
elif opt == '--module':
module = value
elif opt == '--out':
out = value
elif opt == '--no-using':
settings.namespaces.python = 'boost::python::'
settings.USING_BOOST_NS = False
elif opt == '--pyste-ns':
settings.namespaces.pyste = value + '::'
elif opt == '--debug':
settings.DEBUG = True
elif opt == '--multiple':
multiple = True
elif opt in ['-h', '--help']:
Usage()
elif opt in ['-v', '--version']:
print 'Pyste version %s' % __VERSION__
sys.exit(2)
else:
print 'Unknown option:', opt
Usage()
if not files:
Usage()
if not module:
module = os.path.splitext(files[0])[0]
if not out:
out = module
if not multiple:
out += '.cpp'
for file in files:
d = os.path.dirname(os.path.abspath(file))
if d not in sys.path:
sys.path.append(d)
return includes, defines, module, out, files, multiple
def CreateContext():
'create the context where a interface file will be executed'
context = {}
# infos
context['Function'] = infos.FunctionInfo
context['Class'] = infos.ClassInfo
context['Include'] = infos.IncludeInfo
context['Template'] = infos.ClassTemplateInfo
context['Enum'] = infos.EnumInfo
context['AllFromHeader'] = infos.HeaderInfo
context['Var'] = infos.VarInfo
# functions
context['rename'] = infos.rename
context['set_policy'] = infos.set_policy
context['exclude'] = infos.exclude
context['set_wrapper'] = infos.set_wrapper
context['use_shared_ptr'] = infos.use_shared_ptr
context['use_auto_ptr'] = infos.use_auto_ptr
context['hold_with_shared_ptr'] = infos.hold_with_shared_ptr
context['hold_with_auto_ptr'] = infos.hold_with_auto_ptr
context['add_method'] = infos.add_method
context['final'] = infos.final
# policies
context['return_internal_reference'] = return_internal_reference
context['with_custodian_and_ward'] = with_custodian_and_ward
context['return_value_policy'] = return_value_policy
context['reference_existing_object'] = reference_existing_object
context['copy_const_reference'] = copy_const_reference
context['copy_non_const_reference'] = copy_non_const_reference
context['return_opaque_pointer'] = return_opaque_pointer
context['manage_new_object'] = manage_new_object
# utils
context['Wrapper'] = exporterutils.FunctionWrapper
return context
def Begin():
includes, defines, module, out, interfaces, multiple = ParseArguments()
# execute the interface files
for interface in interfaces:
exporters.current_interface = interface
context = CreateContext()
execfile(interface, context)
# create the parser
parser = CppParser(includes, defines)
# prepare to generate the wrapper code
if multiple:
codeunit = MultipleCodeUnit.MultipleCodeUnit(module, out)
else:
codeunit = SingleCodeUnit.SingleCodeUnit(module, out)
# group exporters by header files
groups = {}
for export in exporters.exporters:
header = export.Header()
if header in groups:
groups[header].append(export)
else:
groups[header] = [export]
# stop referencing the exporters here
exporters.exporters = None
# export all the exporters in each group, releasing memory as doing so
while len(groups) > 0:
# get the first group
header = groups.keys()[0]
exports = groups[header]
del groups[header]
# gather all tails into one
all_tails = []
for export in exports:
if export.Tail():
all_tails.append(export.Tail())
all_tails = '\n'.join(all_tails)
# parse header (if there's one)
if header:
try:
declarations, parsed_header = parser.parse(header, all_tails)
except CppParserError, e:
print>>sys.stderr, '\n\n***', e, ': exitting'
return 2
else:
declarations = []
parsed_header = None
# first set the declarations and parsed_header for all the exporters
for export in exports:
export.SetDeclarations(declarations)
export.SetParsedHeader(parsed_header)
# sort the exporters by their order
exports = [(x.Order(), x) for x in exports]
exports.sort()
exports = [x for _, x in exports]
# maintain a dict of exported_names for this group
exported_names = {}
for export in exports:
if multiple:
codeunit.SetCurrent(export.interface_file, export.Unit())
export.GenerateCode(codeunit, exported_names)
# force collect of cyclic references
gc.collect()
# finally save the code unit
codeunit.Save()
print 'Module %s generated' % module
return 0
def UsePsyco():
'Tries to use psyco if possible'
try:
import psyco
psyco.profile()
except: pass
def main():
start = time.clock()
UsePsyco()
status = Begin()
print '%0.2f seconds' % (time.clock()-start)
sys.exit(status)
if __name__ == '__main__':
main()

View File

@@ -1,13 +0,0 @@
#==============================================================================
# Global information
#==============================================================================
DEBUG = False
USING_BOOST_NS = True
class namespaces:
boost = 'boost::'
pyste = ''
python = '' # default is to not use boost::python namespace explicitly, so
# use the "using namespace" statement instead

View File

@@ -1,71 +0,0 @@
from __future__ import generators
import string
import sys
#==============================================================================
# enumerate
#==============================================================================
def enumerate(seq):
i = 0
for x in seq:
yield i, x
i += 1
#==============================================================================
# makeid
#==============================================================================
_valid_chars = string.ascii_letters + string.digits + '_'
_valid_chars = dict(zip(_valid_chars, _valid_chars))
def makeid(name):
'Returns the name as a valid identifier'
if type(name) != str:
print type(name), name
newname = []
for char in name:
if char not in _valid_chars:
char = '_'
newname.append(char)
newname = ''.join(newname)
# avoid duplications of '_' chars
names = [x for x in newname.split('_') if x]
return '_'.join(names)
#==============================================================================
# remove_duplicated_lines
#==============================================================================
def remove_duplicated_lines(text):
includes = text.splitlines()
d = dict([(include, 0) for include in includes])
return '\n'.join(d.keys())
#==============================================================================
# left_equals
#==============================================================================
def left_equals(s):
s = '// %s ' % s
return s + ('='*(80-len(s))) + '\n'
#==============================================================================
# post_mortem
#==============================================================================
def post_mortem():
def info(type, value, tb):
if hasattr(sys, 'ps1') or not sys.stderr.isatty():
# we are in interactive mode or we don't have a tty-like
# device, so we call the default hook
sys.__excepthook__(type, value, tb)
else:
import traceback, pdb
# we are NOT in interactive mode, print the exception...
traceback.print_exception(type, value, tb)
print
# ...then start the debugger in post-mortem mode.
pdb.pm()
sys.excepthook = info

View File

@@ -1,7 +0,0 @@
*.pyc
*.exp
*.lib
*.obj
*.arg
*.dll
.sconsign

View File

@@ -1,336 +0,0 @@
import sys
sys.path.append('../src')
import unittest
import tempfile
import os.path
import GCCXMLParser
from declarations import *
class Tester(unittest.TestCase):
def TestConstructor(self, class_, method, visib):
self.assert_(isinstance(method, Constructor))
self.assertEqual(method.FullName(), class_.FullName() + '::' + method.name)
self.assertEqual(method.result, None)
self.assertEqual(method.visibility, visib)
self.assert_(not method.virtual)
self.assert_(not method.abstract)
self.assert_(not method.static)
def TestDefaultConstructor(self, class_, method, visib):
self.TestConstructor(class_, method, visib)
self.assert_(method.IsDefault())
def TestCopyConstructor(self, class_, method, visib):
self.TestConstructor(class_, method, visib)
self.assertEqual(len(method.parameters), 1)
param = method.parameters[0]
self.TestType(
param,
ReferenceType,
class_.FullName(),
'const %s&' % class_.FullName(),
True)
self.assert_(method.IsCopy())
def TestType(self, type_, classtype_, name, fullname, const):
self.assert_(isinstance(type_, classtype_))
self.assertEqual(type_.name, name)
self.assertEqual(type_.namespace, None)
self.assertEqual(type_.FullName(), fullname)
self.assertEqual(type_.const, const)
class ClassBaseTest(Tester):
def setUp(self):
self.base = GetDecl('Base')
def testClass(self):
'test the properties of the class Base'
self.assert_(isinstance(self.base, Class))
self.assert_(self.base.abstract)
def testFoo(self):
'test function foo in class Base'
foo = GetMember(self.base, 'foo')
self.assert_(isinstance(foo, Method))
self.assertEqual(foo.visibility, Scope.public)
self.assert_(foo.virtual)
self.assert_(foo.abstract)
self.failIf(foo.static)
self.assertEqual(foo.class_, 'test::Base')
self.failIf(foo.const)
self.assertEqual(foo.FullName(), 'test::Base::foo')
self.assertEqual(foo.result.name, 'void')
self.assertEqual(len(foo.parameters), 1)
param = foo.parameters[0]
self.TestType(param, FundamentalType, 'int', 'int', False)
self.assertEqual(foo.namespace, None)
self.assertEqual(
foo.PointerDeclaration(1), '(void (test::Base::*)(int) )&test::Base::foo')
def testX(self):
'test the member x in class Base'
x = GetMember(self.base, 'x')
self.assertEqual(x.class_, 'test::Base')
self.assertEqual(x.FullName(), 'test::Base::x')
self.assertEqual(x.namespace, None)
self.assertEqual(x.visibility, Scope.private)
self.TestType(x.type, FundamentalType, 'int', 'int', False)
self.assertEqual(x.static, False)
def testConstructors(self):
'test constructors in class Base'
constructors = GetMembers(self.base, 'Base')
for cons in constructors:
if len(cons.parameters) == 0:
self.TestDefaultConstructor(self.base, cons, Scope.public)
elif len(cons.parameters) == 1: # copy constructor
self.TestCopyConstructor(self.base, cons, Scope.public)
elif len(cons.parameters) == 2: # other constructor
intp, floatp = cons.parameters
self.TestType(intp, FundamentalType, 'int', 'int', False)
self.TestType(floatp, FundamentalType, 'float', 'float', False)
def testSimple(self):
'test function simple in class Base'
simple = GetMember(self.base, 'simple')
self.assert_(isinstance(simple, Method))
self.assertEqual(simple.visibility, Scope.protected)
self.assertEqual(simple.FullName(), 'test::Base::simple')
self.assertEqual(len(simple.parameters), 1)
param = simple.parameters[0]
self.TestType(param, ReferenceType, 'std::string', 'const std::string&', True)
self.TestType(simple.result, FundamentalType, 'bool', 'bool', False)
self.assertEqual(
simple.PointerDeclaration(1),
'(bool (test::Base::*)(const std::string&) )&test::Base::simple')
def testZ(self):
z = GetMember(self.base, 'z')
self.assert_(isinstance(z, Variable))
self.assertEqual(z.visibility, Scope.public)
self.assertEqual(z.FullName(), 'test::Base::z')
self.assertEqual(z.type.name, 'int')
self.assertEqual(z.type.const, False)
self.assert_(z.static)
class ClassTemplateTest(Tester):
def setUp(self):
self.template = GetDecl('Template<int>')
def testClass(self):
'test the properties of the Template<int> class'
self.assert_(isinstance(self.template, Class))
self.assert_(not self.template.abstract)
self.assertEqual(self.template.FullName(), 'Template<int>')
self.assertEqual(self.template.namespace, '')
self.assertEqual(self.template.name, 'Template<int>')
def testConstructors(self):
'test the automatic constructors of the class Template<int>'
constructors = GetMembers(self.template, 'Template')
for cons in constructors:
if len(cons.parameters) == 0:
self.TestDefaultConstructor(self.template, cons, Scope.public)
elif len(cons.parameters) == 1:
self.TestCopyConstructor(self.template, cons, Scope.public)
def testValue(self):
'test the class variable value'
value = GetMember(self.template, 'value')
self.assert_(isinstance(value, ClassVariable))
self.assert_(value.name, 'value')
self.TestType(value.type, FundamentalType, 'int', 'int', False)
self.assert_(not value.static)
self.assertEqual(value.visibility, Scope.public)
self.assertEqual(value.class_, 'Template<int>')
self.assertEqual(value.FullName(), 'Template<int>::value')
def testBase(self):
'test the superclasses of Template<int>'
bases = self.template.bases
self.assertEqual(len(bases), 1)
base = bases[0]
self.assert_(isinstance(base, Base))
self.assertEqual(base.name, 'test::Base')
self.assertEqual(base.visibility, Scope.protected)
class FreeFuncTest(Tester):
def setUp(self):
self.func = GetDecl('FreeFunc')
def testFunc(self):
'test attributes of FreeFunc'
self.assert_(isinstance(self.func, Function))
self.assertEqual(self.func.name, 'FreeFunc')
self.assertEqual(self.func.FullName(), 'test::FreeFunc')
self.assertEqual(self.func.namespace, 'test')
self.assertEqual(
self.func.PointerDeclaration(1),
'(const test::Base& (*)(const std::string&, int))&test::FreeFunc')
def testResult(self):
'test the return value of FreeFunc'
res = self.func.result
self.TestType(res, ReferenceType, 'test::Base', 'const test::Base&', True)
def testParameters(self):
'test the parameters of FreeFunc'
self.assertEqual(len(self.func.parameters), 2)
strp, intp = self.func.parameters
self.TestType(strp, ReferenceType, 'std::string', 'const std::string&', True)
self.assertEqual(strp.default, None)
self.TestType(intp, FundamentalType, 'int', 'int', False)
self.assertEqual(intp.default, '10')
class testFunctionPointers(Tester):
def testMethodPointer(self):
'test declaration of a pointer-to-method'
meth = GetDecl('MethodTester')
param = meth.parameters[0]
fullname = 'void (test::Base::*)(int)'
self.TestType(param, PointerType, fullname, fullname, False)
def testFunctionPointer(self):
'test declaration of a pointer-to-function'
func = GetDecl('FunctionTester')
param = func.parameters[0]
fullname = 'void (*)(int)'
self.TestType(param, PointerType, fullname, fullname, False)
# =============================================================================
# Support routines
# =============================================================================
cppcode = '''
namespace std {
class string;
}
namespace test {
class Base
{
public:
Base();
Base(const Base&);
Base(int, float);
virtual void foo(int = 0.0) = 0;
static int z;
protected:
bool simple(const std::string&);
private:
int x;
};
void MethodTester( void (Base::*)(int) );
void FunctionTester( void (*)(int) );
const Base & FreeFunc(const std::string&, int=10);
}
template <class T>
struct Template: protected test::Base
{
T value;
virtual void foo(int);
};
Template<int> __aTemplateInt;
'''
def GetXMLFile():
'''Generates an gccxml file using the code from the global cppcode.
Returns the xml's filename.'''
# write the code to a header file
tmpfile = tempfile.mktemp() + '.h'
f = file(tmpfile, 'w')
f.write(cppcode)
f.close()
# run gccxml
outfile = tmpfile + '.xml'
if os.system('gccxml "%s" "-fxml=%s"' % (tmpfile, outfile)) != 0:
raise RuntimeError, 'Error executing GCCXML.'
# read the output file into the xmlcode
f = file(outfile)
xmlcode = f.read()
#print xmlcode
f.close()
# remove the header
os.remove(tmpfile)
return outfile
def GetDeclarations():
'Uses the GCCXMLParser module to get the declarations.'
xmlfile = GetXMLFile()
declarations = GCCXMLParser.ParseDeclarations(xmlfile)
os.remove(xmlfile)
return declarations
# the declarations to be analysed
declarations = GetDeclarations()
def GetDecl(name):
'returns one of the top declarations given its name'
for decl in declarations:
if decl.name == name:
return decl
else:
raise RuntimeError, 'Declaration not found: %s' % name
def GetMember(class_, name):
'gets the member of the given class by its name'
res = None
multipleFound = False
for member in class_:
if member.name == name:
if res is not None:
multipleFound = True
break
res = member
if res is None or multipleFound:
raise RuntimeError, \
'No member or more than one member found in class %s: %s' \
% (class_.name, name)
return res
def GetMembers(class_, name):
'gets the members of the given class by its name'
res = []
for member in class_:
if member.name == name:
res.append(member)
if len(res) in (0, 1):
raise RuntimeError, \
'GetMembers: 0 or 1 members found in class %s: %s' \
% (class_.name, name)
return res
if __name__ == '__main__':
unittest.main()

View File

@@ -1,80 +0,0 @@
import sys
sys.path.append('../src')
from SmartFile import *
import unittest
import tempfile
import os
import time
class SmartFileTest(unittest.TestCase):
FILENAME = tempfile.mktemp()
def setUp(self):
self._Clean()
def tearDown(self):
self._Clean()
def _Clean(self):
try:
os.remove(self.FILENAME)
except OSError: pass
def testNonExistant(self):
"Must override the file, as there's no file in the disk yet"
self.assert_(not os.path.isfile(self.FILENAME))
f = SmartFile(self.FILENAME, 'w')
f.write('Testing 123\nTesting again.')
f.close()
self.assert_(os.path.isfile(self.FILENAME))
def testOverride(self):
"Must override the file, because the contents are different"
contents = 'Contents!\nContents!'
# create the file normally first
f = file(self.FILENAME, 'w')
f.write(contents)
f.close()
file_time = os.path.getmtime(self.FILENAME)
self.assert_(os.path.isfile(self.FILENAME))
time.sleep(2)
f = SmartFile(self.FILENAME, 'w')
f.write(contents + '_')
f.close()
new_file_time = os.path.getmtime(self.FILENAME)
self.assert_(new_file_time != file_time)
def testNoOverride(self):
"Must not override the file, because the contents are the same"
contents = 'Contents!\nContents!'
# create the file normally first
f = file(self.FILENAME, 'w')
f.write(contents)
f.close()
file_time = os.path.getmtime(self.FILENAME)
self.assert_(os.path.isfile(self.FILENAME))
time.sleep(2)
f = SmartFile(self.FILENAME, 'w')
f.write(contents)
f.close()
new_file_time = os.path.getmtime(self.FILENAME)
self.assert_(new_file_time == file_time)
def testAutoClose(self):
"Must be closed when garbage-collected"
def foo():
f = SmartFile(self.FILENAME)
f.write('testing')
self.assert_(not os.path.isfile(self.FILENAME))
foo()
self.assert_(os.path.isfile(self.FILENAME))
if __name__ == '__main__':
unittest.main()

View File

@@ -1,13 +0,0 @@
namespace add_test {
struct C
{
int x;
};
const int get_x(C& c)
{
return c.x;
}
}

View File

@@ -1,2 +0,0 @@
C = Class('add_test::C', 'add_test.h')
add_method(C, 'add_test::get_x')

View File

@@ -1,12 +0,0 @@
import unittest
from _add_test import *
class AddMethodTest(unittest.TestCase):
def testIt(self):
c = C()
c.x = 10
self.assertEqual(c.get_x(), 10)
if __name__ == '__main__':
unittest.main()

View File

@@ -1,8 +0,0 @@
#include "basic.h"
namespace basic {
int C::static_value = 3;
const int C::const_static_value = 100;
}

View File

@@ -1,64 +0,0 @@
#ifndef BASIC_H
#define BASIC_H
#include <string>
namespace basic {
struct C
{
// test virtuallity
C(): value(1), const_value(0) {}
virtual int f(int x = 10)
{
return x*2;
}
int foo(int x=1){
return x+1;
}
const std::string& get_name() { return name; }
void set_name(const std::string& name) { this->name = name; }
private:
std::string name;
public:
// test data members
static int static_value;
static const int const_static_value;
int value;
const int const_value;
// test static functions
static int mul(int x, int y) { return x*y; }
static double mul(double x, double y) { return x*y; }
static int square(int x=2) { return x*x; }
};
inline int call_f(C& c)
{
return c.f();
}
inline int call_f(C& c, int x)
{
return c.f(x);
}
inline int get_static()
{
return C::static_value;
}
inline int get_value(C& c)
{
return c.value;
}
}
#endif

View File

@@ -1,5 +0,0 @@
Class('basic::C', 'basic.h')
Function('basic::call_f', 'basic.h')
Function('basic::get_static', 'basic.h')
Function('basic::get_value', 'basic.h')

View File

@@ -1,69 +0,0 @@
import unittest
from _basic import *
class BasicExampleTest(unittest.TestCase):
def testIt(self):
# test virtual functions
class D(C):
def f(self, x=10):
return x+1
d = D()
c = C()
self.assertEqual(c.f(), 20)
self.assertEqual(c.f(3), 6)
self.assertEqual(d.f(), 11)
self.assertEqual(d.f(3), 4)
self.assertEqual(call_f(c), 20)
self.assertEqual(call_f(c, 4), 8)
self.assertEqual(call_f(d), 11)
self.assertEqual(call_f(d, 3), 4)
# test data members
def testValue(value):
self.assertEqual(c.value, value)
self.assertEqual(d.value, value)
self.assertEqual(get_value(c), value)
self.assertEqual(get_value(d), value)
testValue(1)
c.value = 30
d.value = 30
testValue(30)
self.assertEqual(c.const_value, 0)
self.assertEqual(d.const_value, 0)
def set_const_value():
c.const_value = 12
self.assertRaises(AttributeError, set_const_value)
# test static data-members
def testStatic(value):
self.assertEqual(C.static_value, value)
self.assertEqual(c.static_value, value)
self.assertEqual(D.static_value, value)
self.assertEqual(d.static_value, value)
self.assertEqual(get_static(), value)
testStatic(3)
C.static_value = 10
testStatic(10)
self.assertEqual(C.const_static_value, 100)
def set_const_static():
C.const_static_value = 1
self.assertRaises(AttributeError, set_const_static)
# test static function
def test_mul(result, *args):
self.assertEqual(C.mul(*args), result)
self.assertEqual(c.mul(*args), result)
test_mul(16, 8, 2)
test_mul(6.0, 2.0, 3.0)
self.assertEqual(C.square(), 4)
self.assertEqual(c.square(), 4)
self.assertEqual(C.square(3), 9)
self.assertEqual(c.square(3), 9)
if __name__ == '__main__':
unittest.main()

Some files were not shown because too many files have changed in this diff Show More