2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-24 18:12:43 +00:00

Remove tabs in file.

[SVN r24043]
This commit is contained in:
Rene Rivera
2004-07-25 17:12:17 +00:00
parent d6325d902e
commit 3e76482713
6 changed files with 220 additions and 220 deletions

View File

@@ -34,7 +34,7 @@ namespace detail
object start() const;
object stop() const;
object step() const;
protected:
explicit slice_base(PyObject*, PyObject*, PyObject*);
@@ -46,207 +46,207 @@ class slice : public detail::slice_base
{
typedef detail::slice_base base;
public:
// Equivalent to slice(::)
slice() : base(0,0,0) {}
// Equivalent to slice(::)
slice() : base(0,0,0) {}
// Each argument must be slice_nil, or implicitly convertable to object.
// They should normally be integers.
template<typename Integer1, typename Integer2>
slice( Integer1 start, Integer2 stop)
: base( object(start).ptr(), object(stop).ptr(), 0 )
{}
template<typename Integer1, typename Integer2, typename Integer3>
slice( Integer1 start, Integer2 stop, Integer3 stride)
: base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
{}
// The following algorithm is intended to automate the process of
// determining a slice range when you want to fully support negative
// indicies and non-singular step sizes. Its functionallity is simmilar to
// PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
// This template returns a slice::range struct that, when used in the
// following iterative loop, will traverse a slice of the function's
// arguments.
// while (start != end) {
// do_foo(...);
// std::advance( start, step);
// }
// do_foo(...); // repeat exactly once more.
// Arguments: a [begin, end) pair of STL-conforming random-access iterators.
// Return: slice::range, where start and stop define a _closed_ interval
// that covers at most [begin, end-1] of the provided arguments, and a step
// that is non-zero.
// Throws: error_already_set() if any of the indices are neither None nor
// integers, or the slice has a step value of zero.
// std::invalid_argument if the resulting range would be empty. Normally,
// you should catch this exception and return an empty sequence of the
// appropriate type.
// Performance: constant time for random-access iterators.
// Rationale:
// closed-interval: If an open interval were used, then for a non-singular
// value for step, the required state for the end iterator could be
// beyond the one-past-the-end postion of the specified range. While
// probably harmless, the behavior of STL-conforming iterators is
// undefined in this case.
// exceptions on zero-length range: It is impossible to define a closed
// interval over an empty range, so some other form of error checking
// would have to be used by the user to prevent undefined behavior. In
// the case where the user fails to catch the exception, it will simply
// be translated to Python by the default exception handling mechanisms.
// Each argument must be slice_nil, or implicitly convertable to object.
// They should normally be integers.
template<typename Integer1, typename Integer2>
slice( Integer1 start, Integer2 stop)
: base( object(start).ptr(), object(stop).ptr(), 0 )
{}
template<typename Integer1, typename Integer2, typename Integer3>
slice( Integer1 start, Integer2 stop, Integer3 stride)
: base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
{}
// The following algorithm is intended to automate the process of
// determining a slice range when you want to fully support negative
// indicies and non-singular step sizes. Its functionallity is simmilar to
// PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
// This template returns a slice::range struct that, when used in the
// following iterative loop, will traverse a slice of the function's
// arguments.
// while (start != end) {
// do_foo(...);
// std::advance( start, step);
// }
// do_foo(...); // repeat exactly once more.
// Arguments: a [begin, end) pair of STL-conforming random-access iterators.
// Return: slice::range, where start and stop define a _closed_ interval
// that covers at most [begin, end-1] of the provided arguments, and a step
// that is non-zero.
// Throws: error_already_set() if any of the indices are neither None nor
// integers, or the slice has a step value of zero.
// std::invalid_argument if the resulting range would be empty. Normally,
// you should catch this exception and return an empty sequence of the
// appropriate type.
// Performance: constant time for random-access iterators.
// Rationale:
// closed-interval: If an open interval were used, then for a non-singular
// value for step, the required state for the end iterator could be
// beyond the one-past-the-end postion of the specified range. While
// probably harmless, the behavior of STL-conforming iterators is
// undefined in this case.
// exceptions on zero-length range: It is impossible to define a closed
// interval over an empty range, so some other form of error checking
// would have to be used by the user to prevent undefined behavior. In
// the case where the user fails to catch the exception, it will simply
// be translated to Python by the default exception handling mechanisms.
template<typename RandomAccessIterator>
struct range
{
RandomAccessIterator start;
RandomAccessIterator stop;
typename iterator_difference<RandomAccessIterator>::type step;
};
template<typename RandomAccessIterator>
slice::range<RandomAccessIterator>
get_indicies( const RandomAccessIterator& begin,
const RandomAccessIterator& end) const
{
// This is based loosely on PySlice_GetIndicesEx(), but it has been
// carefully crafted to ensure that these iterators never fall out of
// the range of the container.
slice::range<RandomAccessIterator> ret;
template<typename RandomAccessIterator>
struct range
{
RandomAccessIterator start;
RandomAccessIterator stop;
typename iterator_difference<RandomAccessIterator>::type step;
};
template<typename RandomAccessIterator>
slice::range<RandomAccessIterator>
get_indicies( const RandomAccessIterator& begin,
const RandomAccessIterator& end) const
{
// This is based loosely on PySlice_GetIndicesEx(), but it has been
// carefully crafted to ensure that these iterators never fall out of
// the range of the container.
slice::range<RandomAccessIterator> ret;
typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
difference_type max_dist = boost::detail::distance(begin, end);
object slice_start = this->start();
object slice_stop = this->stop();
object slice_step = this->step();
// Extract the step.
if (slice_step == object()) {
ret.step = 1;
}
else {
ret.step = extract<long>( slice_step);
if (ret.step == 0) {
PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
throw_error_already_set();
}
}
// Setup the start iterator.
if (slice_start == object()) {
if (ret.step < 0) {
ret.start = end;
--ret.start;
}
else
ret.start = begin;
}
else {
difference_type i = extract<long>( slice_start);
if (i >= max_dist && ret.step > 0)
throw std::invalid_argument( "Zero-length slice");
if (i >= 0) {
ret.start = begin;
object slice_start = this->start();
object slice_stop = this->stop();
object slice_step = this->step();
// Extract the step.
if (slice_step == object()) {
ret.step = 1;
}
else {
ret.step = extract<long>( slice_step);
if (ret.step == 0) {
PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
throw_error_already_set();
}
}
// Setup the start iterator.
if (slice_start == object()) {
if (ret.step < 0) {
ret.start = end;
--ret.start;
}
else
ret.start = begin;
}
else {
difference_type i = extract<long>( slice_start);
if (i >= max_dist && ret.step > 0)
throw std::invalid_argument( "Zero-length slice");
if (i >= 0) {
ret.start = begin;
BOOST_USING_STD_MIN();
std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
}
else {
if (i < -max_dist && ret.step < 0)
throw std::invalid_argument( "Zero-length slice");
ret.start = end;
// Advance start (towards begin) not farther than begin.
std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
}
}
// Set up the stop iterator. This one is a little trickier since slices
// define a [) range, and we are returning a [] range.
if (slice_stop == object()) {
if (ret.step < 0) {
ret.stop = begin;
}
else {
ret.stop = end;
std::advance( ret.stop, -1);
}
}
else {
difference_type i = extract<long>(slice_stop);
// First, branch on which direction we are going with this.
if (ret.step < 0) {
if (i+1 >= max_dist || i == -1)
throw std::invalid_argument( "Zero-length slice");
if (i >= 0) {
ret.stop = begin;
std::advance( ret.stop, i+1);
}
else { // i is negative, but more negative than -1.
ret.stop = end;
std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
}
}
else { // stepping forward
if (i == 0 || -i >= max_dist)
throw std::invalid_argument( "Zero-length slice");
if (i > 0) {
ret.stop = begin;
std::advance( ret.stop, (std::min)( i-1, max_dist-1));
}
else { // i is negative, but not more negative than -max_dist
ret.stop = end;
std::advance( ret.stop, i-1);
}
}
}
// Now the fun part, handling the possibilites surrounding step.
// At this point, step has been initialized, ret.stop, and ret.step
// represent the widest possible range that could be traveled
// (inclusive), and final_dist is the maximum distance covered by the
// slice.
typename iterator_difference<RandomAccessIterator>::type final_dist =
boost::detail::distance( ret.start, ret.stop);
// First case, if both ret.start and ret.stop are equal, then step
// is irrelevant and we can return here.
if (final_dist == 0)
return ret;
// Second, if there is a sign mismatch, than the resulting range and
// step size conflict: std::advance( ret.start, ret.step) goes away from
// ret.stop.
if ((final_dist > 0) != (ret.step > 0))
throw std::invalid_argument( "Zero-length slice.");
// Finally, if the last step puts us past the end, we move ret.stop
// towards ret.start in the amount of the remainder.
// I don't remember all of the oolies surrounding negative modulii,
// so I am handling each of these cases separately.
if (final_dist < 0) {
difference_type remainder = -final_dist % -ret.step;
std::advance( ret.stop, remainder);
}
else {
difference_type remainder = final_dist % ret.step;
std::advance( ret.stop, -remainder);
}
return ret;
}
std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
}
else {
if (i < -max_dist && ret.step < 0)
throw std::invalid_argument( "Zero-length slice");
ret.start = end;
// Advance start (towards begin) not farther than begin.
std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
}
}
// Set up the stop iterator. This one is a little trickier since slices
// define a [) range, and we are returning a [] range.
if (slice_stop == object()) {
if (ret.step < 0) {
ret.stop = begin;
}
else {
ret.stop = end;
std::advance( ret.stop, -1);
}
}
else {
difference_type i = extract<long>(slice_stop);
// First, branch on which direction we are going with this.
if (ret.step < 0) {
if (i+1 >= max_dist || i == -1)
throw std::invalid_argument( "Zero-length slice");
if (i >= 0) {
ret.stop = begin;
std::advance( ret.stop, i+1);
}
else { // i is negative, but more negative than -1.
ret.stop = end;
std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
}
}
else { // stepping forward
if (i == 0 || -i >= max_dist)
throw std::invalid_argument( "Zero-length slice");
if (i > 0) {
ret.stop = begin;
std::advance( ret.stop, (std::min)( i-1, max_dist-1));
}
else { // i is negative, but not more negative than -max_dist
ret.stop = end;
std::advance( ret.stop, i-1);
}
}
}
// Now the fun part, handling the possibilites surrounding step.
// At this point, step has been initialized, ret.stop, and ret.step
// represent the widest possible range that could be traveled
// (inclusive), and final_dist is the maximum distance covered by the
// slice.
typename iterator_difference<RandomAccessIterator>::type final_dist =
boost::detail::distance( ret.start, ret.stop);
// First case, if both ret.start and ret.stop are equal, then step
// is irrelevant and we can return here.
if (final_dist == 0)
return ret;
// Second, if there is a sign mismatch, than the resulting range and
// step size conflict: std::advance( ret.start, ret.step) goes away from
// ret.stop.
if ((final_dist > 0) != (ret.step > 0))
throw std::invalid_argument( "Zero-length slice.");
// Finally, if the last step puts us past the end, we move ret.stop
// towards ret.start in the amount of the remainder.
// I don't remember all of the oolies surrounding negative modulii,
// so I am handling each of these cases separately.
if (final_dist < 0) {
difference_type remainder = -final_dist % -ret.step;
std::advance( ret.stop, remainder);
}
else {
difference_type remainder = final_dist % ret.step;
std::advance( ret.stop, -remainder);
}
return ret;
}
public:
// This declaration, in conjunction with the specialization of
// object_manager_traits<> below, allows C++ functions accepting slice
// arguments to be called from from Python. These constructors should never
// be used in client code.
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
// This declaration, in conjunction with the specialization of
// object_manager_traits<> below, allows C++ functions accepting slice
// arguments to be called from from Python. These constructors should never
// be used in client code.
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
};
@@ -254,10 +254,10 @@ namespace converter {
template<>
struct object_manager_traits<slice>
: pytype_object_manager_traits<&PySlice_Type, slice>
: pytype_object_manager_traits<&PySlice_Type, slice>
{
};
} // !namesapce converter
} } // !namespace ::boost::python

View File

@@ -14,7 +14,7 @@ namespace boost { namespace python { namespace api {
class slice_nil : public object
{
public:
slice_nil() : object() {}
slice_nil() : object() {}
};
# ifndef _ // Watch out for GNU gettext users, who #define _(x)

View File

@@ -606,7 +606,7 @@ namespace boost { namespace python { namespace detail {
if (to > max_index)
to = max_index;
}
}
static void

View File

@@ -82,7 +82,7 @@ namespace boost { namespace python {
get_slice(Container& container, index_type from, index_type to)
{
if (from > to)
return object(Container());
return object(Container());
return object(Container(container.begin()+from, container.begin()+to));
}

View File

@@ -16,22 +16,22 @@ slice_base::slice_base(PyObject* start, PyObject* stop, PyObject* step)
object
slice_base::start() const
{
return object( detail::borrowed_reference(
((PySliceObject*)this->ptr())->start));
return object( detail::borrowed_reference(
((PySliceObject*)this->ptr())->start));
}
object
slice_base::stop() const
{
return object( detail::borrowed_reference(
((PySliceObject*)this->ptr())->stop));
return object( detail::borrowed_reference(
((PySliceObject*)this->ptr())->stop));
}
object
slice_base::step() const
{
return object( detail::borrowed_reference(
((PySliceObject*)this->ptr())->step));
return object( detail::borrowed_reference(
((PySliceObject*)this->ptr())->step));
}
} } } // !namespace boost::python::detail

View File

@@ -9,15 +9,15 @@ class ret_type
{
public:
ret_type() : i(42.5) {}
double i;
double i;
};
class crash_me
{
private:
ret_type i;
public:
ret_type& get_i() { return i; }
private:
ret_type i;
public:
ret_type& get_i() { return i; }
};
}
@@ -76,18 +76,18 @@ BOOST_PYTHON_MODULE(properties_ext)
//defining class property using a global function
.add_static_property( "instance_count_injected", &get_X_instance_count );
class_< test::ret_type>( "ret_type")
.add_property( "i", &test::ret_type::i, &test::ret_type::i)
;
class_< test::crash_me> crash_me_wrapper( "crash_me");
class_< test::ret_type>( "ret_type")
.add_property( "i", &test::ret_type::i, &test::ret_type::i)
;
class_< test::crash_me> crash_me_wrapper( "crash_me");
crash_me_wrapper
.def( "get_i", &test::crash_me::get_i , return_internal_reference<>())
;
crash_me_wrapper.add_property( "i", crash_me_wrapper.attr("get_i"));
.def( "get_i", &test::crash_me::get_i , return_internal_reference<>())
;
crash_me_wrapper.add_property( "i", crash_me_wrapper.attr("get_i"));
}