2
0
mirror of https://github.com/boostorg/polygon.git synced 2026-01-28 07:22:29 +00:00
Files
polygon/example/voronoi_basic_tutorial.cpp
2012-05-07 20:17:28 +00:00

205 lines
6.6 KiB
C++

// Boost.Polygon library voronoi_basic_tutorial.cpp file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#include <cstdio>
#include <vector>
#include <boost/polygon/voronoi.hpp>
#include <boost/polygon/voronoi_utils.hpp>
using namespace boost::polygon;
struct Point {
int a;
int b;
Point (int x, int y) : a(x), b(y) {}
};
struct Segment {
Point p0;
Point p1;
Segment (int x1, int y1, int x2, int y2) : p0(x1, y1), p1(x2, y2) {}
};
namespace boost {
namespace polygon {
template <>
struct geometry_concept<Point> { typedef point_concept type; };
template <>
struct point_traits<Point> {
typedef int coordinate_type;
static inline coordinate_type get(const Point& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? point.a : point.b;
}
};
template <>
struct geometry_concept<Segment> { typedef segment_concept type; };
template <>
struct segment_traits<Segment> {
typedef int coordinate_type;
typedef Point point_type;
static inline point_type get(const Segment& segment, direction_1d dir) {
return dir.to_int() ? segment.p1 : segment.p0;
}
};
} // polygon
} // boost
// Traversing Voronoi edges using edge iterator.
int iterate_primary_edges1(const voronoi_diagram<double> &vd) {
int result = 0;
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
it != vd.edges().end(); ++it) {
if (it->is_primary())
++result;
}
return result;
}
// Traversing Voronoi edges using cell iterator.
int iterate_primary_edges2(const voronoi_diagram<double> &vd) {
int result = 0;
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
it != vd.cells().end(); ++it) {
const voronoi_diagram<double>::cell_type &cell = *it;
const voronoi_diagram<double>::edge_type *edge = cell.incident_edge();
// This is convenient way to iterate edges around Voronoi cell.
do {
if (edge->is_primary())
++result;
edge = edge->next();
} while (edge != cell.incident_edge());
}
return result;
}
// Traversing Voronoi edges using vertex iterator.
// As opposite to the above two functions this one will not iterate through edges
// without finite endpoints and will iterate only once through edges with single
// finite endpoint.
int iterate_primary_edges3(const voronoi_diagram<double> &vd) {
int result = 0;
for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin();
it != vd.vertices().end(); ++it) {
const voronoi_diagram<double>::vertex_type &vertex = *it;
const voronoi_diagram<double>::edge_type *edge = vertex.incident_edge();
// This is convenient way to iterate edges around Voronoi vertex.
do {
if (edge->is_primary())
++result;
edge = edge->rot_next();
} while (edge != vertex.incident_edge());
}
return result;
}
// Prototype of a function that renders segments.
void draw_segment(double x1, double y1, double x2, double y2) {
printf("Rendering segment: ");
printf("%7.3f %7.3f %7.3f %7.3f\n", x1, y1, x2, y2);
}
void render_diagram(const voronoi_diagram<double> &vd,
const voronoi_utils<double>::brect_type &bbox) {
int visited = 1;
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
it != vd.edges().end(); ++it) {
// We use data pointer to mark visited edges.
it->data(&visited);
// Don't render the same edge twice.
if (it->twin()->data()) continue;
voronoi_utils<double>::point_set_type polyline;
if (it->is_linear())
voronoi_utils<double>::clip(*it, bbox, polyline);
else
// Parabolic edges are always finite.
voronoi_utils<double>::discretize(*it, 1E-1, polyline);
// Note: discretized edges may also lie outside of the bbox.
// So user might do additional clipping before rendering each such edge.
for (size_t i = 1; i < polyline.size(); ++i)
draw_segment(polyline[i-1].x(), polyline[i-1].y(),
polyline[i].x(), polyline[i].y());
}
}
int main() {
// Preparing Input Geometries.
std::vector<Point> points;
points.push_back(Point(0, 0));
points.push_back(Point(1, 6));
std::vector<Segment> segments;
segments.push_back(Segment(-4, 5, 5, -1));
segments.push_back(Segment(3, -11, 13, -1));
// Construction of the Voronoi Diagram.
voronoi_diagram<double> vd;
construct_voronoi(points.begin(), points.end(), segments.begin(), segments.end(), &vd);
// Traversing Voronoi Graph.
{
printf("Traversing Voronoi graph.\n");
printf("Number of visited primary edges using edge iterator: %d\n", iterate_primary_edges1(vd));
printf("Number of visited primary edges using cell iterator: %d\n", iterate_primary_edges2(vd));
printf("Number of visited primary edges using vertex iterator: %d\n", iterate_primary_edges3(vd));
printf("\n");
}
// Associating User Data with Voronoi Primitives.
std::vector<int> counts;
{
// This is required as reallocation of underlying vector will invalidate all the pointers.
counts.reserve(vd.num_cells());
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
it != vd.cells().end(); ++it) {
const voronoi_diagram<double>::cell_type &cell = *it;
const voronoi_diagram<double>::edge_type *edge = cell.incident_edge();
int count = 0;
do {
++count;
edge = edge->next();
} while (edge != cell.incident_edge());
counts.push_back(count);
cell.data(&counts.back());
}
// Count the average number of edges.
double total = 0;
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
it != vd.cells().end(); ++it) {
total += *static_cast<int*>(it->data());
}
total /= vd.cells().size();
printf("The average number of edges per Voronoi cell is equal to: %3.1f\n", total);
printf("\n");
}
// Rendering Voronoi diagram.
{
// Construct clipping bounding rectangle.
bounding_rectangle<double> bbox;
for (std::vector<Point>::iterator it = points.begin(); it != points.end(); ++it)
bbox.update(it->a, it->b);
for (std::vector<Segment>::iterator it = segments.begin(); it != segments.end(); ++it) {
bbox.update(it->p0.a, it->p0.b);
bbox.update(it->p1.a, it->p1.b);
}
// Add 10% offset to the bounding rectangle.
bbox = voronoi_utils<double>::scale(bbox, 1.1);
// Render Voronoi diagram.
render_diagram(vd, bbox);
}
return 0;
}