mirror of
https://github.com/boostorg/polygon.git
synced 2026-01-28 07:22:29 +00:00
148 lines
4.5 KiB
C++
148 lines
4.5 KiB
C++
// Boost.Polygon library voronoi_basic_tutorial.cpp file
|
|
|
|
// Copyright Andrii Sydorchuk 2010-2012.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// See http://www.boost.org for updates, documentation, and revision history.
|
|
|
|
#include <cstdio>
|
|
#include <vector>
|
|
|
|
#include <boost/polygon/voronoi.hpp>
|
|
using namespace boost::polygon;
|
|
|
|
#include "voronoi_visual_utils.hpp"
|
|
|
|
struct Point {
|
|
int a;
|
|
int b;
|
|
Point (int x, int y) : a(x), b(y) {}
|
|
};
|
|
|
|
struct Segment {
|
|
Point p0;
|
|
Point p1;
|
|
Segment (int x1, int y1, int x2, int y2) : p0(x1, y1), p1(x2, y2) {}
|
|
};
|
|
|
|
namespace boost {
|
|
namespace polygon {
|
|
|
|
template <>
|
|
struct geometry_concept<Point> { typedef point_concept type; };
|
|
|
|
template <>
|
|
struct point_traits<Point> {
|
|
typedef int coordinate_type;
|
|
|
|
static inline coordinate_type get(const Point& point, orientation_2d orient) {
|
|
return (orient == HORIZONTAL) ? point.a : point.b;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct geometry_concept<Segment> { typedef segment_concept type; };
|
|
|
|
template <>
|
|
struct segment_traits<Segment> {
|
|
typedef int coordinate_type;
|
|
typedef Point point_type;
|
|
|
|
static inline point_type get(const Segment& segment, direction_1d dir) {
|
|
return dir.to_int() ? segment.p1 : segment.p0;
|
|
}
|
|
};
|
|
} // polygon
|
|
} // boost
|
|
|
|
// Traversing Voronoi edges using edge iterator.
|
|
int iterate_primary_edges1(const voronoi_diagram<double>& vd) {
|
|
int result = 0;
|
|
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
|
|
it != vd.edges().end(); ++it) {
|
|
if (it->is_primary())
|
|
++result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Traversing Voronoi edges using cell iterator.
|
|
int iterate_primary_edges2(const voronoi_diagram<double> &vd) {
|
|
int result = 0;
|
|
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
|
|
it != vd.cells().end(); ++it) {
|
|
const voronoi_diagram<double>::cell_type& cell = *it;
|
|
const voronoi_diagram<double>::edge_type* edge = cell.incident_edge();
|
|
// This is convenient way to iterate edges around Voronoi cell.
|
|
do {
|
|
if (edge->is_primary())
|
|
++result;
|
|
edge = edge->next();
|
|
} while (edge != cell.incident_edge());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Traversing Voronoi edges using vertex iterator.
|
|
// As opposite to the above two functions this one will not iterate through edges
|
|
// without finite endpoints and will iterate only once through edges with single
|
|
// finite endpoint.
|
|
int iterate_primary_edges3(const voronoi_diagram<double> &vd) {
|
|
int result = 0;
|
|
for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin();
|
|
it != vd.vertices().end(); ++it) {
|
|
const voronoi_diagram<double>::vertex_type& vertex = *it;
|
|
const voronoi_diagram<double>::edge_type* edge = vertex.incident_edge();
|
|
// This is convenient way to iterate edges around Voronoi vertex.
|
|
do {
|
|
if (edge->is_primary())
|
|
++result;
|
|
edge = edge->rot_next();
|
|
} while (edge != vertex.incident_edge());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int main() {
|
|
// Preparing Input Geometries.
|
|
std::vector<Point> points;
|
|
points.push_back(Point(0, 0));
|
|
points.push_back(Point(1, 6));
|
|
std::vector<Segment> segments;
|
|
segments.push_back(Segment(-4, 5, 5, -1));
|
|
segments.push_back(Segment(3, -11, 13, -1));
|
|
|
|
// Construction of the Voronoi Diagram.
|
|
voronoi_diagram<double> vd;
|
|
construct_voronoi(points.begin(), points.end(), segments.begin(), segments.end(), &vd);
|
|
|
|
// Traversing Voronoi Graph.
|
|
{
|
|
printf("Traversing Voronoi graph.\n");
|
|
printf("Number of visited primary edges using edge iterator: %d\n", iterate_primary_edges1(vd));
|
|
printf("Number of visited primary edges using cell iterator: %d\n", iterate_primary_edges2(vd));
|
|
printf("Number of visited primary edges using vertex iterator: %d\n", iterate_primary_edges3(vd));
|
|
printf("\n");
|
|
}
|
|
|
|
// Using color member of the Voronoi primitives to store the average number of edges
|
|
// around each cell (including secondary edges).
|
|
{
|
|
printf("Number of edges (including secondary edges) around the Voronoi cells:\n");
|
|
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
|
|
it != vd.edges().end(); ++it) {
|
|
std::size_t cnt = it->cell()->color();
|
|
it->cell()->color(cnt + 1);
|
|
}
|
|
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
|
|
it != vd.cells().end(); ++it) {
|
|
printf("%d ", it->color());
|
|
}
|
|
printf("\n");
|
|
printf("\n");
|
|
}
|
|
return 0;
|
|
}
|