2
0
mirror of https://github.com/boostorg/parser.git synced 2026-01-19 04:22:13 +00:00

Remove README.md files from GTest and Google Bench.

This commit is contained in:
Zach Laine
2020-09-08 00:22:51 -05:00
parent 0cbb776c8f
commit c19bafc7d9
4 changed files with 0 additions and 1352 deletions

View File

@@ -1,597 +0,0 @@
# benchmark
[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark)
[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master)
[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark)
A library to support the benchmarking of functions, similar to unit-tests.
Discussion group: https://groups.google.com/d/forum/benchmark-discuss
IRC channel: https://freenode.net #googlebenchmark
[Known issues and common problems](#known-issues)
## Example usage
### Basic usage
Define a function that executes the code to be measured.
```c++
static void BM_StringCreation(benchmark::State& state) {
while (state.KeepRunning())
std::string empty_string;
}
// Register the function as a benchmark
BENCHMARK(BM_StringCreation);
// Define another benchmark
static void BM_StringCopy(benchmark::State& state) {
std::string x = "hello";
while (state.KeepRunning())
std::string copy(x);
}
BENCHMARK(BM_StringCopy);
BENCHMARK_MAIN();
```
### Passing arguments
Sometimes a family of benchmarks can be implemented with just one routine that
takes an extra argument to specify which one of the family of benchmarks to
run. For example, the following code defines a family of benchmarks for
measuring the speed of `memcpy()` calls of different lengths:
```c++
static void BM_memcpy(benchmark::State& state) {
char* src = new char[state.range(0)];
char* dst = new char[state.range(0)];
memset(src, 'x', state.range(0));
while (state.KeepRunning())
memcpy(dst, src, state.range(0));
state.SetBytesProcessed(int64_t(state.iterations()) *
int64_t(state.range(0)));
delete[] src;
delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
```
The preceding code is quite repetitive, and can be replaced with the following
short-hand. The following invocation will pick a few appropriate arguments in
the specified range and will generate a benchmark for each such argument.
```c++
BENCHMARK(BM_memcpy)->Range(8, 8<<10);
```
By default the arguments in the range are generated in multiples of eight and
the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
range multiplier is changed to multiples of two.
```c++
BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
```
Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
You might have a benchmark that depends on two or more inputs. For example, the
following code defines a family of benchmarks for measuring the speed of set
insertion.
```c++
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
std::set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range(1); ++j)
data.insert(RandomNumber());
}
}
BENCHMARK(BM_SetInsert)
->Args({1<<10, 1})
->Args({1<<10, 8})
->Args({1<<10, 64})
->Args({1<<10, 512})
->Args({8<<10, 1})
->Args({8<<10, 8})
->Args({8<<10, 64})
->Args({8<<10, 512});
```
The preceding code is quite repetitive, and can be replaced with the following
short-hand. The following macro will pick a few appropriate arguments in the
product of the two specified ranges and will generate a benchmark for each such
pair.
```c++
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
```
For more complex patterns of inputs, passing a custom function to `Apply` allows
programmatic specification of an arbitrary set of arguments on which to run the
benchmark. The following example enumerates a dense range on one parameter,
and a sparse range on the second.
```c++
static void CustomArguments(benchmark::internal::Benchmark* b) {
for (int i = 0; i <= 10; ++i)
for (int j = 32; j <= 1024*1024; j *= 8)
b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
```
### Calculate asymptotic complexity (Big O)
Asymptotic complexity might be calculated for a family of benchmarks. The
following code will calculate the coefficient for the high-order term in the
running time and the normalized root-mean square error of string comparison.
```c++
static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range(0), '-');
std::string s2(state.range(0), '-');
while (state.KeepRunning()) {
benchmark::DoNotOptimize(s1.compare(s2));
}
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_StringCompare)
->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
```
As shown in the following invocation, asymptotic complexity might also be
calculated automatically.
```c++
BENCHMARK(BM_StringCompare)
->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
```
The following code will specify asymptotic complexity with a lambda function,
that might be used to customize high-order term calculation.
```c++
BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; });
```
### Templated benchmarks
Templated benchmarks work the same way: This example produces and consumes
messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the
absence of multiprogramming.
```c++
template <class Q> int BM_Sequential(benchmark::State& state) {
Q q;
typename Q::value_type v;
while (state.KeepRunning()) {
for (int i = state.range(0); i--; )
q.push(v);
for (int e = state.range(0); e--; )
q.Wait(&v);
}
// actually messages, not bytes:
state.SetBytesProcessed(
static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
```
Three macros are provided for adding benchmark templates.
```c++
#if __cplusplus >= 201103L // C++11 and greater.
#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
#else // C++ < C++11
#define BENCHMARK_TEMPLATE(func, arg1)
#endif
#define BENCHMARK_TEMPLATE1(func, arg1)
#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
```
## Passing arbitrary arguments to a benchmark
In C++11 it is possible to define a benchmark that takes an arbitrary number
of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
macro creates a benchmark that invokes `func` with the `benchmark::State` as
the first argument followed by the specified `args...`.
The `test_case_name` is appended to the name of the benchmark and
should describe the values passed.
```c++
template <class ...ExtraArgs>`
void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
[...]
}
// Registers a benchmark named "BM_takes_args/int_string_test` that passes
// the specified values to `extra_args`.
BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
```
Note that elements of `...args` may refer to global variables. Users should
avoid modifying global state inside of a benchmark.
## Using RegisterBenchmark(name, fn, args...)
The `RegisterBenchmark(name, func, args...)` function provides an alternative
way to create and register benchmarks.
`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
pointer to a new benchmark with the specified `name` that invokes
`func(st, args...)` where `st` is a `benchmark::State` object.
Unlike the `BENCHMARK` registration macros, which can only be used at the global
scope, the `RegisterBenchmark` can be called anywhere. This allows for
benchmark tests to be registered programmatically.
Additionally `RegisterBenchmark` allows any callable object to be registered
as a benchmark. Including capturing lambdas and function objects. This
allows the creation
For Example:
```c++
auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
int main(int argc, char** argv) {
for (auto& test_input : { /* ... */ })
benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
benchmark::Initialize(&argc, argv);
benchmark::RunSpecifiedBenchmarks();
}
```
### Multithreaded benchmarks
In a multithreaded test (benchmark invoked by multiple threads simultaneously),
it is guaranteed that none of the threads will start until all have called
`KeepRunning`, and all will have finished before KeepRunning returns false. As
such, any global setup or teardown can be wrapped in a check against the thread
index:
```c++
static void BM_MultiThreaded(benchmark::State& state) {
if (state.thread_index == 0) {
// Setup code here.
}
while (state.KeepRunning()) {
// Run the test as normal.
}
if (state.thread_index == 0) {
// Teardown code here.
}
}
BENCHMARK(BM_MultiThreaded)->Threads(2);
```
If the benchmarked code itself uses threads and you want to compare it to
single-threaded code, you may want to use real-time ("wallclock") measurements
for latency comparisons:
```c++
BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
```
Without `UseRealTime`, CPU time is used by default.
## Manual timing
For benchmarking something for which neither CPU time nor real-time are
correct or accurate enough, completely manual timing is supported using
the `UseManualTime` function.
When `UseManualTime` is used, the benchmarked code must call
`SetIterationTime` once per iteration of the `KeepRunning` loop to
report the manually measured time.
An example use case for this is benchmarking GPU execution (e.g. OpenCL
or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
be accurately measured using CPU time or real-time. Instead, they can be
measured accurately using a dedicated API, and these measurement results
can be reported back with `SetIterationTime`.
```c++
static void BM_ManualTiming(benchmark::State& state) {
int microseconds = state.range(0);
std::chrono::duration<double, std::micro> sleep_duration {
static_cast<double>(microseconds)
};
while (state.KeepRunning()) {
auto start = std::chrono::high_resolution_clock::now();
// Simulate some useful workload with a sleep
std::this_thread::sleep_for(sleep_duration);
auto end = std::chrono::high_resolution_clock::now();
auto elapsed_seconds =
std::chrono::duration_cast<std::chrono::duration<double>>(
end - start);
state.SetIterationTime(elapsed_seconds.count());
}
}
BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
```
### Preventing optimisation
To prevent a value or expression from being optimized away by the compiler
the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
functions can be used.
```c++
static void BM_test(benchmark::State& state) {
while (state.KeepRunning()) {
int x = 0;
for (int i=0; i < 64; ++i) {
benchmark::DoNotOptimize(x += i);
}
}
}
```
`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
memory or a register. For GNU based compilers it acts as read/write barrier
for global memory. More specifically it forces the compiler to flush pending
writes to memory and reload any other values as necessary.
Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
in any way. `<expr>` may even be removed entirely when the result is already
known. For example:
```c++
/* Example 1: `<expr>` is removed entirely. */
int foo(int x) { return x + 42; }
while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
/* Example 2: Result of '<expr>' is only reused */
int bar(int) __attribute__((const));
while (...) DoNotOptimize(bar(0)); // Optimized to:
// int __result__ = bar(0);
// while (...) DoNotOptimize(__result__);
```
The second tool for preventing optimizations is `ClobberMemory()`. In essence
`ClobberMemory()` forces the compiler to perform all pending writes to global
memory. Memory managed by block scope objects must be "escaped" using
`DoNotOptimize(...)` before it can be clobbered. In the below example
`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
away.
```c++
static void BM_vector_push_back(benchmark::State& state) {
while (state.KeepRunning()) {
std::vector<int> v;
v.reserve(1);
benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
v.push_back(42);
benchmark::ClobberMemory(); // Force 42 to be written to memory.
}
}
```
Note that `ClobberMemory()` is only available for GNU based compilers.
### Set time unit manually
If a benchmark runs a few milliseconds it may be hard to visually compare the
measured times, since the output data is given in nanoseconds per default. In
order to manually set the time unit, you can specify it manually:
```c++
BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
```
## Controlling number of iterations
In all cases, the number of iterations for which the benchmark is run is
governed by the amount of time the benchmark takes. Concretely, the number of
iterations is at least one, not more than 1e9, until CPU time is greater than
the minimum time, or the wallclock time is 5x minimum time. The minimum time is
set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on
the registered benchmark object.
## Reporting the mean and standard devation by repeated benchmarks
By default each benchmark is run once and that single result is reported.
However benchmarks are often noisy and a single result may not be representative
of the overall behavior. For this reason it's possible to repeatedly rerun the
benchmark.
The number of runs of each benchmark is specified globally by the
`--benchmark_repetitions` flag or on a per benchmark basis by calling
`Repetitions` on the registered benchmark object. When a benchmark is run
more than once the mean and standard deviation of the runs will be reported.
Additionally the `--benchmark_report_aggregates_only={true|false}` flag or
`ReportAggregatesOnly(bool)` function can be used to change how repeated tests
are reported. By default the result of each repeated run is reported. When this
option is 'true' only the mean and standard deviation of the runs is reported.
Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides
the value of the flag for that benchmark.
## Fixtures
Fixture tests are created by
first defining a type that derives from ::benchmark::Fixture and then
creating/registering the tests using the following macros:
* `BENCHMARK_F(ClassName, Method)`
* `BENCHMARK_DEFINE_F(ClassName, Method)`
* `BENCHMARK_REGISTER_F(ClassName, Method)`
For Example:
```c++
class MyFixture : public benchmark::Fixture {};
BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
while (st.KeepRunning()) {
...
}
}
BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
while (st.KeepRunning()) {
...
}
}
/* BarTest is NOT registered */
BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
/* BarTest is now registered */
```
## Exiting Benchmarks in Error
When errors caused by external influences, such as file I/O and network
communication, occur within a benchmark the
`State::SkipWithError(const char* msg)` function can be used to skip that run
of benchmark and report the error. Note that only future iterations of the
`KeepRunning()` are skipped. Users may explicitly return to exit the
benchmark immediately.
The `SkipWithError(...)` function may be used at any point within the benchmark,
including before and after the `KeepRunning()` loop.
For example:
```c++
static void BM_test(benchmark::State& state) {
auto resource = GetResource();
if (!resource.good()) {
state.SkipWithError("Resource is not good!");
// KeepRunning() loop will not be entered.
}
while (state.KeepRunning()) {
auto data = resource.read_data();
if (!resource.good()) {
state.SkipWithError("Failed to read data!");
break; // Needed to skip the rest of the iteration.
}
do_stuff(data);
}
}
```
## Running a subset of the benchmarks
The `--benchmark_filter=<regex>` option can be used to only run the benchmarks
which match the specified `<regex>`. For example:
```bash
$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
Run on (1 X 2300 MHz CPU )
2016-06-25 19:34:24
Benchmark Time CPU Iterations
----------------------------------------------------
BM_memcpy/32 11 ns 11 ns 79545455
BM_memcpy/32k 2181 ns 2185 ns 324074
BM_memcpy/32 12 ns 12 ns 54687500
BM_memcpy/32k 1834 ns 1837 ns 357143
```
## Output Formats
The library supports multiple output formats. Use the
`--benchmark_format=<console|json|csv>` flag to set the format type. `console`
is the default format.
The Console format is intended to be a human readable format. By default
the format generates color output. Context is output on stderr and the
tabular data on stdout. Example tabular output looks like:
```
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
```
The JSON format outputs human readable json split into two top level attributes.
The `context` attribute contains information about the run in general, including
information about the CPU and the date.
The `benchmarks` attribute contains a list of ever benchmark run. Example json
output looks like:
``` json
{
"context": {
"date": "2015/03/17-18:40:25",
"num_cpus": 40,
"mhz_per_cpu": 2801,
"cpu_scaling_enabled": false,
"build_type": "debug"
},
"benchmarks": [
{
"name": "BM_SetInsert/1024/1",
"iterations": 94877,
"real_time": 29275,
"cpu_time": 29836,
"bytes_per_second": 134066,
"items_per_second": 33516
},
{
"name": "BM_SetInsert/1024/8",
"iterations": 21609,
"real_time": 32317,
"cpu_time": 32429,
"bytes_per_second": 986770,
"items_per_second": 246693
},
{
"name": "BM_SetInsert/1024/10",
"iterations": 21393,
"real_time": 32724,
"cpu_time": 33355,
"bytes_per_second": 1199226,
"items_per_second": 299807
}
]
}
```
The CSV format outputs comma-separated values. The `context` is output on stderr
and the CSV itself on stdout. Example CSV output looks like:
```
name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
```
## Output Files
The library supports writing the output of the benchmark to a file specified
by `--benchmark_out=<filename>`. The format of the output can be specified
using `--benchmark_out_format={json|console|csv}`. Specifying
`--benchmark_out` does not suppress the console output.
## Debug vs Release
By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:
```
cmake -DCMAKE_BUILD_TYPE=Release
```
To enable link-time optimisation, use
```
cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true
```
## Linking against the library
When using gcc, it is necessary to link against pthread to avoid runtime exceptions.
This is due to how gcc implements std::thread.
See [issue #67](https://github.com/google/benchmark/issues/67) for more details.
## Compiler Support
Google Benchmark uses C++11 when building the library. As such we require
a modern C++ toolchain, both compiler and standard library.
The following minimum versions are strongly recommended build the library:
* GCC 4.8
* Clang 3.4
* Visual Studio 2013
Anything older *may* work.
Note: Using the library and its headers in C++03 is supported. C++11 is only
required to build the library.
# Known Issues
### Windows
* Users must manually link `shlwapi.lib`. Failure to do so may result
in unresolved symbols.

View File

@@ -1,142 +0,0 @@
# Google Test #
[![Build Status](https://travis-ci.org/google/googletest.svg?branch=master)](https://travis-ci.org/google/googletest)
[![Build status](https://ci.appveyor.com/api/projects/status/4o38plt0xbo1ubc8/branch/master?svg=true)](https://ci.appveyor.com/project/BillyDonahue/googletest/branch/master)
Welcome to **Google Test**, Google's C++ test framework!
This repository is a merger of the formerly separate GoogleTest and
GoogleMock projects. These were so closely related that it makes sense to
maintain and release them together.
Please see the project page above for more information as well as the
mailing list for questions, discussions, and development. There is
also an IRC channel on OFTC (irc.oftc.net) #gtest available. Please
join us!
Getting started information for **Google Test** is available in the
[Google Test Primer](googletest/docs/Primer.md) documentation.
**Google Mock** is an extension to Google Test for writing and using C++ mock
classes. See the separate [Google Mock documentation](googlemock/README.md).
More detailed documentation for googletest (including build instructions) are
in its interior [googletest/README.md](googletest/README.md) file.
## Features ##
* An [XUnit](https://en.wikipedia.org/wiki/XUnit) test framework.
* Test discovery.
* A rich set of assertions.
* User-defined assertions.
* Death tests.
* Fatal and non-fatal failures.
* Value-parameterized tests.
* Type-parameterized tests.
* Various options for running the tests.
* XML test report generation.
## Platforms ##
Google test has been used on a variety of platforms:
* Linux
* Mac OS X
* Windows
* Cygwin
* MinGW
* Windows Mobile
* Symbian
## Who Is Using Google Test? ##
In addition to many internal projects at Google, Google Test is also used by
the following notable projects:
* The [Chromium projects](http://www.chromium.org/) (behind the Chrome
browser and Chrome OS).
* The [LLVM](http://llvm.org/) compiler.
* [Protocol Buffers](https://github.com/google/protobuf), Google's data
interchange format.
* The [OpenCV](http://opencv.org/) computer vision library.
## Related Open Source Projects ##
[Google Test UI](https://github.com/ospector/gtest-gbar) is test runner that runs
your test binary, allows you to track its progress via a progress bar, and
displays a list of test failures. Clicking on one shows failure text. Google
Test UI is written in C#.
[GTest TAP Listener](https://github.com/kinow/gtest-tap-listener) is an event
listener for Google Test that implements the
[TAP protocol](https://en.wikipedia.org/wiki/Test_Anything_Protocol) for test
result output. If your test runner understands TAP, you may find it useful.
## Requirements ##
Google Test is designed to have fairly minimal requirements to build
and use with your projects, but there are some. Currently, we support
Linux, Windows, Mac OS X, and Cygwin. We will also make our best
effort to support other platforms (e.g. Solaris, AIX, and z/OS).
However, since core members of the Google Test project have no access
to these platforms, Google Test may have outstanding issues there. If
you notice any problems on your platform, please notify
<googletestframework@googlegroups.com>. Patches for fixing them are
even more welcome!
### Linux Requirements ###
These are the base requirements to build and use Google Test from a source
package (as described below):
* GNU-compatible Make or gmake
* POSIX-standard shell
* POSIX(-2) Regular Expressions (regex.h)
* A C++98-standard-compliant compiler
### Windows Requirements ###
* Microsoft Visual C++ v7.1 or newer
### Cygwin Requirements ###
* Cygwin v1.5.25-14 or newer
### Mac OS X Requirements ###
* Mac OS X v10.4 Tiger or newer
* Xcode Developer Tools
### Requirements for Contributors ###
We welcome patches. If you plan to contribute a patch, you need to
build Google Test and its own tests from a git checkout (described
below), which has further requirements:
* [Python](https://www.python.org/) v2.3 or newer (for running some of
the tests and re-generating certain source files from templates)
* [CMake](https://cmake.org/) v2.6.4 or newer
## Regenerating Source Files ##
Some of Google Test's source files are generated from templates (not
in the C++ sense) using a script.
For example, the
file include/gtest/internal/gtest-type-util.h.pump is used to generate
gtest-type-util.h in the same directory.
You don't need to worry about regenerating the source files
unless you need to modify them. You would then modify the
corresponding `.pump` files and run the '[pump.py](googletest/scripts/pump.py)'
generator script. See the [Pump Manual](googletest/docs/PumpManual.md).
### Contributing Code ###
We welcome patches. Please read the
[Developer's Guide](googletest/docs/DevGuide.md)
for how you can contribute. In particular, make sure you have signed
the Contributor License Agreement, or we won't be able to accept the
patch.
Happy testing!

View File

@@ -1,333 +0,0 @@
## Google Mock ##
The Google C++ mocking framework.
### Overview ###
Google's framework for writing and using C++ mock classes.
It can help you derive better designs of your system and write better tests.
It is inspired by:
* [jMock](http://www.jmock.org/),
* [EasyMock](http://www.easymock.org/), and
* [Hamcrest](http://code.google.com/p/hamcrest/),
and designed with C++'s specifics in mind.
Google mock:
* lets you create mock classes trivially using simple macros.
* supports a rich set of matchers and actions.
* handles unordered, partially ordered, or completely ordered expectations.
* is extensible by users.
We hope you find it useful!
### Features ###
* Provides a declarative syntax for defining mocks.
* Can easily define partial (hybrid) mocks, which are a cross of real
and mock objects.
* Handles functions of arbitrary types and overloaded functions.
* Comes with a rich set of matchers for validating function arguments.
* Uses an intuitive syntax for controlling the behavior of a mock.
* Does automatic verification of expectations (no record-and-replay needed).
* Allows arbitrary (partial) ordering constraints on
function calls to be expressed,.
* Lets a user extend it by defining new matchers and actions.
* Does not use exceptions.
* Is easy to learn and use.
Please see the project page above for more information as well as the
mailing list for questions, discussions, and development. There is
also an IRC channel on OFTC (irc.oftc.net) #gtest available. Please
join us!
Please note that code under [scripts/generator](scripts/generator/) is
from [cppclean](http://code.google.com/p/cppclean/) and released under
the Apache License, which is different from Google Mock's license.
## Getting Started ##
If you are new to the project, we suggest that you read the user
documentation in the following order:
* Learn the [basics](../googletest/docs/Primer.md) of
Google Test, if you choose to use Google Mock with it (recommended).
* Read [Google Mock for Dummies](docs/ForDummies.md).
* Read the instructions below on how to build Google Mock.
You can also watch Zhanyong's [talk](http://www.youtube.com/watch?v=sYpCyLI47rM) on Google Mock's usage and implementation.
Once you understand the basics, check out the rest of the docs:
* [CheatSheet](docs/CheatSheet.md) - all the commonly used stuff
at a glance.
* [CookBook](docs/CookBook.md) - recipes for getting things done,
including advanced techniques.
If you need help, please check the
[KnownIssues](docs/KnownIssues.md) and
[FrequentlyAskedQuestions](docs/FrequentlyAskedQuestions.md) before
posting a question on the
[discussion group](http://groups.google.com/group/googlemock).
### Using Google Mock Without Google Test ###
Google Mock is not a testing framework itself. Instead, it needs a
testing framework for writing tests. Google Mock works seamlessly
with [Google Test](http://code.google.com/p/googletest/), but
you can also use it with [any C++ testing framework](googlemock/ForDummies.md#Using_Google_Mock_with_Any_Testing_Framework).
### Requirements for End Users ###
Google Mock is implemented on top of [Google Test](
http://github.com/google/googletest/), and depends on it.
You must use the bundled version of Google Test when using Google Mock.
You can also easily configure Google Mock to work with another testing
framework, although it will still need Google Test. Please read
["Using_Google_Mock_with_Any_Testing_Framework"](
docs/ForDummies.md#Using_Google_Mock_with_Any_Testing_Framework)
for instructions.
Google Mock depends on advanced C++ features and thus requires a more
modern compiler. The following are needed to use Google Mock:
#### Linux Requirements ####
* GNU-compatible Make or "gmake"
* POSIX-standard shell
* POSIX(-2) Regular Expressions (regex.h)
* C++98-standard-compliant compiler (e.g. GCC 3.4 or newer)
#### Windows Requirements ####
* Microsoft Visual C++ 8.0 SP1 or newer
#### Mac OS X Requirements ####
* Mac OS X 10.4 Tiger or newer
* Developer Tools Installed
### Requirements for Contributors ###
We welcome patches. If you plan to contribute a patch, you need to
build Google Mock and its tests, which has further requirements:
* Automake version 1.9 or newer
* Autoconf version 2.59 or newer
* Libtool / Libtoolize
* Python version 2.3 or newer (for running some of the tests and
re-generating certain source files from templates)
### Building Google Mock ###
#### Preparing to Build (Unix only) ####
If you are using a Unix system and plan to use the GNU Autotools build
system to build Google Mock (described below), you'll need to
configure it now.
To prepare the Autotools build system:
cd googlemock
autoreconf -fvi
To build Google Mock and your tests that use it, you need to tell your
build system where to find its headers and source files. The exact
way to do it depends on which build system you use, and is usually
straightforward.
This section shows how you can integrate Google Mock into your
existing build system.
Suppose you put Google Mock in directory `${GMOCK_DIR}` and Google Test
in `${GTEST_DIR}` (the latter is `${GMOCK_DIR}/gtest` by default). To
build Google Mock, create a library build target (or a project as
called by Visual Studio and Xcode) to compile
${GTEST_DIR}/src/gtest-all.cc and ${GMOCK_DIR}/src/gmock-all.cc
with
${GTEST_DIR}/include and ${GMOCK_DIR}/include
in the system header search path, and
${GTEST_DIR} and ${GMOCK_DIR}
in the normal header search path. Assuming a Linux-like system and gcc,
something like the following will do:
g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \
-isystem ${GMOCK_DIR}/include -I${GMOCK_DIR} \
-pthread -c ${GTEST_DIR}/src/gtest-all.cc
g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \
-isystem ${GMOCK_DIR}/include -I${GMOCK_DIR} \
-pthread -c ${GMOCK_DIR}/src/gmock-all.cc
ar -rv libgmock.a gtest-all.o gmock-all.o
(We need -pthread as Google Test and Google Mock use threads.)
Next, you should compile your test source file with
${GTEST\_DIR}/include and ${GMOCK\_DIR}/include in the header search
path, and link it with gmock and any other necessary libraries:
g++ -isystem ${GTEST_DIR}/include -isystem ${GMOCK_DIR}/include \
-pthread path/to/your_test.cc libgmock.a -o your_test
As an example, the make/ directory contains a Makefile that you can
use to build Google Mock on systems where GNU make is available
(e.g. Linux, Mac OS X, and Cygwin). It doesn't try to build Google
Mock's own tests. Instead, it just builds the Google Mock library and
a sample test. You can use it as a starting point for your own build
script.
If the default settings are correct for your environment, the
following commands should succeed:
cd ${GMOCK_DIR}/make
make
./gmock_test
If you see errors, try to tweak the contents of
[make/Makefile](make/Makefile) to make them go away.
### Windows ###
The msvc/2005 directory contains VC++ 2005 projects and the msvc/2010
directory contains VC++ 2010 projects for building Google Mock and
selected tests.
Change to the appropriate directory and run "msbuild gmock.sln" to
build the library and tests (or open the gmock.sln in the MSVC IDE).
If you want to create your own project to use with Google Mock, you'll
have to configure it to use the `gmock_config` propety sheet. For that:
* Open the Property Manager window (View | Other Windows | Property Manager)
* Right-click on your project and select "Add Existing Property Sheet..."
* Navigate to `gmock_config.vsprops` or `gmock_config.props` and select it.
* In Project Properties | Configuration Properties | General | Additional
Include Directories, type <path to Google Mock>/include.
### Tweaking Google Mock ###
Google Mock can be used in diverse environments. The default
configuration may not work (or may not work well) out of the box in
some environments. However, you can easily tweak Google Mock by
defining control macros on the compiler command line. Generally,
these macros are named like `GTEST_XYZ` and you define them to either 1
or 0 to enable or disable a certain feature.
We list the most frequently used macros below. For a complete list,
see file [${GTEST\_DIR}/include/gtest/internal/gtest-port.h](
../googletest/include/gtest/internal/gtest-port.h).
### Choosing a TR1 Tuple Library ###
Google Mock uses the C++ Technical Report 1 (TR1) tuple library
heavily. Unfortunately TR1 tuple is not yet widely available with all
compilers. The good news is that Google Test 1.4.0+ implements a
subset of TR1 tuple that's enough for Google Mock's need. Google Mock
will automatically use that implementation when the compiler doesn't
provide TR1 tuple.
Usually you don't need to care about which tuple library Google Test
and Google Mock use. However, if your project already uses TR1 tuple,
you need to tell Google Test and Google Mock to use the same TR1 tuple
library the rest of your project uses, or the two tuple
implementations will clash. To do that, add
-DGTEST_USE_OWN_TR1_TUPLE=0
to the compiler flags while compiling Google Test, Google Mock, and
your tests. If you want to force Google Test and Google Mock to use
their own tuple library, just add
-DGTEST_USE_OWN_TR1_TUPLE=1
to the compiler flags instead.
If you want to use Boost's TR1 tuple library with Google Mock, please
refer to the Boost website (http://www.boost.org/) for how to obtain
it and set it up.
### As a Shared Library (DLL) ###
Google Mock is compact, so most users can build and link it as a static
library for the simplicity. Google Mock can be used as a DLL, but the
same DLL must contain Google Test as well. See
[Google Test's README][gtest_readme]
for instructions on how to set up necessary compiler settings.
### Tweaking Google Mock ###
Most of Google Test's control macros apply to Google Mock as well.
Please see [Google Test's README][gtest_readme] for how to tweak them.
### Upgrading from an Earlier Version ###
We strive to keep Google Mock releases backward compatible.
Sometimes, though, we have to make some breaking changes for the
users' long-term benefits. This section describes what you'll need to
do if you are upgrading from an earlier version of Google Mock.
#### Upgrading from 1.1.0 or Earlier ####
You may need to explicitly enable or disable Google Test's own TR1
tuple library. See the instructions in section "[Choosing a TR1 Tuple
Library](../googletest/#choosing-a-tr1-tuple-library)".
#### Upgrading from 1.4.0 or Earlier ####
On platforms where the pthread library is available, Google Test and
Google Mock use it in order to be thread-safe. For this to work, you
may need to tweak your compiler and/or linker flags. Please see the
"[Multi-threaded Tests](../googletest#multi-threaded-tests
)" section in file Google Test's README for what you may need to do.
If you have custom matchers defined using `MatcherInterface` or
`MakePolymorphicMatcher()`, you'll need to update their definitions to
use the new matcher API (
[monomorphic](http://code.google.com/p/googlemock/wiki/CookBook#Writing_New_Monomorphic_Matchers),
[polymorphic](http://code.google.com/p/googlemock/wiki/CookBook#Writing_New_Polymorphic_Matchers)).
Matchers defined using `MATCHER()` or `MATCHER_P*()` aren't affected.
### Developing Google Mock ###
This section discusses how to make your own changes to Google Mock.
#### Testing Google Mock Itself ####
To make sure your changes work as intended and don't break existing
functionality, you'll want to compile and run Google Test's own tests.
For that you'll need Autotools. First, make sure you have followed
the instructions above to configure Google Mock.
Then, create a build output directory and enter it. Next,
${GMOCK_DIR}/configure # try --help for more info
Once you have successfully configured Google Mock, the build steps are
standard for GNU-style OSS packages.
make # Standard makefile following GNU conventions
make check # Builds and runs all tests - all should pass.
Note that when building your project against Google Mock, you are building
against Google Test as well. There is no need to configure Google Test
separately.
#### Contributing a Patch ####
We welcome patches.
Please read the [Developer's Guide](docs/DevGuide.md)
for how you can contribute. In particular, make sure you have signed
the Contributor License Agreement, or we won't be able to accept the
patch.
Happy testing!
[gtest_readme]: ../googletest/README.md "googletest"

View File

@@ -1,280 +0,0 @@
### Generic Build Instructions ###
#### Setup ####
To build Google Test and your tests that use it, you need to tell your
build system where to find its headers and source files. The exact
way to do it depends on which build system you use, and is usually
straightforward.
#### Build ####
Suppose you put Google Test in directory `${GTEST_DIR}`. To build it,
create a library build target (or a project as called by Visual Studio
and Xcode) to compile
${GTEST_DIR}/src/gtest-all.cc
with `${GTEST_DIR}/include` in the system header search path and `${GTEST_DIR}`
in the normal header search path. Assuming a Linux-like system and gcc,
something like the following will do:
g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \
-pthread -c ${GTEST_DIR}/src/gtest-all.cc
ar -rv libgtest.a gtest-all.o
(We need `-pthread` as Google Test uses threads.)
Next, you should compile your test source file with
`${GTEST_DIR}/include` in the system header search path, and link it
with gtest and any other necessary libraries:
g++ -isystem ${GTEST_DIR}/include -pthread path/to/your_test.cc libgtest.a \
-o your_test
As an example, the make/ directory contains a Makefile that you can
use to build Google Test on systems where GNU make is available
(e.g. Linux, Mac OS X, and Cygwin). It doesn't try to build Google
Test's own tests. Instead, it just builds the Google Test library and
a sample test. You can use it as a starting point for your own build
script.
If the default settings are correct for your environment, the
following commands should succeed:
cd ${GTEST_DIR}/make
make
./sample1_unittest
If you see errors, try to tweak the contents of `make/Makefile` to make
them go away. There are instructions in `make/Makefile` on how to do
it.
### Using CMake ###
Google Test comes with a CMake build script (
[CMakeLists.txt](CMakeLists.txt)) that can be used on a wide range of platforms ("C" stands for
cross-platform.). If you don't have CMake installed already, you can
download it for free from <http://www.cmake.org/>.
CMake works by generating native makefiles or build projects that can
be used in the compiler environment of your choice. The typical
workflow starts with:
mkdir mybuild # Create a directory to hold the build output.
cd mybuild
cmake ${GTEST_DIR} # Generate native build scripts.
If you want to build Google Test's samples, you should replace the
last command with
cmake -Dgtest_build_samples=ON ${GTEST_DIR}
If you are on a \*nix system, you should now see a Makefile in the
current directory. Just type 'make' to build gtest.
If you use Windows and have Visual Studio installed, a `gtest.sln` file
and several `.vcproj` files will be created. You can then build them
using Visual Studio.
On Mac OS X with Xcode installed, a `.xcodeproj` file will be generated.
### Legacy Build Scripts ###
Before settling on CMake, we have been providing hand-maintained build
projects/scripts for Visual Studio, Xcode, and Autotools. While we
continue to provide them for convenience, they are not actively
maintained any more. We highly recommend that you follow the
instructions in the previous two sections to integrate Google Test
with your existing build system.
If you still need to use the legacy build scripts, here's how:
The msvc\ folder contains two solutions with Visual C++ projects.
Open the `gtest.sln` or `gtest-md.sln` file using Visual Studio, and you
are ready to build Google Test the same way you build any Visual
Studio project. Files that have names ending with -md use DLL
versions of Microsoft runtime libraries (the /MD or the /MDd compiler
option). Files without that suffix use static versions of the runtime
libraries (the /MT or the /MTd option). Please note that one must use
the same option to compile both gtest and the test code. If you use
Visual Studio 2005 or above, we recommend the -md version as /MD is
the default for new projects in these versions of Visual Studio.
On Mac OS X, open the `gtest.xcodeproj` in the `xcode/` folder using
Xcode. Build the "gtest" target. The universal binary framework will
end up in your selected build directory (selected in the Xcode
"Preferences..." -> "Building" pane and defaults to xcode/build).
Alternatively, at the command line, enter:
xcodebuild
This will build the "Release" configuration of gtest.framework in your
default build location. See the "xcodebuild" man page for more
information about building different configurations and building in
different locations.
If you wish to use the Google Test Xcode project with Xcode 4.x and
above, you need to either:
* update the SDK configuration options in xcode/Config/General.xconfig.
Comment options `SDKROOT`, `MACOS_DEPLOYMENT_TARGET`, and `GCC_VERSION`. If
you choose this route you lose the ability to target earlier versions
of MacOS X.
* Install an SDK for an earlier version. This doesn't appear to be
supported by Apple, but has been reported to work
(http://stackoverflow.com/questions/5378518).
### Tweaking Google Test ###
Google Test can be used in diverse environments. The default
configuration may not work (or may not work well) out of the box in
some environments. However, you can easily tweak Google Test by
defining control macros on the compiler command line. Generally,
these macros are named like `GTEST_XYZ` and you define them to either 1
or 0 to enable or disable a certain feature.
We list the most frequently used macros below. For a complete list,
see file [include/gtest/internal/gtest-port.h](include/gtest/internal/gtest-port.h).
### Choosing a TR1 Tuple Library ###
Some Google Test features require the C++ Technical Report 1 (TR1)
tuple library, which is not yet available with all compilers. The
good news is that Google Test implements a subset of TR1 tuple that's
enough for its own need, and will automatically use this when the
compiler doesn't provide TR1 tuple.
Usually you don't need to care about which tuple library Google Test
uses. However, if your project already uses TR1 tuple, you need to
tell Google Test to use the same TR1 tuple library the rest of your
project uses, or the two tuple implementations will clash. To do
that, add
-DGTEST_USE_OWN_TR1_TUPLE=0
to the compiler flags while compiling Google Test and your tests. If
you want to force Google Test to use its own tuple library, just add
-DGTEST_USE_OWN_TR1_TUPLE=1
to the compiler flags instead.
If you don't want Google Test to use tuple at all, add
-DGTEST_HAS_TR1_TUPLE=0
and all features using tuple will be disabled.
### Multi-threaded Tests ###
Google Test is thread-safe where the pthread library is available.
After `#include "gtest/gtest.h"`, you can check the `GTEST_IS_THREADSAFE`
macro to see whether this is the case (yes if the macro is `#defined` to
1, no if it's undefined.).
If Google Test doesn't correctly detect whether pthread is available
in your environment, you can force it with
-DGTEST_HAS_PTHREAD=1
or
-DGTEST_HAS_PTHREAD=0
When Google Test uses pthread, you may need to add flags to your
compiler and/or linker to select the pthread library, or you'll get
link errors. If you use the CMake script or the deprecated Autotools
script, this is taken care of for you. If you use your own build
script, you'll need to read your compiler and linker's manual to
figure out what flags to add.
### As a Shared Library (DLL) ###
Google Test is compact, so most users can build and link it as a
static library for the simplicity. You can choose to use Google Test
as a shared library (known as a DLL on Windows) if you prefer.
To compile *gtest* as a shared library, add
-DGTEST_CREATE_SHARED_LIBRARY=1
to the compiler flags. You'll also need to tell the linker to produce
a shared library instead - consult your linker's manual for how to do
it.
To compile your *tests* that use the gtest shared library, add
-DGTEST_LINKED_AS_SHARED_LIBRARY=1
to the compiler flags.
Note: while the above steps aren't technically necessary today when
using some compilers (e.g. GCC), they may become necessary in the
future, if we decide to improve the speed of loading the library (see
<http://gcc.gnu.org/wiki/Visibility> for details). Therefore you are
recommended to always add the above flags when using Google Test as a
shared library. Otherwise a future release of Google Test may break
your build script.
### Avoiding Macro Name Clashes ###
In C++, macros don't obey namespaces. Therefore two libraries that
both define a macro of the same name will clash if you `#include` both
definitions. In case a Google Test macro clashes with another
library, you can force Google Test to rename its macro to avoid the
conflict.
Specifically, if both Google Test and some other code define macro
FOO, you can add
-DGTEST_DONT_DEFINE_FOO=1
to the compiler flags to tell Google Test to change the macro's name
from `FOO` to `GTEST_FOO`. Currently `FOO` can be `FAIL`, `SUCCEED`,
or `TEST`. For example, with `-DGTEST_DONT_DEFINE_TEST=1`, you'll
need to write
GTEST_TEST(SomeTest, DoesThis) { ... }
instead of
TEST(SomeTest, DoesThis) { ... }
in order to define a test.
## Developing Google Test ##
This section discusses how to make your own changes to Google Test.
### Testing Google Test Itself ###
To make sure your changes work as intended and don't break existing
functionality, you'll want to compile and run Google Test's own tests.
For that you can use CMake:
mkdir mybuild
cd mybuild
cmake -Dgtest_build_tests=ON ${GTEST_DIR}
Make sure you have Python installed, as some of Google Test's tests
are written in Python. If the cmake command complains about not being
able to find Python (`Could NOT find PythonInterp (missing:
PYTHON_EXECUTABLE)`), try telling it explicitly where your Python
executable can be found:
cmake -DPYTHON_EXECUTABLE=path/to/python -Dgtest_build_tests=ON ${GTEST_DIR}
Next, you can build Google Test and all of its own tests. On \*nix,
this is usually done by 'make'. To run the tests, do
make test
All tests should pass.
Normally you don't need to worry about regenerating the source files,
unless you need to modify them. In that case, you should modify the
corresponding .pump files instead and run the pump.py Python script to
regenerate them. You can find pump.py in the [scripts/](scripts/) directory.
Read the [Pump manual](docs/PumpManual.md) for how to use it.