15 Commits

Author SHA1 Message Date
copilot-swe-agent[bot]
22673b0f45 Fix potential overflow in group hash calculation by using uint32_t multiplier
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 06:05:28 +00:00
copilot-swe-agent[bot]
508687c5d7 Use anonymous namespace for uintptr definitions
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:57:56 +00:00
copilot-swe-agent[bot]
2a3145718b Move uintptr definitions to separate namespace declaration
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:54:25 +00:00
copilot-swe-agent[bot]
8e1603766e Remove duplicate uintptr definitions (lines 23-33)
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:50:20 +00:00
copilot-swe-agent[bot]
39b8412b67 Remove trailing spaces
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:41:45 +00:00
copilot-swe-agent[bot]
509fcaaf4b Improve code readability with named constants for waste factor
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:36:04 +00:00
copilot-swe-agent[bot]
d2885bad94 Fix table size calculation and documentation for 10% waste
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:35:01 +00:00
copilot-swe-agent[bot]
7e44f683ea Allow up to 10% bucket waste in minimal_perfect_hash
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 05:33:17 +00:00
copilot-swe-agent[bot]
b486642748 Optimize positions vector allocation with reserve()
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 04:56:37 +00:00
copilot-swe-agent[bot]
fe45caf13c Address code review feedback: add named constants and fix trace checking
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 04:55:03 +00:00
copilot-swe-agent[bot]
88984a1d14 Implement proper PtHash algorithm with displacement tables
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 04:52:59 +00:00
copilot-swe-agent[bot]
dc906d8a1f Add comments clarifying minimal perfect hash property
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 04:48:02 +00:00
copilot-swe-agent[bot]
63d23e79a4 Fix M calculation for minimal perfect hash to ensure enough bits
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 04:47:10 +00:00
copilot-swe-agent[bot]
530de74f27 Add minimal_perfect_hash policy and test suite
Co-authored-by: jll63 <5083077+jll63@users.noreply.github.com>
2025-12-18 04:43:21 +00:00
copilot-swe-agent[bot]
b420157916 Initial plan 2025-12-18 04:37:38 +00:00
3 changed files with 666 additions and 0 deletions

View File

@@ -0,0 +1 @@
.

View File

@@ -0,0 +1,413 @@
// Copyright (c) 2018-2025 Jean-Louis Leroy
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_OPENMETHOD_POLICY_MINIMAL_PERFECT_HASH_HPP
#define BOOST_OPENMETHOD_POLICY_MINIMAL_PERFECT_HASH_HPP
#include <boost/openmethod/preamble.hpp>
#include <limits>
#include <random>
#include <vector>
#include <algorithm>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4702) // unreachable code
#endif
namespace {
#if defined(UINTPTR_MAX)
using uintptr = std::uintptr_t;
constexpr uintptr uintptr_max = UINTPTR_MAX;
#else
static_assert(
sizeof(std::size_t) == sizeof(void*),
"This implementation requires that size_t and void* have the same size.");
using uintptr = std::size_t;
constexpr uintptr uintptr_max = (std::numeric_limits<std::size_t>::max)();
#endif
} // anonymous namespace
namespace boost::openmethod {
namespace detail {
template<class Registry>
std::vector<type_id> minimal_perfect_hash_control;
template<class Registry>
std::vector<std::size_t> minimal_perfect_hash_displacements;
} // namespace detail
namespace policies {
//! Hash type ids using a minimal perfect hash function.
//!
//! `minimal_perfect_hash` implements the @ref type_hash policy using a hash
//! function in the form `H(x)=(M*x)>>N`. It uses the PtHash algorithm to
//! determine values for `M` and `N` that result in a minimal perfect hash
//! function for the set of registered type_ids. This means that the hash
//! function is collision-free and the codomain is approximately the size of
//! the domain, resulting in a dense range [0, 1.1*n-1] for n inputs.
//!
//! Unlike @ref fast_perfect_hash, which uses a hash table of size 2^k
//! (typically larger than needed) and may have unused slots, this policy
//! uses approximately 1.1*n slots for n type_ids (allowing up to 10% waste).
//! This minimizes memory usage while maintaining good search performance
//! during initialization.
struct minimal_perfect_hash : type_hash {
//! Cannot find hash factors
struct search_error : openmethod_error {
//! Number of attempts to find hash factors
std::size_t attempts;
//! Number of buckets used in the last attempt
std::size_t buckets;
//! Write a short description to an output stream
//! @param os The output stream
//! @tparam Registry The registry
//! @tparam Stream A @ref LightweightOutputStream
template<class Registry, class Stream>
auto write(Stream& os) const -> void;
};
using errors = std::variant<search_error>;
//! A TypeHashFn metafunction.
//!
//! @tparam Registry The registry containing this policy
template<class Registry>
class fn {
static std::size_t mult;
static std::size_t shift;
static std::size_t table_size; // N for minimal perfect hash
static std::size_t num_groups;
static std::uint32_t group_mult; // Smaller type to avoid overflow
static std::size_t group_shift;
static void check(std::size_t index, type_id type);
template<class InitializeContext, class... Options>
static void initialize(
const InitializeContext& ctx, std::vector<type_id>& buckets,
const std::tuple<Options...>& options);
public:
//! Find the hash factors using PtHash algorithm
//!
//! Uses the PtHash algorithm to find:
//! - Pilot hash parameters (M, N) for H(x) = (M * x) >> N
//! - Bucket assignment parameters
//! - Displacement values for each bucket to achieve minimal perfect hashing
//!
//! If no suitable values are found, calls the error handler with
//! a @ref search_error object then calls `abort`.
//!
//! @tparam Context An @ref InitializeContext.
//! @param ctx A Context object.
//! @return A pair containing the minimum (0) and maximum (n-1) hash values.
template<class Context, class... Options>
static auto
initialize(const Context& ctx, const std::tuple<Options...>& options) {
if constexpr (Registry::has_runtime_checks) {
initialize(
ctx, detail::minimal_perfect_hash_control<Registry>, options);
} else {
std::vector<type_id> buckets;
initialize(ctx, buckets, options);
}
return std::pair{std::size_t(0), table_size - 1};
}
//! Hash a type id using the PtHash algorithm
//!
//! Hash a type id using H(x) = (pilot(x) + disp[group(x)]) % N
//! where pilot(x) = (M * x) >> S and group(x) = (GM * x) >> GS.
//!
//! If `Registry` contains the @ref runtime_checks policy, checks that
//! the type id is valid, i.e. if it was present in the set passed to
//! @ref initialize. Its absence indicates that a class involved in a
//! method definition, method overrider, or method call was not
//! registered. In this case, signal a @ref missing_class using
//! the registry's @ref error_handler if present; then calls `abort`.
//!
//! @param type The type_id to hash
//! @return The hash value
BOOST_FORCEINLINE
static auto hash(type_id type) -> std::size_t {
auto pilot = (mult * reinterpret_cast<uintptr>(type)) >> shift;
auto group = (group_mult * reinterpret_cast<uintptr>(type)) >> group_shift;
auto index = (pilot + detail::minimal_perfect_hash_displacements<Registry>[group]) % table_size;
if constexpr (Registry::has_runtime_checks) {
check(index, type);
}
return index;
}
//! Releases the memory allocated by `initialize`.
//!
//! @tparam Options... Zero or more option types, deduced from the function
//! arguments.
//! @param options Zero or more option objects.
template<class... Options>
static auto finalize(const std::tuple<Options...>&) -> void {
detail::minimal_perfect_hash_control<Registry>.clear();
detail::minimal_perfect_hash_displacements<Registry>.clear();
}
};
};
template<class Registry>
std::size_t minimal_perfect_hash::fn<Registry>::mult;
template<class Registry>
std::size_t minimal_perfect_hash::fn<Registry>::shift;
template<class Registry>
std::size_t minimal_perfect_hash::fn<Registry>::table_size;
template<class Registry>
std::size_t minimal_perfect_hash::fn<Registry>::num_groups;
template<class Registry>
std::uint32_t minimal_perfect_hash::fn<Registry>::group_mult;
template<class Registry>
std::size_t minimal_perfect_hash::fn<Registry>::group_shift;
template<class Registry>
template<class InitializeContext, class... Options>
void minimal_perfect_hash::fn<Registry>::initialize(
const InitializeContext& ctx, std::vector<type_id>& buckets,
const std::tuple<Options...>& options) {
(void)options;
const auto N = std::distance(ctx.classes_begin(), ctx.classes_end());
if constexpr (InitializeContext::template has_option<trace>) {
ctx.tr << "Finding minimal perfect hash using PtHash for " << N << " types\n";
}
// Table size is N * 1.1 to allow up to 10% waste (makes finding hash easier)
// Formula: ceil(N * 1.1) = (N * 11 + 9) / 10 ensures proper rounding for all N
constexpr std::size_t WASTE_FACTOR_NUMERATOR = 11; // 1.1 = 11/10
constexpr std::size_t WASTE_FACTOR_DENOMINATOR = 10;
constexpr std::size_t ROUNDING_ADJUSTMENT = 9; // For ceiling division
table_size = (N * WASTE_FACTOR_NUMERATOR + ROUNDING_ADJUSTMENT) / WASTE_FACTOR_DENOMINATOR;
if (table_size == 0) {
shift = 0;
mult = 1;
num_groups = 0;
group_mult = 1;
group_shift = 0;
detail::minimal_perfect_hash_displacements<Registry>.clear();
return;
}
if (table_size == 1) {
// Special case: only one type
constexpr std::size_t bits_per_type_id = 8 * sizeof(type_id);
shift = bits_per_type_id;
mult = 1;
num_groups = 1;
group_mult = 1;
group_shift = bits_per_type_id;
detail::minimal_perfect_hash_displacements<Registry>.assign(1, 0);
buckets.resize(1);
for (auto iter = ctx.classes_begin(); iter != ctx.classes_end(); ++iter) {
for (auto type_iter = iter->type_id_begin();
type_iter != iter->type_id_end(); ++type_iter) {
buckets[0] = *type_iter;
}
}
return;
}
// Collect all type_ids
std::vector<type_id> keys;
for (auto iter = ctx.classes_begin(); iter != ctx.classes_end(); ++iter) {
for (auto type_iter = iter->type_id_begin();
type_iter != iter->type_id_end(); ++type_iter) {
keys.push_back(*type_iter);
}
}
// Constants for PtHash algorithm
constexpr std::size_t DEFAULT_RANDOM_SEED = 13081963; // Same seed as fast_perfect_hash
constexpr std::size_t MAX_PASSES = 10;
constexpr std::size_t MAX_ATTEMPTS = 100000;
constexpr std::size_t DEFAULT_GROUP_DIVISOR = 4; // N/4 groups for balance between memory and speed
constexpr std::size_t DISTRIBUTION_FACTOR = 2; // 2*N range for better distribution
constexpr std::size_t bits_per_type_id = 8 * sizeof(type_id);
std::default_random_engine rnd(DEFAULT_RANDOM_SEED);
std::uniform_int_distribution<std::size_t> uniform_dist;
std::size_t total_attempts = 0;
// PtHash algorithm: partition keys into groups, then find displacements
// Number of groups: typically sqrt(N) to N/4 for good performance
num_groups = (std::max)(std::size_t(1), table_size / DEFAULT_GROUP_DIVISOR);
if (num_groups > table_size) num_groups = table_size;
// Calculate bits needed for num_groups
std::size_t GM = 0;
std::size_t power = 1;
while (power < num_groups) {
power <<= 1;
++GM;
}
group_shift = bits_per_type_id - GM;
if constexpr (InitializeContext::template has_option<trace>) {
ctx.tr << " Using " << num_groups << " groups for " << table_size << " keys\n";
}
// Try different pilot hash parameters
for (std::size_t pass = 0; pass < MAX_PASSES && total_attempts < MAX_ATTEMPTS; ++pass) {
mult = uniform_dist(rnd) | 1;
// Use a smaller multiplier for group hash to avoid overflow
// We only need enough bits to distinguish between num_groups
std::uniform_int_distribution<std::uint32_t> group_dist;
group_mult = group_dist(rnd) | 1;
// Calculate M for pilot hash (number of bits for table_size range)
std::size_t M = 0;
power = 1;
while (power < table_size * DISTRIBUTION_FACTOR) {
power <<= 1;
++M;
}
shift = bits_per_type_id - M;
// Partition keys into groups
std::vector<std::vector<type_id>> groups(num_groups);
for (auto key : keys) {
auto group_idx = ((group_mult * reinterpret_cast<uintptr>(key)) >> group_shift) % num_groups;
groups[group_idx].push_back(key);
}
// Try to find displacements for each group
detail::minimal_perfect_hash_displacements<Registry>.assign(num_groups, 0);
buckets.assign(table_size, type_id(uintptr_max));
std::vector<bool> used(table_size, false);
bool success = true;
// Process groups in descending order of size (larger groups first)
std::vector<std::size_t> group_order(num_groups);
for (std::size_t i = 0; i < num_groups; ++i) group_order[i] = i;
std::sort(group_order.begin(), group_order.end(),
[&groups](std::size_t a, std::size_t b) {
return groups[a].size() > groups[b].size();
});
for (auto g : group_order) {
if (groups[g].empty()) continue;
// Try different displacement values
bool found = false;
for (std::size_t disp = 0; disp < table_size * DISTRIBUTION_FACTOR && !found; ++disp) {
++total_attempts;
if (total_attempts > MAX_ATTEMPTS) {
success = false;
break;
}
// Check if this displacement works for all keys in group
std::vector<std::size_t> positions;
positions.reserve(groups[g].size());
bool valid = true;
for (auto key : groups[g]) {
auto pilot = (mult * reinterpret_cast<uintptr>(key)) >> shift;
auto pos = (pilot + disp) % table_size;
if (used[pos]) {
valid = false;
break;
}
positions.push_back(pos);
}
if (valid) {
// Mark positions as used and store keys
detail::minimal_perfect_hash_displacements<Registry>[g] = disp;
for (std::size_t i = 0; i < groups[g].size(); ++i) {
used[positions[i]] = true;
buckets[positions[i]] = groups[g][i];
}
found = true;
}
}
if (!found) {
success = false;
break;
}
}
if (success) {
// Count how many positions are used
std::size_t used_count = 0;
for (std::size_t i = 0; i < table_size; ++i) {
if (uintptr(buckets[i]) != uintptr_max) {
used_count++;
}
}
// Accept if we've placed all keys (allow up to 10% waste)
if (used_count == keys.size()) {
if constexpr (InitializeContext::template has_option<trace>) {
ctx.tr << " Found minimal perfect hash after " << total_attempts
<< " attempts; " << used_count << "/" << table_size
<< " slots used\n";
}
return;
}
}
}
// Failed to find minimal perfect hash
search_error error;
error.attempts = total_attempts;
error.buckets = table_size;
if constexpr (Registry::has_error_handler) {
Registry::error_handler::error(error);
}
abort();
}
template<class Registry>
void minimal_perfect_hash::fn<Registry>::check(std::size_t index, type_id type) {
if (index >= table_size ||
detail::minimal_perfect_hash_control<Registry>[index] != type) {
if constexpr (Registry::has_error_handler) {
missing_class error;
error.type = type;
Registry::error_handler::error(error);
}
abort();
}
}
template<class Registry, class Stream>
auto minimal_perfect_hash::search_error::write(Stream& os) const -> void {
os << "could not find minimal perfect hash factors after " << attempts
<< " attempts using " << buckets << " buckets\n";
}
} // namespace policies
} // namespace boost::openmethod
#endif

View File

@@ -0,0 +1,252 @@
// Copyright (c) 2018-2025 Jean-Louis Leroy
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
#include <string>
#include <set>
#define BOOST_TEST_MODULE minimal_perfect_hash
#include <boost/test/unit_test.hpp>
#include <boost/openmethod.hpp>
#include <boost/openmethod/policies/minimal_perfect_hash.hpp>
#include <boost/openmethod/policies/std_rtti.hpp>
#include <boost/openmethod/policies/vptr_vector.hpp>
#include <boost/openmethod/policies/stderr_output.hpp>
#include <boost/openmethod/policies/default_error_handler.hpp>
#include <boost/openmethod/initialize.hpp>
#include "test_util.hpp"
using namespace boost::openmethod;
using namespace boost::openmethod::policies;
// Test registry with minimal_perfect_hash
struct minimal_hash_registry
: registry<
std_rtti, vptr_vector, minimal_perfect_hash,
default_error_handler, stderr_output> {
};
// Test registry with runtime checks
struct minimal_hash_registry_with_checks
: registry<
std_rtti, vptr_vector, minimal_perfect_hash,
default_error_handler, stderr_output, runtime_checks> {
};
namespace test_basic {
struct Animal {
virtual ~Animal() {}
};
struct Dog : Animal {};
struct Cat : Animal {};
struct Bird : Animal {};
BOOST_OPENMETHOD_CLASSES(Animal, Dog, Cat, Bird, minimal_hash_registry);
BOOST_OPENMETHOD(get_sound, (virtual_<const Animal&>), std::string, minimal_hash_registry);
BOOST_OPENMETHOD_OVERRIDE(get_sound, (const Dog&), std::string) {
return "woof";
}
BOOST_OPENMETHOD_OVERRIDE(get_sound, (const Cat&), std::string) {
return "meow";
}
BOOST_OPENMETHOD_OVERRIDE(get_sound, (const Bird&), std::string) {
return "chirp";
}
BOOST_AUTO_TEST_CASE(basic_functionality) {
initialize<minimal_hash_registry>();
Dog dog;
Cat cat;
Bird bird;
BOOST_TEST(get_sound(dog) == "woof");
BOOST_TEST(get_sound(cat) == "meow");
BOOST_TEST(get_sound(bird) == "chirp");
}
} // namespace test_basic
namespace test_hash_properties {
struct Base {
virtual ~Base() {}
};
struct D1 : Base {};
struct D2 : Base {};
struct D3 : Base {};
struct D4 : Base {};
struct D5 : Base {};
BOOST_OPENMETHOD_CLASSES(Base, D1, D2, D3, D4, D5, minimal_hash_registry);
BOOST_OPENMETHOD(get_id, (virtual_<const Base&>), int, minimal_hash_registry);
BOOST_OPENMETHOD_OVERRIDE(get_id, (const D1&), int) {
return 1;
}
BOOST_OPENMETHOD_OVERRIDE(get_id, (const D2&), int) {
return 2;
}
BOOST_OPENMETHOD_OVERRIDE(get_id, (const D3&), int) {
return 3;
}
BOOST_OPENMETHOD_OVERRIDE(get_id, (const D4&), int) {
return 4;
}
BOOST_OPENMETHOD_OVERRIDE(get_id, (const D5&), int) {
return 5;
}
BOOST_AUTO_TEST_CASE(minimal_hash_properties) {
initialize<minimal_hash_registry>();
// Test that all classes are correctly hashed
D1 d1;
D2 d2;
D3 d3;
D4 d4;
D5 d5;
BOOST_TEST(get_id(d1) == 1);
BOOST_TEST(get_id(d2) == 2);
BOOST_TEST(get_id(d3) == 3);
BOOST_TEST(get_id(d4) == 4);
BOOST_TEST(get_id(d5) == 5);
// Verify that the hash function produces a minimal perfect hash
// (This is implicit - if it didn't, initialization would fail or we'd get wrong results)
}
} // namespace test_hash_properties
namespace test_with_runtime_checks {
struct Vehicle {
virtual ~Vehicle() {}
};
struct Car : Vehicle {};
struct Bike : Vehicle {};
BOOST_OPENMETHOD_CLASSES(Vehicle, Car, Bike, minimal_hash_registry_with_checks);
BOOST_OPENMETHOD(get_wheels, (virtual_<const Vehicle&>), int, minimal_hash_registry_with_checks);
BOOST_OPENMETHOD_OVERRIDE(get_wheels, (const Car&), int) {
return 4;
}
BOOST_OPENMETHOD_OVERRIDE(get_wheels, (const Bike&), int) {
return 2;
}
BOOST_AUTO_TEST_CASE(runtime_checks) {
initialize<minimal_hash_registry_with_checks>();
Car car;
Bike bike;
BOOST_TEST(get_wheels(car) == 4);
BOOST_TEST(get_wheels(bike) == 2);
}
} // namespace test_with_runtime_checks
namespace test_empty {
struct Empty {
virtual ~Empty() {}
};
BOOST_OPENMETHOD_CLASSES(Empty, minimal_hash_registry);
BOOST_OPENMETHOD(process, (virtual_<const Empty&>), int, minimal_hash_registry);
BOOST_OPENMETHOD_OVERRIDE(process, (const Empty&), int) {
return 42;
}
BOOST_AUTO_TEST_CASE(single_class) {
initialize<minimal_hash_registry>();
Empty e;
BOOST_TEST(process(e) == 42);
}
} // namespace test_empty
namespace test_large_hierarchy {
struct Root {
virtual ~Root() {}
};
struct L1_1 : Root {};
struct L1_2 : Root {};
struct L1_3 : Root {};
struct L1_4 : Root {};
struct L1_5 : Root {};
struct L1_6 : Root {};
struct L1_7 : Root {};
struct L1_8 : Root {};
struct L1_9 : Root {};
struct L1_10 : Root {};
BOOST_OPENMETHOD_CLASSES(Root, L1_1, L1_2, L1_3, L1_4, L1_5, L1_6, L1_7, L1_8, L1_9, L1_10, minimal_hash_registry);
BOOST_OPENMETHOD(classify, (virtual_<const Root&>), int, minimal_hash_registry);
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_1&), int) { return 1; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_2&), int) { return 2; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_3&), int) { return 3; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_4&), int) { return 4; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_5&), int) { return 5; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_6&), int) { return 6; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_7&), int) { return 7; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_8&), int) { return 8; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_9&), int) { return 9; }
BOOST_OPENMETHOD_OVERRIDE(classify, (const L1_10&), int) { return 10; }
BOOST_AUTO_TEST_CASE(larger_hierarchy) {
initialize<minimal_hash_registry>();
L1_1 o1;
L1_2 o2;
L1_3 o3;
L1_4 o4;
L1_5 o5;
L1_6 o6;
L1_7 o7;
L1_8 o8;
L1_9 o9;
L1_10 o10;
BOOST_TEST(classify(o1) == 1);
BOOST_TEST(classify(o2) == 2);
BOOST_TEST(classify(o3) == 3);
BOOST_TEST(classify(o4) == 4);
BOOST_TEST(classify(o5) == 5);
BOOST_TEST(classify(o6) == 6);
BOOST_TEST(classify(o7) == 7);
BOOST_TEST(classify(o8) == 8);
BOOST_TEST(classify(o9) == 9);
BOOST_TEST(classify(o10) == 10);
}
} // namespace test_large_hierarchy