Merge branch 'develop' of https://github.com/boostorg/multiprecision into develop

This commit is contained in:
jzmaddock
2014-01-30 09:35:31 +00:00

View File

@@ -1,3 +1,4 @@
#include <cmath>
#include <cstdint>
#include <functional>
#include <iomanip>
@@ -47,11 +48,10 @@ template<typename T>
class laguerre_function_object
{
public:
laguerre_function_object(const int n,
const T a) : order(n),
alpha(a),
p1 (0),
d2 (0) { }
laguerre_function_object(const int n, const T a) : order(n),
alpha(a),
p1 (0),
d2 (0) { }
laguerre_function_object(const laguerre_function_object& other) : order(other.order),
alpha(other.alpha),
@@ -63,12 +63,14 @@ public:
T operator()(const T& x) const
{
// Calculate (via forward recursion) the value of the Laguerre
// function L(n, alpha, x) (p2), the value of its derivative (d2),
// and the value of the corresponding Laguerre function of previous
// order (p1). Return the value of the function in order to be
// used as a functor with Boost.Math root-finding. Store the values
// of the Laguerre function derivative (d2) and the Laguerre
// function of previous order (p1) in class members for later use.
// function L(n, alpha, x), called (p2), the value of the derivative
// of the Laguerre function (d2), and the value of the corresponding
// Laguerre function of previous order (p1).
// Return the value of the function in order to be used as a function
// object with Boost.Math root-finding. Store the values of the
// Laguerre function derivative (d2) and the Laguerre function of
// previous order (p1) in class members for later use.
p1 = T(0);
T p2 = T(1);
@@ -135,7 +137,15 @@ public:
xi (),
wi ()
{
calculate();
if(alpha < -20.0F)
{
// TBD: If we ever boostify this, throw a range error here and document it.
std::cout << "Range error: the order of the Laguerre function must exceed -20.0." << std::endl;
}
else
{
calculate();
}
}
virtual ~guass_laguerre_abscissas_and_weights() { }
@@ -155,139 +165,223 @@ private:
void calculate()
{
using std::abs;
std::cout << "finding approximate roots..." << std::endl;
std::vector<boost::math::tuple<T, T> > root_estimates;
root_estimates.reserve(static_cast<typename std::vector<boost::math::tuple<T, T> >::size_type>(order));
const laguerre_function_object<T> laguerre_object(order, alpha);
// Estimate the first Laguerre zero using the approximation of
// x1 from: A.H. Stroud, Don Secrest, "Gaussian Quadrature Formulas"
// (Prentice-Hall, Inc., London, 1966), page 23, Eq. 2.5.
const T x1 = ((1.0F + alpha) * (3.0F + (0.92F * alpha))) / (1.0F + (2.4F * order) + (1.8F * alpha));
// Set some initial values to be used for finding the estimate of the first root.
T step_size = 0.01F;
T step = step_size;
// Select the initial value of the step-size based on the
// estimate of the first root.
T step_size(x1 / 3);
T x = step_size;
T first_laguerre_root = 0.0F;
bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
bool first_laguerre_root_has_been_found = true;
std::cout << "finding approximate roots..." << std::endl;
// Step through the Laguerre function using a step-size
// of dynamic width in order to find the zero crossings
// of the Laguerre function, providing rough estimates
// of the roots. Refine the brackets with a few bisection
// steps, and store the results as bracketed root estimates.
// TBD: Consider using better estimates of the roots of Laguerre
// functions. What about the sharp estimates from Luigi Gatteschi:
// https://www.cs.purdue.edu/homes/wxg/Gatteschi.pdf
// Might this help us find the estimates of the roots in a more
// intelligent and controlled fashion? Or are the compilcated
// formulas more trouble than they are worth?
while(static_cast<int>(root_estimates.size()) < order)
if(alpha < -1.0F)
{
// Increment the step size until the sign of the Laguerre function
// switches. This indicates a zero-crossing, signalling the next root.
x += step_size;
// Iteratively step through the Laguerre function using a
// small step-size in order to find a rough estimate of
// the first zero.
if(this_laguerre_value_is_negative != (laguerre_object(x) < 0))
bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
static const int j_max = 10000;
int j;
for(j = 0; (j < j_max) && (this_laguerre_value_is_negative != (laguerre_object(step) < 0)); ++j)
{
// We have found the next zero-crossing.
// Increment the step size until the sign of the Laguerre function
// switches. This indicates a zero-crossing, signalling the next root.
step += step_size;
}
// Change the running sign of the Laguerre function.
this_laguerre_value_is_negative = (!this_laguerre_value_is_negative);
// Put a loose bracket around the root using a window.
// Store the approximate root as a bracketed range in a tuple.
// Here, we know that this root lies between (x - step_size) < root < x.
if(j >= j_max)
{
first_laguerre_root_has_been_found = false;
}
else
{
// We have found the first zero-crossing. Put a loose bracket around
// the root using a window. Here, we know that the first root lies
// between (x - step_size) < root < x.
// Before storing the approximate root, perform a couple of
// bisection steps in order to tighten up the root bracket.
boost::uintmax_t a_couple_of_iterations = 3U;
const std::pair<T, T>
root_estimate_bracket = boost::math::tools::bisect(laguerre_object,
x - step_size,
x,
laguerre_function_object<T>::root_tolerance,
a_couple_of_iterations);
first_laguerre_root = boost::math::tools::bisect(laguerre_object,
step - step_size,
step,
laguerre_function_object<T>::root_tolerance,
a_couple_of_iterations);
// Store the refined root estimate.
root_estimates.push_back(boost::math::tuple<T, T>(root_estimate_bracket.first,
root_estimate_bracket.second));
if(root_estimates.size() >= static_cast<std::size_t>(2U))
{
// Determine the next step size. This is based on the distance between
// the previous two roots, whereby the estimates of the previous roots
// are computed by taking the average of the lower and upper range of
// the root-estimate bracket.
const T r0 = ( boost::math::get<0>(*(root_estimates.rbegin() + 1U))
+ boost::math::get<1>(*(root_estimates.rbegin() + 1U))) / 2;
const T r1 = ( boost::math::get<0>(*root_estimates.rbegin())
+ boost::math::get<1>(*root_estimates.rbegin())) / 2;
const T distance_between_previous_roots = r1 - r0;
step_size = distance_between_previous_roots / 3;
}
static_cast<void>(a_couple_of_iterations);
}
}
const T norm_g =
((alpha == 0) ? T(-1)
: -boost::math::tgamma(alpha + order) / boost::math::factorial<T>(order - 1));
xi.reserve(root_estimates.size());
wi.reserve(root_estimates.size());
// Calculate the abscissas and weights to full precision.
for(std::size_t i = static_cast<std::size_t>(0U); i < root_estimates.size(); ++i)
else
{
std::cout << "calculating abscissa and weight for index: " << i << std::endl;
// Calculate an estimate of the 1st root of a generalized Laguerre
// polynomial using either Taylor series or an expansion in Bessel
// function zeros. The expansion is from Tricomi.
// Find the abscissas using iterative root-finding.
// Here, we obtain an estimate of the first zero of J_alpha(x).
// Select the maximum allowed iterations, being at least 20.
// The determination of the maximum allowed iterations is
// based on the number of decimal digits in the numerical
// type T.
const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>()) * 0.301F);
const boost::uintmax_t number_of_iterations_allowed = (std::max)(20, my_digits10 / 2);
T j_alpha_m1;
boost::uintmax_t number_of_iterations_used = number_of_iterations_allowed;
if(alpha < 1.4F)
{
// For small alpha, use a short series obtained from Mathematica(R).
// Series[BesselJZero[v, 1], {v, 0, 3}]
// N[%, 12]
j_alpha_m1 = ((( 0.09748661784476F
* alpha - 0.17549359276115F)
* alpha + 1.54288974259931F)
* alpha + 2.40482555769577F);
}
else
{
// For larger alpha, use the first line of Eqs. 10.21.40 in the NIST Handbook.
const T alpha_pow_third(boost::math::cbrt(alpha));
const T alpha_pow_minus_two_thirds(T(1) / (alpha_pow_third * alpha_pow_third));
// Perform the root-finding using ACM TOMS 748 from Boost.Math.
const std::pair<T, T>
laguerre_root_bracket = boost::math::tools::toms748_solve(laguerre_object,
boost::math::get<0>(root_estimates[i]),
boost::math::get<1>(root_estimates[i]),
laguerre_function_object<T>::root_tolerance,
number_of_iterations_used);
j_alpha_m1 = alpha * ((((( + 0.043F
* alpha_pow_minus_two_thirds - 0.0908F)
* alpha_pow_minus_two_thirds - 0.00397F)
* alpha_pow_minus_two_thirds + 1.033150F)
* alpha_pow_minus_two_thirds + 1.8557571F)
* alpha_pow_minus_two_thirds + 1.0F);
}
// Re-assess the validity of the Guass-Laguerre abscissas and weights
// object based on the validity of *each* root-finding operation.
valid &= (number_of_iterations_used < number_of_iterations_allowed);
const T vf = ((order * 4.0F) + (alpha * 2.0F) + 2.0F);
const T vf2 = vf * vf;
const T j_alpha_m1_sqr = j_alpha_m1 * j_alpha_m1;
// Compute the Laguerre root as the average of the values from the solved root bracket.
const T laguerre_root = ( laguerre_root_bracket.first
+ laguerre_root_bracket.second) / 2;
first_laguerre_root = (j_alpha_m1_sqr * (-0.6666666666667F + ((0.6666666666667F * alpha) * alpha) + (0.3333333333333F * j_alpha_m1_sqr) + vf2)) / (vf2 * vf);
}
// Calculate the weight for this Laguerre root. Here, we calculate
// the derivative of the Laguerre function and the value of the
// previous Laguerre function on the x-axis at the value of this
// Laguerre root.
static_cast<void>(laguerre_object(laguerre_root));
if(first_laguerre_root_has_been_found)
{
bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
// Store the abscissa and weight for this index.
xi.push_back(laguerre_root);
wi.push_back(norm_g / ((laguerre_object.derivative() * order) * laguerre_object.previous()));
// Re-set the initial value of the step-size based on the estimate of the first root.
step_size = first_laguerre_root / 2;
step = step_size;
// Step through the Laguerre function using a step-size
// of dynamic width in order to find the zero crossings
// of the Laguerre function, providing rough estimates
// of the roots. Refine the brackets with a few bisection
// steps, and store the results as bracketed root estimates.
while(static_cast<int>(root_estimates.size()) < order)
{
// Increment the step size until the sign of the Laguerre function
// switches. This indicates a zero-crossing, signalling the next root.
step += step_size;
if(this_laguerre_value_is_negative != (laguerre_object(step) < 0))
{
// We have found the next zero-crossing.
// Change the running sign of the Laguerre function.
this_laguerre_value_is_negative = (!this_laguerre_value_is_negative);
// We have found the first zero-crossing. Put a loose bracket around
// the root using a window. Here, we know that the first root lies
// between (x - step_size) < root < x.
// Before storing the approximate root, perform a couple of
// bisection steps in order to tighten up the root bracket.
boost::uintmax_t a_couple_of_iterations = 3U;
const std::pair<T, T>
root_estimate_bracket = boost::math::tools::bisect(laguerre_object,
step - step_size,
step,
laguerre_function_object<T>::root_tolerance,
a_couple_of_iterations);
static_cast<void>(a_couple_of_iterations);
// Store the refined root estimate as a bracketed range in a tuple.
root_estimates.push_back(boost::math::tuple<T, T>(root_estimate_bracket.first,
root_estimate_bracket.second));
if(root_estimates.size() >= static_cast<std::size_t>(2U))
{
// Determine the next step size. This is based on the distance between
// the previous two roots, whereby the estimates of the previous roots
// are computed by taking the average of the lower and upper range of
// the root-estimate bracket.
const T r0 = ( boost::math::get<0>(*(root_estimates.rbegin() + 1U))
+ boost::math::get<1>(*(root_estimates.rbegin() + 1U))) / 2;
const T r1 = ( boost::math::get<0>(*root_estimates.rbegin())
+ boost::math::get<1>(*root_estimates.rbegin())) / 2;
const T distance_between_previous_roots = r1 - r0;
step_size = distance_between_previous_roots / 3;
}
}
}
const T norm_g =
((alpha == 0) ? T(-1)
: -boost::math::tgamma(alpha + order) / boost::math::factorial<T>(order - 1));
xi.reserve(root_estimates.size());
wi.reserve(root_estimates.size());
// Calculate the abscissas and weights to full precision.
for(std::size_t i = static_cast<std::size_t>(0U); i < root_estimates.size(); ++i)
{
std::cout << "calculating abscissa and weight for index: " << i << std::endl;
// Find the abscissas using iterative root-finding.
// Select the maximum allowed iterations, being at least 20.
// The determination of the maximum allowed iterations is
// based on the number of decimal digits in the numerical
// type T.
const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>()) * 0.301F);
const boost::uintmax_t number_of_iterations_allowed = (std::max)(20, my_digits10 / 2);
boost::uintmax_t number_of_iterations_used = number_of_iterations_allowed;
// Perform the root-finding using ACM TOMS 748 from Boost.Math.
const std::pair<T, T>
laguerre_root_bracket = boost::math::tools::toms748_solve(laguerre_object,
boost::math::get<0>(root_estimates[i]),
boost::math::get<1>(root_estimates[i]),
laguerre_function_object<T>::root_tolerance,
number_of_iterations_used);
// Re-assess the validity of the Guass-Laguerre abscissas and weights
// object based on the validity of *each* root-finding operation.
valid &= (number_of_iterations_used < number_of_iterations_allowed);
// Compute the Laguerre root as the average of the values from the solved root bracket.
const T laguerre_root = ( laguerre_root_bracket.first
+ laguerre_root_bracket.second) / 2;
// Calculate the weight for this Laguerre root. Here, we calculate
// the derivative of the Laguerre function and the value of the
// previous Laguerre function on the x-axis at the value of this
// Laguerre root.
static_cast<void>(laguerre_object(laguerre_root));
// Store the abscissa and weight for this index.
xi.push_back(laguerre_root);
wi.push_back(norm_g / ((laguerre_object.derivative() * order) * laguerre_object.previous()));
}
}
}
};
@@ -376,6 +470,10 @@ int main()
// 50 digits.
// 3.8990420982303275013276114626640705170145070824318e-22
// 100 digits.
// 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
// 864136051942933142648e-22
// 200 digits.
// 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
// 86413605194293314264788265460938200890998546786740097437064263800719644346113699