Merge pull request #724 from boostorg/more_docs_tuning

Fix #718 via more docs tuning
This commit is contained in:
Christopher Kormanyos
2025-07-14 12:58:34 +02:00
committed by GitHub
3 changed files with 72 additions and 73 deletions

View File

@@ -132,7 +132,7 @@
[def __compiler_support [@https://en.cppreference.com/w/cpp/compiler_support compiler support]]
[def __ULP [@http://en.wikipedia.org/wiki/Unit_in_the_last_place Unit in the last place (ULP)]]
[def __Mathematica [@http://www.wolfram.com/products/mathematica/index.html Wolfram Mathematica]]
[def __WolframAlpha [@http://www.wolframalpha.com/ Wolfram Alpha]]
[def __WolframAlphaGLCoefs [@https://www.wolframalpha.com/input?i=Fit%5B%7B%7B21.0%2C+3.5%7D%2C+%7B51.0%2C+11.1%7D%2C+%7B101.0%2C+22.5%7D%2C+%7B201.0%2C+46.8%7D%7D%2C+%7B1%2C+d%2C+d%5E2%7D%2C+d%5D+FullSimplify%5B%25%5D Wolfram Alpha Gauss-Laguerre coefficients]]
[def __Boost_Serialization [@https://www.boost.org/doc/libs/release/libs/serialization/doc/index.html Boost.Serialization]]
[def __Boost_Math [@https://www.boost.org/doc/libs/release/libs/math/doc/index.html Boost.Math]]
[def __Boost_Multiprecision [@https://www.boost.org/doc/libs/release/libs/multiprecision/doc/index.html Boost.Multiprecision]]

View File

@@ -108,9 +108,9 @@ needed for convergence when using various counts of base-10 digits.
Let's calibrate, for instance, the number of coefficients needed at the point `x = 1`.
Empirical data were used with __WolframAlpha :
Empirical data were used with __WolframAlphaGLCoefs :
``
Fit[{{21.0, 3.5}, {51.0, 11.1}, {101.0, 22.5}, {201.0, 46.8}}, {1, d, d^2}, d]FullSimplify[%]
Fit[{{21.0, 3.5}, {51.0, 11.1}, {101.0, 22.5}, {201.0, 46.8}}, {1, d, d^2}, d] FullSimplify[%]
0.0000178915 d^2 + 0.235487 d - 1.28301
or
-1.28301 + (0.235487 + 0.0000178915 d) d
@@ -127,7 +127,7 @@ followed by calculation of accurate abscissa and weights is:
[gauss_laguerre_quadrature_output_1]
Finally the result using Gauss-Laguerre quadrature is compared with a calculation using `cyl_bessel_k`,
and both are listed, finally confirming that none differ more than a small tolerance.
and both are listed, conclusively confirming that none differ by more than a small tolerance.
[gauss_laguerre_quadrature_output_2]
For more detail see comments in the source code for this example at [@../../example/gauss_laguerre_quadrature.cpp gauss_laguerre_quadrature.cpp].

View File

@@ -6,15 +6,14 @@
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
/*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers.
In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers.
/*`This example demonstrates the usage of the complex_adaptor backend for multiprecision complex numbers.
In the following, we will show how using the complex_adaptor backend together with number allows for the same operations as the C++ standard library complex numbers.
*/
//[cpp_complex_eg
#include <boost/multiprecision/cpp_complex.hpp>
#include <complex>
#include <iostream>
#include <complex>
#include <boost/multiprecision/cpp_complex.hpp>
template<class Complex>
void complex_number_examples()
@@ -22,86 +21,86 @@ void complex_number_examples()
Complex z1{0, 1};
std::cout << std::setprecision(std::numeric_limits<typename Complex::value_type>::digits10);
std::cout << std::scientific << std::fixed;
std::cout << "Print a complex number: " << z1 << std::endl;
std::cout << "Square it : " << z1*z1 << std::endl;
std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
using std::abs;
std::cout << "Absolute value : " << abs(z1) << std::endl;
std::cout << "Argument : " << arg(z1) << std::endl;
std::cout << "Norm : " << norm(z1) << std::endl;
std::cout << "Complex conjugate : " << conj(z1) << std::endl;
std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl;
std::cout << "Print a complex number : " << z1 << std::endl;
std::cout << "Square it : " << z1*z1 << std::endl;
std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
std::cout << "Absolute value : " << abs(z1) << std::endl;
std::cout << "Argument : " << arg(z1) << std::endl;
std::cout << "Norm : " << norm(z1) << std::endl;
std::cout << "Complex conjugate : " << conj(z1) << std::endl;
std::cout << "Proj onto Riemann sphere : " << proj(z1) << std::endl;
typename Complex::value_type r = 1;
typename Complex::value_type theta = 0.8;
// We need a using declaration here, since polar is called with a scalar:
using std::polar;
std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl;
std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl;
std::cout << "Polar coord phase = 0 : " << polar(r) << std::endl;
std::cout << "Polar coord phase != 0 : " << polar(r, theta) << std::endl;
std::cout << "\nElementary special functions:\n";
std::cout << "exp(z1) = " << exp(z1) << std::endl;
std::cout << "log(z1) = " << log(z1) << std::endl;
std::cout << "log10(z1) = " << log10(z1) << std::endl;
std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl;
std::cout << "Take its square root : " << sqrt(z1) << std::endl;
std::cout << "sin(z1) = " << sin(z1) << std::endl;
std::cout << "cos(z1) = " << cos(z1) << std::endl;
std::cout << "tan(z1) = " << tan(z1) << std::endl;
std::cout << "asin(z1) = " << asin(z1) << std::endl;
std::cout << "acos(z1) = " << acos(z1) << std::endl;
std::cout << "atan(z1) = " << atan(z1) << std::endl;
std::cout << "sinh(z1) = " << sinh(z1) << std::endl;
std::cout << "cosh(z1) = " << cosh(z1) << std::endl;
std::cout << "tanh(z1) = " << tanh(z1) << std::endl;
std::cout << "asinh(z1) = " << asinh(z1) << std::endl;
std::cout << "acosh(z1) = " << acosh(z1) << std::endl;
std::cout << "atanh(z1) = " << atanh(z1) << std::endl;
std::cout << "exp(z1) : " << exp(z1) << std::endl;
std::cout << "log(z1) : " << log(z1) << std::endl;
std::cout << "log10(z1) : " << log10(z1) << std::endl;
std::cout << "pow(z1, z1) : " << pow(z1, z1) << std::endl;
std::cout << "Take its square root : " << sqrt(z1) << std::endl;
std::cout << "sin(z1) : " << sin(z1) << std::endl;
std::cout << "cos(z1) : " << cos(z1) << std::endl;
std::cout << "tan(z1) : " << tan(z1) << std::endl;
std::cout << "asin(z1) : " << asin(z1) << std::endl;
std::cout << "acos(z1) : " << acos(z1) << std::endl;
std::cout << "atan(z1) : " << atan(z1) << std::endl;
std::cout << "sinh(z1) : " << sinh(z1) << std::endl;
std::cout << "cosh(z1) : " << cosh(z1) << std::endl;
std::cout << "tanh(z1) : " << tanh(z1) << std::endl;
std::cout << "asinh(z1) : " << asinh(z1) << std::endl;
std::cout << "acosh(z1) : " << acosh(z1) << std::endl;
std::cout << "atanh(z1) : " << atanh(z1) << std::endl;
}
int main()
{
std::cout << "First, some operations we usually perform with std::complex:\n";
std::cout << "First, some operations performed with std::complex:\n";
complex_number_examples<std::complex<double>>();
std::cout << "\nNow the same operations performed using quad precision complex numbers:\n";
complex_number_examples<boost::multiprecision::cpp_complex_quad>();
return 0;
}
//]
std::cout << "\nNow the same operations performed with quad precision complex numbers:\n";
complex_number_examples<boost::multiprecision::cpp_complex_quad>();
}//]
/*
//[cpp_complex_out
Print a complex number: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
Square it : -1.000000000000000000000000000000000
Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000
Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000
Absolute value : 1.000000000000000000000000000000000
Argument : 1.570796326794896619231321691639751
Norm : 1.000000000000000000000000000000000
Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000)
Projection onto Riemann sphere: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
Polar coordinates (phase = 0) : 1.000000000000000000000000000000000
Polar coordinates (phase !=0) : (0.696706709347165389063740022772448,0.717356090899522792567167815703377)
Now the same operations performed using quad precision complex numbers:
Print a complex number : (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
Square it : -1.000000000000000000000000000000000
Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000
Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000
Absolute value : 1.000000000000000000000000000000000
Argument : 1.570796326794896619231321691639751
Norm : 1.000000000000000000000000000000000
Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000)
Proj onto Riemann sphere : (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
Polar coord phase = 0 : 1.000000000000000000000000000000000
Polar coord phase != 0 : (0.696706709347165389063740022772448,0.717356090899522792567167815703377)
Elementary special functions:
exp(z1) = (0.540302305868139717400936607442977,0.841470984807896506652502321630299)
log(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
log10(z1) = (0.000000000000000000000000000000000,0.682188176920920673742891812715678)
pow(z1, z1) = 0.207879576350761908546955619834979
Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849)
sin(z1) = (0.000000000000000000000000000000000,1.175201193643801456882381850595601)
cos(z1) = 1.543080634815243778477905620757062
tan(z1) = (0.000000000000000000000000000000000,0.761594155955764888119458282604794)
asin(z1) = (0.000000000000000000000000000000000,0.881373587019543025232609324979793)
acos(z1) = (1.570796326794896619231321691639751,-0.881373587019543025232609324979793)
atan(z1) = (0.000000000000000000000000000000000,inf)
sinh(z1) = (0.000000000000000000000000000000000,0.841470984807896506652502321630299)
cosh(z1) = 0.540302305868139717400936607442977
tanh(z1) = (0.000000000000000000000000000000000,1.557407724654902230506974807458360)
asinh(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
acosh(z1) = (0.881373587019543025232609324979792,1.570796326794896619231321691639751)
atanh(z1) = (0.000000000000000000000000000000000,0.785398163397448309615660845819876)
exp(z1) : (0.540302305868139717400936607442977,0.841470984807896506652502321630299)
log(z1) : (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
log10(z1) : (0.000000000000000000000000000000000,0.682188176920920673742891812715678)
pow(z1, z1) : 0.207879576350761908546955619834979
Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849)
sin(z1) : (0.000000000000000000000000000000000,1.175201193643801456882381850595601)
cos(z1) : 1.543080634815243778477905620757062
tan(z1) : (0.000000000000000000000000000000000,0.761594155955764888119458282604794)
asin(z1) : (0.000000000000000000000000000000000,0.881373587019543025232609324979792)
acos(z1) : (1.570796326794896619231321691639751,-0.881373587019543025232609324979792)
atan(z1) : (0.000000000000000000000000000000000,inf)
sinh(z1) : (0.000000000000000000000000000000000,0.841470984807896506652502321630299)
cosh(z1) : 0.540302305868139717400936607442977
tanh(z1) : (0.000000000000000000000000000000000,1.557407724654902230506974807458360)
asinh(z1) : (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
acosh(z1) : (0.881373587019543025232609324979792,1.570796326794896619231321691639751)
atanh(z1) : (0.000000000000000000000000000000000,0.785398163397448309615660845819876)
//]
*/