mirror of
https://github.com/boostorg/multiprecision.git
synced 2026-01-19 04:22:11 +00:00
Merge pull request #724 from boostorg/more_docs_tuning
Fix #718 via more docs tuning
This commit is contained in:
@@ -132,7 +132,7 @@
|
||||
[def __compiler_support [@https://en.cppreference.com/w/cpp/compiler_support compiler support]]
|
||||
[def __ULP [@http://en.wikipedia.org/wiki/Unit_in_the_last_place Unit in the last place (ULP)]]
|
||||
[def __Mathematica [@http://www.wolfram.com/products/mathematica/index.html Wolfram Mathematica]]
|
||||
[def __WolframAlpha [@http://www.wolframalpha.com/ Wolfram Alpha]]
|
||||
[def __WolframAlphaGLCoefs [@https://www.wolframalpha.com/input?i=Fit%5B%7B%7B21.0%2C+3.5%7D%2C+%7B51.0%2C+11.1%7D%2C+%7B101.0%2C+22.5%7D%2C+%7B201.0%2C+46.8%7D%7D%2C+%7B1%2C+d%2C+d%5E2%7D%2C+d%5D+FullSimplify%5B%25%5D Wolfram Alpha Gauss-Laguerre coefficients]]
|
||||
[def __Boost_Serialization [@https://www.boost.org/doc/libs/release/libs/serialization/doc/index.html Boost.Serialization]]
|
||||
[def __Boost_Math [@https://www.boost.org/doc/libs/release/libs/math/doc/index.html Boost.Math]]
|
||||
[def __Boost_Multiprecision [@https://www.boost.org/doc/libs/release/libs/multiprecision/doc/index.html Boost.Multiprecision]]
|
||||
|
||||
@@ -108,9 +108,9 @@ needed for convergence when using various counts of base-10 digits.
|
||||
|
||||
Let's calibrate, for instance, the number of coefficients needed at the point `x = 1`.
|
||||
|
||||
Empirical data were used with __WolframAlpha :
|
||||
Empirical data were used with __WolframAlphaGLCoefs :
|
||||
``
|
||||
Fit[{{21.0, 3.5}, {51.0, 11.1}, {101.0, 22.5}, {201.0, 46.8}}, {1, d, d^2}, d]FullSimplify[%]
|
||||
Fit[{{21.0, 3.5}, {51.0, 11.1}, {101.0, 22.5}, {201.0, 46.8}}, {1, d, d^2}, d] FullSimplify[%]
|
||||
0.0000178915 d^2 + 0.235487 d - 1.28301
|
||||
or
|
||||
-1.28301 + (0.235487 + 0.0000178915 d) d
|
||||
@@ -127,7 +127,7 @@ followed by calculation of accurate abscissa and weights is:
|
||||
[gauss_laguerre_quadrature_output_1]
|
||||
|
||||
Finally the result using Gauss-Laguerre quadrature is compared with a calculation using `cyl_bessel_k`,
|
||||
and both are listed, finally confirming that none differ more than a small tolerance.
|
||||
and both are listed, conclusively confirming that none differ by more than a small tolerance.
|
||||
[gauss_laguerre_quadrature_output_2]
|
||||
|
||||
For more detail see comments in the source code for this example at [@../../example/gauss_laguerre_quadrature.cpp gauss_laguerre_quadrature.cpp].
|
||||
|
||||
@@ -6,15 +6,14 @@
|
||||
// Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
|
||||
|
||||
/*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers.
|
||||
In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers.
|
||||
/*`This example demonstrates the usage of the complex_adaptor backend for multiprecision complex numbers.
|
||||
In the following, we will show how using the complex_adaptor backend together with number allows for the same operations as the C++ standard library complex numbers.
|
||||
*/
|
||||
|
||||
//[cpp_complex_eg
|
||||
#include <boost/multiprecision/cpp_complex.hpp>
|
||||
|
||||
#include <complex>
|
||||
#include <iostream>
|
||||
#include <complex>
|
||||
#include <boost/multiprecision/cpp_complex.hpp>
|
||||
|
||||
template<class Complex>
|
||||
void complex_number_examples()
|
||||
@@ -22,86 +21,86 @@ void complex_number_examples()
|
||||
Complex z1{0, 1};
|
||||
std::cout << std::setprecision(std::numeric_limits<typename Complex::value_type>::digits10);
|
||||
std::cout << std::scientific << std::fixed;
|
||||
std::cout << "Print a complex number: " << z1 << std::endl;
|
||||
std::cout << "Square it : " << z1*z1 << std::endl;
|
||||
std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
|
||||
std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
|
||||
using std::abs;
|
||||
std::cout << "Absolute value : " << abs(z1) << std::endl;
|
||||
std::cout << "Argument : " << arg(z1) << std::endl;
|
||||
std::cout << "Norm : " << norm(z1) << std::endl;
|
||||
std::cout << "Complex conjugate : " << conj(z1) << std::endl;
|
||||
std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl;
|
||||
std::cout << "Print a complex number : " << z1 << std::endl;
|
||||
std::cout << "Square it : " << z1*z1 << std::endl;
|
||||
std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
|
||||
std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
|
||||
std::cout << "Absolute value : " << abs(z1) << std::endl;
|
||||
std::cout << "Argument : " << arg(z1) << std::endl;
|
||||
std::cout << "Norm : " << norm(z1) << std::endl;
|
||||
std::cout << "Complex conjugate : " << conj(z1) << std::endl;
|
||||
std::cout << "Proj onto Riemann sphere : " << proj(z1) << std::endl;
|
||||
typename Complex::value_type r = 1;
|
||||
typename Complex::value_type theta = 0.8;
|
||||
|
||||
// We need a using declaration here, since polar is called with a scalar:
|
||||
using std::polar;
|
||||
std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl;
|
||||
std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl;
|
||||
|
||||
std::cout << "Polar coord phase = 0 : " << polar(r) << std::endl;
|
||||
std::cout << "Polar coord phase != 0 : " << polar(r, theta) << std::endl;
|
||||
|
||||
std::cout << "\nElementary special functions:\n";
|
||||
std::cout << "exp(z1) = " << exp(z1) << std::endl;
|
||||
std::cout << "log(z1) = " << log(z1) << std::endl;
|
||||
std::cout << "log10(z1) = " << log10(z1) << std::endl;
|
||||
std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl;
|
||||
std::cout << "Take its square root : " << sqrt(z1) << std::endl;
|
||||
std::cout << "sin(z1) = " << sin(z1) << std::endl;
|
||||
std::cout << "cos(z1) = " << cos(z1) << std::endl;
|
||||
std::cout << "tan(z1) = " << tan(z1) << std::endl;
|
||||
std::cout << "asin(z1) = " << asin(z1) << std::endl;
|
||||
std::cout << "acos(z1) = " << acos(z1) << std::endl;
|
||||
std::cout << "atan(z1) = " << atan(z1) << std::endl;
|
||||
std::cout << "sinh(z1) = " << sinh(z1) << std::endl;
|
||||
std::cout << "cosh(z1) = " << cosh(z1) << std::endl;
|
||||
std::cout << "tanh(z1) = " << tanh(z1) << std::endl;
|
||||
std::cout << "asinh(z1) = " << asinh(z1) << std::endl;
|
||||
std::cout << "acosh(z1) = " << acosh(z1) << std::endl;
|
||||
std::cout << "atanh(z1) = " << atanh(z1) << std::endl;
|
||||
std::cout << "exp(z1) : " << exp(z1) << std::endl;
|
||||
std::cout << "log(z1) : " << log(z1) << std::endl;
|
||||
std::cout << "log10(z1) : " << log10(z1) << std::endl;
|
||||
std::cout << "pow(z1, z1) : " << pow(z1, z1) << std::endl;
|
||||
std::cout << "Take its square root : " << sqrt(z1) << std::endl;
|
||||
std::cout << "sin(z1) : " << sin(z1) << std::endl;
|
||||
std::cout << "cos(z1) : " << cos(z1) << std::endl;
|
||||
std::cout << "tan(z1) : " << tan(z1) << std::endl;
|
||||
std::cout << "asin(z1) : " << asin(z1) << std::endl;
|
||||
std::cout << "acos(z1) : " << acos(z1) << std::endl;
|
||||
std::cout << "atan(z1) : " << atan(z1) << std::endl;
|
||||
std::cout << "sinh(z1) : " << sinh(z1) << std::endl;
|
||||
std::cout << "cosh(z1) : " << cosh(z1) << std::endl;
|
||||
std::cout << "tanh(z1) : " << tanh(z1) << std::endl;
|
||||
std::cout << "asinh(z1) : " << asinh(z1) << std::endl;
|
||||
std::cout << "acosh(z1) : " << acosh(z1) << std::endl;
|
||||
std::cout << "atanh(z1) : " << atanh(z1) << std::endl;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
std::cout << "First, some operations we usually perform with std::complex:\n";
|
||||
std::cout << "First, some operations performed with std::complex:\n";
|
||||
complex_number_examples<std::complex<double>>();
|
||||
std::cout << "\nNow the same operations performed using quad precision complex numbers:\n";
|
||||
complex_number_examples<boost::multiprecision::cpp_complex_quad>();
|
||||
|
||||
return 0;
|
||||
}
|
||||
//]
|
||||
std::cout << "\nNow the same operations performed with quad precision complex numbers:\n";
|
||||
complex_number_examples<boost::multiprecision::cpp_complex_quad>();
|
||||
}//]
|
||||
|
||||
/*
|
||||
|
||||
//[cpp_complex_out
|
||||
|
||||
Print a complex number: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
|
||||
Square it : -1.000000000000000000000000000000000
|
||||
Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000
|
||||
Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000
|
||||
Absolute value : 1.000000000000000000000000000000000
|
||||
Argument : 1.570796326794896619231321691639751
|
||||
Norm : 1.000000000000000000000000000000000
|
||||
Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000)
|
||||
Projection onto Riemann sphere: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
|
||||
Polar coordinates (phase = 0) : 1.000000000000000000000000000000000
|
||||
Polar coordinates (phase !=0) : (0.696706709347165389063740022772448,0.717356090899522792567167815703377)
|
||||
Now the same operations performed using quad precision complex numbers:
|
||||
Print a complex number : (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
|
||||
Square it : -1.000000000000000000000000000000000
|
||||
Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000
|
||||
Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000
|
||||
Absolute value : 1.000000000000000000000000000000000
|
||||
Argument : 1.570796326794896619231321691639751
|
||||
Norm : 1.000000000000000000000000000000000
|
||||
Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000)
|
||||
Proj onto Riemann sphere : (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
|
||||
Polar coord phase = 0 : 1.000000000000000000000000000000000
|
||||
Polar coord phase != 0 : (0.696706709347165389063740022772448,0.717356090899522792567167815703377)
|
||||
|
||||
Elementary special functions:
|
||||
exp(z1) = (0.540302305868139717400936607442977,0.841470984807896506652502321630299)
|
||||
log(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
|
||||
log10(z1) = (0.000000000000000000000000000000000,0.682188176920920673742891812715678)
|
||||
pow(z1, z1) = 0.207879576350761908546955619834979
|
||||
Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849)
|
||||
sin(z1) = (0.000000000000000000000000000000000,1.175201193643801456882381850595601)
|
||||
cos(z1) = 1.543080634815243778477905620757062
|
||||
tan(z1) = (0.000000000000000000000000000000000,0.761594155955764888119458282604794)
|
||||
asin(z1) = (0.000000000000000000000000000000000,0.881373587019543025232609324979793)
|
||||
acos(z1) = (1.570796326794896619231321691639751,-0.881373587019543025232609324979793)
|
||||
atan(z1) = (0.000000000000000000000000000000000,inf)
|
||||
sinh(z1) = (0.000000000000000000000000000000000,0.841470984807896506652502321630299)
|
||||
cosh(z1) = 0.540302305868139717400936607442977
|
||||
tanh(z1) = (0.000000000000000000000000000000000,1.557407724654902230506974807458360)
|
||||
asinh(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
|
||||
acosh(z1) = (0.881373587019543025232609324979792,1.570796326794896619231321691639751)
|
||||
atanh(z1) = (0.000000000000000000000000000000000,0.785398163397448309615660845819876)
|
||||
exp(z1) : (0.540302305868139717400936607442977,0.841470984807896506652502321630299)
|
||||
log(z1) : (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
|
||||
log10(z1) : (0.000000000000000000000000000000000,0.682188176920920673742891812715678)
|
||||
pow(z1, z1) : 0.207879576350761908546955619834979
|
||||
Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849)
|
||||
sin(z1) : (0.000000000000000000000000000000000,1.175201193643801456882381850595601)
|
||||
cos(z1) : 1.543080634815243778477905620757062
|
||||
tan(z1) : (0.000000000000000000000000000000000,0.761594155955764888119458282604794)
|
||||
asin(z1) : (0.000000000000000000000000000000000,0.881373587019543025232609324979792)
|
||||
acos(z1) : (1.570796326794896619231321691639751,-0.881373587019543025232609324979792)
|
||||
atan(z1) : (0.000000000000000000000000000000000,inf)
|
||||
sinh(z1) : (0.000000000000000000000000000000000,0.841470984807896506652502321630299)
|
||||
cosh(z1) : 0.540302305868139717400936607442977
|
||||
tanh(z1) : (0.000000000000000000000000000000000,1.557407724654902230506974807458360)
|
||||
asinh(z1) : (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
|
||||
acosh(z1) : (0.881373587019543025232609324979792,1.570796326794896619231321691639751)
|
||||
atanh(z1) : (0.000000000000000000000000000000000,0.785398163397448309615660845819876)
|
||||
//]
|
||||
*/
|
||||
|
||||
Reference in New Issue
Block a user