2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-26 06:42:12 +00:00
Files
math/test
Nick Thompson fee20ab932 Given a function f, known at evenly spaced samples y_j = f(a + jh),
this function constructs an interpolant using compactly supported cubic b splines.
The advantage of using splines of compact support over traditional cubic splines
is that compact support makes the splines well-conditioned.

The interpolant is constructed in O(N) time and can be evaluated in constant time.
Its error is O(h^4), and obeys the interpolating condition s(x_j) = f(x_j) for all samples.
In addition, f' can be estimated from s', albeit with lower accuracy.

This routine is cppcheck clean, and is clean under AddressSanitizer and MemorySanitizer.
2017-02-23 18:21:06 -06:00
..
2016-10-29 17:58:22 +01:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2016-06-04 19:26:59 +01:00
2013-02-08 05:09:47 +00:00
2015-06-18 18:44:45 +01:00
2009-01-22 09:48:27 +00:00
2012-05-24 10:44:13 +00:00
2014-02-20 17:08:25 +00:00
2014-02-20 17:56:53 +00:00
2015-06-18 18:45:39 +01:00
2012-08-01 16:37:01 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2016-08-19 20:47:49 -04:00
2016-08-19 20:47:49 -04:00
2006-05-21 15:45:37 +00:00
2016-08-19 20:47:49 -04:00
2015-09-24 11:12:11 +01:00
2015-06-27 18:40:22 +01:00
2011-04-15 17:52:54 +00:00
2011-07-25 09:26:59 +00:00
2010-11-24 16:55:52 +00:00
2014-03-21 17:36:18 +00:00
2016-08-19 20:47:49 -04:00
2016-08-19 20:47:49 -04:00
2012-03-08 18:28:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2013-02-08 05:09:47 +00:00
2016-07-22 09:27:15 +01:00
2014-03-21 17:36:18 +00:00
2016-08-10 18:52:26 +01:00
2014-02-27 19:18:11 +00:00
2015-06-27 18:40:22 +01:00