2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Merged changes from sandbox to Trunk:

New special functions for truncation and rounding, plus exponential integrals and zeta.
New non central distributions.
Updated equation png's so that they are all consistent.

[SVN r44091]
This commit is contained in:
John Maddock
2008-04-07 15:58:51 +00:00
parent f375fef8cd
commit 669bfb3991
709 changed files with 35155 additions and 1805 deletions

View File

@@ -40,7 +40,7 @@ boostbook standalone
# PDF Options:
# TOC Generation: this is needed for FOP-0.9 and later:
# <xsl:param>fop1.extensions=1
<xsl:param>fop1.extensions=0
<format>pdf:<xsl:param>xep.extensions=1
# TOC generation: this is needed for FOP 0.2, but must not be set to zero for FOP-0.9!
<format>pdf:<xsl:param>fop.extensions=0

View File

@@ -44,11 +44,11 @@ when `x <= 0`.
The following graph illustrates the exponential behaviour of I[sub v].
[$../graphs/bessel_i.png]
[graph cyl_bessel_i]
The following graph illustrates the exponential decay of K[sub v].
[$../graphs/bessel_k.png]
[graph cyl_bessel_k]
[h4 Testing]

View File

@@ -44,12 +44,12 @@ when `x <= 0`.
The following graph illustrates the cyclic nature of J[sub v]:
[$../graphs/bessel_jn.png]
[graph cyl_bessel_j]
The following graph shows the behaviour of Y[sub v]: this is also
cyclic for large /x/, but tends to -[infin][space] for small /x/:
[$../graphs/bessel_yv.png]
[graph cyl_neumann]
[h4 Testing]

View File

@@ -39,12 +39,12 @@ undefined or complex: this occurs when `x < 0`.
The j[sub v][space] function is cyclic like J[sub v][space] but differs
in its behaviour at the origin:
[$../graphs/sph_bessel_j.png]
[graph sph_bessel]
Likewise y[sub v][space] is also cyclic for large x, but tends to -[infin][space]
for small /x/:
[$../graphs/sph_bessel_y.png]
[graph sph_neumann]
[h4 Testing]

View File

@@ -22,7 +22,7 @@ The beta function is defined by:
[equation beta1]
[$../graphs/beta.png]
[graph beta]
[optional_policy]

View File

@@ -174,13 +174,25 @@ In the following table /r/ is an object of type `RealType`,
[[`asin(cr1)`][RealType]]
[[`tan(cr1)`][RealType]]
[[`atan(cr1)`][RealType]]
[[`fmod(cr1)`][RealType]]
[[`round(cr1)`][RealType]]
[[`iround(cr1)`][int]]
[[`trunc(cr1)`][RealType]]
[[`itrunc(cr1)`][int]]
]
Note that the table above lists only those standard library functions known to
be used (or likely to be used in the near future) by this library.
The following functions: `acos`, `atan2`, `fmod`, `cosh`, `sinh`, `tanh`, `modf` and `log10`
The following functions: `acos`, `atan2`, `fmod`, `cosh`, `sinh`, `tanh`, `log10`,
`lround`, `llround`, ltrunc`, `lltrunc` and `modf`
are not currently used, but may be if further special functions are added.
Note that the `round`, `trunc` and `modf` functions are not part of the
current C++ standard: they are part of the additions added to C99 which will
likely be in the next C++ standard. There are Boost versions of these provided
as a backup, and the functions are always called unqualified so that
argument-dependent-lookup can take place.
In addition, for efficient and accurate results, a __lanczos is highly desirable.
You may be able to adapt an existing approximation from
[@../../../../../boost/math/special_functions/lanczos.hpp

View File

@@ -33,6 +33,17 @@ his
program used to generate the html and pdf versions
of this document, adding several new features en route.
Plots of the functions and distributions were prepared in
[@http://www.w3.org/ W3C] standard
[@http://www.svg.org/ Scalable Vector Graphic (SVG)] format
using a program created by Jacob Voytko during a Google 'Summer of Code'.
Since browser support for rendering SVG is still not universal
(Microsoft Internet Explorer, even IE 8 beta, still lacks native SVG support
but can be made to work with
[@http://www.adobe.com/svg/viewer/install/ Adobe's free SVG viewer] plugin),
so the SVG files were batch converted to JPEG using
[@http://www.inkscape.org/ Inkscape].
We are also indebted to Matthias Schabel for managing the formal Boost-review
of this library, and to all the reviewers - including Guillaume Melquiond,
Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland
@@ -41,7 +52,7 @@ Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland
[endsect][/section:roadmap Roadmap]
[/
Copyright 2006 John Maddock and Paul A. Bristow.
Copyright 2006 - 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).

View File

@@ -23,7 +23,7 @@ derivative of the gamma function:
[equation digamma1]
[$../graphs/digamma.png]
[graph digamma]
[optional_policy]

View File

@@ -15,6 +15,10 @@
[include distributions/gamma.qbk]
[include distributions/lognormal.qbk]
[include distributions/negative_binomial.qbk]
[include distributions/nc_beta.qbk]
[include distributions/nc_chi_squared.qbk]
[include distributions/nc_f.qbk]
[include distributions/nc_t.qbk]
[include distributions/normal.qbk]
[include distributions/pareto.qbk]
[include distributions/poisson.qbk]

View File

@@ -158,13 +158,32 @@ example, we would write:
`pdf(binomial_distribution<RealType>(n, p), k);`
The distribution (effectively the random variate) is said to be 'supported' over a range that is
The ranges of random variate values that are permitted and are supported can be
tested by using two functions `range` and `support`.
The distribution (effectively the random variate) is said to be 'supported'
over a range that is
[@http://en.wikipedia.org/wiki/Probability_distribution
"the smallest closed set whose complement has probability zero"].
MathWorld uses the word 'defined' for this range.
Non-mathematicians might say it means the 'interesting' smallest range
of random variate x that has the cdf going from zero to unity.
Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.
For most distributions, with probability distribution functions one might describe
as 'well-behaved', we have decided that it is most useful for the supported range
to exclude random variate values like exact zero *if the end point is discontinuous*.
For example, the Weibull (scale 1, shape 1) distribution smoothly heads for unity
as the random variate x declines towards zero.
But at x = zero, the value of the pdf is suddenly exactly zero, by definition.
If you are plotting the PDF, or otherwise calculating,
zero is not the most useful value for the lower limit of supported, as we discovered.
So for this, and similar distributions,
we have decided it is most numerically useful to use
the closest value to zero, min_value, for the limit of the supported range.
(The `range` remains from zero, so you will still get `pdf(weibull, 0) == 0`).
(Exponential and gamma distributions have similarly discontinuous functions).
Mathematically, the functions may make sense with an (+ or -) infinite value,
but except for a few special cases (in the Normal and Cauchy distributions)
this implementation limits random variates to finite values from the `max`
@@ -172,8 +191,6 @@ to `min` for the `RealType`.
(See [link math_toolkit.backgrounders.implementation.handling_of_floating_point_infinity
Handling of Floating-Point Infinity] for rationale).
The range of random variate values that is permitted and supported can be
tested by using two functions `range` and `support`.
[note
@@ -365,6 +382,7 @@ Now that you have the basics, the next section looks at some worked examples.
[include distributions/binomial_example.qbk]
[include distributions/negative_binomial_example.qbk]
[include distributions/normal_example.qbk]
[include distributions/nc_chi_squared_example.qbk]
[include distributions/error_handling_example.qbk]
[include distributions/find_location_and_scale.qbk]
[include distributions/nag_library.qbk]

View File

@@ -42,11 +42,11 @@ The following graph illustrates how the
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function pdf]
varies with the outcome of the single trial:
[$../graphs/bernoulli_pdf.png]
[graph bernoulli_pdf]
and the [@http://en.wikipedia.org/wiki/Cumulative_Distribution_Function Cumulative distribution function]
[$../graphs/bernoulli_cdf.png]
[graph bernoulli_cdf]
[h4 Member Functions]

View File

@@ -84,7 +84,7 @@ of the shape parameters. Note the [alpha] = [beta] = 2 (blue line)
is dome-shaped, and might be approximated by a symmetrical triangular
distribution.
[$../graphs/beta_dist.png]
[graph beta_pdf]
If [alpha] = [beta] = 1, then it is a __space
[@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 uniform distribution],

View File

@@ -76,12 +76,12 @@ The following two graphs illustrate how the PDF changes depending
upon the distributions parameters, first we'll keep the success
fraction /p/ fixed at 0.5, and vary the sample size:
[$../graphs/binomial_pdf_1.png]
[graph binomial_pdf_1]
Alternatively, we can keep the sample size fixed at N=20 and
vary the success fraction /p/:
[$../graphs/binomial_pdf_2.png]
[graph binomial_pdf_2]
[discrete_quantile_warning Binomial]

View File

@@ -44,12 +44,12 @@ of spectral lines.
The following graph shows how the distributions moves as the
location parameter changes:
[$../graphs/cauchy1.png]
[graph cauchy_pdf1]
While the following graph shows how the shape (scale) parameter alters
the distribution:
[$../graphs/cauchy2.png]
[graph cauchy_pdf2]
[h4 Member Functions]

View File

@@ -49,7 +49,7 @@ and has a single parameter [nu][space] that specifies the number of degrees of
freedom. The following graph illustrates how the distribution changes
for different values of [nu]:
[$../graphs/chi_square.png]
[graph chi_squared_pdf]
[h4 Member Functions]
@@ -105,6 +105,11 @@ See also section on Sample sizes required in
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
that are generic to all distributions are supported: __usual_accessors.
(We have followed the usual restriction of the mode to degrees of freedom >= 2,
but note that the maximum of the pdf is actually zero for degrees of freedom from 2 down to 0,
and provide an extended definition that would avoid a discontinuity in the mode
as alternative code in a comment).
The domain of the random variable is \[0, +[infin]\].
[h4 Examples]

View File

@@ -33,7 +33,7 @@ events that happen at a constant average rate.
The following graph shows how the distribution changes for different
values of the rate parameter lambda:
[$../graphs/exponential_dist.png]
[graph exponential_pdf]
[h4 Member Functions]
@@ -90,6 +90,13 @@ In the following table [lambda] is the parameter lambda of the distribution,
* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm NIST Exploratory Data Analysis]
* [@http://en.wikipedia.org/wiki/Exponential_distribution Wikipedia Exponential distribution]
(See also the reference documentation for the related __extreme_distrib.)
*
[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
Samuel Kotz & Saralees Nadarajah]
discuss the relationship of the types of extreme value distributions.
[endsect][/section:exp_dist Exponential]
[/ exponential.qbk

View File

@@ -36,6 +36,11 @@ More information can be found on the
and [@http://en.wikipedia.org/wiki/Extreme_value_theory Extreme value theory]
websites.
The relationship of the types of extreme value distributions, of which this is but one, is
discussed by
[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
Samuel Kotz & Saralees Nadarajah].
The distribution has a PDF given by:
f(x) = (1/scale) e[super -(x-location)/scale] e[super -e[super -(x-location)/scale]]
@@ -46,11 +51,11 @@ f(x) = e[super -x]e[super -e[super -x]]
The following graph illustrates how the PDF varies with the location parameter:
[$../graphs/extreme_val_dist.png]
[graph extreme_value_pdf1]
And this graph illustrates how the PDF varies with the shape parameter:
[$../graphs/extreme_val_dist2.png]
[graph extreme_value_pdf2]
[h4 Member Functions]

View File

@@ -41,7 +41,7 @@ has the PDF:
The following graph illustrates how the PDF varies depending on the
two degrees of freedom parameters.
[$../graphs/fisher_f.png]
[graph fisher_f_pdf]
[h4 Member Functions]

View File

@@ -61,9 +61,9 @@ parameter], you should pass the reciprocal of the rate as the scale parameter.
The following two graphs illustrate how the PDF of the gamma distribution
varies as the parameters vary:
[$../graphs/gamma_dist1.png]
[graph gamma1_pdf]
[$../graphs/gamma_dist2.png]
[graph gamma2_pdf]
The [*Erlang Distribution] is the same as the Gamma, but with the shape parameter
an integer. It is often expressed using a /rate/ rather than a /scale/ as the

View File

@@ -43,11 +43,11 @@ parameter on the PDF, note that the range of the random
variable remains \[0,+[infin]\] irrespective of the value of the
location parameter:
[$../graphs/lognormal1.png]
[graph lognormal_pdf1]
The next graph illustrates the effect of the scale parameter on the PDF:
[$../graphs/lognormal2.png]
[graph lognormal_pdf2]
[h4 Member Functions]

View File

@@ -0,0 +1,211 @@
[section:nc_beta_dist Noncentral Beta Distribution]
``#include <boost/math/distributions/non_central_beta.hpp>``
namespace boost{ namespace math{
template <class RealType = double,
class ``__Policy`` = ``__policy_class`` >
class non_central_beta_distribution;
typedef non_central_beta_distribution<> non_central_beta;
template <class RealType, class ``__Policy``>
class non_central_beta_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
non_central_beta_distribution(RealType alpha, RealType beta, RealType lambda);
// Accessor to shape parameters:
RealType alpha()const;
RealType beta()const;
// Accessor to non-centrality parameter lambda:
RealType non_centrality()const;
};
}} // namespaces
The noncentral beta distribution is a generalization of the __beta_distrib.
It is defined as the ratio
X = [chi][sub m][super 2]([lambda]) \/ ([chi][sub m][super 2]([lambda])
+ [chi][sub n][super 2])
where [chi][sub m][super 2]([lambda]) is a noncentral [chi][super 2]
random variable with /m/ degrees of freedom, and [chi][sub n][super 2]
is a central [chi][super 2] random variable with /n/ degrees of freedom.
This gives a PDF that can be expressed as a Poisson mixture
of beta distribution PDFs:
[equation nc_beta_ref1]
where P(i;[lambda]\/2) is the discrete Poisson probablity at /i/, with mean
[lambda]\/2, and I[sub x][super ']([alpha], [beta]) is the derivative of
the incomplete beta function. This leads to the usual form of the CDF
as:
[equation nc_beta_ref2]
The following graph illustrates how the distribution changes
for different values of [lambda]:
[graph nc_beta_pdf]
[h4 Member Functions]
non_central_beta_distribution(RealType a, RealType b, RealType lambda);
Constructs a noncentral beta distribution with shape parameters /a/ and /b/
and non-centrality parameter /lambda/.
Requires a > 0, b > 0 and lambda >= 0, otherwise calls __domain_error.
RealType alpha()const;
Returns the parameter /a/ from which this object was constructed.
RealType beta()const;
Returns the parameter /b/ from which this object was constructed.
RealType non_centrality()const;
Returns the parameter /lambda/ from which this object was constructed.
[h4 Non-member Accessors]
Most of the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
are supported: __cdf, __pdf, __quantile,
__median, __mode, __hazard, __chf, __range and __support.
However, the following are not currently implemented:
__mean, __variance, __sd, __skewness,
__kurtosis and __kurtosis_excess.
The domain of the random variable is \[0, 1\].
[h4 Accuracy]
The following table shows the peak errors
(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon])
found on various platforms with various floating point types.
No comparison to the [@http://www.r-project.org/ R-2.5.1 Math library],
or to the FORTRAN implementations of AS226 or AS310 are given since these appear
to only guarantee absolute error: this would causes our test harness
to assign an /"infinite"/ error to these libraries for some of our
test values when measuring /relative error/.
Unless otherwise specified any floating-point type that is narrower
than the one shown will have __zero_error.
[table Errors In CDF of the Noncentral Beta
[[Significand Size] [Platform and Compiler] [[alpha], [beta],[lambda] < 200] [[alpha],[beta],[lambda] > 200]]
[[53] [Win32, Visual C++ 8] [Peak=620 Mean=22] [Peak=8670 Mean=1040]]
[[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=825 Mean=50] [Peak=2.5x10[super 4] Mean=4000]]
[[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=825 Mean=30] [Peak=1.7x10[super 4] Mean=2500]]
[[113] [HPUX IA64, aCC A.06.06] [Peak=420 Mean=50] [Peak=9200 Mean=1200]]
]
Error rates for the PDF, the complement of the CDF and for the quantile
functions are broadly similar.
[h4 Tests]
There are two sets of test data used to verify this implementation:
firstly we can compare with a few sample values generated by the
[@http://www.r-project.org/ R library].
Secondly, we have tables of test data, computed with this
implementation and using interval arithmetic - this data should
be accurate to at least 50 decimal digits - and is the used for
our accuracy tests.
[h4 Implementation]
The CDF and its complement are evaluated as follows:
First we determine which of the two values (the CDF or its
complement) is likely to be the smaller, the crossover point
is taken to be the mean of the distribution: for this we use the
approximation due to: R. Chattamvelli and R. Shanmugam,
"Algorithm AS 310: Computing the Non-Central Beta Distribution Function",
Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.
[equation nc_beta_ref3]
Then either the CDF or its complement is computed using the
relations:
[equation nc_beta_ref4]
The summation is performed by starting at i = [lambda]/2, and then recursing
in both directions, using the usual recurrence relations for the Poisson
PDF and incomplete beta functions. This is the "Method 2" described
by:
Denise Benton and K. Krishnamoorthy,
"Computing discrete mixtures of continuous
distributions: noncentral chisquare, noncentral t
and the distribution of the square of the sample
multiple correlation coefficient",
Computational Statistics & Data Analysis 43 (2003) 249-267.
Specific applications of the above formulae to the noncentral
beta distribution can be found in:
Russell V. Lenth,
"Algorithm AS 226: Computing Noncentral Beta Probabilities",
Applied Statistics, Vol. 36, No. 2. (1987), pp. 241-244.
H. Frick,
"Algorithm AS R84: A Remark on Algorithm AS 226: Computing Non-Central Beta
Probabilities", Applied Statistics, Vol. 39, No. 2. (1990), pp. 311-312.
Ming Long Lam,
"Remark AS R95: A Remark on Algorithm AS 226: Computing Non-Central Beta
Probabilities", Applied Statistics, Vol. 44, No. 4. (1995), pp. 551-552.
Harry O. Posten,
"An Effective Algorithm for the Noncentral Beta Distribution Function",
The American Statistician, Vol. 47, No. 2. (May, 1993), pp. 129-131.
R. Chattamvelli,
"A Note on the Noncentral Beta Distribution Function",
The American Statistician, Vol. 49, No. 2. (May, 1995), pp. 231-234.
Of these, the Posten reference provides the most complete overview,
and includes the modification starting iteration at [lambda]/2.
The main difference between this implementation and the above
references is the direct computation of the complement when most
efficient to do so, and the accumulation of the sum to -1 rather
than subtracting the result from 1 at the end: this can substantially
reduce the number of iterations required when the result is near 1.
The PDF is computed using the methodology of Benton and Krishnamoorthy
and the relation:
[equation nc_beta_ref1]
Quantiles are computed using a specially modified version of
[link math_toolkit.toolkit.internals1.roots2 bracket_and_solve_root],
starting the search for the root at the mean of the distribution.
(A Cornish-Fisher type expansion was also tried, but while this gets
quite close to the root in many cases, when it is wrong it tends to
introduce quite pathological behaviour: more investigation in this
area is probably warranted).
[endsect][/section:nc_beta_dist]
[/ nc_beta.qbk
Copyright 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]

View File

@@ -0,0 +1,280 @@
[section:nc_chi_squared_dist Noncentral Chi-Squared Distribution]
``#include <boost/math/distributions/non_central_chi_squared.hpp>``
namespace boost{ namespace math{
template <class RealType = double,
class ``__Policy`` = ``__policy_class`` >
class non_central_chi_squared_distribution;
typedef non_central_chi_squared_distribution<> non_central_chi_squared;
template <class RealType, class ``__Policy``>
class non_central_chi_squared_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
non_central_chi_squared_distribution(RealType v, RealType lambda);
// Accessor to degrees of freedom parameter v:
RealType degrees_of_freedom()const;
// Accessor to non centrality parameter lambda:
RealType non_centrality()const;
// Parameter finders:
static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
template <class A, class B, class C>
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);
static RealType find_non_centrality(RealType v, RealType x, RealType p);
template <class A, class B, class C>
static RealType find_non_centrality(const complemented3_type<A,B,C>& c);
};
}} // namespaces
The noncentral chi-squared distribution is a generalization of the
__chi_squared_distrib. If X[sub i] are [nu] independent, normally
distributed random variables with means [mu][sub i] and variances
[sigma][sub i][super 2], then the random variable
[equation nc_chi_squ_ref1]
is distributed according to the noncentral chi-squared distribution.
The noncentral chi-squared distribution has two parameters:
[nu] which specifies the number of degrees of freedom
(i.e. the number of X[sub i]), and [lambda] which is related to the
mean of the random variables X[sub i] by:
[equation nc_chi_squ_ref2]
(Note that some references define [lambda] as one half of the above sum).
This leads to a PDF of:
[equation nc_chi_squ_ref3]
where ['f(x;k)] is the central chi-squared distribution PDF, and
['I[sub v](x)] is a modified Bessel function of the first kind.
The following graph illustrates how the distribution changes
for different values of [lambda]:
[graph nccs_pdf]
[h4 Member Functions]
non_central_chi_squared_distribution(RealType v, RealType lambda);
Constructs a Chi-Squared distribution with /v/ degrees of freedom
and non-centrality parameter /lambda/.
Requires v > 0 and lambda >= 0, otherwise calls __domain_error.
RealType degrees_of_freedom()const;
Returns the parameter /v/ from which this object was constructed.
RealType non_centrality()const;
Returns the parameter /lambda/ from which this object was constructed.
static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
This function returns the number of degrees of freedom /v/ such that:
`cdf(non_central_chi_squared<RealType, Policy>(v, lambda), x) == p`
template <class A, class B, class C>
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);
When called with argument `boost::math::complement(lambda, x, q)`
this function returns the number of degrees of freedom /v/ such that:
`cdf(complement(non_central_chi_squared<RealType, Policy>(v, lambda), x)) == q`.
static RealType find_non_centrality(RealType v, RealType x, RealType p);
This function returns the non centrality parameter /lambda/ such that:
`cdf(non_central_chi_squared<RealType, Policy>(v, lambda), x) == p`
template <class A, class B, class C>
static RealType find_non_centrality(const complemented3_type<A,B,C>& c);
When called with argument `boost::math::complement(v, x, q)`
this function returns the non centrality parameter /lambda/ such that:
`cdf(complement(non_central_chi_squared<RealType, Policy>(v, lambda), x)) == q`.
[h4 Non-member Accessors]
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
that are generic to all distributions are supported: __usual_accessors.
The domain of the random variable is \[0, +[infin]\].
[h4 Examples]
There is a
[link math_toolkit.dist.stat_tut.weg.nccs_eg worked example]
for the noncentral chi-squared distribution.
[h4 Accuracy]
The following table shows the peak errors
(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon])
found on various platforms with various floating-point types,
along with comparisons to the [@http://www.r-project.org/ R-2.5.1 Math library].
Unless otherwise specified, any floating-point type that is narrower
than the one shown will have __zero_error.
[table Errors In CDF of the Noncentral Chi-Squared
[[Significand Size] [Platform and Compiler] [[nu],[lambda] < 200] [[nu],[lambda] > 200]]
[[53] [Win32, Visual C++ 8] [Peak=50 Mean=9.9
R Peak=685 Mean=109
] [Peak=9780 Mean=718
R Peak=3x10[super 8] Mean=2x10[super 7] ] ]
[[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=270 Mean=27] [Peak=7900 Mean=900]]
[[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=107 Mean=17] [Peak=5000 Mean=630]]
[[113] [HPUX IA64, aCC A.06.06] [Peak=270 Mean=20] [Peak=4600 Mean=560]]
]
Error rates for the complement of the CDF and for the quantile
functions are broadly similar. Special mention should go to
the `mode` function: there is no closed form for this function,
so it is evaluated numerically by finding the maxima of the PDF:
in principal this can not produce an accuracy greater than the
square root of the machine epsilon.
[h4 Tests]
There are two sets of test data used to verify this implementation:
firstly we can compare with published data, for example with
Table 6 of "Self-Validating Computations of Probabilities for
Selected Central and Noncentral Univariate Probability Functions",
Morgan C. Wang and William J. Kennedy,
Journal of the American Statistical Association,
Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
Secondly, we have tables of test data, computed with this
implementation and using interval arithmetic - this data should
be accurate to at least 50 decimal digits - and is the used for
our accuracy tests.
[h4 Implementation]
The CDF and its complement are evaluated as follows:
First we determine which of the two values (the CDF or its
complement) is likely to be the smaller: for this we can use the
relation due to Temme (see "Asymptotic and Numerical Aspects of the
Noncentral Chi-Square Distribution", N. M. Temme, Computers Math. Applic.
Vol 25, No. 5, 55-63, 1993) that:
F([nu],[lambda];[nu]+[lambda]) [asymp] 0.5
and so compute the CDF when the random variable is less than
[nu]+[lambda], and its complement when the random variable is
greater than [nu]+[lambda]. If necessary the computed result
is then subtracted from 1 to give the desired result (the CDF or its
complement).
For small values of the non centrality parameter, the CDF is computed
using the method of Ding (see "Algorithm AS 275: Computing the Non-Central
#2 Distribution Function", Cherng G. Ding, Applied Statistics, Vol. 41,
No. 2. (1992), pp. 478-482). This uses the following series representation:
[equation nc_chi_squ_ref4]
which requires just one call to __gamma_p_derivative with the subsequent
terms being computed by recursion as shown above.
For larger values of the non-centrality parameter, Ding's method can take
an unreasonable number of terms before convergence is achieved. Furthermore,
the largest term is not the first term, so in extreme cases the first term may
be zero, leading to a zero result, even though the true value may be non-zero.
Therefore, when the non-centrality parameter is greater than 200, the method due
to Krishnamoorthy (see "Computing discrete mixtures of continuous distributions:
noncentral chisquare, noncentral t and the distribution of the
square of the sample multiple correlation coefficient",
Denise Benton and K. Krishnamoorthy, Computational Statistics &
Data Analysis, 43, (2003), 249-267) is used.
This method uses the well known sum:
[equation nc_chi_squ_ref5]
Where P[sub a](x) is the incomplete gamma function.
The method starts at the [lambda]th term, which is where the Poisson weighting
function achieves its maximum value, although this is not necessarily
the largest overall term. Subsequent terms are calculated via the normal
recurrence relations for the incomplete gamma function, and iteration proceeds
both forwards and backwards until sufficient precision has been achieved. It
should be noted that recurrence in the forwards direction of P[sub a](x) is
numerically unstable. However, since we always start /after/ the largest
term in the series, numeric instability is introduced more slowly than the
series converges.
Computation of the complement of the CDF uses an extension of Krishnamoorthy's
method, given that:
[equation nc_chi_squ_ref6]
we can again start at the [lambda]'th term and proceed in both directions from
there until the required precision is achieved. This time it is backwards
recursion on the incomplete gamma function Q[sub a](x) which is unstable.
However, as long as we start well /before/ the largest term, this is not an
issue in practice.
The PDF is computed directly using the relation:
[equation nc_chi_squ_ref3]
Where ['f(x; v)] is the PDF of the central __chi_squared_distrib and
['I[sub v](x)] is a modified Bessel function, see __cyl_bessel_i.
For small values of the
non-centrality parameter the relation in terms of __cyl_bessel_i
is used. However, this method fails for large values of the
non-centrality parameter, so in that case the infinite sum is
evaluated using the method of Benton and Krishnamoorthy, and
the usual recurrence relations for successive terms.
The quantile functions are computed by numeric inversion of the CDF.
There is no [@http://en.wikipedia.org/wiki/Closed_form closed form]
for the mode of the noncentral chi-squared
distribution: it is computed numerically by finding the maximum
of the PDF. Likewise, the median is computed numerically via
the quantile.
The remaining non-member functions use the following formulas:
[equation nc_chi_squ_ref7]
Some analytic properties of noncentral distributions
(particularly unimodality, and monotonicity of their modes)
are surveyed and summarized by:
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
[endsect] [/section:nc_chi_squared_dist]
[/ nc_chi_squared.qbk
Copyright 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]

View File

@@ -0,0 +1,20 @@
[section:nccs_eg Non Central Chi Squared Example]
(See also the reference documentation for the __non_central_chi_squared_distrib.)
[section:nccs_power_eg Tables of the power function of the [chi][super 2] test.]
[import ../../../example/nc_chi_sq_example.cpp]
[nccs_eg]
[endsect] [/nccs_power_eg Tables of the power function of the [chi][super 2] test.]
[endsect] [/section:nccs_eg Non Central Chi Squared Example]
[/
Copyright 2006 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]

View File

@@ -0,0 +1,193 @@
[section:nc_f_dist Noncentral F Distribution]
``#include <boost/math/distributions/non_central_f.hpp>``
namespace boost{ namespace math{
template <class RealType = double,
class ``__Policy`` = ``__policy_class`` >
class non_central_f_distribution;
typedef non_central_f_distribution<> non_central_f;
template <class RealType, class ``__Policy``>
class non_central_f_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
// Accessor to degrees_of_freedom parameters v1 & v2:
RealType degrees_of_freedom1()const;
RealType degrees_of_freedom2()const;
// Accessor to non-centrality parameter lambda:
RealType non_centrality()const;
};
}} // namespaces
The noncentral F distribution is a generalization of the __F_distrib.
It is defined as the ratio
F = (X/v1) / (Y/v2)
where X is a noncentral [chi][super 2]
random variable with /v1/ degrees of freedom and non-centrality parameter [lambda],
and Y is a central [chi][super 2] random variable with /v2/ degrees of freedom.
This gives the following PDF:
[equation nc_f_ref1]
where L[sub a][super b](c) is a generalised Laguerre polynomial and B(a,b) is the
__beta function, or
[equation nc_f_ref2]
The following graph illustrates how the distribution changes
for different values of [lambda]:
[graph nc_f_pdf]
[h4 Member Functions]
non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
Constructs a non-central beta distribution with parameters /v1/ and /v2/
and non-centrality parameter /lambda/.
Requires v1 > 0, v2 > 0 and lambda >= 0, otherwise calls __domain_error.
RealType degrees_of_freedom1()const;
Returns the parameter /v1/ from which this object was constructed.
RealType degrees_of_freedom2()const;
Returns the parameter /v2/ from which this object was constructed.
RealType non_centrality()const;
Returns the non-centrality parameter /lambda/ from which this object was constructed.
[h4 Non-member Accessors]
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
that are generic to all distributions are supported: __usual_accessors.
The domain of the random variable is \[0, +[infin]\].
[h4 Accuracy]
This distribution is implemented in terms of the
__non_central_beta_distrib: refer to that distribution for accuracy data.
[h4 Tests]
Since this distribution is implemented by adapting another distribution,
the tests consist of basic sanity checks computed by the
[@http://www.r-project.org/ R-2.5.1 Math library statistical
package] and its pbeta and dbeta functions.
[h4 Implementation]
In the following table /v1/ and /v2/ are the first and second
degrees of freedom parameters of the distribution, [lambda]
is the non-centrality parameter,
/x/ is the random variate, /p/ is the probability, and /q = 1-p/.
[table
[[Function][Implementation Notes]]
[[pdf][Implemented in terms of the non-central beta PDF using the relation:
f(x;v1,v2;[lambda]) = (v1\/v2) / ((1+y)*(1+y)) * g(y\/(1+y);v1\/2,v2\/2;[lambda])
where g(x; a, b; [lambda]) is the non central beta PDF, and:
y = x * v1 \/ v2
]]
[[cdf][Using the relation:
p = B[sub y](v1\/2, v2\/2; [lambda])
where B[sub x](a, b; [lambda]) is the noncentral beta distribution CDF and
y = x * v1 \/ v2
]]
[[cdf complement][Using the relation:
q = 1 - B[sub y](v1\/2, v2\/2; [lambda])
where 1 - B[sub x](a, b; [lambda]) is the complement of the
noncentral beta distribution CDF and
y = x * v1 \/ v2
]]
[[quantile][Using the relation:
x = (bx \/ (1-bx)) * (v1 \/ v2)
where
bx = Q[sub p][super -1](v1\/2, v2\/2; [lambda])
and
Q[sub p][super -1](v1\/2, v2\/2; [lambda])
is the noncentral beta quantile.
]]
[[quantile
from the complement][
Using the relation:
x = (bx \/ (1-bx)) * (v1 \/ v2)
where
bx = QC[sub q][super -1](v1\/2, v2\/2; [lambda])
and
QC[sub q][super -1](v1\/2, v2\/2; [lambda])
is the noncentral beta quantile from the complement.]]
[[mean][v2 * (v1 + l) \/ (v1 * (v2 - 2))]]
[[mode][By numeric maximalisation of the PDF.]]
[[variance][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.] ]]
[[skewness][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
Mathematica documentation] ]]
[[kurtosis and kurtosis excess]
[Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
Mathematica documentation] ]]
]
Some analytic properties of noncentral distributions
(particularly unimodality, and monotonicity of their modes)
are surveyed and summarized by:
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
[endsect] [/section:nc_f_dist]
[/ nc_f.qbk
Copyright 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]

View File

@@ -0,0 +1,195 @@
[section:nc_t_dist Noncentral T Distribution]
``#include <boost/math/distributions/non_central_t.hpp>``
namespace boost{ namespace math{
template <class RealType = double,
class ``__Policy`` = ``__policy_class`` >
class non_central_t_distribution;
typedef non_central_t_distribution<> non_central_t;
template <class RealType, class ``__Policy``>
class non_central_t_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
non_central_t_distribution(RealType v, RealType delta);
// Accessor to degrees_of_freedom parameter v:
RealType degrees_of_freedom()const;
// Accessor to non-centrality parameter lambda:
RealType non_centrality()const;
};
}} // namespaces
The noncentral T distribution is a generalization of the __students_t_distrib.
Let X have a normal distribution with mean [delta] and variance 1, and let
[nu] S[super 2] have
a chi-squared distribution with degrees of freedom [nu]. Assume that
X and S[super 2] are independent. The
distribution of t[sub [nu]]([delta])=X/S is called a
noncentral t distribution with degrees of freedom [nu] and noncentrality
parameter [delta].
This gives the following PDF:
[equation nc_t_ref1]
where [sub 1]F[sub 1](a;b;x) is a confluent hypergeometric function.
The following graph illustrates how the distribution changes
for different values of [delta]:
[graph nc_t_pdf]
[h4 Member Functions]
non_central_t_distribution(RealType v, RealType lambda);
Constructs a non-central t distribution with degrees of freedom
parameter /v/ and non-centrality parameter /delta/.
Requires v > 0 and finite delta, otherwise calls __domain_error.
RealType degrees_of_freedom()const;
Returns the parameter /v/ from which this object was constructed.
RealType non_centrality()const;
Returns the non-centrality parameter /delta/ from which this object was constructed.
[h4 Non-member Accessors]
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
that are generic to all distributions are supported: __usual_accessors.
The domain of the random variable is \[-[infin], +[infin]\].
[h4 Accuracy]
The following table shows the peak errors
(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon])
found on various platforms with various floating-point types.
Unless otherwise specified, any floating-point type that is narrower
than the one shown will have __zero_error.
[table Errors In CDF of the Noncentral T Distribution
[[Significand Size] [Platform and Compiler] [[nu],[delta] < 600]]
[[53] [Win32, Visual C++ 8] [Peak=120 Mean=26 ] ]
[[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=121 Mean=26] ]
[[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=122 Mean=25] ]
[[113] [HPUX IA64, aCC A.06.06] [Peak=115 Mean=24] ]
]
[caution The complexity of the current algorithm is dependent upon
[delta][super 2]: consequently the time taken to evaluate the CDF
increases rapidly for [delta] > 500, likewise the accuracy decreases
rapidly for very large [delta].]
Accuracy for the quantile and PDF functions should be broadly similar,
note however that the /mode/ is determined numerically and can not
in principal be more accurate than the square root of machine epsilon.
[h4 Tests]
There are two sets of tests of this distribution: basic sanity checks
compare this implementation to the test values given in
"Computing discrete mixtures of continuous
distributions: noncentral chisquare, noncentral t
and the distribution of the square of the sample
multiple correlation coefficient."
Denise Benton, K. Krishnamoorthy,
Computational Statistics & Data Analysis 43 (2003) 249-267.
While accuracy checks use test data computed with this
implementation and arbitary precision interval arithmetic:
this test data is believed to be accurate to at least 50
decimal places.
[h4 Implementation]
The CDF is computed using a modification of the method
described in
"Computing discrete mixtures of continuous
distributions: noncentral chisquare, noncentral t
and the distribution of the square of the sample
multiple correlation coefficient."
Denise Benton, K. Krishnamoorthy,
Computational Statistics & Data Analysis 43 (2003) 249-267.
This uses the following formula for the CDF:
[equation nc_t_ref2]
Where I[sub x](a,b) is the incomplete beta function, and
[Phi](x) is the normal CDF at x.
Iteration starts at the largest of the Poisson weighting terms
(at i = [delta][super 2] / 2) and then proceeds in both directions
as per Benton and Krishnamoorthy's paper.
Alternatively, by considering what happens when t = [infin], we have
x = 1, and therefore I[sub x](a,b) = 1 and:
[equation nc_t_ref3]
From this we can easily show that:
[equation nc_t_ref4]
and therefore we have a means to compute either the probability or its
complement directly without the risk of cancellation error. The
crossover criterion for choosing whether to calculate the CDF or
it's complement is the same as for the
__non_central_beta_distrib.
The PDF can be computed by a very similar method using:
[equation nc_t_ref5]
Where I[sub x][super '](a,b) is the derivative of the incomplete beta function.
The quantile is calculated via the usual
[link math_toolkit.toolkit.internals1.roots2
derivative-free root-finding techniques],
with the initial guess taken as the quantile of a normal approximation
to the noncentral T.
There is no closed form for the mode, so this is computed via
functional maximisation of the PDF.
The remaining functions (mean, variance etc) are implemented
using the formulas given in
Weisstein, Eric W. "Noncentral Student's t-Distribution."
From MathWorld--A Wolfram Web Resource.
[@http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html
http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html]
and in the
[@http://reference.wolfram.com/mathematica/ref/NoncentralStudentTDistribution.html
Mathematica documentation].
Some analytic properties of noncentral distributions
(particularly unimodality, and monotonicity of their modes)
are surveyed and summarized by:
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
[endsect] [/section:nc_t_dist]
[/ nc_t.qbk
Copyright 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]

View File

@@ -72,12 +72,12 @@ It has the PDF:
The following graph illustrate how the PDF varies as the success fraction
/p/ changes:
[$../graphs/neg_binomial_pdf1.png]
[graph negative_binomial_pdf_1]
Alternatively, this graph shows how the shape of the PDF varies as
the number of successes changes:
[$../graphs/neg_binomial_pdf2.png]
[graph negative_binomial_pdf_2]
[h4 Related Distributions]

View File

@@ -40,7 +40,7 @@ Given mean [mu][space] and standard deviation [sigma][space] it has the PDF:
The variation the PDF with its parameters is illustrated
in the following graph:
[$../graphs/normal.png]
[graph normal_pdf]
[h4 Member Functions]

View File

@@ -37,11 +37,14 @@ The [@http://mathworld.wolfram.com/paretoDistribution.html Pareto distribution]
often describes the larger compared to the smaller.
A classic example is that 80% of the wealth is owned by 20% of the population.
The following graph illustrates how the PDF varies with the shape parameter [alpha]:
The following graph illustrates how the PDF varies with the location parameter [beta]:
[graph pareto_pdf1]
And this graph illustrates how the PDF varies with the shape parameter [alpha]:
[graph pareto_pdf2]
[/$../graphs/paretoShape.png]
[/ TODO produce a graph as png or svg]
[@http://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Pareto_distributionPDF.png/325px-Pareto_distributionPDF.png Pareto pdf]
[h4 Related distributions]

View File

@@ -41,7 +41,7 @@ for k events, with an expected number of events [lambda].
The following graph illustrates how the PDF varies with the parameter [lambda]:
[$../graphs/poisson.png]
[graph poisson_pdf_1]
[discrete_quantile_warning Poisson]

View File

@@ -40,11 +40,11 @@ or real and imaginary components may have absolute values that are Rayleigh dist
The following graph illustrates how the Probability density Function(pdf) varies with the shape parameter [sigma]:
[$../graphs/rayleigh_pdf.png]
[graph rayleigh_pdf]
and the Cumulative Distribution Function (cdf)
[$../graphs/rayleigh_cdf.png]
[graph rayleigh_cdf]
[h4 Related distributions]

View File

@@ -55,7 +55,7 @@ As the number of degrees of freedom tends towards infinity, then this
distribution approaches the normal-distribution. The following graph
illustrates how the PDF varies with the degrees of freedom [nu]:
[$../graphs/students_t.png]
[graph students_t_pdf]
[h4 Member Functions]

View File

@@ -72,11 +72,11 @@ The following graph illustrates how the
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function PDF]
varies with the various parameters:
[$../graphs/triangular_pdf.png]
[graph triangular_pdf]
and cumulative distribution function
[$../graphs/triangular_cdf.png]
[graph triangular_cdf]
[h4 Member Functions]

View File

@@ -61,11 +61,11 @@ The following graph illustrates how the
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function PDF]
varies with the shape parameter:
[$../graphs/uniform_pdf.png]
[graph uniform_pdf]
Likewise for the CDF:
[$../graphs/uniform_cdf.png]
[graph uniform_cdf]
[h4 Member Functions]

View File

@@ -45,11 +45,11 @@ If the failure rate is:
The following graph illustrates how the PDF varies with the shape parameter [alpha]:
[$../graphs/weibull.png]
[graph weibull_pdf1]
While this graph illustrates how the PDF varies with the scale parameter [beta]:
[$../graphs/weibull2.png]
[graph weibull_pdf2]
[h4 Related distributions]
@@ -58,6 +58,11 @@ When [alpha][space] = 3, the
[@http://en.wikipedia.org/wiki/Normal_distribution normal distribution].
When [alpha][space] = 1, the Weibull distribution reduces to the
[@http://en.wikipedia.org/wiki/Exponential_distribution exponential distribution].
The relationship of the types of extreme value distributions, of which the Weibull is but one, is
discussed by
[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
Samuel Kotz & Saralees Nadarajah].
[h4 Member Functions]

View File

@@ -76,7 +76,7 @@ These functions return Carlson's symmetrical elliptic integrals, the functions
have complicated behavior over all their possible domains, but the following
graph gives an idea of their behavior:
[$../graphs/ellint_c.png]
[graph ellint_carlson]
The return type of these functions is computed using the __arg_pomotion_rules
when the arguments are of different types: otherwise the return is the same type

View File

@@ -35,7 +35,7 @@ LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
These two functions evaluate the incomplete elliptic integral of the first kind
['F([phi], k)] and its complete counterpart ['K(k) = F([pi]/2, k)].
[$../graphs/ellint_1.png]
[graph ellint_1]
The return type of these functions is computed using the __arg_pomotion_rules
when T1 and T2 are different types: when they are the same type then the result
@@ -135,7 +135,7 @@ and
These two functions evaluate the incomplete elliptic integral of the second kind
['E([phi], k)] and its complete counterpart ['E(k) = E([pi]/2, k)].
[$../graphs/ellint_2.png]
[graph ellint_2]
The return type of these functions is computed using the __arg_pomotion_rules
when T1 and T2 are different types: when they are the same type then the result
@@ -235,7 +235,7 @@ and
These two functions evaluate the incomplete elliptic integral of the third kind
['[Pi](n, [phi], k)] and its complete counterpart ['[Pi](n, k) = E(n, [pi]/2, k)].
[$../graphs/ellint_3.png]
[graph ellint_3]
The return type of these functions is computed using the __arg_pomotion_rules
when the arguments are of different types: when they are the same type then the result

View File

@@ -0,0 +1,46 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>E</mi>
<mi>i</mi>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mo>&#x2212;</mo>
<msub>
<mi>E</mi>
<mn>1</mn>
</msub>
<mfenced>
<mrow>
<mo>&#x2212;</mo>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<munderover>
<mo>&#x222B;</mo>
<mrow>
<mo>&#x2212;</mo>
<mi>x</mi>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mi>t</mi>
</mrow>
</msup>
<mi>d</mi>
<mi>t</mi>
</mrow>
<mi>t</mi>
</mfrac>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 5.8 KiB

View File

@@ -0,0 +1,42 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mtext>Ei</mtext>
<mfenced>
<mrow>
<mi>z</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mi>log</mi>
<mfenced>
<mrow>
<mi>z</mi>
</mrow>
</mfenced>
<mo>+</mo>
<mi>&#x03B3;</mi>
<mo>+</mo>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mi>z</mi>
<mi>k</mi>
</msup>
</mrow>
<mrow>
<mi>k</mi>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 5.1 KiB

View File

@@ -0,0 +1,45 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mtext>Ei</mtext>
<mfenced>
<mrow>
<mi>z</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mi>log</mi>
<mfenced>
<mrow>
<mfrac>
<mi>z</mi>
<msub>
<mi>z</mi>
<mn>0</mn>
</msub>
</mfrac>
</mrow>
</mfenced>
<mo>+</mo>
<mfenced>
<mrow>
<mi>z</mi>
<mo>&#x2212;</mo>
<msub>
<mi>z</mi>
<mn>0</mn>
</msub>
</mrow>
</mfenced>
<mi>R</mi>
<mfenced>
<mrow>
<mfrac>
<mi>z</mi>
<mn>3</mn>
</mfrac>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 6.1 KiB

View File

@@ -0,0 +1,32 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mtext>Ei</mtext>
<mfenced>
<mrow>
<mi>z</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mi>z</mi>
<mo>+</mo>
<mfrac>
<msup>
<mi>e</mi>
<mi>z</mi>
</msup>
<mi>z</mi>
</mfrac>
<mfenced>
<mrow>
<mi>c</mi>
<mo>+</mo>
<mi>R</mi>
<mfenced>
<mrow>
<mi>t</mi>
</mrow>
</mfenced>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="17.534238pt" width="112.195285pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -14.756895 112.195285 17.534238"><svg:metadata><svgmath:metrics top="17.5342382812" bottom="0.0" baseline="2.77734375" axis="6.76171875"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="5.332031" font-family="Times New Roman" fill="black">Ei</svg:text><svg:g transform="translate(12.664067, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.692383" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g><svg:g transform="translate(9.058594, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.052090, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.153004, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.692383" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g><svg:g transform="translate(46.882168, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(56.902348, -3.984375)"><svg:g transform="translate(0.585938, -1.740234)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">e</svg:text><svg:g transform="translate(5.326172, -5.367188)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.911592" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g></svg:g><svg:g transform="translate(2.514961, 6.761719)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.692383" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="10.092422" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(67.580707, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">c</svg:text><svg:g transform="translate(7.992836, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(17.427078, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(25.032547, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="1.666992" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text></svg:g><svg:g transform="translate(7.593750, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:g><svg:g transform="translate(40.618484, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:svg>

After

Width:  |  Height:  |  Size: 4.4 KiB

View File

@@ -0,0 +1,41 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<msub>
<mi>E</mi>
<mi>n</mi>
</msub>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<msubsup>
<mo>&#x222B;</mo>
<mrow>
<mn>1</mn>
</mrow>
<mi>&#x221E;</mi>
</msubsup>
<mfrac>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mi>x</mi>
<mi>t</mi>
</mrow>
</msup>
<mi>d</mi>
<mi>t</mi>
</mrow>
<mrow>
<msup>
<mi>t</mi>
<mi>n</mi>
</msup>
</mrow>
</mfrac>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="30.002155pt" width="80.838902pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -22.649140 80.838902 30.002155"><svg:metadata><svgmath:metrics top="30.002154878" bottom="0.465026936762" baseline="7.35301521801" axis="11.337390218"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.934570" font-family="Times New Roman" font-style="italic" fill="black">E</svg:text><svg:g transform="translate(7.857422, 2.683594)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g><svg:g transform="translate(12.117422, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.167555, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.268469, -3.984375)"><svg:text font-size="25.051643" text-anchor="middle" y="5.465710" x="3.467842" font-family="Times New Roman" fill="black"></svg:text><svg:g transform="translate(6.898988, 9.498601)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(6.898988, -14.737577)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="3.036914" font-family="Times New Roman" font-style="italic" fill="black"></svg:text></svg:g></svg:g><svg:g transform="translate(52.827222, -3.984375)"><svg:g transform="translate(0.585938, -1.740234)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">e</svg:text><svg:g transform="translate(5.326172, -5.367188)"><svg:g transform="translate(0.000000, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black"></svg:text></svg:g><svg:g transform="translate(4.804980, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.173682" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(8.869453, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text></svg:g></svg:g><svg:g transform="translate(16.749961, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" font-style="italic" fill="black">d</svg:text></svg:g><svg:g transform="translate(23.242148, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="1.666992" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text></svg:g></svg:g><svg:g transform="translate(10.077012, 10.731738)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="1.666992" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text><svg:g transform="translate(3.597656, -5.367188)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="28.011680" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g></svg:svg>

After

Width:  |  Height:  |  Size: 4.1 KiB

View File

@@ -0,0 +1,101 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<msub>
<mi>E</mi>
<mi>n</mi>
</msub>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mfrac>
<msup>
<mfenced>
<mrow>
<mo>&#x2212;</mo>
<mi>z</mi>
</mrow>
</mfenced>
<mrow>
<mi>n</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</msup>
<mrow>
<mfenced>
<mrow>
<mi>n</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</mfenced>
<mo>!</mo>
</mrow>
</mfrac>
<mfenced>
<mrow>
<mi>&#x03C8;</mi>
<mfenced>
<mrow>
<mi>n</mi>
</mrow>
</mfenced>
<mo>&#x2212;</mo>
<mi>log</mi>
<mfenced>
<mrow>
<mi>z</mi>
</mrow>
</mfenced>
</mrow>
</mfenced>
<mo>&#x2212;</mo>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>0,</mn>
<mi>k</mi>
<mo>&#x2260;</mo>
<mi>n</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mfenced>
<mrow>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</mfenced>
<mi>k</mi>
</msup>
<msup>
<mi>z</mi>
<mi>k</mi>
</msup>
</mrow>
<mrow>
<mfenced>
<mrow>
<mi>k</mi>
<mo>&#x2212;</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfenced>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.1 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 13 KiB

View File

@@ -0,0 +1,101 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<msub>
<mi>E</mi>
<mi>n</mi>
</msub>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mfrac>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mi>x</mi>
</mrow>
</msup>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mi>x</mi>
<mo>&#x2212;</mo>
<mfrac>
<mi>n</mi>
<mrow>
<mn>2</mn>
<mo>+</mo>
<mi>n</mi>
<mo>+</mo>
<mi>x</mi>
<mo>&#x2212;</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mfenced>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfenced>
</mrow>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mi>n</mi>
<mo>+</mo>
<mi>x</mi>
<mo>&#x2212;</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mfenced>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfenced>
</mrow>
<mrow>
<mn>6</mn>
<mo>+</mo>
<mi>n</mi>
<mo>+</mo>
<mi>x</mi>
<mo>&#x2212;</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mfenced>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
</mfenced>
</mrow>
<mrow>
<mn>8</mn>
<mo>+</mo>
<mi>n</mi>
<mo>+</mo>
<mi>x</mi>
<mo>&#x2212;</mo>
<mo>&#x2026;</mo>
</mrow>
</mfrac>
</mrow>
</mfrac>
</mrow>
</mfrac>
</mrow>
</mfrac>
</mrow>
</mfrac>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 13 KiB

View File

@@ -0,0 +1,31 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<msub>
<mi>E</mi>
<mn>1</mn>
</msub>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mi>x</mi>
<mo>+</mo>
<mi>log</mi>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>+</mo>
<mi>c</mi>
<mo>+</mo>
<mi>R</mi>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="12.883548pt" width="136.995015pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -8.343763 136.995015 12.883548"><svg:metadata><svgmath:metrics top="12.8835477435" bottom="1.8387890625" baseline="4.53978515625" axis="8.52416015625"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.934570" font-family="Times New Roman" font-style="italic" fill="black">E</svg:text><svg:g transform="translate(7.857422, 2.700996)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(12.117422, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.167555, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.268469, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(47.659742, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(57.093984, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="7.666992" font-family="Times New Roman" fill="black">log</svg:text></svg:g><svg:g transform="translate(72.427969, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(88.811430, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(98.245672, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">c</svg:text></svg:g><svg:g transform="translate(106.238508, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(115.672750, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(123.278218, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:svg>

After

Width:  |  Height:  |  Size: 4.4 KiB

View File

@@ -0,0 +1,39 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<msub>
<mi>E</mi>
<mn>1</mn>
</msub>
<mfenced>
<mrow>
<mi>x</mi>
</mrow>
</mfenced>
<mo>=</mo>
<mfrac>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mi>x</mi>
</mrow>
</msup>
<mi>x</mi>
</mfrac>
<mfenced>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>R</mi>
<mfenced>
<mrow>
<mfrac>
<mn>1</mn>
<mi>x</mi>
</mfrac>
</mrow>
</mfenced>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="20.581348pt" width="105.842344pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -14.856738 105.842344 20.581348"><svg:metadata><svgmath:metrics top="20.5813476562" bottom="0.0417142185822" baseline="5.724609375" axis="9.708984375"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.934570" font-family="Times New Roman" font-style="italic" fill="black">E</svg:text><svg:g transform="translate(7.857422, 2.700996)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(12.117422, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.167555, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.854406, -3.984375)"><svg:g transform="translate(0.585938, -1.740234)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">e</svg:text><svg:g transform="translate(5.326172, -5.367188)"><svg:g transform="translate(0.000000, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black"></svg:text></svg:g><svg:g transform="translate(4.804980, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.173682" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g></svg:g></svg:g><svg:g transform="translate(4.821445, 6.902344)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="15.367500" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(55.807844, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text><svg:g transform="translate(8.666664, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(18.100906, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(25.706375, -3.984375)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">(</svg:text><svg:g transform="translate(4.582031, 0.000000)"><svg:g transform="translate(0.585938, -1.599609)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(0.723633, 6.902344)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="7.171875" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(12.339844, 0.000000)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:g><svg:g transform="translate(46.038406, -3.984375)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:svg>

After

Width:  |  Height:  |  Size: 4.8 KiB

View File

@@ -0,0 +1,56 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>f</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
<mo>;</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mi>P</mi>
<mfenced>
<mrow>
<mi>i</mi>
<mo>;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<msubsup>
<mi>I</mi>
<mrow>
<mi>x</mi>
</mrow>
<mo>&#x2032;</mo>
</msubsup>
<mfenced>
<mrow>
<mi>&#x03B1;</mi>
<mo>+</mo>
<mi>i</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 7.5 KiB

View File

@@ -0,0 +1,53 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>F</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
<mo>;</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mi>P</mi>
<mfenced>
<mrow>
<mi>i</mi>
<mo>;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<msub>
<mi>I</mi>
<mi>x</mi>
</msub>
<mfenced>
<mrow>
<mi>&#x03B1;</mi>
<mo>+</mo>
<mi>i</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 7.3 KiB

View File

@@ -0,0 +1,53 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>E</mi>
<mfenced>
<mrow>
<mi>X</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>&#x2243;</mo>
<mspace width="1em"/>
<mn>1</mn>
<mo>&#x2212;</mo>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03B2;</mi>
<mi>C</mi>
</mfrac>
</mrow>
</mfenced>
<mfenced>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mrow>
<mn>2</mn>
<msup>
<mi>C</mi>
<mn>2</mn>
</msup>
</mrow>
</mfrac>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>;</mo>
<mspace width="1em"/>
<mi>C</mi>
<mo>=</mo>
<mi>&#x03B1;</mi>
<mo>+</mo>
<mi>&#x03B2;</mi>
<mo>+</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 6.9 KiB

View File

@@ -0,0 +1,119 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mtable>
<mtr>
<mtd>
<mi>F</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
<mo>;</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mi>P</mi>
<mfenced>
<mrow>
<mi>i</mi>
<mo>;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<msub>
<mi>I</mi>
<mi>x</mi>
</msub>
<mfenced>
<mrow>
<mi>&#x03B1;</mi>
<mo>+</mo>
<mi>i</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
</mrow>
</mfenced>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
<mo>&#x2212;</mo>
<mi>F</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
<mo>;</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mi>P</mi>
<mfenced>
<mrow>
<mi>i</mi>
<mo>;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<mfenced>
<mrow>
<mn>1</mn>
<mo>&#x2212;</mo>
<msub>
<mi>I</mi>
<mi>x</mi>
</msub>
<mfenced>
<mrow>
<mi>&#x03B1;</mi>
<mo>+</mo>
<mi>i</mi>
<mo>,</mo>
<mi>&#x03B2;</mi>
</mrow>
</mfenced>
</mrow>
</mfenced>
</mtd>
</mtr>
</mtable>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -0,0 +1,35 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>k</mi>
</munderover>
<msup>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03C7;</mi>
<mi>i</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>&#x03C3;</mi>
<mi>i</mi>
</msub>
</mrow>
</mfrac>
</mrow>
</mfenced>
<mn>2</mn>
</msup>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="38.743550pt" width="42.733199pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -23.435193 42.733199 38.743550"><svg:metadata><svgmath:metrics top="38.7435503239" bottom="0.0" baseline="15.3083571932" axis="19.2927321932"/></svg:metadata><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="26.680296" text-anchor="middle" y="6.370442" x="9.510066" font-family="Times New Roman" fill="black"></svg:text><svg:g transform="translate(3.794012, 19.192888)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text><svg:g transform="translate(2.367129, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(7.172109, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:g transform="translate(7.423748, -13.535076)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.890791" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text></svg:g><svg:g transform="translate(19.020133, 0.000000)"><svg:text font-size="23.677766" transform="scale(0.506805, 1)" text-anchor="middle" y="5.653529" x="3.942441" font-family="Times New Roman" fill="black">(</svg:text><svg:g transform="translate(4.582031, 0.000000)"><svg:g transform="translate(0.585938, -5.531250)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.764648" font-family="Times New Roman" font-style="italic" fill="black">χ</svg:text><svg:g transform="translate(6.750000, 3.831797)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:g transform="translate(0.796875, 6.761719)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.958984" font-family="Times New Roman" font-style="italic" fill="black">σ</svg:text><svg:g transform="translate(6.328125, 2.683594)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="10.289004" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(15.456973, 0.000000)"><svg:text font-size="23.677766" transform="scale(0.506805, 1)" text-anchor="middle" y="5.653529" x="3.942441" font-family="Times New Roman" fill="black">)</svg:text></svg:g><svg:g transform="translate(19.453066, -6.370935)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">2</svg:text></svg:g></svg:g></svg:g></svg:svg>

After

Width:  |  Height:  |  Size: 3.0 KiB

View File

@@ -0,0 +1,39 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>&#x03BB;</mi>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>k</mi>
</munderover>
<msup>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BC;</mi>
<mi>i</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>&#x03C3;</mi>
<mi>i</mi>
</msub>
</mrow>
</mfrac>
</mrow>
</mfenced>
<mn>2</mn>
</msup>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="37.237855pt" width="84.465344pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -23.364730 84.465344 37.237855"><svg:metadata><svgmath:metrics top="37.2378545834" bottom="0.0" baseline="13.873125" axis="17.8575"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.973633" font-family="Times New Roman" font-style="italic" fill="black">λ</svg:text><svg:g transform="translate(5.572266, 0.000000)"/><svg:g transform="translate(20.905602, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(31.006516, 0.000000)"/><svg:g transform="translate(43.006516, -3.984375)"><svg:text font-size="25.024192" text-anchor="middle" y="5.292630" x="8.919756" font-family="Times New Roman" fill="black"></svg:text><svg:g transform="translate(3.203701, 17.757656)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text><svg:g transform="translate(2.367129, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(7.172109, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:g transform="translate(6.833438, -13.464612)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.890791" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text></svg:g></svg:g><svg:g transform="translate(60.846028, -3.984375)"><svg:text font-size="23.523093" transform="scale(0.510137, 1)" text-anchor="middle" y="5.616598" x="3.916687" font-family="Times New Roman" fill="black">(</svg:text><svg:g transform="translate(4.582031, 0.000000)"><svg:g transform="translate(0.585938, -5.531250)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.644531" font-family="Times New Roman" font-style="italic" fill="black">μ</svg:text><svg:g transform="translate(6.656250, 3.831797)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:g transform="translate(0.750000, 6.761719)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.958984" font-family="Times New Roman" font-style="italic" fill="black">σ</svg:text><svg:g transform="translate(6.328125, 2.683594)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="10.195254" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(15.363223, 0.000000)"><svg:text font-size="23.523093" transform="scale(0.510137, 1)" text-anchor="middle" y="5.616598" x="3.916687" font-family="Times New Roman" fill="black">)</svg:text></svg:g><svg:g transform="translate(19.359316, -6.300472)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">2</svg:text></svg:g></svg:g></svg:svg>

After

Width:  |  Height:  |  Size: 3.5 KiB

View File

@@ -0,0 +1,146 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>f</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03BD;</mi>
<mo>,</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mfenced>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<mi>i</mi>
</msup>
</mrow>
<mrow>
<mi>i</mi>
<mo>!</mo>
</mrow>
</mfrac>
<mi>f</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03BD;</mi>
<mo>+</mo>
<mn>2</mn>
<mi>i</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msup>
<mi>e</mi>
<mrow>
<mo>[</mo>
<mo>&#x2212;</mo>
<mfrac>
<mfenced>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mn>2</mn>
</mfrac>
<mo>]</mo>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<mfrac>
<mi>x</mi>
<mi>&#x03BB;</mi>
</mfrac>
</mrow>
</mfenced>
<mrow>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BD;</mi>
<mn>4</mn>
</mfrac>
<mo>&#x2212;</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
</mrow>
</msup>
<msub>
<mi>I</mi>
<mrow>
<mfenced>
<mrow>
<mfrac>
<mi>k</mi>
<mn>2</mn>
</mfrac>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</mfenced>
</mrow>
</msub>
<mfenced>
<mrow>
<msqrt>
<mrow>
<mi>&#x03BB;</mi>
<mi>x</mi>
</mrow>
</msqrt>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 18 KiB

View File

@@ -0,0 +1,182 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mtable>
<mtr>
<mtd>
<mi>P</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03BD;</mi>
<mo>,</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<msub>
<mi>s</mi>
<mi>i</mi>
</msub>
<msub>
<mi>t</mi>
<mi>i</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>s</mi>
<mn>0</mn>
</msub>
<mo>=</mo>
<msub>
<mi>u</mi>
<mn>0</mn>
</msub>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<mo>,</mo>
<mspace width="1em"/>
<msub>
<mi>s</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>s</mi>
<mrow>
<mi>i</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>u</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<mspace width="1em"/>
<msub>
<mi>u</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>u</mi>
<mrow>
<mi>i</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</msub>
<mfrac>
<mi>&#x03BB;</mi>
<mrow>
<mn>2</mn>
<mi>i</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>t</mi>
<mn>0</mn>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>&#x0393;</mi>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BD;</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfenced>
</mrow>
</mfrac>
<msup>
<mfenced>
<mrow>
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<mrow>
<mfrac>
<mi>&#x03BD;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<mo>,</mo>
<mspace width="1em"/>
<msub>
<mi>t</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msub>
<mi>t</mi>
<mrow>
<mi>i</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</msub>
<mfrac>
<mi>x</mi>
<mrow>
<mi>&#x03BD;</mi>
<mo>+</mo>
<mn>2</mn>
<mi>i</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
</mtable>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.3 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -0,0 +1,75 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>P</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03BD;</mi>
<mo>,</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<mi>i</mi>
</msup>
</mrow>
<mrow>
<mi>i</mi>
<mo>!</mo>
</mrow>
</mfrac>
<msub>
<mi>P</mi>
<mrow>
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BD;</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>i</mi>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 8.5 KiB

View File

@@ -0,0 +1,77 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mn>1</mn>
<mo>&#x2212;</mo>
<mi>P</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03BD;</mi>
<mo>,</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<mi>i</mi>
</msup>
</mrow>
<mrow>
<mi>i</mi>
<mo>!</mo>
</mrow>
</mfrac>
<msub>
<mi>Q</mi>
<mrow>
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BD;</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>i</mi>
</mrow>
</mfenced>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 8.9 KiB

View File

@@ -0,0 +1,86 @@
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mtable>
<mtr>
<mtd>
<mtext>mean</mtext>
</mtd>
<mtd>
<mo>=</mo>
</mtd>
<mtd>
<mi>&#x03BD;</mi>
<mo>+</mo>
<mi>&#x03BB;</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mtext>variance</mtext>
</mtd>
<mtd>
<mo>=</mo>
</mtd>
<mtd>
<mn>2</mn>
<mfenced>
<mrow>
<mi>&#x03BD;</mi>
<mo>+</mo>
<mn>2</mn>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
</mtd>
</mtr>
<mtr>
<mtd>
<mtext>skewness</mtext>
</mtd>
<mtd>
<mo>=</mo>
</mtd>
<mtd>
<mfrac>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<mfenced>
<mrow>
<mi>&#x03BD;</mi>
<mo>+</mo>
<mn>3</mn>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
</mrow>
<msup>
<mfenced>
<mrow>
<mi>&#x03BD;</mi>
<mo>+</mo>
<mn>2</mn>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mfrac>
</mtd>
</mtr>
</mtable>
</mrow>
</math>

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.5 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 7.8 KiB

View File

@@ -0,0 +1,314 @@
<?xml version='1.0'?>
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
<html xmlns='http://www.w3.org/1999/xhtml'>
<head><title>nc_f_ref1</title>
<!-- MathML created with MathCast Equation Editor version 0.88 -->
</head>
<body>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>f</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
<mo>;</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<msup>
<mi>e</mi>
<mrow>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>+</mo>
<mfrac>
<mfenced>
<mrow>
<mi>&#x03BB;</mi>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mi>x</mi>
</mrow>
</mfenced>
<mfenced>
<mrow>
<mn>2</mn>
<mfenced>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
<mo>+</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mi>x</mi>
</mrow>
</mfenced>
</mrow>
</mfenced>
</mfrac>
</mrow>
</msup>
<msup>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
<mo>+</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mi>x</mi>
</mrow>
</mfenced>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mfenced>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
</mfenced>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<mfrac>
<mrow>
<mi>&#x0393;</mi>
<mfenced>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
</mfenced>
<mi>&#x0393;</mi>
<mfenced>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
</mfenced>
<msubsup>
<mi>L</mi>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</msubsup>
<mfenced>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mrow>
<mi>&#x03BB;</mi>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<mfenced>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
<mo>+</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mi>x</mi>
</mrow>
</mfenced>
</mrow>
</mfrac>
</mrow>
</mfenced>
</mrow>
<mrow>
<mi>B</mi>
<mfenced>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>,</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfenced>
<mi>&#x0393;</mi>
<mfenced>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mfenced>
<mrow>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfenced>
</mrow>
</mfenced>
</mrow>
</mfrac>
</mrow>
</math>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 31 KiB

View File

@@ -0,0 +1,214 @@
<?xml version='1.0'?>
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
<html xmlns='http://www.w3.org/1999/xhtml'>
<head><title>nc_f_ref2</title>
<!-- MathML created with MathCast Equation Editor version 0.88 -->
</head>
<body>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>f</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>;</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
<mo>;</mo>
<mi>&#x03BB;</mi>
</mrow>
</mfenced>
<mspace width="1em"/>
<mo>=</mo>
<mspace width="1em"/>
<munderover>
<mo>&#x2211;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mi>&#x221E;</mi>
</munderover>
<mfrac>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>&#x2212;</mo>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<mfrac>
<mi>&#x03BB;</mi>
<mn>2</mn>
</mfrac>
</mrow>
</mfenced>
<mi>k</mi>
</msup>
</mrow>
<mrow>
<mi>B</mi>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
<mn>2,</mn>
</mfrac>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>k</mi>
</mrow>
</mfenced>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
<msup>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</mfenced>
<mrow>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>k</mi>
</mrow>
</mfenced>
</mrow>
</msup>
<msup>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</mfenced>
<mrow>
<mfenced>
<mrow>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>k</mi>
</mrow>
</mfenced>
</mrow>
</msup>
<msup>
<mi>x</mi>
<mrow>
<mfenced>
<mrow>
<mfrac>
<mrow>
<msub>
<mi>&#x03BD;</mi>
<mn>1</mn>
</msub>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>k</mi>
<mo>&#x2212;</mo>
<mn>1</mn>
</mrow>
</mfenced>
</mrow>
</msup>
</mrow>
</math>
</body>
</html>

Some files were not shown because too many files have changed in this diff Show More