Merged changes from sandbox to Trunk:
New special functions for truncation and rounding, plus exponential integrals and zeta. New non central distributions. Updated equation png's so that they are all consistent. [SVN r44091]
@@ -40,7 +40,7 @@ boostbook standalone
|
||||
|
||||
# PDF Options:
|
||||
# TOC Generation: this is needed for FOP-0.9 and later:
|
||||
# <xsl:param>fop1.extensions=1
|
||||
<xsl:param>fop1.extensions=0
|
||||
<format>pdf:<xsl:param>xep.extensions=1
|
||||
# TOC generation: this is needed for FOP 0.2, but must not be set to zero for FOP-0.9!
|
||||
<format>pdf:<xsl:param>fop.extensions=0
|
||||
|
||||
@@ -44,11 +44,11 @@ when `x <= 0`.
|
||||
|
||||
The following graph illustrates the exponential behaviour of I[sub v].
|
||||
|
||||
[$../graphs/bessel_i.png]
|
||||
[graph cyl_bessel_i]
|
||||
|
||||
The following graph illustrates the exponential decay of K[sub v].
|
||||
|
||||
[$../graphs/bessel_k.png]
|
||||
[graph cyl_bessel_k]
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
|
||||
@@ -44,12 +44,12 @@ when `x <= 0`.
|
||||
|
||||
The following graph illustrates the cyclic nature of J[sub v]:
|
||||
|
||||
[$../graphs/bessel_jn.png]
|
||||
[graph cyl_bessel_j]
|
||||
|
||||
The following graph shows the behaviour of Y[sub v]: this is also
|
||||
cyclic for large /x/, but tends to -[infin][space] for small /x/:
|
||||
|
||||
[$../graphs/bessel_yv.png]
|
||||
[graph cyl_neumann]
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
|
||||
@@ -39,12 +39,12 @@ undefined or complex: this occurs when `x < 0`.
|
||||
The j[sub v][space] function is cyclic like J[sub v][space] but differs
|
||||
in its behaviour at the origin:
|
||||
|
||||
[$../graphs/sph_bessel_j.png]
|
||||
[graph sph_bessel]
|
||||
|
||||
Likewise y[sub v][space] is also cyclic for large x, but tends to -[infin][space]
|
||||
for small /x/:
|
||||
|
||||
[$../graphs/sph_bessel_y.png]
|
||||
[graph sph_neumann]
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ The beta function is defined by:
|
||||
|
||||
[equation beta1]
|
||||
|
||||
[$../graphs/beta.png]
|
||||
[graph beta]
|
||||
|
||||
[optional_policy]
|
||||
|
||||
|
||||
@@ -174,13 +174,25 @@ In the following table /r/ is an object of type `RealType`,
|
||||
[[`asin(cr1)`][RealType]]
|
||||
[[`tan(cr1)`][RealType]]
|
||||
[[`atan(cr1)`][RealType]]
|
||||
[[`fmod(cr1)`][RealType]]
|
||||
[[`round(cr1)`][RealType]]
|
||||
[[`iround(cr1)`][int]]
|
||||
[[`trunc(cr1)`][RealType]]
|
||||
[[`itrunc(cr1)`][int]]
|
||||
]
|
||||
|
||||
Note that the table above lists only those standard library functions known to
|
||||
be used (or likely to be used in the near future) by this library.
|
||||
The following functions: `acos`, `atan2`, `fmod`, `cosh`, `sinh`, `tanh`, `modf` and `log10`
|
||||
The following functions: `acos`, `atan2`, `fmod`, `cosh`, `sinh`, `tanh`, `log10`,
|
||||
`lround`, `llround`, ltrunc`, `lltrunc` and `modf`
|
||||
are not currently used, but may be if further special functions are added.
|
||||
|
||||
Note that the `round`, `trunc` and `modf` functions are not part of the
|
||||
current C++ standard: they are part of the additions added to C99 which will
|
||||
likely be in the next C++ standard. There are Boost versions of these provided
|
||||
as a backup, and the functions are always called unqualified so that
|
||||
argument-dependent-lookup can take place.
|
||||
|
||||
In addition, for efficient and accurate results, a __lanczos is highly desirable.
|
||||
You may be able to adapt an existing approximation from
|
||||
[@../../../../../boost/math/special_functions/lanczos.hpp
|
||||
|
||||
@@ -33,6 +33,17 @@ his
|
||||
program used to generate the html and pdf versions
|
||||
of this document, adding several new features en route.
|
||||
|
||||
Plots of the functions and distributions were prepared in
|
||||
[@http://www.w3.org/ W3C] standard
|
||||
[@http://www.svg.org/ Scalable Vector Graphic (SVG)] format
|
||||
using a program created by Jacob Voytko during a Google 'Summer of Code'.
|
||||
Since browser support for rendering SVG is still not universal
|
||||
(Microsoft Internet Explorer, even IE 8 beta, still lacks native SVG support
|
||||
but can be made to work with
|
||||
[@http://www.adobe.com/svg/viewer/install/ Adobe's free SVG viewer] plugin),
|
||||
so the SVG files were batch converted to JPEG using
|
||||
[@http://www.inkscape.org/ Inkscape].
|
||||
|
||||
We are also indebted to Matthias Schabel for managing the formal Boost-review
|
||||
of this library, and to all the reviewers - including Guillaume Melquiond,
|
||||
Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland
|
||||
@@ -41,7 +52,7 @@ Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland
|
||||
[endsect][/section:roadmap Roadmap]
|
||||
|
||||
[/
|
||||
Copyright 2006 John Maddock and Paul A. Bristow.
|
||||
Copyright 2006 - 2008 John Maddock and Paul A. Bristow.
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
http://www.boost.org/LICENSE_1_0.txt).
|
||||
|
||||
@@ -23,7 +23,7 @@ derivative of the gamma function:
|
||||
|
||||
[equation digamma1]
|
||||
|
||||
[$../graphs/digamma.png]
|
||||
[graph digamma]
|
||||
|
||||
[optional_policy]
|
||||
|
||||
|
||||
@@ -15,6 +15,10 @@
|
||||
[include distributions/gamma.qbk]
|
||||
[include distributions/lognormal.qbk]
|
||||
[include distributions/negative_binomial.qbk]
|
||||
[include distributions/nc_beta.qbk]
|
||||
[include distributions/nc_chi_squared.qbk]
|
||||
[include distributions/nc_f.qbk]
|
||||
[include distributions/nc_t.qbk]
|
||||
[include distributions/normal.qbk]
|
||||
[include distributions/pareto.qbk]
|
||||
[include distributions/poisson.qbk]
|
||||
|
||||
@@ -158,13 +158,32 @@ example, we would write:
|
||||
|
||||
`pdf(binomial_distribution<RealType>(n, p), k);`
|
||||
|
||||
The distribution (effectively the random variate) is said to be 'supported' over a range that is
|
||||
The ranges of random variate values that are permitted and are supported can be
|
||||
tested by using two functions `range` and `support`.
|
||||
|
||||
The distribution (effectively the random variate) is said to be 'supported'
|
||||
over a range that is
|
||||
[@http://en.wikipedia.org/wiki/Probability_distribution
|
||||
"the smallest closed set whose complement has probability zero"].
|
||||
MathWorld uses the word 'defined' for this range.
|
||||
Non-mathematicians might say it means the 'interesting' smallest range
|
||||
of random variate x that has the cdf going from zero to unity.
|
||||
Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.
|
||||
|
||||
For most distributions, with probability distribution functions one might describe
|
||||
as 'well-behaved', we have decided that it is most useful for the supported range
|
||||
to exclude random variate values like exact zero *if the end point is discontinuous*.
|
||||
For example, the Weibull (scale 1, shape 1) distribution smoothly heads for unity
|
||||
as the random variate x declines towards zero.
|
||||
But at x = zero, the value of the pdf is suddenly exactly zero, by definition.
|
||||
If you are plotting the PDF, or otherwise calculating,
|
||||
zero is not the most useful value for the lower limit of supported, as we discovered.
|
||||
So for this, and similar distributions,
|
||||
we have decided it is most numerically useful to use
|
||||
the closest value to zero, min_value, for the limit of the supported range.
|
||||
(The `range` remains from zero, so you will still get `pdf(weibull, 0) == 0`).
|
||||
(Exponential and gamma distributions have similarly discontinuous functions).
|
||||
|
||||
Mathematically, the functions may make sense with an (+ or -) infinite value,
|
||||
but except for a few special cases (in the Normal and Cauchy distributions)
|
||||
this implementation limits random variates to finite values from the `max`
|
||||
@@ -172,8 +191,6 @@ to `min` for the `RealType`.
|
||||
(See [link math_toolkit.backgrounders.implementation.handling_of_floating_point_infinity
|
||||
Handling of Floating-Point Infinity] for rationale).
|
||||
|
||||
The range of random variate values that is permitted and supported can be
|
||||
tested by using two functions `range` and `support`.
|
||||
|
||||
[note
|
||||
|
||||
@@ -365,6 +382,7 @@ Now that you have the basics, the next section looks at some worked examples.
|
||||
[include distributions/binomial_example.qbk]
|
||||
[include distributions/negative_binomial_example.qbk]
|
||||
[include distributions/normal_example.qbk]
|
||||
[include distributions/nc_chi_squared_example.qbk]
|
||||
[include distributions/error_handling_example.qbk]
|
||||
[include distributions/find_location_and_scale.qbk]
|
||||
[include distributions/nag_library.qbk]
|
||||
|
||||
@@ -42,11 +42,11 @@ The following graph illustrates how the
|
||||
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function pdf]
|
||||
varies with the outcome of the single trial:
|
||||
|
||||
[$../graphs/bernoulli_pdf.png]
|
||||
[graph bernoulli_pdf]
|
||||
|
||||
and the [@http://en.wikipedia.org/wiki/Cumulative_Distribution_Function Cumulative distribution function]
|
||||
|
||||
[$../graphs/bernoulli_cdf.png]
|
||||
[graph bernoulli_cdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -84,7 +84,7 @@ of the shape parameters. Note the [alpha] = [beta] = 2 (blue line)
|
||||
is dome-shaped, and might be approximated by a symmetrical triangular
|
||||
distribution.
|
||||
|
||||
[$../graphs/beta_dist.png]
|
||||
[graph beta_pdf]
|
||||
|
||||
If [alpha] = [beta] = 1, then it is a __space
|
||||
[@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 uniform distribution],
|
||||
|
||||
@@ -76,12 +76,12 @@ The following two graphs illustrate how the PDF changes depending
|
||||
upon the distributions parameters, first we'll keep the success
|
||||
fraction /p/ fixed at 0.5, and vary the sample size:
|
||||
|
||||
[$../graphs/binomial_pdf_1.png]
|
||||
[graph binomial_pdf_1]
|
||||
|
||||
Alternatively, we can keep the sample size fixed at N=20 and
|
||||
vary the success fraction /p/:
|
||||
|
||||
[$../graphs/binomial_pdf_2.png]
|
||||
[graph binomial_pdf_2]
|
||||
|
||||
[discrete_quantile_warning Binomial]
|
||||
|
||||
|
||||
@@ -44,12 +44,12 @@ of spectral lines.
|
||||
The following graph shows how the distributions moves as the
|
||||
location parameter changes:
|
||||
|
||||
[$../graphs/cauchy1.png]
|
||||
[graph cauchy_pdf1]
|
||||
|
||||
While the following graph shows how the shape (scale) parameter alters
|
||||
the distribution:
|
||||
|
||||
[$../graphs/cauchy2.png]
|
||||
[graph cauchy_pdf2]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -49,7 +49,7 @@ and has a single parameter [nu][space] that specifies the number of degrees of
|
||||
freedom. The following graph illustrates how the distribution changes
|
||||
for different values of [nu]:
|
||||
|
||||
[$../graphs/chi_square.png]
|
||||
[graph chi_squared_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
@@ -105,6 +105,11 @@ See also section on Sample sizes required in
|
||||
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
|
||||
that are generic to all distributions are supported: __usual_accessors.
|
||||
|
||||
(We have followed the usual restriction of the mode to degrees of freedom >= 2,
|
||||
but note that the maximum of the pdf is actually zero for degrees of freedom from 2 down to 0,
|
||||
and provide an extended definition that would avoid a discontinuity in the mode
|
||||
as alternative code in a comment).
|
||||
|
||||
The domain of the random variable is \[0, +[infin]\].
|
||||
|
||||
[h4 Examples]
|
||||
|
||||
@@ -33,7 +33,7 @@ events that happen at a constant average rate.
|
||||
The following graph shows how the distribution changes for different
|
||||
values of the rate parameter lambda:
|
||||
|
||||
[$../graphs/exponential_dist.png]
|
||||
[graph exponential_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
@@ -90,6 +90,13 @@ In the following table [lambda] is the parameter lambda of the distribution,
|
||||
* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm NIST Exploratory Data Analysis]
|
||||
* [@http://en.wikipedia.org/wiki/Exponential_distribution Wikipedia Exponential distribution]
|
||||
|
||||
(See also the reference documentation for the related __extreme_distrib.)
|
||||
|
||||
*
|
||||
[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
|
||||
Samuel Kotz & Saralees Nadarajah]
|
||||
discuss the relationship of the types of extreme value distributions.
|
||||
|
||||
[endsect][/section:exp_dist Exponential]
|
||||
|
||||
[/ exponential.qbk
|
||||
|
||||
@@ -36,6 +36,11 @@ More information can be found on the
|
||||
and [@http://en.wikipedia.org/wiki/Extreme_value_theory Extreme value theory]
|
||||
websites.
|
||||
|
||||
The relationship of the types of extreme value distributions, of which this is but one, is
|
||||
discussed by
|
||||
[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
|
||||
Samuel Kotz & Saralees Nadarajah].
|
||||
|
||||
The distribution has a PDF given by:
|
||||
|
||||
f(x) = (1/scale) e[super -(x-location)/scale] e[super -e[super -(x-location)/scale]]
|
||||
@@ -46,11 +51,11 @@ f(x) = e[super -x]e[super -e[super -x]]
|
||||
|
||||
The following graph illustrates how the PDF varies with the location parameter:
|
||||
|
||||
[$../graphs/extreme_val_dist.png]
|
||||
[graph extreme_value_pdf1]
|
||||
|
||||
And this graph illustrates how the PDF varies with the shape parameter:
|
||||
|
||||
[$../graphs/extreme_val_dist2.png]
|
||||
[graph extreme_value_pdf2]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ has the PDF:
|
||||
The following graph illustrates how the PDF varies depending on the
|
||||
two degrees of freedom parameters.
|
||||
|
||||
[$../graphs/fisher_f.png]
|
||||
[graph fisher_f_pdf]
|
||||
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
@@ -61,9 +61,9 @@ parameter], you should pass the reciprocal of the rate as the scale parameter.
|
||||
The following two graphs illustrate how the PDF of the gamma distribution
|
||||
varies as the parameters vary:
|
||||
|
||||
[$../graphs/gamma_dist1.png]
|
||||
[graph gamma1_pdf]
|
||||
|
||||
[$../graphs/gamma_dist2.png]
|
||||
[graph gamma2_pdf]
|
||||
|
||||
The [*Erlang Distribution] is the same as the Gamma, but with the shape parameter
|
||||
an integer. It is often expressed using a /rate/ rather than a /scale/ as the
|
||||
|
||||
@@ -43,11 +43,11 @@ parameter on the PDF, note that the range of the random
|
||||
variable remains \[0,+[infin]\] irrespective of the value of the
|
||||
location parameter:
|
||||
|
||||
[$../graphs/lognormal1.png]
|
||||
[graph lognormal_pdf1]
|
||||
|
||||
The next graph illustrates the effect of the scale parameter on the PDF:
|
||||
|
||||
[$../graphs/lognormal2.png]
|
||||
[graph lognormal_pdf2]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
211
doc/sf_and_dist/distributions/nc_beta.qbk
Normal file
@@ -0,0 +1,211 @@
|
||||
[section:nc_beta_dist Noncentral Beta Distribution]
|
||||
|
||||
``#include <boost/math/distributions/non_central_beta.hpp>``
|
||||
|
||||
namespace boost{ namespace math{
|
||||
|
||||
template <class RealType = double,
|
||||
class ``__Policy`` = ``__policy_class`` >
|
||||
class non_central_beta_distribution;
|
||||
|
||||
typedef non_central_beta_distribution<> non_central_beta;
|
||||
|
||||
template <class RealType, class ``__Policy``>
|
||||
class non_central_beta_distribution
|
||||
{
|
||||
public:
|
||||
typedef RealType value_type;
|
||||
typedef Policy policy_type;
|
||||
|
||||
// Constructor:
|
||||
non_central_beta_distribution(RealType alpha, RealType beta, RealType lambda);
|
||||
|
||||
// Accessor to shape parameters:
|
||||
RealType alpha()const;
|
||||
RealType beta()const;
|
||||
|
||||
// Accessor to non-centrality parameter lambda:
|
||||
RealType non_centrality()const;
|
||||
};
|
||||
|
||||
}} // namespaces
|
||||
|
||||
The noncentral beta distribution is a generalization of the __beta_distrib.
|
||||
|
||||
It is defined as the ratio
|
||||
X = [chi][sub m][super 2]([lambda]) \/ ([chi][sub m][super 2]([lambda])
|
||||
+ [chi][sub n][super 2])
|
||||
where [chi][sub m][super 2]([lambda]) is a noncentral [chi][super 2]
|
||||
random variable with /m/ degrees of freedom, and [chi][sub n][super 2]
|
||||
is a central [chi][super 2] random variable with /n/ degrees of freedom.
|
||||
|
||||
This gives a PDF that can be expressed as a Poisson mixture
|
||||
of beta distribution PDFs:
|
||||
|
||||
[equation nc_beta_ref1]
|
||||
|
||||
where P(i;[lambda]\/2) is the discrete Poisson probablity at /i/, with mean
|
||||
[lambda]\/2, and I[sub x][super ']([alpha], [beta]) is the derivative of
|
||||
the incomplete beta function. This leads to the usual form of the CDF
|
||||
as:
|
||||
|
||||
[equation nc_beta_ref2]
|
||||
|
||||
The following graph illustrates how the distribution changes
|
||||
for different values of [lambda]:
|
||||
|
||||
[graph nc_beta_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
non_central_beta_distribution(RealType a, RealType b, RealType lambda);
|
||||
|
||||
Constructs a noncentral beta distribution with shape parameters /a/ and /b/
|
||||
and non-centrality parameter /lambda/.
|
||||
|
||||
Requires a > 0, b > 0 and lambda >= 0, otherwise calls __domain_error.
|
||||
|
||||
RealType alpha()const;
|
||||
|
||||
Returns the parameter /a/ from which this object was constructed.
|
||||
|
||||
RealType beta()const;
|
||||
|
||||
Returns the parameter /b/ from which this object was constructed.
|
||||
|
||||
RealType non_centrality()const;
|
||||
|
||||
Returns the parameter /lambda/ from which this object was constructed.
|
||||
|
||||
[h4 Non-member Accessors]
|
||||
|
||||
Most of the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
|
||||
are supported: __cdf, __pdf, __quantile,
|
||||
__median, __mode, __hazard, __chf, __range and __support.
|
||||
|
||||
However, the following are not currently implemented:
|
||||
__mean, __variance, __sd, __skewness,
|
||||
__kurtosis and __kurtosis_excess.
|
||||
|
||||
The domain of the random variable is \[0, 1\].
|
||||
|
||||
[h4 Accuracy]
|
||||
|
||||
The following table shows the peak errors
|
||||
(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon])
|
||||
found on various platforms with various floating point types.
|
||||
No comparison to the [@http://www.r-project.org/ R-2.5.1 Math library],
|
||||
or to the FORTRAN implementations of AS226 or AS310 are given since these appear
|
||||
to only guarantee absolute error: this would causes our test harness
|
||||
to assign an /"infinite"/ error to these libraries for some of our
|
||||
test values when measuring /relative error/.
|
||||
Unless otherwise specified any floating-point type that is narrower
|
||||
than the one shown will have __zero_error.
|
||||
|
||||
[table Errors In CDF of the Noncentral Beta
|
||||
[[Significand Size] [Platform and Compiler] [[alpha], [beta],[lambda] < 200] [[alpha],[beta],[lambda] > 200]]
|
||||
[[53] [Win32, Visual C++ 8] [Peak=620 Mean=22] [Peak=8670 Mean=1040]]
|
||||
[[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=825 Mean=50] [Peak=2.5x10[super 4] Mean=4000]]
|
||||
|
||||
[[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=825 Mean=30] [Peak=1.7x10[super 4] Mean=2500]]
|
||||
|
||||
[[113] [HPUX IA64, aCC A.06.06] [Peak=420 Mean=50] [Peak=9200 Mean=1200]]
|
||||
]
|
||||
|
||||
Error rates for the PDF, the complement of the CDF and for the quantile
|
||||
functions are broadly similar.
|
||||
|
||||
[h4 Tests]
|
||||
|
||||
There are two sets of test data used to verify this implementation:
|
||||
firstly we can compare with a few sample values generated by the
|
||||
[@http://www.r-project.org/ R library].
|
||||
Secondly, we have tables of test data, computed with this
|
||||
implementation and using interval arithmetic - this data should
|
||||
be accurate to at least 50 decimal digits - and is the used for
|
||||
our accuracy tests.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
The CDF and its complement are evaluated as follows:
|
||||
|
||||
First we determine which of the two values (the CDF or its
|
||||
complement) is likely to be the smaller, the crossover point
|
||||
is taken to be the mean of the distribution: for this we use the
|
||||
approximation due to: R. Chattamvelli and R. Shanmugam,
|
||||
"Algorithm AS 310: Computing the Non-Central Beta Distribution Function",
|
||||
Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.
|
||||
|
||||
[equation nc_beta_ref3]
|
||||
|
||||
Then either the CDF or its complement is computed using the
|
||||
relations:
|
||||
|
||||
[equation nc_beta_ref4]
|
||||
|
||||
The summation is performed by starting at i = [lambda]/2, and then recursing
|
||||
in both directions, using the usual recurrence relations for the Poisson
|
||||
PDF and incomplete beta functions. This is the "Method 2" described
|
||||
by:
|
||||
|
||||
Denise Benton and K. Krishnamoorthy,
|
||||
"Computing discrete mixtures of continuous
|
||||
distributions: noncentral chisquare, noncentral t
|
||||
and the distribution of the square of the sample
|
||||
multiple correlation coefficient",
|
||||
Computational Statistics & Data Analysis 43 (2003) 249-267.
|
||||
|
||||
Specific applications of the above formulae to the noncentral
|
||||
beta distribution can be found in:
|
||||
|
||||
Russell V. Lenth,
|
||||
"Algorithm AS 226: Computing Noncentral Beta Probabilities",
|
||||
Applied Statistics, Vol. 36, No. 2. (1987), pp. 241-244.
|
||||
|
||||
H. Frick,
|
||||
"Algorithm AS R84: A Remark on Algorithm AS 226: Computing Non-Central Beta
|
||||
Probabilities", Applied Statistics, Vol. 39, No. 2. (1990), pp. 311-312.
|
||||
|
||||
Ming Long Lam,
|
||||
"Remark AS R95: A Remark on Algorithm AS 226: Computing Non-Central Beta
|
||||
Probabilities", Applied Statistics, Vol. 44, No. 4. (1995), pp. 551-552.
|
||||
|
||||
Harry O. Posten,
|
||||
"An Effective Algorithm for the Noncentral Beta Distribution Function",
|
||||
The American Statistician, Vol. 47, No. 2. (May, 1993), pp. 129-131.
|
||||
|
||||
R. Chattamvelli,
|
||||
"A Note on the Noncentral Beta Distribution Function",
|
||||
The American Statistician, Vol. 49, No. 2. (May, 1995), pp. 231-234.
|
||||
|
||||
Of these, the Posten reference provides the most complete overview,
|
||||
and includes the modification starting iteration at [lambda]/2.
|
||||
|
||||
The main difference between this implementation and the above
|
||||
references is the direct computation of the complement when most
|
||||
efficient to do so, and the accumulation of the sum to -1 rather
|
||||
than subtracting the result from 1 at the end: this can substantially
|
||||
reduce the number of iterations required when the result is near 1.
|
||||
|
||||
The PDF is computed using the methodology of Benton and Krishnamoorthy
|
||||
and the relation:
|
||||
|
||||
[equation nc_beta_ref1]
|
||||
|
||||
Quantiles are computed using a specially modified version of
|
||||
[link math_toolkit.toolkit.internals1.roots2 bracket_and_solve_root],
|
||||
starting the search for the root at the mean of the distribution.
|
||||
(A Cornish-Fisher type expansion was also tried, but while this gets
|
||||
quite close to the root in many cases, when it is wrong it tends to
|
||||
introduce quite pathological behaviour: more investigation in this
|
||||
area is probably warranted).
|
||||
|
||||
[endsect][/section:nc_beta_dist]
|
||||
|
||||
[/ nc_beta.qbk
|
||||
Copyright 2008 John Maddock and Paul A. Bristow.
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
http://www.boost.org/LICENSE_1_0.txt).
|
||||
]
|
||||
|
||||
280
doc/sf_and_dist/distributions/nc_chi_squared.qbk
Normal file
@@ -0,0 +1,280 @@
|
||||
[section:nc_chi_squared_dist Noncentral Chi-Squared Distribution]
|
||||
|
||||
``#include <boost/math/distributions/non_central_chi_squared.hpp>``
|
||||
|
||||
namespace boost{ namespace math{
|
||||
|
||||
template <class RealType = double,
|
||||
class ``__Policy`` = ``__policy_class`` >
|
||||
class non_central_chi_squared_distribution;
|
||||
|
||||
typedef non_central_chi_squared_distribution<> non_central_chi_squared;
|
||||
|
||||
template <class RealType, class ``__Policy``>
|
||||
class non_central_chi_squared_distribution
|
||||
{
|
||||
public:
|
||||
typedef RealType value_type;
|
||||
typedef Policy policy_type;
|
||||
|
||||
// Constructor:
|
||||
non_central_chi_squared_distribution(RealType v, RealType lambda);
|
||||
|
||||
// Accessor to degrees of freedom parameter v:
|
||||
RealType degrees_of_freedom()const;
|
||||
|
||||
// Accessor to non centrality parameter lambda:
|
||||
RealType non_centrality()const;
|
||||
|
||||
// Parameter finders:
|
||||
static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
|
||||
template <class A, class B, class C>
|
||||
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);
|
||||
|
||||
static RealType find_non_centrality(RealType v, RealType x, RealType p);
|
||||
template <class A, class B, class C>
|
||||
static RealType find_non_centrality(const complemented3_type<A,B,C>& c);
|
||||
};
|
||||
|
||||
}} // namespaces
|
||||
|
||||
The noncentral chi-squared distribution is a generalization of the
|
||||
__chi_squared_distrib. If X[sub i] are [nu] independent, normally
|
||||
distributed random variables with means [mu][sub i] and variances
|
||||
[sigma][sub i][super 2], then the random variable
|
||||
|
||||
[equation nc_chi_squ_ref1]
|
||||
|
||||
is distributed according to the noncentral chi-squared distribution.
|
||||
|
||||
The noncentral chi-squared distribution has two parameters:
|
||||
[nu] which specifies the number of degrees of freedom
|
||||
(i.e. the number of X[sub i]), and [lambda] which is related to the
|
||||
mean of the random variables X[sub i] by:
|
||||
|
||||
[equation nc_chi_squ_ref2]
|
||||
|
||||
(Note that some references define [lambda] as one half of the above sum).
|
||||
|
||||
This leads to a PDF of:
|
||||
|
||||
[equation nc_chi_squ_ref3]
|
||||
|
||||
where ['f(x;k)] is the central chi-squared distribution PDF, and
|
||||
['I[sub v](x)] is a modified Bessel function of the first kind.
|
||||
|
||||
The following graph illustrates how the distribution changes
|
||||
for different values of [lambda]:
|
||||
|
||||
[graph nccs_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
non_central_chi_squared_distribution(RealType v, RealType lambda);
|
||||
|
||||
Constructs a Chi-Squared distribution with /v/ degrees of freedom
|
||||
and non-centrality parameter /lambda/.
|
||||
|
||||
Requires v > 0 and lambda >= 0, otherwise calls __domain_error.
|
||||
|
||||
RealType degrees_of_freedom()const;
|
||||
|
||||
Returns the parameter /v/ from which this object was constructed.
|
||||
|
||||
RealType non_centrality()const;
|
||||
|
||||
Returns the parameter /lambda/ from which this object was constructed.
|
||||
|
||||
|
||||
static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
|
||||
|
||||
This function returns the number of degrees of freedom /v/ such that:
|
||||
`cdf(non_central_chi_squared<RealType, Policy>(v, lambda), x) == p`
|
||||
|
||||
template <class A, class B, class C>
|
||||
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);
|
||||
|
||||
When called with argument `boost::math::complement(lambda, x, q)`
|
||||
this function returns the number of degrees of freedom /v/ such that:
|
||||
|
||||
`cdf(complement(non_central_chi_squared<RealType, Policy>(v, lambda), x)) == q`.
|
||||
|
||||
static RealType find_non_centrality(RealType v, RealType x, RealType p);
|
||||
|
||||
This function returns the non centrality parameter /lambda/ such that:
|
||||
|
||||
`cdf(non_central_chi_squared<RealType, Policy>(v, lambda), x) == p`
|
||||
|
||||
template <class A, class B, class C>
|
||||
static RealType find_non_centrality(const complemented3_type<A,B,C>& c);
|
||||
|
||||
When called with argument `boost::math::complement(v, x, q)`
|
||||
this function returns the non centrality parameter /lambda/ such that:
|
||||
|
||||
`cdf(complement(non_central_chi_squared<RealType, Policy>(v, lambda), x)) == q`.
|
||||
|
||||
[h4 Non-member Accessors]
|
||||
|
||||
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
|
||||
that are generic to all distributions are supported: __usual_accessors.
|
||||
|
||||
The domain of the random variable is \[0, +[infin]\].
|
||||
|
||||
[h4 Examples]
|
||||
|
||||
There is a
|
||||
[link math_toolkit.dist.stat_tut.weg.nccs_eg worked example]
|
||||
for the noncentral chi-squared distribution.
|
||||
|
||||
[h4 Accuracy]
|
||||
|
||||
The following table shows the peak errors
|
||||
(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon])
|
||||
found on various platforms with various floating-point types,
|
||||
along with comparisons to the [@http://www.r-project.org/ R-2.5.1 Math library].
|
||||
Unless otherwise specified, any floating-point type that is narrower
|
||||
than the one shown will have __zero_error.
|
||||
|
||||
[table Errors In CDF of the Noncentral Chi-Squared
|
||||
[[Significand Size] [Platform and Compiler] [[nu],[lambda] < 200] [[nu],[lambda] > 200]]
|
||||
[[53] [Win32, Visual C++ 8] [Peak=50 Mean=9.9
|
||||
|
||||
R Peak=685 Mean=109
|
||||
] [Peak=9780 Mean=718
|
||||
|
||||
R Peak=3x10[super 8] Mean=2x10[super 7] ] ]
|
||||
[[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=270 Mean=27] [Peak=7900 Mean=900]]
|
||||
|
||||
[[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=107 Mean=17] [Peak=5000 Mean=630]]
|
||||
|
||||
[[113] [HPUX IA64, aCC A.06.06] [Peak=270 Mean=20] [Peak=4600 Mean=560]]
|
||||
]
|
||||
|
||||
Error rates for the complement of the CDF and for the quantile
|
||||
functions are broadly similar. Special mention should go to
|
||||
the `mode` function: there is no closed form for this function,
|
||||
so it is evaluated numerically by finding the maxima of the PDF:
|
||||
in principal this can not produce an accuracy greater than the
|
||||
square root of the machine epsilon.
|
||||
|
||||
[h4 Tests]
|
||||
|
||||
There are two sets of test data used to verify this implementation:
|
||||
firstly we can compare with published data, for example with
|
||||
Table 6 of "Self-Validating Computations of Probabilities for
|
||||
Selected Central and Noncentral Univariate Probability Functions",
|
||||
Morgan C. Wang and William J. Kennedy,
|
||||
Journal of the American Statistical Association,
|
||||
Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
|
||||
Secondly, we have tables of test data, computed with this
|
||||
implementation and using interval arithmetic - this data should
|
||||
be accurate to at least 50 decimal digits - and is the used for
|
||||
our accuracy tests.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
The CDF and its complement are evaluated as follows:
|
||||
|
||||
First we determine which of the two values (the CDF or its
|
||||
complement) is likely to be the smaller: for this we can use the
|
||||
relation due to Temme (see "Asymptotic and Numerical Aspects of the
|
||||
Noncentral Chi-Square Distribution", N. M. Temme, Computers Math. Applic.
|
||||
Vol 25, No. 5, 55-63, 1993) that:
|
||||
|
||||
F([nu],[lambda];[nu]+[lambda]) [asymp] 0.5
|
||||
|
||||
and so compute the CDF when the random variable is less than
|
||||
[nu]+[lambda], and its complement when the random variable is
|
||||
greater than [nu]+[lambda]. If necessary the computed result
|
||||
is then subtracted from 1 to give the desired result (the CDF or its
|
||||
complement).
|
||||
|
||||
For small values of the non centrality parameter, the CDF is computed
|
||||
using the method of Ding (see "Algorithm AS 275: Computing the Non-Central
|
||||
#2 Distribution Function", Cherng G. Ding, Applied Statistics, Vol. 41,
|
||||
No. 2. (1992), pp. 478-482). This uses the following series representation:
|
||||
|
||||
[equation nc_chi_squ_ref4]
|
||||
|
||||
which requires just one call to __gamma_p_derivative with the subsequent
|
||||
terms being computed by recursion as shown above.
|
||||
|
||||
For larger values of the non-centrality parameter, Ding's method can take
|
||||
an unreasonable number of terms before convergence is achieved. Furthermore,
|
||||
the largest term is not the first term, so in extreme cases the first term may
|
||||
be zero, leading to a zero result, even though the true value may be non-zero.
|
||||
|
||||
Therefore, when the non-centrality parameter is greater than 200, the method due
|
||||
to Krishnamoorthy (see "Computing discrete mixtures of continuous distributions:
|
||||
noncentral chisquare, noncentral t and the distribution of the
|
||||
square of the sample multiple correlation coefficient",
|
||||
Denise Benton and K. Krishnamoorthy, Computational Statistics &
|
||||
Data Analysis, 43, (2003), 249-267) is used.
|
||||
|
||||
This method uses the well known sum:
|
||||
|
||||
[equation nc_chi_squ_ref5]
|
||||
|
||||
Where P[sub a](x) is the incomplete gamma function.
|
||||
|
||||
The method starts at the [lambda]th term, which is where the Poisson weighting
|
||||
function achieves its maximum value, although this is not necessarily
|
||||
the largest overall term. Subsequent terms are calculated via the normal
|
||||
recurrence relations for the incomplete gamma function, and iteration proceeds
|
||||
both forwards and backwards until sufficient precision has been achieved. It
|
||||
should be noted that recurrence in the forwards direction of P[sub a](x) is
|
||||
numerically unstable. However, since we always start /after/ the largest
|
||||
term in the series, numeric instability is introduced more slowly than the
|
||||
series converges.
|
||||
|
||||
Computation of the complement of the CDF uses an extension of Krishnamoorthy's
|
||||
method, given that:
|
||||
|
||||
[equation nc_chi_squ_ref6]
|
||||
|
||||
we can again start at the [lambda]'th term and proceed in both directions from
|
||||
there until the required precision is achieved. This time it is backwards
|
||||
recursion on the incomplete gamma function Q[sub a](x) which is unstable.
|
||||
However, as long as we start well /before/ the largest term, this is not an
|
||||
issue in practice.
|
||||
|
||||
The PDF is computed directly using the relation:
|
||||
|
||||
[equation nc_chi_squ_ref3]
|
||||
|
||||
Where ['f(x; v)] is the PDF of the central __chi_squared_distrib and
|
||||
['I[sub v](x)] is a modified Bessel function, see __cyl_bessel_i.
|
||||
For small values of the
|
||||
non-centrality parameter the relation in terms of __cyl_bessel_i
|
||||
is used. However, this method fails for large values of the
|
||||
non-centrality parameter, so in that case the infinite sum is
|
||||
evaluated using the method of Benton and Krishnamoorthy, and
|
||||
the usual recurrence relations for successive terms.
|
||||
|
||||
The quantile functions are computed by numeric inversion of the CDF.
|
||||
|
||||
There is no [@http://en.wikipedia.org/wiki/Closed_form closed form]
|
||||
for the mode of the noncentral chi-squared
|
||||
distribution: it is computed numerically by finding the maximum
|
||||
of the PDF. Likewise, the median is computed numerically via
|
||||
the quantile.
|
||||
|
||||
The remaining non-member functions use the following formulas:
|
||||
|
||||
[equation nc_chi_squ_ref7]
|
||||
|
||||
Some analytic properties of noncentral distributions
|
||||
(particularly unimodality, and monotonicity of their modes)
|
||||
are surveyed and summarized by:
|
||||
|
||||
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
|
||||
|
||||
[endsect] [/section:nc_chi_squared_dist]
|
||||
|
||||
[/ nc_chi_squared.qbk
|
||||
Copyright 2008 John Maddock and Paul A. Bristow.
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
http://www.boost.org/LICENSE_1_0.txt).
|
||||
]
|
||||
|
||||
20
doc/sf_and_dist/distributions/nc_chi_squared_example.qbk
Normal file
@@ -0,0 +1,20 @@
|
||||
[section:nccs_eg Non Central Chi Squared Example]
|
||||
|
||||
(See also the reference documentation for the __non_central_chi_squared_distrib.)
|
||||
|
||||
[section:nccs_power_eg Tables of the power function of the [chi][super 2] test.]
|
||||
|
||||
[import ../../../example/nc_chi_sq_example.cpp]
|
||||
[nccs_eg]
|
||||
|
||||
[endsect] [/nccs_power_eg Tables of the power function of the [chi][super 2] test.]
|
||||
|
||||
[endsect] [/section:nccs_eg Non Central Chi Squared Example]
|
||||
|
||||
[/
|
||||
Copyright 2006 John Maddock and Paul A. Bristow.
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
http://www.boost.org/LICENSE_1_0.txt).
|
||||
]
|
||||
|
||||
193
doc/sf_and_dist/distributions/nc_f.qbk
Normal file
@@ -0,0 +1,193 @@
|
||||
[section:nc_f_dist Noncentral F Distribution]
|
||||
|
||||
``#include <boost/math/distributions/non_central_f.hpp>``
|
||||
|
||||
namespace boost{ namespace math{
|
||||
|
||||
template <class RealType = double,
|
||||
class ``__Policy`` = ``__policy_class`` >
|
||||
class non_central_f_distribution;
|
||||
|
||||
typedef non_central_f_distribution<> non_central_f;
|
||||
|
||||
template <class RealType, class ``__Policy``>
|
||||
class non_central_f_distribution
|
||||
{
|
||||
public:
|
||||
typedef RealType value_type;
|
||||
typedef Policy policy_type;
|
||||
|
||||
// Constructor:
|
||||
non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
|
||||
|
||||
// Accessor to degrees_of_freedom parameters v1 & v2:
|
||||
RealType degrees_of_freedom1()const;
|
||||
RealType degrees_of_freedom2()const;
|
||||
|
||||
// Accessor to non-centrality parameter lambda:
|
||||
RealType non_centrality()const;
|
||||
};
|
||||
|
||||
}} // namespaces
|
||||
|
||||
The noncentral F distribution is a generalization of the __F_distrib.
|
||||
It is defined as the ratio
|
||||
|
||||
F = (X/v1) / (Y/v2)
|
||||
|
||||
where X is a noncentral [chi][super 2]
|
||||
random variable with /v1/ degrees of freedom and non-centrality parameter [lambda],
|
||||
and Y is a central [chi][super 2] random variable with /v2/ degrees of freedom.
|
||||
|
||||
This gives the following PDF:
|
||||
|
||||
[equation nc_f_ref1]
|
||||
|
||||
where L[sub a][super b](c) is a generalised Laguerre polynomial and B(a,b) is the
|
||||
__beta function, or
|
||||
|
||||
[equation nc_f_ref2]
|
||||
|
||||
The following graph illustrates how the distribution changes
|
||||
for different values of [lambda]:
|
||||
|
||||
[graph nc_f_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
|
||||
|
||||
Constructs a non-central beta distribution with parameters /v1/ and /v2/
|
||||
and non-centrality parameter /lambda/.
|
||||
|
||||
Requires v1 > 0, v2 > 0 and lambda >= 0, otherwise calls __domain_error.
|
||||
|
||||
RealType degrees_of_freedom1()const;
|
||||
|
||||
Returns the parameter /v1/ from which this object was constructed.
|
||||
|
||||
RealType degrees_of_freedom2()const;
|
||||
|
||||
Returns the parameter /v2/ from which this object was constructed.
|
||||
|
||||
RealType non_centrality()const;
|
||||
|
||||
Returns the non-centrality parameter /lambda/ from which this object was constructed.
|
||||
|
||||
[h4 Non-member Accessors]
|
||||
|
||||
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
|
||||
that are generic to all distributions are supported: __usual_accessors.
|
||||
|
||||
The domain of the random variable is \[0, +[infin]\].
|
||||
|
||||
[h4 Accuracy]
|
||||
|
||||
This distribution is implemented in terms of the
|
||||
__non_central_beta_distrib: refer to that distribution for accuracy data.
|
||||
|
||||
[h4 Tests]
|
||||
|
||||
Since this distribution is implemented by adapting another distribution,
|
||||
the tests consist of basic sanity checks computed by the
|
||||
[@http://www.r-project.org/ R-2.5.1 Math library statistical
|
||||
package] and its pbeta and dbeta functions.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
In the following table /v1/ and /v2/ are the first and second
|
||||
degrees of freedom parameters of the distribution, [lambda]
|
||||
is the non-centrality parameter,
|
||||
/x/ is the random variate, /p/ is the probability, and /q = 1-p/.
|
||||
|
||||
[table
|
||||
[[Function][Implementation Notes]]
|
||||
[[pdf][Implemented in terms of the non-central beta PDF using the relation:
|
||||
|
||||
f(x;v1,v2;[lambda]) = (v1\/v2) / ((1+y)*(1+y)) * g(y\/(1+y);v1\/2,v2\/2;[lambda])
|
||||
|
||||
where g(x; a, b; [lambda]) is the non central beta PDF, and:
|
||||
|
||||
y = x * v1 \/ v2
|
||||
]]
|
||||
[[cdf][Using the relation:
|
||||
|
||||
p = B[sub y](v1\/2, v2\/2; [lambda])
|
||||
|
||||
where B[sub x](a, b; [lambda]) is the noncentral beta distribution CDF and
|
||||
|
||||
y = x * v1 \/ v2
|
||||
|
||||
]]
|
||||
|
||||
[[cdf complement][Using the relation:
|
||||
|
||||
q = 1 - B[sub y](v1\/2, v2\/2; [lambda])
|
||||
|
||||
where 1 - B[sub x](a, b; [lambda]) is the complement of the
|
||||
noncentral beta distribution CDF and
|
||||
|
||||
y = x * v1 \/ v2
|
||||
|
||||
]]
|
||||
[[quantile][Using the relation:
|
||||
|
||||
x = (bx \/ (1-bx)) * (v1 \/ v2)
|
||||
|
||||
where
|
||||
|
||||
bx = Q[sub p][super -1](v1\/2, v2\/2; [lambda])
|
||||
|
||||
and
|
||||
|
||||
Q[sub p][super -1](v1\/2, v2\/2; [lambda])
|
||||
|
||||
is the noncentral beta quantile.
|
||||
|
||||
]]
|
||||
[[quantile
|
||||
|
||||
from the complement][
|
||||
Using the relation:
|
||||
|
||||
x = (bx \/ (1-bx)) * (v1 \/ v2)
|
||||
|
||||
where
|
||||
|
||||
bx = QC[sub q][super -1](v1\/2, v2\/2; [lambda])
|
||||
|
||||
and
|
||||
|
||||
QC[sub q][super -1](v1\/2, v2\/2; [lambda])
|
||||
|
||||
is the noncentral beta quantile from the complement.]]
|
||||
[[mean][v2 * (v1 + l) \/ (v1 * (v2 - 2))]]
|
||||
[[mode][By numeric maximalisation of the PDF.]]
|
||||
[[variance][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
|
||||
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.] ]]
|
||||
[[skewness][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
|
||||
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
|
||||
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
|
||||
Mathematica documentation] ]]
|
||||
[[kurtosis and kurtosis excess]
|
||||
[Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
|
||||
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
|
||||
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
|
||||
Mathematica documentation] ]]
|
||||
]
|
||||
|
||||
Some analytic properties of noncentral distributions
|
||||
(particularly unimodality, and monotonicity of their modes)
|
||||
are surveyed and summarized by:
|
||||
|
||||
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
|
||||
|
||||
[endsect] [/section:nc_f_dist]
|
||||
|
||||
[/ nc_f.qbk
|
||||
Copyright 2008 John Maddock and Paul A. Bristow.
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
http://www.boost.org/LICENSE_1_0.txt).
|
||||
]
|
||||
|
||||
195
doc/sf_and_dist/distributions/nc_t.qbk
Normal file
@@ -0,0 +1,195 @@
|
||||
[section:nc_t_dist Noncentral T Distribution]
|
||||
|
||||
``#include <boost/math/distributions/non_central_t.hpp>``
|
||||
|
||||
namespace boost{ namespace math{
|
||||
|
||||
template <class RealType = double,
|
||||
class ``__Policy`` = ``__policy_class`` >
|
||||
class non_central_t_distribution;
|
||||
|
||||
typedef non_central_t_distribution<> non_central_t;
|
||||
|
||||
template <class RealType, class ``__Policy``>
|
||||
class non_central_t_distribution
|
||||
{
|
||||
public:
|
||||
typedef RealType value_type;
|
||||
typedef Policy policy_type;
|
||||
|
||||
// Constructor:
|
||||
non_central_t_distribution(RealType v, RealType delta);
|
||||
|
||||
// Accessor to degrees_of_freedom parameter v:
|
||||
RealType degrees_of_freedom()const;
|
||||
|
||||
// Accessor to non-centrality parameter lambda:
|
||||
RealType non_centrality()const;
|
||||
};
|
||||
|
||||
}} // namespaces
|
||||
|
||||
The noncentral T distribution is a generalization of the __students_t_distrib.
|
||||
Let X have a normal distribution with mean [delta] and variance 1, and let
|
||||
[nu] S[super 2] have
|
||||
a chi-squared distribution with degrees of freedom [nu]. Assume that
|
||||
X and S[super 2] are independent. The
|
||||
distribution of t[sub [nu]]([delta])=X/S is called a
|
||||
noncentral t distribution with degrees of freedom [nu] and noncentrality
|
||||
parameter [delta].
|
||||
|
||||
This gives the following PDF:
|
||||
|
||||
[equation nc_t_ref1]
|
||||
|
||||
where [sub 1]F[sub 1](a;b;x) is a confluent hypergeometric function.
|
||||
|
||||
The following graph illustrates how the distribution changes
|
||||
for different values of [delta]:
|
||||
|
||||
[graph nc_t_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
non_central_t_distribution(RealType v, RealType lambda);
|
||||
|
||||
Constructs a non-central t distribution with degrees of freedom
|
||||
parameter /v/ and non-centrality parameter /delta/.
|
||||
|
||||
Requires v > 0 and finite delta, otherwise calls __domain_error.
|
||||
|
||||
RealType degrees_of_freedom()const;
|
||||
|
||||
Returns the parameter /v/ from which this object was constructed.
|
||||
|
||||
RealType non_centrality()const;
|
||||
|
||||
Returns the non-centrality parameter /delta/ from which this object was constructed.
|
||||
|
||||
[h4 Non-member Accessors]
|
||||
|
||||
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]
|
||||
that are generic to all distributions are supported: __usual_accessors.
|
||||
|
||||
The domain of the random variable is \[-[infin], +[infin]\].
|
||||
|
||||
[h4 Accuracy]
|
||||
|
||||
The following table shows the peak errors
|
||||
(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon])
|
||||
found on various platforms with various floating-point types.
|
||||
Unless otherwise specified, any floating-point type that is narrower
|
||||
than the one shown will have __zero_error.
|
||||
|
||||
[table Errors In CDF of the Noncentral T Distribution
|
||||
[[Significand Size] [Platform and Compiler] [[nu],[delta] < 600]]
|
||||
[[53] [Win32, Visual C++ 8] [Peak=120 Mean=26 ] ]
|
||||
[[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=121 Mean=26] ]
|
||||
|
||||
[[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=122 Mean=25] ]
|
||||
|
||||
[[113] [HPUX IA64, aCC A.06.06] [Peak=115 Mean=24] ]
|
||||
]
|
||||
|
||||
[caution The complexity of the current algorithm is dependent upon
|
||||
[delta][super 2]: consequently the time taken to evaluate the CDF
|
||||
increases rapidly for [delta] > 500, likewise the accuracy decreases
|
||||
rapidly for very large [delta].]
|
||||
|
||||
Accuracy for the quantile and PDF functions should be broadly similar,
|
||||
note however that the /mode/ is determined numerically and can not
|
||||
in principal be more accurate than the square root of machine epsilon.
|
||||
|
||||
[h4 Tests]
|
||||
|
||||
There are two sets of tests of this distribution: basic sanity checks
|
||||
compare this implementation to the test values given in
|
||||
"Computing discrete mixtures of continuous
|
||||
distributions: noncentral chisquare, noncentral t
|
||||
and the distribution of the square of the sample
|
||||
multiple correlation coefficient."
|
||||
Denise Benton, K. Krishnamoorthy,
|
||||
Computational Statistics & Data Analysis 43 (2003) 249-267.
|
||||
While accuracy checks use test data computed with this
|
||||
implementation and arbitary precision interval arithmetic:
|
||||
this test data is believed to be accurate to at least 50
|
||||
decimal places.
|
||||
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
The CDF is computed using a modification of the method
|
||||
described in
|
||||
"Computing discrete mixtures of continuous
|
||||
distributions: noncentral chisquare, noncentral t
|
||||
and the distribution of the square of the sample
|
||||
multiple correlation coefficient."
|
||||
Denise Benton, K. Krishnamoorthy,
|
||||
Computational Statistics & Data Analysis 43 (2003) 249-267.
|
||||
|
||||
This uses the following formula for the CDF:
|
||||
|
||||
[equation nc_t_ref2]
|
||||
|
||||
Where I[sub x](a,b) is the incomplete beta function, and
|
||||
[Phi](x) is the normal CDF at x.
|
||||
|
||||
Iteration starts at the largest of the Poisson weighting terms
|
||||
(at i = [delta][super 2] / 2) and then proceeds in both directions
|
||||
as per Benton and Krishnamoorthy's paper.
|
||||
|
||||
Alternatively, by considering what happens when t = [infin], we have
|
||||
x = 1, and therefore I[sub x](a,b) = 1 and:
|
||||
|
||||
[equation nc_t_ref3]
|
||||
|
||||
From this we can easily show that:
|
||||
|
||||
[equation nc_t_ref4]
|
||||
|
||||
and therefore we have a means to compute either the probability or its
|
||||
complement directly without the risk of cancellation error. The
|
||||
crossover criterion for choosing whether to calculate the CDF or
|
||||
it's complement is the same as for the
|
||||
__non_central_beta_distrib.
|
||||
|
||||
The PDF can be computed by a very similar method using:
|
||||
|
||||
[equation nc_t_ref5]
|
||||
|
||||
Where I[sub x][super '](a,b) is the derivative of the incomplete beta function.
|
||||
|
||||
The quantile is calculated via the usual
|
||||
[link math_toolkit.toolkit.internals1.roots2
|
||||
derivative-free root-finding techniques],
|
||||
with the initial guess taken as the quantile of a normal approximation
|
||||
to the noncentral T.
|
||||
|
||||
There is no closed form for the mode, so this is computed via
|
||||
functional maximisation of the PDF.
|
||||
|
||||
The remaining functions (mean, variance etc) are implemented
|
||||
using the formulas given in
|
||||
Weisstein, Eric W. "Noncentral Student's t-Distribution."
|
||||
From MathWorld--A Wolfram Web Resource.
|
||||
[@http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html
|
||||
http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html]
|
||||
and in the
|
||||
[@http://reference.wolfram.com/mathematica/ref/NoncentralStudentTDistribution.html
|
||||
Mathematica documentation].
|
||||
|
||||
Some analytic properties of noncentral distributions
|
||||
(particularly unimodality, and monotonicity of their modes)
|
||||
are surveyed and summarized by:
|
||||
|
||||
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
|
||||
|
||||
[endsect] [/section:nc_t_dist]
|
||||
|
||||
[/ nc_t.qbk
|
||||
Copyright 2008 John Maddock and Paul A. Bristow.
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(See accompanying file LICENSE_1_0.txt or copy at
|
||||
http://www.boost.org/LICENSE_1_0.txt).
|
||||
]
|
||||
|
||||
@@ -72,12 +72,12 @@ It has the PDF:
|
||||
The following graph illustrate how the PDF varies as the success fraction
|
||||
/p/ changes:
|
||||
|
||||
[$../graphs/neg_binomial_pdf1.png]
|
||||
[graph negative_binomial_pdf_1]
|
||||
|
||||
Alternatively, this graph shows how the shape of the PDF varies as
|
||||
the number of successes changes:
|
||||
|
||||
[$../graphs/neg_binomial_pdf2.png]
|
||||
[graph negative_binomial_pdf_2]
|
||||
|
||||
[h4 Related Distributions]
|
||||
|
||||
|
||||
@@ -40,7 +40,7 @@ Given mean [mu][space] and standard deviation [sigma][space] it has the PDF:
|
||||
The variation the PDF with its parameters is illustrated
|
||||
in the following graph:
|
||||
|
||||
[$../graphs/normal.png]
|
||||
[graph normal_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -37,11 +37,14 @@ The [@http://mathworld.wolfram.com/paretoDistribution.html Pareto distribution]
|
||||
often describes the larger compared to the smaller.
|
||||
A classic example is that 80% of the wealth is owned by 20% of the population.
|
||||
|
||||
The following graph illustrates how the PDF varies with the shape parameter [alpha]:
|
||||
The following graph illustrates how the PDF varies with the location parameter [beta]:
|
||||
|
||||
[graph pareto_pdf1]
|
||||
|
||||
And this graph illustrates how the PDF varies with the shape parameter [alpha]:
|
||||
|
||||
[graph pareto_pdf2]
|
||||
|
||||
[/$../graphs/paretoShape.png]
|
||||
[/ TODO produce a graph as png or svg]
|
||||
[@http://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Pareto_distributionPDF.png/325px-Pareto_distributionPDF.png Pareto pdf]
|
||||
|
||||
[h4 Related distributions]
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ for k events, with an expected number of events [lambda].
|
||||
|
||||
The following graph illustrates how the PDF varies with the parameter [lambda]:
|
||||
|
||||
[$../graphs/poisson.png]
|
||||
[graph poisson_pdf_1]
|
||||
|
||||
[discrete_quantile_warning Poisson]
|
||||
|
||||
|
||||
@@ -40,11 +40,11 @@ or real and imaginary components may have absolute values that are Rayleigh dist
|
||||
|
||||
The following graph illustrates how the Probability density Function(pdf) varies with the shape parameter [sigma]:
|
||||
|
||||
[$../graphs/rayleigh_pdf.png]
|
||||
[graph rayleigh_pdf]
|
||||
|
||||
and the Cumulative Distribution Function (cdf)
|
||||
|
||||
[$../graphs/rayleigh_cdf.png]
|
||||
[graph rayleigh_cdf]
|
||||
|
||||
[h4 Related distributions]
|
||||
|
||||
|
||||
@@ -55,7 +55,7 @@ As the number of degrees of freedom tends towards infinity, then this
|
||||
distribution approaches the normal-distribution. The following graph
|
||||
illustrates how the PDF varies with the degrees of freedom [nu]:
|
||||
|
||||
[$../graphs/students_t.png]
|
||||
[graph students_t_pdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -72,11 +72,11 @@ The following graph illustrates how the
|
||||
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function PDF]
|
||||
varies with the various parameters:
|
||||
|
||||
[$../graphs/triangular_pdf.png]
|
||||
[graph triangular_pdf]
|
||||
|
||||
and cumulative distribution function
|
||||
|
||||
[$../graphs/triangular_cdf.png]
|
||||
[graph triangular_cdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -61,11 +61,11 @@ The following graph illustrates how the
|
||||
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function PDF]
|
||||
varies with the shape parameter:
|
||||
|
||||
[$../graphs/uniform_pdf.png]
|
||||
[graph uniform_pdf]
|
||||
|
||||
Likewise for the CDF:
|
||||
|
||||
[$../graphs/uniform_cdf.png]
|
||||
[graph uniform_cdf]
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -45,11 +45,11 @@ If the failure rate is:
|
||||
|
||||
The following graph illustrates how the PDF varies with the shape parameter [alpha]:
|
||||
|
||||
[$../graphs/weibull.png]
|
||||
[graph weibull_pdf1]
|
||||
|
||||
While this graph illustrates how the PDF varies with the scale parameter [beta]:
|
||||
|
||||
[$../graphs/weibull2.png]
|
||||
[graph weibull_pdf2]
|
||||
|
||||
[h4 Related distributions]
|
||||
|
||||
@@ -58,6 +58,11 @@ When [alpha][space] = 3, the
|
||||
[@http://en.wikipedia.org/wiki/Normal_distribution normal distribution].
|
||||
When [alpha][space] = 1, the Weibull distribution reduces to the
|
||||
[@http://en.wikipedia.org/wiki/Exponential_distribution exponential distribution].
|
||||
The relationship of the types of extreme value distributions, of which the Weibull is but one, is
|
||||
discussed by
|
||||
[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
|
||||
Samuel Kotz & Saralees Nadarajah].
|
||||
|
||||
|
||||
[h4 Member Functions]
|
||||
|
||||
|
||||
@@ -76,7 +76,7 @@ These functions return Carlson's symmetrical elliptic integrals, the functions
|
||||
have complicated behavior over all their possible domains, but the following
|
||||
graph gives an idea of their behavior:
|
||||
|
||||
[$../graphs/ellint_c.png]
|
||||
[graph ellint_carlson]
|
||||
|
||||
The return type of these functions is computed using the __arg_pomotion_rules
|
||||
when the arguments are of different types: otherwise the return is the same type
|
||||
|
||||
@@ -35,7 +35,7 @@ LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
These two functions evaluate the incomplete elliptic integral of the first kind
|
||||
['F([phi], k)] and its complete counterpart ['K(k) = F([pi]/2, k)].
|
||||
|
||||
[$../graphs/ellint_1.png]
|
||||
[graph ellint_1]
|
||||
|
||||
The return type of these functions is computed using the __arg_pomotion_rules
|
||||
when T1 and T2 are different types: when they are the same type then the result
|
||||
@@ -135,7 +135,7 @@ and
|
||||
These two functions evaluate the incomplete elliptic integral of the second kind
|
||||
['E([phi], k)] and its complete counterpart ['E(k) = E([pi]/2, k)].
|
||||
|
||||
[$../graphs/ellint_2.png]
|
||||
[graph ellint_2]
|
||||
|
||||
The return type of these functions is computed using the __arg_pomotion_rules
|
||||
when T1 and T2 are different types: when they are the same type then the result
|
||||
@@ -235,7 +235,7 @@ and
|
||||
These two functions evaluate the incomplete elliptic integral of the third kind
|
||||
['[Pi](n, [phi], k)] and its complete counterpart ['[Pi](n, k) = E(n, [pi]/2, k)].
|
||||
|
||||
[$../graphs/ellint_3.png]
|
||||
[graph ellint_3]
|
||||
|
||||
The return type of these functions is computed using the __arg_pomotion_rules
|
||||
when the arguments are of different types: when they are the same type then the result
|
||||
|
||||
46
doc/sf_and_dist/equations/expint_i_1.mml
Normal file
@@ -0,0 +1,46 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>E</mi>
|
||||
<mi>i</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mo>−</mo>
|
||||
<msub>
|
||||
<mi>E</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<munderover>
|
||||
<mo>∫</mo>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>t</mi>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mi>d</mi>
|
||||
<mi>t</mi>
|
||||
</mrow>
|
||||
<mi>t</mi>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_i_1.png
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
2
doc/sf_and_dist/equations/expint_i_1.svg
Normal file
|
After Width: | Height: | Size: 5.8 KiB |
42
doc/sf_and_dist/equations/expint_i_2.mml
Normal file
@@ -0,0 +1,42 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mtext>Ei</mtext>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>z</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mi>log</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>z</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>+</mo>
|
||||
<mi>γ</mi>
|
||||
<mo>+</mo>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>z</mi>
|
||||
<mi>k</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mi>k</mi>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_i_2.png
Normal file
|
After Width: | Height: | Size: 3.9 KiB |
2
doc/sf_and_dist/equations/expint_i_2.svg
Normal file
|
After Width: | Height: | Size: 5.1 KiB |
45
doc/sf_and_dist/equations/expint_i_3.mml
Normal file
@@ -0,0 +1,45 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mtext>Ei</mtext>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>z</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mi>log</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>z</mi>
|
||||
<msub>
|
||||
<mi>z</mi>
|
||||
<mn>0</mn>
|
||||
</msub>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>+</mo>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>z</mi>
|
||||
<mo>−</mo>
|
||||
<msub>
|
||||
<mi>z</mi>
|
||||
<mn>0</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>R</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>z</mi>
|
||||
<mn>3</mn>
|
||||
</mfrac>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_i_3.png
Normal file
|
After Width: | Height: | Size: 4.1 KiB |
2
doc/sf_and_dist/equations/expint_i_3.svg
Normal file
|
After Width: | Height: | Size: 6.1 KiB |
32
doc/sf_and_dist/equations/expint_i_4.mml
Normal file
@@ -0,0 +1,32 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mtext>Ei</mtext>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>z</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mi>z</mi>
|
||||
<mo>+</mo>
|
||||
<mfrac>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mi>z</mi>
|
||||
</msup>
|
||||
<mi>z</mi>
|
||||
</mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>c</mi>
|
||||
<mo>+</mo>
|
||||
<mi>R</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>t</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_i_4.png
Normal file
|
After Width: | Height: | Size: 2.6 KiB |
2
doc/sf_and_dist/equations/expint_i_4.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="17.534238pt" width="112.195285pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -14.756895 112.195285 17.534238"><svg:metadata><svgmath:metrics top="17.5342382812" bottom="0.0" baseline="2.77734375" axis="6.76171875"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="5.332031" font-family="Times New Roman" fill="black">Ei</svg:text><svg:g transform="translate(12.664067, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.692383" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g><svg:g transform="translate(9.058594, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.052090, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.153004, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.692383" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g><svg:g transform="translate(46.882168, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(56.902348, -3.984375)"><svg:g transform="translate(0.585938, -1.740234)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">e</svg:text><svg:g transform="translate(5.326172, -5.367188)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.911592" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g></svg:g><svg:g transform="translate(2.514961, 6.761719)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.692383" font-family="Times New Roman" font-style="italic" fill="black">z</svg:text></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="10.092422" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(67.580707, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">c</svg:text><svg:g transform="translate(7.992836, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(17.427078, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(25.032547, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="1.666992" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text></svg:g><svg:g transform="translate(7.593750, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:g><svg:g transform="translate(40.618484, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 4.4 KiB |
41
doc/sf_and_dist/equations/expint_n_1.mml
Normal file
@@ -0,0 +1,41 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>E</mi>
|
||||
<mi>n</mi>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<msubsup>
|
||||
<mo>∫</mo>
|
||||
<mrow>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</msubsup>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>x</mi>
|
||||
<mi>t</mi>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mi>d</mi>
|
||||
<mi>t</mi>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>t</mi>
|
||||
<mi>n</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_n_1.png
Normal file
|
After Width: | Height: | Size: 2.6 KiB |
2
doc/sf_and_dist/equations/expint_n_1.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="30.002155pt" width="80.838902pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -22.649140 80.838902 30.002155"><svg:metadata><svgmath:metrics top="30.002154878" bottom="0.465026936762" baseline="7.35301521801" axis="11.337390218"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.934570" font-family="Times New Roman" font-style="italic" fill="black">E</svg:text><svg:g transform="translate(7.857422, 2.683594)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g><svg:g transform="translate(12.117422, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.167555, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.268469, -3.984375)"><svg:text font-size="25.051643" text-anchor="middle" y="5.465710" x="3.467842" font-family="Times New Roman" fill="black">∫</svg:text><svg:g transform="translate(6.898988, 9.498601)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(6.898988, -14.737577)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="3.036914" font-family="Times New Roman" font-style="italic" fill="black">∞</svg:text></svg:g></svg:g><svg:g transform="translate(52.827222, -3.984375)"><svg:g transform="translate(0.585938, -1.740234)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">e</svg:text><svg:g transform="translate(5.326172, -5.367188)"><svg:g transform="translate(0.000000, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(4.804980, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.173682" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(8.869453, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text></svg:g></svg:g><svg:g transform="translate(16.749961, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" font-style="italic" fill="black">d</svg:text></svg:g><svg:g transform="translate(23.242148, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="1.666992" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text></svg:g></svg:g><svg:g transform="translate(10.077012, 10.731738)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="1.666992" font-family="Times New Roman" font-style="italic" fill="black">t</svg:text><svg:g transform="translate(3.597656, -5.367188)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="28.011680" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 4.1 KiB |
101
doc/sf_and_dist/equations/expint_n_2.mml
Normal file
@@ -0,0 +1,101 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>E</mi>
|
||||
<mi>n</mi>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mfrac>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>z</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>ψ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>−</mo>
|
||||
<mi>log</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>z</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>−</mo>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0,</mn>
|
||||
<mi>k</mi>
|
||||
<mo>≠</mo>
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>k</mi>
|
||||
</msup>
|
||||
<msup>
|
||||
<mi>z</mi>
|
||||
<mi>k</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>−</mo>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>k</mi>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_n_2.png
Normal file
|
After Width: | Height: | Size: 8.1 KiB |
2
doc/sf_and_dist/equations/expint_n_2.svg
Normal file
|
After Width: | Height: | Size: 13 KiB |
101
doc/sf_and_dist/equations/expint_n_3.mml
Normal file
@@ -0,0 +1,101 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>E</mi>
|
||||
<mi>n</mi>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mfrac>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mi>x</mi>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>n</mi>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mo>+</mo>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mi>x</mi>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mn>4</mn>
|
||||
<mo>+</mo>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mi>x</mi>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mn>3</mn>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>2</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mn>6</mn>
|
||||
<mo>+</mo>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mi>x</mi>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mn>4</mn>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>3</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mn>8</mn>
|
||||
<mo>+</mo>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mi>x</mi>
|
||||
<mo>−</mo>
|
||||
<mo>…</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_n_3.png
Normal file
|
After Width: | Height: | Size: 5.9 KiB |
2
doc/sf_and_dist/equations/expint_n_3.svg
Normal file
|
After Width: | Height: | Size: 13 KiB |
31
doc/sf_and_dist/equations/expint_n_4.mml
Normal file
@@ -0,0 +1,31 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>E</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mi>x</mi>
|
||||
<mo>+</mo>
|
||||
<mi>log</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>+</mo>
|
||||
<mi>c</mi>
|
||||
<mo>+</mo>
|
||||
<mi>R</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_n_4.png
Normal file
|
After Width: | Height: | Size: 2.8 KiB |
2
doc/sf_and_dist/equations/expint_n_4.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="12.883548pt" width="136.995015pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -8.343763 136.995015 12.883548"><svg:metadata><svgmath:metrics top="12.8835477435" bottom="1.8387890625" baseline="4.53978515625" axis="8.52416015625"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.934570" font-family="Times New Roman" font-style="italic" fill="black">E</svg:text><svg:g transform="translate(7.857422, 2.700996)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(12.117422, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.167555, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.268469, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(47.659742, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(57.093984, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="7.666992" font-family="Times New Roman" fill="black">log</svg:text></svg:g><svg:g transform="translate(72.427969, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(88.811430, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(98.245672, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">c</svg:text></svg:g><svg:g transform="translate(106.238508, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(115.672750, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(123.278218, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 4.4 KiB |
39
doc/sf_and_dist/equations/expint_n_5.mml
Normal file
@@ -0,0 +1,39 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>E</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mfrac>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mi>x</mi>
|
||||
</mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>1</mn>
|
||||
<mo>+</mo>
|
||||
<mi>R</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mi>x</mi>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
BIN
doc/sf_and_dist/equations/expint_n_5.png
Normal file
|
After Width: | Height: | Size: 3.0 KiB |
2
doc/sf_and_dist/equations/expint_n_5.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="20.581348pt" width="105.842344pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -14.856738 105.842344 20.581348"><svg:metadata><svgmath:metrics top="20.5813476562" bottom="0.0417142185822" baseline="5.724609375" axis="9.708984375"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.934570" font-family="Times New Roman" font-style="italic" fill="black">E</svg:text><svg:g transform="translate(7.857422, 2.700996)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(12.117422, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:g transform="translate(9.720703, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(29.167555, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(39.854406, -3.984375)"><svg:g transform="translate(0.585938, -1.740234)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">e</svg:text><svg:g transform="translate(5.326172, -5.367188)"><svg:g transform="translate(0.000000, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(4.804980, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.173682" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g></svg:g></svg:g><svg:g transform="translate(4.821445, 6.902344)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="15.367500" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(55.807844, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text><svg:g transform="translate(8.666664, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(18.100906, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(25.706375, -3.984375)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">(</svg:text><svg:g transform="translate(4.582031, 0.000000)"><svg:g transform="translate(0.585938, -1.599609)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(0.723633, 6.902344)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.061523" font-family="Times New Roman" font-style="italic" fill="black">x</svg:text></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="7.171875" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(12.339844, 0.000000)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:g><svg:g transform="translate(46.038406, -3.984375)"><svg:text font-size="21.357680" transform="scale(0.561859, 1)" text-anchor="middle" y="5.099563" x="3.556137" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 4.8 KiB |
56
doc/sf_and_dist/equations/nc_beta_ref1.mml
Normal file
@@ -0,0 +1,56 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>f</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>α</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
<mo>;</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>;</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<msubsup>
|
||||
<mi>I</mi>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
<mo>′</mo>
|
||||
</msubsup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>α</mi>
|
||||
<mo>+</mo>
|
||||
<mi>i</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_beta_ref1.png
Normal file
|
After Width: | Height: | Size: 5.1 KiB |
2
doc/sf_and_dist/equations/nc_beta_ref1.svg
Normal file
|
After Width: | Height: | Size: 7.5 KiB |
53
doc/sf_and_dist/equations/nc_beta_ref2.mml
Normal file
@@ -0,0 +1,53 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>F</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>α</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
<mo>;</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>;</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<msub>
|
||||
<mi>I</mi>
|
||||
<mi>x</mi>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>α</mi>
|
||||
<mo>+</mo>
|
||||
<mi>i</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_beta_ref2.png
Normal file
|
After Width: | Height: | Size: 5.1 KiB |
2
doc/sf_and_dist/equations/nc_beta_ref2.svg
Normal file
|
After Width: | Height: | Size: 7.3 KiB |
53
doc/sf_and_dist/equations/nc_beta_ref3.mml
Normal file
@@ -0,0 +1,53 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>E</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>X</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>≃</mo>
|
||||
<mspace width="1em"/>
|
||||
<mn>1</mn>
|
||||
<mo>−</mo>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>β</mi>
|
||||
<mi>C</mi>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>1</mn>
|
||||
<mo>+</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<msup>
|
||||
<mi>C</mi>
|
||||
<mn>2</mn>
|
||||
</msup>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>;</mo>
|
||||
<mspace width="1em"/>
|
||||
<mi>C</mi>
|
||||
<mo>=</mo>
|
||||
<mi>α</mi>
|
||||
<mo>+</mo>
|
||||
<mi>β</mi>
|
||||
<mo>+</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_beta_ref3.png
Normal file
|
After Width: | Height: | Size: 5.2 KiB |
2
doc/sf_and_dist/equations/nc_beta_ref3.svg
Normal file
|
After Width: | Height: | Size: 6.9 KiB |
119
doc/sf_and_dist/equations/nc_beta_ref4.mml
Normal file
@@ -0,0 +1,119 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mtable>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<mi>F</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>α</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
<mo>;</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>;</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<msub>
|
||||
<mi>I</mi>
|
||||
<mi>x</mi>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>α</mi>
|
||||
<mo>+</mo>
|
||||
<mi>i</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mtd>
|
||||
</mtr>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<mn>1</mn>
|
||||
<mo>−</mo>
|
||||
<mi>F</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>α</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
<mo>;</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>;</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>1</mn>
|
||||
<mo>−</mo>
|
||||
<msub>
|
||||
<mi>I</mi>
|
||||
<mi>x</mi>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>α</mi>
|
||||
<mo>+</mo>
|
||||
<mi>i</mi>
|
||||
<mo>,</mo>
|
||||
<mi>β</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mtd>
|
||||
</mtr>
|
||||
</mtable>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_beta_ref4.png
Normal file
|
After Width: | Height: | Size: 9.8 KiB |
2
doc/sf_and_dist/equations/nc_beta_ref4.svg
Normal file
|
After Width: | Height: | Size: 16 KiB |
35
doc/sf_and_dist/equations/nc_chi_squ_ref1.mml
Normal file
@@ -0,0 +1,35 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
<mi>k</mi>
|
||||
</munderover>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>χ</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>σ</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mn>2</mn>
|
||||
</msup>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref1.png
Normal file
|
After Width: | Height: | Size: 2.3 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref1.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="38.743550pt" width="42.733199pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -23.435193 42.733199 38.743550"><svg:metadata><svgmath:metrics top="38.7435503239" bottom="0.0" baseline="15.3083571932" axis="19.2927321932"/></svg:metadata><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="26.680296" text-anchor="middle" y="6.370442" x="9.510066" font-family="Times New Roman" fill="black">∑</svg:text><svg:g transform="translate(3.794012, 19.192888)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text><svg:g transform="translate(2.367129, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(7.172109, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:g transform="translate(7.423748, -13.535076)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.890791" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text></svg:g><svg:g transform="translate(19.020133, 0.000000)"><svg:text font-size="23.677766" transform="scale(0.506805, 1)" text-anchor="middle" y="5.653529" x="3.942441" font-family="Times New Roman" fill="black">(</svg:text><svg:g transform="translate(4.582031, 0.000000)"><svg:g transform="translate(0.585938, -5.531250)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.764648" font-family="Times New Roman" font-style="italic" fill="black">χ</svg:text><svg:g transform="translate(6.750000, 3.831797)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:g transform="translate(0.796875, 6.761719)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.958984" font-family="Times New Roman" font-style="italic" fill="black">σ</svg:text><svg:g transform="translate(6.328125, 2.683594)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="10.289004" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(15.456973, 0.000000)"><svg:text font-size="23.677766" transform="scale(0.506805, 1)" text-anchor="middle" y="5.653529" x="3.942441" font-family="Times New Roman" fill="black">)</svg:text></svg:g><svg:g transform="translate(19.453066, -6.370935)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">2</svg:text></svg:g></svg:g></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 3.0 KiB |
39
doc/sf_and_dist/equations/nc_chi_squ_ref2.mml
Normal file
@@ -0,0 +1,39 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>λ</mi>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
<mi>k</mi>
|
||||
</munderover>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>μ</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>σ</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mn>2</mn>
|
||||
</msup>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref2.png
Normal file
|
After Width: | Height: | Size: 2.6 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref2.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="37.237855pt" width="84.465344pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -23.364730 84.465344 37.237855"><svg:metadata><svgmath:metrics top="37.2378545834" bottom="0.0" baseline="13.873125" axis="17.8575"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.973633" font-family="Times New Roman" font-style="italic" fill="black">λ</svg:text><svg:g transform="translate(5.572266, 0.000000)"/><svg:g transform="translate(20.905602, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(31.006516, 0.000000)"/><svg:g transform="translate(43.006516, -3.984375)"><svg:text font-size="25.024192" text-anchor="middle" y="5.292630" x="8.919756" font-family="Times New Roman" fill="black">∑</svg:text><svg:g transform="translate(3.203701, 17.757656)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text><svg:g transform="translate(2.367129, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(7.172109, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:g transform="translate(6.833438, -13.464612)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.890791" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text></svg:g></svg:g><svg:g transform="translate(60.846028, -3.984375)"><svg:text font-size="23.523093" transform="scale(0.510137, 1)" text-anchor="middle" y="5.616598" x="3.916687" font-family="Times New Roman" fill="black">(</svg:text><svg:g transform="translate(4.582031, 0.000000)"><svg:g transform="translate(0.585938, -5.531250)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.644531" font-family="Times New Roman" font-style="italic" fill="black">μ</svg:text><svg:g transform="translate(6.656250, 3.831797)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:g transform="translate(0.750000, 6.761719)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.958984" font-family="Times New Roman" font-style="italic" fill="black">σ</svg:text><svg:g transform="translate(6.328125, 2.683594)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.183564" font-family="Times New Roman" font-style="italic" fill="black">i</svg:text></svg:g></svg:g><svg:line y2="0.000000" stroke-width="0.585938" x2="10.195254" stroke="black" stroke-linecap="butt" stroke-dasharray="none" y1="0.000000" x1="0.000000" fill="none"/></svg:g><svg:g transform="translate(15.363223, 0.000000)"><svg:text font-size="23.523093" transform="scale(0.510137, 1)" text-anchor="middle" y="5.616598" x="3.916687" font-family="Times New Roman" fill="black">)</svg:text></svg:g><svg:g transform="translate(19.359316, -6.300472)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">2</svg:text></svg:g></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 3.5 KiB |
146
doc/sf_and_dist/equations/nc_chi_squ_ref3.mml
Normal file
@@ -0,0 +1,146 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>f</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>ν</mi>
|
||||
<mo>,</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>i</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<mi>f</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>ν</mi>
|
||||
<mo>+</mo>
|
||||
<mn>2</mn>
|
||||
<mi>i</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>[</mo>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>+</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>]</mo>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>x</mi>
|
||||
<mi>λ</mi>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>ν</mi>
|
||||
<mn>4</mn>
|
||||
</mfrac>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msub>
|
||||
<mi>I</mi>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>k</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<msqrt>
|
||||
<mrow>
|
||||
<mi>λ</mi>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</msqrt>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref3.png
Normal file
|
After Width: | Height: | Size: 10 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref3.svg
Normal file
|
After Width: | Height: | Size: 18 KiB |
182
doc/sf_and_dist/equations/nc_chi_squ_ref4.mml
Normal file
@@ -0,0 +1,182 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mtable>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>ν</mi>
|
||||
<mo>,</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<msub>
|
||||
<mi>s</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
<msub>
|
||||
<mi>t</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
</mtd>
|
||||
</mtr>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<msub>
|
||||
<mi>s</mi>
|
||||
<mn>0</mn>
|
||||
</msub>
|
||||
<mo>=</mo>
|
||||
<msub>
|
||||
<mi>u</mi>
|
||||
<mn>0</mn>
|
||||
</msub>
|
||||
<mo>=</mo>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mo>,</mo>
|
||||
<mspace width="1em"/>
|
||||
<msub>
|
||||
<mi>s</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
<mo>=</mo>
|
||||
<msub>
|
||||
<mi>s</mi>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mo>+</mo>
|
||||
<msub>
|
||||
<mi>u</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
<mo>,</mo>
|
||||
<mspace width="1em"/>
|
||||
<msub>
|
||||
<mi>u</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
<mo>=</mo>
|
||||
<msub>
|
||||
<mi>u</mi>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mi>i</mi>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mtd>
|
||||
</mtr>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<msub>
|
||||
<mi>t</mi>
|
||||
<mn>0</mn>
|
||||
</msub>
|
||||
<mo>=</mo>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mrow>
|
||||
<mi>Γ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>x</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>x</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mo>,</mo>
|
||||
<mspace width="1em"/>
|
||||
<msub>
|
||||
<mi>t</mi>
|
||||
<mi>i</mi>
|
||||
</msub>
|
||||
<mo>=</mo>
|
||||
<msub>
|
||||
<mi>t</mi>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mfrac>
|
||||
<mi>x</mi>
|
||||
<mrow>
|
||||
<mi>ν</mi>
|
||||
<mo>+</mo>
|
||||
<mn>2</mn>
|
||||
<mi>i</mi>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mtd>
|
||||
</mtr>
|
||||
</mtable>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref4.png
Normal file
|
After Width: | Height: | Size: 9.3 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref4.svg
Normal file
|
After Width: | Height: | Size: 19 KiB |
75
doc/sf_and_dist/equations/nc_chi_squ_ref5.mml
Normal file
@@ -0,0 +1,75 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>ν</mi>
|
||||
<mo>,</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>i</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<msub>
|
||||
<mi>P</mi>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>x</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mi>i</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref5.png
Normal file
|
After Width: | Height: | Size: 5.7 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref5.svg
Normal file
|
After Width: | Height: | Size: 8.5 KiB |
77
doc/sf_and_dist/equations/nc_chi_squ_ref6.mml
Normal file
@@ -0,0 +1,77 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mn>1</mn>
|
||||
<mo>−</mo>
|
||||
<mi>P</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<mi>ν</mi>
|
||||
<mo>,</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>i</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mi>i</mi>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<msub>
|
||||
<mi>Q</mi>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>x</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mi>i</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref6.png
Normal file
|
After Width: | Height: | Size: 6.0 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref6.svg
Normal file
|
After Width: | Height: | Size: 8.9 KiB |
86
doc/sf_and_dist/equations/nc_chi_squ_ref7.mml
Normal file
@@ -0,0 +1,86 @@
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mtable>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<mtext>mean</mtext>
|
||||
</mtd>
|
||||
<mtd>
|
||||
<mo>=</mo>
|
||||
</mtd>
|
||||
<mtd>
|
||||
<mi>ν</mi>
|
||||
<mo>+</mo>
|
||||
<mi>λ</mi>
|
||||
</mtd>
|
||||
</mtr>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<mtext>variance</mtext>
|
||||
</mtd>
|
||||
<mtd>
|
||||
<mo>=</mo>
|
||||
</mtd>
|
||||
<mtd>
|
||||
<mn>2</mn>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>ν</mi>
|
||||
<mo>+</mo>
|
||||
<mn>2</mn>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mtd>
|
||||
</mtr>
|
||||
<mtr>
|
||||
<mtd>
|
||||
<mtext>skewness</mtext>
|
||||
</mtd>
|
||||
<mtd>
|
||||
<mo>=</mo>
|
||||
</mtd>
|
||||
<mtd>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mn>2</mn>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mn>3</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>ν</mi>
|
||||
<mo>+</mo>
|
||||
<mn>3</mn>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>ν</mi>
|
||||
<mo>+</mo>
|
||||
<mn>2</mn>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mn>3</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
</mfrac>
|
||||
</mtd>
|
||||
</mtr>
|
||||
</mtable>
|
||||
</mrow>
|
||||
</math>
|
||||
|
||||
BIN
doc/sf_and_dist/equations/nc_chi_squ_ref7.png
Normal file
|
After Width: | Height: | Size: 6.5 KiB |
2
doc/sf_and_dist/equations/nc_chi_squ_ref7.svg
Normal file
|
After Width: | Height: | Size: 7.8 KiB |
314
doc/sf_and_dist/equations/nc_f_ref1.mml
Normal file
@@ -0,0 +1,314 @@
|
||||
<?xml version='1.0'?>
|
||||
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
|
||||
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
|
||||
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
|
||||
<html xmlns='http://www.w3.org/1999/xhtml'>
|
||||
<head><title>nc_f_ref1</title>
|
||||
<!-- MathML created with MathCast Equation Editor version 0.88 -->
|
||||
</head>
|
||||
<body>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>f</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mo>,</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
<mo>;</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
<mo>+</mo>
|
||||
<mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>λ</mi>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
<mo>+</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mi>x</mi>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
<mo>+</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mo>+</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mi>Γ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>Γ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>1</mn>
|
||||
<mo>+</mo>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<msubsup>
|
||||
<mi>L</mi>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msubsup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mi>λ</mi>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
<mo>+</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mi>B</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mo>,</mo>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>Γ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mo>+</mo>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
</body>
|
||||
</html>
|
||||
BIN
doc/sf_and_dist/equations/nc_f_ref1.png
Normal file
|
After Width: | Height: | Size: 16 KiB |
2
doc/sf_and_dist/equations/nc_f_ref1.svg
Normal file
|
After Width: | Height: | Size: 31 KiB |
214
doc/sf_and_dist/equations/nc_f_ref2.mml
Normal file
@@ -0,0 +1,214 @@
|
||||
<?xml version='1.0'?>
|
||||
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
|
||||
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
|
||||
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
|
||||
<html xmlns='http://www.w3.org/1999/xhtml'>
|
||||
<head><title>nc_f_ref2</title>
|
||||
<!-- MathML created with MathCast Equation Editor version 0.88 -->
|
||||
</head>
|
||||
<body>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>f</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
<mo>;</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
<mo>,</mo>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
<mo>;</mo>
|
||||
<mi>λ</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mspace width="1em"/>
|
||||
<mo>=</mo>
|
||||
<mspace width="1em"/>
|
||||
<munderover>
|
||||
<mo>∑</mo>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
</mrow>
|
||||
<mi>∞</mi>
|
||||
</munderover>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>e</mi>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mi>λ</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>k</mi>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mi>B</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2,</mn>
|
||||
</mfrac>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mi>k</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>k</mi>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mi>k</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mo>+</mo>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mo>+</mo>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>2</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mi>k</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mi>x</mi>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msub>
|
||||
<mi>ν</mi>
|
||||
<mn>1</mn>
|
||||
</msub>
|
||||
</mrow>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>+</mo>
|
||||
<mi>k</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</msup>
|
||||
</mrow>
|
||||
</math>
|
||||
</body>
|
||||
</html>
|
||||