mirror of
https://github.com/boostorg/math.git
synced 2026-01-27 19:12:08 +00:00
New special functions for truncation and rounding, plus exponential integrals and zeta. New non central distributions. Updated equation png's so that they are all consistent. [SVN r44091]
524 lines
19 KiB
C++
524 lines
19 KiB
C++
// test_nc_t.cpp
|
||
|
||
// Copyright John Maddock 2008.
|
||
|
||
// Use, modification and distribution are subject to the
|
||
// Boost Software License, Version 1.0.
|
||
// (See accompanying file LICENSE_1_0.txt
|
||
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
||
#ifdef _MSC_VER
|
||
#pragma warning (disable:4127 4512)
|
||
#endif
|
||
|
||
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
|
||
# define TEST_FLOAT
|
||
# define TEST_DOUBLE
|
||
# define TEST_LDOUBLE
|
||
# define TEST_REAL_CONCEPT
|
||
#endif
|
||
|
||
#include <boost/math/concepts/real_concept.hpp> // for real_concept
|
||
#include <boost/math/distributions/non_central_t.hpp> // for chi_squared_distribution
|
||
#include <boost/test/included/test_exec_monitor.hpp> // for test_main
|
||
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
|
||
|
||
#include "functor.hpp"
|
||
#include "handle_test_result.hpp"
|
||
|
||
#include <iostream>
|
||
using std::cout;
|
||
using std::endl;
|
||
#include <limits>
|
||
using std::numeric_limits;
|
||
|
||
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
|
||
{\
|
||
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
|
||
BOOST_CHECK_CLOSE(a, b, prec); \
|
||
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
|
||
{\
|
||
std::cerr << "Failure was at row " << i << std::endl;\
|
||
std::cerr << std::setprecision(35); \
|
||
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
|
||
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
|
||
}\
|
||
}
|
||
|
||
#define BOOST_CHECK_EX(a, i) \
|
||
{\
|
||
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
|
||
BOOST_CHECK(a); \
|
||
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
|
||
{\
|
||
std::cerr << "Failure was at row " << i << std::endl;\
|
||
std::cerr << std::setprecision(35); \
|
||
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
|
||
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
|
||
}\
|
||
}
|
||
|
||
void expected_results()
|
||
{
|
||
//
|
||
// Define the max and mean errors expected for
|
||
// various compilers and platforms.
|
||
//
|
||
const char* largest_type;
|
||
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
||
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
|
||
{
|
||
largest_type = "(long\\s+)?double|real_concept";
|
||
}
|
||
else
|
||
{
|
||
largest_type = "long double|real_concept";
|
||
}
|
||
#else
|
||
largest_type = "(long\\s+)?double|real_concept";
|
||
#endif
|
||
|
||
//
|
||
// Catch all cases come last:
|
||
//
|
||
add_expected_result(
|
||
"[^|]*", // compiler
|
||
"[^|]*", // stdlib
|
||
"[^|]*", // platform
|
||
"real_concept", // test type(s)
|
||
"[^|]*", // test data group
|
||
"[^|]*", 300000, 100000); // test function
|
||
add_expected_result(
|
||
"[^|]*", // compiler
|
||
"[^|]*", // stdlib
|
||
"[^|]*", // platform
|
||
largest_type, // test type(s)
|
||
"[^|]*", // test data group
|
||
"[^|]*", 250, 50); // test function
|
||
|
||
//
|
||
// Finish off by printing out the compiler/stdlib/platform names,
|
||
// we do this to make it easier to mark up expected error rates.
|
||
//
|
||
std::cout << "Tests run with " << BOOST_COMPILER << ", "
|
||
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
|
||
}
|
||
|
||
template <class RealType>
|
||
RealType naive_pdf(RealType v, RealType delta, RealType x)
|
||
{
|
||
}
|
||
|
||
template <class RealType>
|
||
RealType naive_mean(RealType v, RealType delta)
|
||
{
|
||
using boost::math::tgamma;
|
||
return delta * sqrt(v / 2) * tgamma((v-1)/2) / tgamma(v/2);
|
||
}
|
||
|
||
float naive_mean(float v, float delta)
|
||
{
|
||
return (float)naive_mean((double)v, (double)delta);
|
||
}
|
||
|
||
template <class RealType>
|
||
RealType naive_variance(RealType v, RealType delta)
|
||
{
|
||
using boost::math::tgamma;
|
||
RealType r = tgamma((v-1)/2) / tgamma(v/2);
|
||
r *= r;
|
||
r *= -delta * delta * v / 2;
|
||
r += (1 + delta * delta) * v / (v - 2);
|
||
return r;
|
||
}
|
||
|
||
float naive_variance(float v, float delta)
|
||
{
|
||
return (float)naive_variance((double)v, (double)delta);
|
||
}
|
||
|
||
template <class RealType>
|
||
RealType naive_skewness(RealType v, RealType delta)
|
||
{
|
||
using boost::math::tgamma;
|
||
RealType tgr = tgamma((v-1)/2) / tgamma(v / 2);
|
||
RealType r = delta * sqrt(v) * tgamma((v-1)/2)
|
||
* (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
|
||
- 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
|
||
r /= boost::math::constants::root_two<RealType>()
|
||
* pow(((1+delta*delta) * v / (-2+v) - delta*delta*v*tgr*tgr/2), RealType(1.5f))
|
||
* tgamma(v/2);
|
||
return r;
|
||
}
|
||
|
||
float naive_skewness(float v, float delta)
|
||
{
|
||
return (float)naive_skewness((double)v, (double)delta);
|
||
}
|
||
|
||
template <class RealType>
|
||
RealType naive_kurtosis_excess(RealType v, RealType delta)
|
||
{
|
||
using boost::math::tgamma;
|
||
RealType tgr = tgamma((v-1)/2) / tgamma(v / 2);
|
||
RealType r = -delta * delta * v * tgr * tgr / 2;
|
||
r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2+v))
|
||
- 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
|
||
r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
|
||
/ ((-4+v) * (-2+v));
|
||
r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2;
|
||
r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2;
|
||
return r;
|
||
}
|
||
|
||
float naive_kurtosis_excess(float v, float delta)
|
||
{
|
||
return (float)naive_kurtosis_excess((double)v, (double)delta);
|
||
}
|
||
|
||
template <class RealType>
|
||
void test_spot(
|
||
RealType df, // Degrees of freedom
|
||
RealType ncp, // non-centrality param
|
||
RealType t, // T statistic
|
||
RealType P, // CDF
|
||
RealType Q, // Complement of CDF
|
||
RealType tol) // Test tolerance
|
||
{
|
||
boost::math::non_central_t_distribution<RealType> dist(df, ncp);
|
||
BOOST_CHECK_CLOSE(
|
||
cdf(dist, t), P, tol);
|
||
try{
|
||
BOOST_CHECK_CLOSE(
|
||
mean(dist), naive_mean(df, ncp), tol);
|
||
BOOST_CHECK_CLOSE(
|
||
variance(dist), naive_variance(df, ncp), tol);
|
||
BOOST_CHECK_CLOSE(
|
||
skewness(dist), naive_skewness(df, ncp), tol * 10);
|
||
BOOST_CHECK_CLOSE(
|
||
kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50);
|
||
BOOST_CHECK_CLOSE(
|
||
kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50);
|
||
}
|
||
catch(const std::domain_error&)
|
||
{
|
||
}
|
||
/*
|
||
BOOST_CHECK_CLOSE(
|
||
pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
|
||
*/
|
||
if((P < 0.99) && (Q < 0.99))
|
||
{
|
||
//
|
||
// We can only check this if P is not too close to 1,
|
||
// so that we can guarentee Q is reasonably free of error:
|
||
//
|
||
BOOST_CHECK_CLOSE(
|
||
cdf(complement(dist, t)), Q, tol);
|
||
BOOST_CHECK_CLOSE(
|
||
quantile(dist, P), t, tol * 10);
|
||
BOOST_CHECK_CLOSE(
|
||
quantile(complement(dist, Q)), t, tol * 10);
|
||
/*
|
||
BOOST_CHECK_CLOSE(
|
||
dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
|
||
BOOST_CHECK_CLOSE(
|
||
dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
|
||
BOOST_CHECK_CLOSE(
|
||
dist.find_non_centrality(df, t, P), ncp, tol * 10);
|
||
BOOST_CHECK_CLOSE(
|
||
dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
|
||
*/
|
||
}
|
||
}
|
||
|
||
template <class RealType> // Any floating-point type RealType.
|
||
void test_spots(RealType)
|
||
{
|
||
//
|
||
// Approx limit of test data is 12 digits expressed here as a persentage:
|
||
//
|
||
RealType tolerance = (std::max)(
|
||
boost::math::tools::epsilon<RealType>(),
|
||
(RealType)5e-12f) * 100;
|
||
//
|
||
// At float precision we need to up the tolerance, since
|
||
// the input values are rounded off to inexact quantities
|
||
// the results get thrown off by a noticeable amount.
|
||
//
|
||
if(boost::math::tools::digits<RealType>() < 50)
|
||
tolerance *= 50;
|
||
if(boost::is_floating_point<RealType>::value != 1)
|
||
tolerance *= 20; // real_concept special functions are less accurate
|
||
|
||
cout << "Tolerance = " << tolerance << "%." << endl;
|
||
|
||
//
|
||
// Test data is taken from:
|
||
//
|
||
// Computing discrete mixtures of continuous
|
||
// distributions: noncentral chisquare, noncentral t
|
||
// and the distribution of the square of the sample
|
||
// multiple correlation coeficient.
|
||
// Denise Benton, K. Krishnamoorthy.
|
||
// Computational Statistics & Data Analysis 43 (2003) 249 – 267
|
||
//
|
||
test_spot(
|
||
static_cast<RealType>(3), // degrees of freedom
|
||
static_cast<RealType>(1), // non centrality
|
||
static_cast<RealType>(2.34), // T
|
||
static_cast<RealType>(0.801888999613917), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.801888999613917), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(126), // degrees of freedom
|
||
static_cast<RealType>(-2), // non centrality
|
||
static_cast<RealType>(-4.33), // T
|
||
static_cast<RealType>(1.252846196792878e-2), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-1.252846196792878e-2), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(20), // degrees of freedom
|
||
static_cast<RealType>(23), // non centrality
|
||
static_cast<RealType>(23), // T
|
||
static_cast<RealType>(0.460134400391924), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.460134400391924), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(20), // degrees of freedom
|
||
static_cast<RealType>(33), // non centrality
|
||
static_cast<RealType>(34), // T
|
||
static_cast<RealType>(0.532008386378725), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.532008386378725), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(12), // degrees of freedom
|
||
static_cast<RealType>(38), // non centrality
|
||
static_cast<RealType>(39), // T
|
||
static_cast<RealType>(0.495868184917805), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.495868184917805), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(12), // degrees of freedom
|
||
static_cast<RealType>(39), // non centrality
|
||
static_cast<RealType>(39), // T
|
||
static_cast<RealType>(0.446304024668836), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.446304024668836), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(200), // degrees of freedom
|
||
static_cast<RealType>(38), // non centrality
|
||
static_cast<RealType>(39), // T
|
||
static_cast<RealType>(0.666194209961795), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.666194209961795), // Q = 1 - P
|
||
tolerance);
|
||
test_spot(
|
||
static_cast<RealType>(200), // degrees of freedom
|
||
static_cast<RealType>(42), // non centrality
|
||
static_cast<RealType>(40), // T
|
||
static_cast<RealType>(0.179292265426085), // Probability of result (CDF), P
|
||
static_cast<RealType>(1-0.179292265426085), // Q = 1 - P
|
||
tolerance);
|
||
|
||
boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
|
||
BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
|
||
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
|
||
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
|
||
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);
|
||
} // template <class RealType>void test_spots(RealType)
|
||
|
||
template <class T>
|
||
T nct_cdf(T df, T nc, T x)
|
||
{
|
||
return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
|
||
}
|
||
|
||
template <class T>
|
||
T nct_ccdf(T df, T nc, T x)
|
||
{
|
||
return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
|
||
}
|
||
|
||
template <typename T>
|
||
void do_test_nc_t(T& data, const char* type_name, const char* test)
|
||
{
|
||
typedef typename T::value_type row_type;
|
||
typedef typename row_type::value_type value_type;
|
||
|
||
std::cout << "Testing: " << test << std::endl;
|
||
|
||
value_type (*fp1)(value_type, value_type, value_type) = nct_cdf;
|
||
boost::math::tools::test_result<value_type> result;
|
||
|
||
result = boost::math::tools::test(
|
||
data,
|
||
bind_func(fp1, 0, 1, 2),
|
||
extract_result(3));
|
||
handle_test_result(result, data[result.worst()], result.worst(),
|
||
type_name, "CDF", test);
|
||
|
||
fp1 = nct_ccdf;
|
||
result = boost::math::tools::test(
|
||
data,
|
||
bind_func(fp1, 0, 1, 2),
|
||
extract_result(4));
|
||
handle_test_result(result, data[result.worst()], result.worst(),
|
||
type_name, "CCDF", test);
|
||
|
||
std::cout << std::endl;
|
||
|
||
}
|
||
|
||
template <typename T>
|
||
void quantile_sanity_check(T& data, const char* type_name, const char* test)
|
||
{
|
||
typedef typename T::value_type row_type;
|
||
typedef typename row_type::value_type value_type;
|
||
|
||
//
|
||
// Tests with type real_concept take rather too long to run, so
|
||
// for now we'll disable them:
|
||
//
|
||
if(!boost::is_floating_point<value_type>::value)
|
||
return;
|
||
|
||
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
|
||
|
||
//
|
||
// These sanity checks test for a round trip accuracy of one half
|
||
// of the bits in T, unless T is type float, in which case we check
|
||
// for just one decimal digit. The problem here is the sensitivity
|
||
// of the functions, not their accuracy. This test data was generated
|
||
// for the forward functions, which means that when it is used as
|
||
// the input to the inverses then it is necessarily inexact. This rounding
|
||
// of the input is what makes the data unsuitable for use as an accuracy check,
|
||
// and also demonstrates that you can't in general round-trip these functions.
|
||
// It is however a useful sanity check.
|
||
//
|
||
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
|
||
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
|
||
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
|
||
|
||
for(unsigned i = 0; i < data.size(); ++i)
|
||
{
|
||
if(data[i][3] == 0)
|
||
{
|
||
BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
|
||
}
|
||
else if(data[i][3] < 0.9999f)
|
||
{
|
||
value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
|
||
value_type pt = data[i][2];
|
||
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
|
||
}
|
||
if(data[i][4] == 0)
|
||
{
|
||
BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
|
||
}
|
||
else if(data[i][4] < 0.9999f)
|
||
{
|
||
value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
|
||
value_type pt = data[i][2];
|
||
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
|
||
}
|
||
if(boost::math::tools::digits<value_type>() > 50)
|
||
{
|
||
//
|
||
// Sanity check mode, the accuracy of
|
||
// the mode is at *best* the square root of the accuracy of the PDF:
|
||
//
|
||
try{
|
||
value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
|
||
value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
|
||
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 100)) <= p, i);
|
||
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 100) <= p, i);
|
||
}
|
||
catch(const boost::math::evaluation_error& ) {}
|
||
#if 0
|
||
//
|
||
// Sanity check degrees-of-freedom finder, don't bother at float
|
||
// precision though as there's not enough data in the probability
|
||
// values to get back to the correct degrees of freedom or
|
||
// non-cenrality parameter:
|
||
//
|
||
try{
|
||
if((data[i][3] < 0.99) && (data[i][3] != 0))
|
||
{
|
||
BOOST_CHECK_CLOSE_EX(
|
||
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
|
||
data[i][0], precision, i);
|
||
BOOST_CHECK_CLOSE_EX(
|
||
boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
|
||
data[i][1], precision, i);
|
||
}
|
||
if((data[i][4] < 0.99) && (data[i][4] != 0))
|
||
{
|
||
BOOST_CHECK_CLOSE_EX(
|
||
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
|
||
data[i][0], precision, i);
|
||
BOOST_CHECK_CLOSE_EX(
|
||
boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
|
||
data[i][1], precision, i);
|
||
}
|
||
}
|
||
catch(const std::exception& e)
|
||
{
|
||
BOOST_ERROR(e.what());
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
template <typename T>
|
||
void test_accuracy(T, const char* type_name)
|
||
{
|
||
#include "nct.ipp"
|
||
do_test_nc_t(nct, type_name, "Non Central T");
|
||
quantile_sanity_check(nct, type_name, "Non Central T");
|
||
}
|
||
|
||
int test_main(int, char* [])
|
||
{
|
||
BOOST_MATH_CONTROL_FP;
|
||
// Basic sanity-check spot values.
|
||
expected_results();
|
||
|
||
// (Parameter value, arbitrarily zero, only communicates the floating point type).
|
||
#ifdef TEST_FLOAT
|
||
test_spots(0.0F); // Test float.
|
||
#endif
|
||
#ifdef TEST_DOUBLE
|
||
test_spots(0.0); // Test double.
|
||
#endif
|
||
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
||
#ifdef TEST_LDOUBLE
|
||
test_spots(0.0L); // Test long double.
|
||
#endif
|
||
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
|
||
#ifdef TEST_REAL_CONCEPT
|
||
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef TEST_FLOAT
|
||
test_accuracy(0.0F, "float"); // Test float.
|
||
#endif
|
||
#ifdef TEST_DOUBLE
|
||
test_accuracy(0.0, "double"); // Test double.
|
||
#endif
|
||
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
||
#ifdef TEST_LDOUBLE
|
||
test_accuracy(0.0L, "long double"); // Test long double.
|
||
#endif
|
||
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
|
||
#ifdef TEST_REAL_CONCEPT
|
||
test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept.
|
||
#endif
|
||
#endif
|
||
#endif
|
||
return 0;
|
||
} // int test_main(int, char* [])
|
||
|