mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 16:32:10 +00:00
161 lines
5.4 KiB
C++
161 lines
5.4 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2024
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#include "math_unit_test.hpp"
|
|
#include "test_functions_for_optimization.hpp"
|
|
#include <boost/math/optimization/cma_es.hpp>
|
|
#include <array>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <random>
|
|
#include <limits>
|
|
|
|
using std::abs;
|
|
using boost::math::optimization::cma_es;
|
|
using boost::math::optimization::cma_es_parameters;
|
|
|
|
template <class Real> void test_ackley() {
|
|
std::cout << "Testing CMA-ES on Ackley function . . .\n";
|
|
using ArgType = std::array<Real, 2>;
|
|
auto params = cma_es_parameters<ArgType>();
|
|
params.lower_bounds = {-5, -5};
|
|
params.upper_bounds = {5, 5};
|
|
|
|
std::mt19937_64 gen(12345);
|
|
auto local_minima = cma_es(ackley<Real>, params, gen);
|
|
CHECK_LE(std::abs(local_minima[0]), Real(0.1));
|
|
CHECK_LE(std::abs(local_minima[1]), Real(0.1));
|
|
|
|
// Does it work with a lambda?
|
|
auto ack = [](std::array<Real, 2> const &x) { return ackley<Real>(x); };
|
|
local_minima = cma_es(ack, params, gen);
|
|
CHECK_LE(std::abs(local_minima[0]), Real(0.1));
|
|
CHECK_LE(std::abs(local_minima[1]), Real(0.1));
|
|
|
|
// Test that if an intial guess is the exact solution, the returned solution is the exact solution:
|
|
std::array<Real, 2> initial_guess{0, 0};
|
|
params.initial_guess = &initial_guess;
|
|
local_minima = cma_es(ack, params, gen);
|
|
CHECK_EQUAL(local_minima[0], Real(0));
|
|
CHECK_EQUAL(local_minima[1], Real(0));
|
|
|
|
std::atomic<bool> cancel = false;
|
|
Real target_value = 0.0;
|
|
std::atomic<Real> current_minimum_cost = std::numeric_limits<Real>::quiet_NaN();
|
|
// Test query storage:
|
|
std::vector<std::pair<ArgType, Real>> queries;
|
|
local_minima = cma_es(ack, params, gen, target_value, &cancel, ¤t_minimum_cost, &queries);
|
|
CHECK_EQUAL(local_minima[0], Real(0));
|
|
CHECK_EQUAL(local_minima[1], Real(0));
|
|
CHECK_LE(size_t(1), queries.size());
|
|
for (auto const & q : queries) {
|
|
auto expected = ackley<Real>(q.first);
|
|
CHECK_EQUAL(expected, q.second);
|
|
}
|
|
}
|
|
|
|
|
|
template <class Real> void test_rosenbrock_saddle() {
|
|
std::cout << "Testing CMA-ES on Rosenbrock saddle . . .\n";
|
|
using ArgType = std::array<Real, 2>;
|
|
auto params = cma_es_parameters<ArgType>();
|
|
params.lower_bounds = {0.5, 0.5};
|
|
params.upper_bounds = {2.048, 2.048};
|
|
params.max_generations = 2000;
|
|
std::mt19937_64 gen(234568);
|
|
auto local_minima = cma_es(rosenbrock_saddle<Real>, params, gen);
|
|
|
|
CHECK_ABSOLUTE_ERROR(Real(1), local_minima[0], Real(0.05));
|
|
CHECK_ABSOLUTE_ERROR(Real(1), local_minima[1], Real(0.05));
|
|
|
|
// Does cancellation work?
|
|
std::atomic<bool> cancel = true;
|
|
gen.seed(12345);
|
|
local_minima =
|
|
cma_es(rosenbrock_saddle<Real>, params, gen, std::numeric_limits<Real>::quiet_NaN(), &cancel);
|
|
CHECK_GE(std::abs(local_minima[0] - Real(1)), std::sqrt(std::numeric_limits<Real>::epsilon()));
|
|
}
|
|
|
|
|
|
template <class Real> void test_rastrigin() {
|
|
std::cout << "Testing CMA-ES on Rastrigin function (global minimum = (0,0,...,0))\n";
|
|
using ArgType = std::vector<Real>;
|
|
auto params = cma_es_parameters<ArgType>();
|
|
params.lower_bounds.resize(3, static_cast<Real>(-5.12));
|
|
params.upper_bounds.resize(3, static_cast<Real>(5.12));
|
|
params.max_generations = 1000000;
|
|
params.population_size = 100;
|
|
std::mt19937_64 gen(34567);
|
|
|
|
// By definition, the value of the function which a target value is provided must be <= target_value.
|
|
Real target_value = 2.0;
|
|
auto local_minima = cma_es(rastrigin<Real>, params, gen, target_value);
|
|
CHECK_LE(rastrigin(local_minima), target_value);
|
|
}
|
|
|
|
|
|
// Tests NaN return types and return type != input type:
|
|
void test_sphere() {
|
|
std::cout << "Testing CMA-ES on sphere . . .\n";
|
|
using ArgType = std::vector<float>;
|
|
auto params = cma_es_parameters<ArgType>();
|
|
params.lower_bounds.resize(4, -1);
|
|
params.upper_bounds.resize(4, 1);
|
|
params.max_generations = 100000;
|
|
std::mt19937_64 gen(56789);
|
|
auto local_minima = cma_es(sphere, params, gen, 1e-6f);
|
|
for (auto x : local_minima) {
|
|
CHECK_ABSOLUTE_ERROR(0.0f, x, 0.5f);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Real>
|
|
void test_three_hump_camel() {
|
|
std::cout << "Testing CMA-ES on three hump camel . . .\n";
|
|
using ArgType = std::array<Real, 2>;
|
|
auto params = cma_es_parameters<ArgType>();
|
|
params.lower_bounds[0] = -5.0;
|
|
params.lower_bounds[1] = -5.0;
|
|
params.upper_bounds[0] = 5.0;
|
|
params.upper_bounds[1] = 5.0;
|
|
std::mt19937_64 gen(56789);
|
|
auto local_minima = cma_es(three_hump_camel<Real>, params, gen);
|
|
for (auto x : local_minima) {
|
|
CHECK_ABSOLUTE_ERROR(0.0f, x, 0.2f);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename Real>
|
|
void test_beale() {
|
|
std::cout << "Testing CMA-ES on the Beale function . . .\n";
|
|
using ArgType = std::array<Real, 2>;
|
|
auto params = cma_es_parameters<ArgType>();
|
|
params.lower_bounds[0] = -5.0;
|
|
params.lower_bounds[1] = -5.0;
|
|
params.upper_bounds[0]= 5.0;
|
|
params.upper_bounds[1]= 5.0;
|
|
std::mt19937_64 gen(56789);
|
|
auto local_minima = cma_es(beale<Real>, params, gen);
|
|
CHECK_ABSOLUTE_ERROR(Real(3), local_minima[0], Real(0.1));
|
|
CHECK_ABSOLUTE_ERROR(Real(1)/Real(2), local_minima[1], Real(0.1));
|
|
}
|
|
|
|
int main() {
|
|
#if (defined(__clang__) || defined(_MSC_VER))
|
|
test_ackley<float>();
|
|
test_ackley<double>();
|
|
test_rosenbrock_saddle<double>();
|
|
test_rastrigin<double>();
|
|
test_three_hump_camel<float>();
|
|
test_beale<double>();
|
|
#endif
|
|
test_sphere();
|
|
return boost::math::test::report_errors();
|
|
}
|