2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/doc/distributions/nc_f.qbk
Matt Borland e9cd6c96fd Add GPU support to normal dist
Add SYCL testing of normal dist

Add CUDA testing of normal dist

Add NVRTC testing of normal dist

NVRTC fixes

Move headers for NVRTC support

Add GPU support to inverse gaussian dist

Add NVRTC testing of inverse Gaussian dist

Add CUDA testing of inverse gaussian dist

Add SYCL testing of inverse gaussian dist

Add GPU support to lognormal dist

Add SYCL testing of lognormal dist

Add CUDA testing of lognormal dist

Add nvrtc testing of lognormal dist

Add GPU support to negative binomial dist

Avoid float_prior on GPU platform

Add NVRTC testing of negative binomial dist

Fix ambiguous use of nextafter

Add CUDA testing of negative binomial dist

Fix float_prior workaround

Add SYCL testing of negative binomial dist

Add GPU support to non_central_beta dist

Add SYCL testing of nc beta dist

Add CUDA testing of nc beta dist

Enable generic dist handling on GPU

Add GPU support to brent_find_minima

Add NVRTC testing of nc beta dist

Add utility header

Replace non-functional macro with new function

Add GPU support to non central chi squared dist

Add SYCL testing of non central chi squared dist

Add missing macro definition

Markup generic quantile finder

Add CUDA testing of non central chi squared dist

Add NVRTC testing of non central chi squared dist

Add GPU support to the non-central f dist

Add SYCL testing of ncf

Add CUDA testing of ncf dist

Add NVRTC testing of ncf dist

Add GPU support to students_t dist

Add SYCL testing of students_t dist

Add CUDA testing of students_t

Add NVRTC testing of students_t dist

Workaround for header cycle

Add GPU support to pareto dist

Add SYCL testing of pareto dist

Add CUDA testing of pareto dist

Add NVRTC testing of pareto dist

Add missing header

Add GPU support to poisson dist

Add SYCL testing of poisson dist

Add CUDA testing of poisson dist

Add NVRTC testing of poisson dist

Add forward decl for NVRTC platform

Add GPU support to rayleigh dist

Add CUDA testing of rayleigh dist

Add SYCL testing of rayleigh dist

Add NVRTC testing of rayleigh dist

Add GPU support to triangular dist

Add SYCL testing of triangular dist

Add NVRTC testing of triangular dist

Add CUDA testing of triangular dist

Add GPU support to the uniform dist

Add CUDA testing of uniform dist

Add SYCL testing of uniform dist

Add NVRTC testing of uniform dist

Fix missing header

Add markers to docs
2024-09-06 12:10:18 -04:00

196 lines
6.1 KiB
Plaintext

[section:nc_f_dist Noncentral F Distribution]
``#include <boost/math/distributions/non_central_f.hpp>``
namespace boost{ namespace math{
template <class RealType = double,
class ``__Policy`` = ``__policy_class`` >
class non_central_f_distribution;
typedef non_central_f_distribution<> non_central_f;
template <class RealType, class ``__Policy``>
class non_central_f_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
BOOST_MATH_GPU_ENABLED non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
// Accessor to degrees_of_freedom parameters v1 & v2:
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom1()const;
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom2()const;
// Accessor to non-centrality parameter lambda:
BOOST_MATH_GPU_ENABLED RealType non_centrality()const;
};
}} // namespaces
The noncentral F distribution is a generalization of the __F_distrib.
It is defined as the ratio
[expression F = (X/v1) / (Y/v2)]
where X is a noncentral [chi][super 2]
random variable with /v1/ degrees of freedom and non-centrality parameter [lambda],
and Y is a central [chi][super 2] random variable with /v2/ degrees of freedom.
This gives the following PDF:
[equation nc_f_ref1]
where ['L[sub a][super b](c)] is a generalised Laguerre polynomial and ['B(a,b)] is the
__beta function, or
[equation nc_f_ref2]
The following graph illustrates how the distribution changes
for different values of [lambda]:
[graph nc_f_pdf]
[h4 Member Functions]
BOOST_MATH_GPU_ENABLED non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
Constructs a non-central beta distribution with parameters /v1/ and /v2/
and non-centrality parameter /lambda/.
Requires /v1/ > 0, /v2/ > 0 and lambda >= 0, otherwise calls __domain_error.
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom1()const;
Returns the parameter /v1/ from which this object was constructed.
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom2()const;
Returns the parameter /v2/ from which this object was constructed.
BOOST_MATH_GPU_ENABLED RealType non_centrality()const;
Returns the non-centrality parameter /lambda/ from which this object was constructed.
[h4 Non-member Accessors]
All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions]
that are generic to all distributions are supported: __usual_accessors.
For this distribution all non-member accessor functions are marked with `BOOST_MATH_GPU_ENABLED` and can
be run on both host and device.
The domain of the random variable is \[0, +[infin]\].
[h4 Accuracy]
This distribution is implemented in terms of the
__non_central_beta_distrib: refer to that distribution for accuracy data.
[h4 Tests]
Since this distribution is implemented by adapting another distribution,
the tests consist of basic sanity checks computed by the
[@http://www.r-project.org/ R-2.5.1 Math library statistical
package] and its pbeta and dbeta functions.
[h4 Implementation]
In the following table /v1/ and /v2/ are the first and second
degrees of freedom parameters of the distribution, [lambda]
is the non-centrality parameter,
/x/ is the random variate, /p/ is the probability, and /q = 1-p/.
[table
[[Function][Implementation Notes]]
[[pdf][Implemented in terms of the non-central beta PDF using the relation:
[role serif_italic f(x;v1,v2;[lambda]) = (v1\/v2) / ((1+y)*(1+y)) * g(y\/(1+y);v1\/2,v2\/2;[lambda])]
where [role serif_italic g(x; a, b; [lambda])] is the non central beta PDF, and:
[role serif_italic y = x * v1 \/ v2]
]]
[[cdf][Using the relation:
[role serif_italic p = B[sub y](v1\/2, v2\/2; [lambda])]
where [role serif_italic B[sub x](a, b; [lambda])] is the noncentral beta distribution CDF and
[role serif_italic y = x * v1 \/ v2]
]]
[[cdf complement][Using the relation:
[role serif_italic q = 1 - B[sub y](v1\/2, v2\/2; [lambda])]
where [role serif_italic 1 - B[sub x](a, b; [lambda])] is the complement of the
noncentral beta distribution CDF and
[role serif_italic y = x * v1 \/ v2]
]]
[[quantile][Using the relation:
[role serif_italic x = (bx \/ (1-bx)) * (v1 \/ v2)]
where
[role serif_italic bx = Q[sub p][super -1](v1\/2, v2\/2; [lambda])]
and
[role serif_italic Q[sub p][super -1](v1\/2, v2\/2; [lambda])]
is the noncentral beta quantile.
]]
[[quantile
from the complement][
Using the relation:
[role serif_italic x = (bx \/ (1-bx)) * (v1 \/ v2)]
where
[role serif_italic bx = QC[sub q][super -1](v1\/2, v2\/2; [lambda])]
and
[role serif_italic QC[sub q][super -1](v1\/2, v2\/2; [lambda])]
is the noncentral beta quantile from the complement.]]
[[mean][[role serif_italic v2 * (v1 + l) \/ (v1 * (v2 - 2))]]]
[[mode][By numeric maximalisation of the PDF.]]
[[variance][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.] ]]
[[skewness][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
Mathematica documentation] ]]
[[kurtosis and kurtosis excess]
[Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
Mathematica documentation] ]]
]
Some analytic properties of noncentral distributions
(particularly unimodality, and monotonicity of their modes)
are surveyed and summarized by:
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
[endsect] [/section:nc_f_dist]
[/ nc_f.qbk
Copyright 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]