mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
Begin rearrangement.
This commit is contained in:
@@ -10,10 +10,10 @@ LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
[heading Synopsis]
|
||||
|
||||
``
|
||||
#include <boost/math/tools/numerical_differentiation.hpp>
|
||||
#include <boost/math/differentiaton/finite_difference.hpp>
|
||||
|
||||
|
||||
namespace boost::math::tools {
|
||||
namespace boost { namespace math { namespace differentiation {
|
||||
|
||||
template <class F, class Real>
|
||||
Real complex_step_derivative(const F f, Real x);
|
||||
@@ -21,19 +21,19 @@ namespace boost::math::tools {
|
||||
template <class F, class Real, size_t order = 6>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error = nullptr);
|
||||
|
||||
} // namespaces
|
||||
}}} // namespaces
|
||||
``
|
||||
|
||||
[heading Description]
|
||||
|
||||
The function `finite_difference_derivative` calculates a finite-difference approximation to the derivative of of a function /f/ at point /x/.
|
||||
The function `finite_difference_derivative` calculates a finite-difference approximation to the derivative of a function /f/ at point /x/.
|
||||
A basic usage is
|
||||
|
||||
auto f = [](double x) { return std::exp(x); };
|
||||
double x = 1.7;
|
||||
double dfdx = finite_difference_derivative(f, x);
|
||||
|
||||
Finite differencing is complicated, as finite-difference approximations to the derivative are /infinitely/ ill-conditioned.
|
||||
Finite differencing is complicated, as differentiation is /infinitely/ ill-conditioned.
|
||||
In addition, for any function implemented in finite-precision arithmetic, the "true" derivative is /zero/ almost everywhere, and undefined at representables.
|
||||
However, some tricks allow for reasonable results to be obtained in many cases.
|
||||
|
||||
|
||||
266
include/boost/math/differentiation/finite_difference.hpp
Normal file
266
include/boost/math/differentiation/finite_difference.hpp
Normal file
@@ -0,0 +1,266 @@
|
||||
// (C) Copyright Nick Thompson 2018.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#ifndef BOOST_MATH_DIFFERENTIATION_FINITE_DIFFERENCE_HPP
|
||||
#define BOOST_MATH_DIFFERENTIATION_FINITE_DIFFERENCE_HPP
|
||||
|
||||
/*
|
||||
* Performs numerical differentiation by finite-differences.
|
||||
*
|
||||
* All numerical differentiation using finite-differences are ill-conditioned, and these routines are no exception.
|
||||
* A simple argument demonstrates that the error is unbounded as h->0.
|
||||
* Take the one sides finite difference formula f'(x) = (f(x+h)-f(x))/h.
|
||||
* The evaluation of f induces an error as well as the error from the finite-difference approximation, giving
|
||||
* |f'(x) - (f(x+h) -f(x))/h| < h|f''(x)|/2 + (|f(x)|+|f(x+h)|)eps/h =: g(h), where eps is the unit roundoff for the type.
|
||||
* It is reasonable to choose h in a way that minimizes the maximum error bound g(h).
|
||||
* The value of h that minimizes g is h = sqrt(2eps(|f(x)| + |f(x+h)|)/|f''(x)|), and for this value of h the error bound is
|
||||
* sqrt(2eps(|f(x+h) +f(x)||f''(x)|)).
|
||||
* In fact it is not necessary to compute the ratio (|f(x+h)| + |f(x)|)/|f''(x)|; the error bound of ~\sqrt{\epsilon} still holds if we set it to one.
|
||||
*
|
||||
*
|
||||
* For more details on this method of analysis, see
|
||||
*
|
||||
* http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
|
||||
* http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
|
||||
*
|
||||
*
|
||||
* It can be shown on general grounds that when choosing the optimal h, the maximum error in f'(x) is ~(|f(x)|eps)^k/k+1|f^(k-1)(x)|^1/k+1.
|
||||
* From this we can see that full precision can be recovered in the limit k->infinity.
|
||||
*
|
||||
* References:
|
||||
*
|
||||
* 1) Fornberg, Bengt. "Generation of finite difference formulas on arbitrarily spaced grids." Mathematics of computation 51.184 (1988): 699-706.
|
||||
*
|
||||
*
|
||||
* The second algorithm, the complex step derivative, is not ill-conditioned.
|
||||
* However, it requires that your function can be evaluated at complex arguments.
|
||||
* The idea is that f(x+ih) = f(x) +ihf'(x) - h^2f''(x) + ... so f'(x) \approx Im[f(x+ih)]/h.
|
||||
* No subtractive cancellation occurs. The error is ~ eps|f'(x)| + eps^2|f'''(x)|/6; hard to beat that.
|
||||
*
|
||||
* References:
|
||||
*
|
||||
* 1) Squire, William, and George Trapp. "Using complex variables to estimate derivatives of real functions." Siam Review 40.1 (1998): 110-112.
|
||||
*/
|
||||
|
||||
#include <complex>
|
||||
#include <boost/math/special_functions/next.hpp>
|
||||
|
||||
namespace boost{ namespace math{ namespace differentiation {
|
||||
|
||||
namespace detail {
|
||||
template<class Real>
|
||||
Real make_xph_representable(Real x, Real h)
|
||||
{
|
||||
using std::numeric_limits;
|
||||
// Redefine h so that x + h is representable. Not using this trick leads to large error.
|
||||
// The compiler flag -ffast-math evaporates these operations . . .
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
// Handle the case x + h == x:
|
||||
if (h == 0)
|
||||
{
|
||||
h = boost::math::nextafter(x, (numeric_limits<Real>::max)()) - x;
|
||||
}
|
||||
return h;
|
||||
}
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real complex_step_derivative(const F f, Real x)
|
||||
{
|
||||
// Is it really this easy? Yes.
|
||||
// Note that some authors recommend taking the stepsize h to be smaller than epsilon(), some recommending use of the min().
|
||||
// This idea was tested over a few billion test cases and found the make the error *much* worse.
|
||||
// Even 2eps and eps/2 made the error worse, which was surprising.
|
||||
using std::complex;
|
||||
using std::numeric_limits;
|
||||
constexpr const Real step = (numeric_limits<Real>::epsilon)();
|
||||
constexpr const Real inv_step = 1/(numeric_limits<Real>::epsilon)();
|
||||
return f(complex<Real>(x, step)).imag()*inv_step;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <unsigned>
|
||||
struct fd_tag {};
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<1>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^1/2
|
||||
// Note that this estimate of h differs from the best estimate by a factor of sqrt((|f(x)| + |f(x+h)|)/|f''(x)|).
|
||||
// Since this factor is invariant under the scaling f -> kf, then we are somewhat justified in approximating it by 1.
|
||||
// This approximation will get better as we move to higher orders of accuracy.
|
||||
Real h = 2 * sqrt(eps);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real y0 = f(x);
|
||||
Real diff = yh - y0;
|
||||
if (error)
|
||||
{
|
||||
Real ym = f(x - h);
|
||||
Real ypph = abs(yh - 2 * y0 + ym) / h;
|
||||
// h*|f''(x)|*0.5 + (|f(x+h)+|f(x)|)*eps/h
|
||||
*error = ypph / 2 + (abs(yh) + abs(y0))*eps / h;
|
||||
}
|
||||
return diff / h;
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<2>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^2/3
|
||||
// See the previous discussion to understand determination of h and the error bound.
|
||||
// Series[(f[x+h] - f[x-h])/(2*h), {h, 0, 4}]
|
||||
Real h = pow(3 * eps, static_cast<Real>(1) / static_cast<Real>(3));
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real diff = yh - ymh;
|
||||
if (error)
|
||||
{
|
||||
Real yth = f(x + 2 * h);
|
||||
Real ymth = f(x - 2 * h);
|
||||
*error = eps * (abs(yh) + abs(ymh)) / (2 * h) + abs((yth - ymth) / 2 - diff) / (6 * h);
|
||||
}
|
||||
|
||||
return diff / (2 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<4>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^4/5
|
||||
Real h = pow(11.25*eps, (Real)1 / (Real)5);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
Real ymth = f(x - 2 * h);
|
||||
Real yth = f(x + 2 * h);
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real y2 = ymth - yth;
|
||||
Real y1 = yh - ymh;
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to extract the remainder:
|
||||
// Series[(f[x-2*h]+ 8*f[x+h] - 8*f[x-h] - f[x+2*h])/(12*h), {h, 0, 7}]
|
||||
Real y_three_h = f(x + 3 * h);
|
||||
Real y_m_three_h = f(x - 3 * h);
|
||||
// Error from fifth derivative:
|
||||
*error = abs((y_three_h - y_m_three_h) / 2 + 2 * (ymth - yth) + 5 * (yh - ymh) / 2) / (30 * h);
|
||||
// Error from function evaluation:
|
||||
*error += eps * (abs(yth) + abs(ymth) + 8 * (abs(ymh) + abs(yh))) / (12 * h);
|
||||
}
|
||||
return (y2 + 8 * y1) / (12 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<6>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^6/7
|
||||
// Error: h^6f^(7)(x)/140 + 5|f(x)|eps/h
|
||||
Real h = pow(eps / 168, (Real)1 / (Real)7);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real y1 = yh - ymh;
|
||||
Real y2 = f(x - 2 * h) - f(x + 2 * h);
|
||||
Real y3 = f(x + 3 * h) - f(x - 3 * h);
|
||||
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to generate fd scheme for 7th derivative:
|
||||
// Sum[(-1)^i*Binomial[7, i]*(f[x+(3-i)*h] + f[x+(4-i)*h])/2, {i, 0, 7}]
|
||||
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
|
||||
// Series[(f[x+4*h]-f[x-4*h] + 6*(f[x-3*h] - f[x+3*h]) + 14*(f[x-h] - f[x+h] + f[x+2*h] - f[x-2*h]))/2, {h, 0, 15}]
|
||||
Real y7 = (f(x + 4 * h) - f(x - 4 * h) - 6 * y3 - 14 * y1 - 14 * y2) / 2;
|
||||
*error = abs(y7) / (140 * h) + 5 * (abs(yh) + abs(ymh))*eps / h;
|
||||
}
|
||||
return (y3 + 9 * y2 + 45 * y1) / (60 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<8>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^8/9.
|
||||
// In double precision, we only expect to lose two digits of precision while using this formula, at the cost of 8 function evaluations.
|
||||
// Error: h^8|f^(9)(x)|/630 + 7|f(x)|eps/h assuming 7 unstabilized additions.
|
||||
// Mathematica code to get the error:
|
||||
// Series[(f[x+h]-f[x-h])*(4/5) + (1/5)*(f[x-2*h] - f[x+2*h]) + (4/105)*(f[x+3*h] - f[x-3*h]) + (1/280)*(f[x-4*h] - f[x+4*h]), {h, 0, 9}]
|
||||
// If we used Kahan summation, we could get the max error down to h^8|f^(9)(x)|/630 + |f(x)|eps/h.
|
||||
Real h = pow(551.25*eps, (Real)1 / (Real)9);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real y1 = yh - ymh;
|
||||
Real y2 = f(x - 2 * h) - f(x + 2 * h);
|
||||
Real y3 = f(x + 3 * h) - f(x - 3 * h);
|
||||
Real y4 = f(x - 4 * h) - f(x + 4 * h);
|
||||
|
||||
Real tmp1 = 3 * y4 / 8 + 4 * y3;
|
||||
Real tmp2 = 21 * y2 + 84 * y1;
|
||||
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to generate fd scheme for 7th derivative:
|
||||
// Sum[(-1)^i*Binomial[9, i]*(f[x+(4-i)*h] + f[x+(5-i)*h])/2, {i, 0, 9}]
|
||||
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
|
||||
// Series[(f[x+5*h]-f[x- 5*h])/2 + 4*(f[x-4*h] - f[x+4*h]) + 27*(f[x+3*h] - f[x-3*h])/2 + 24*(f[x-2*h] - f[x+2*h]) + 21*(f[x+h] - f[x-h]), {h, 0, 15}]
|
||||
Real f9 = (f(x + 5 * h) - f(x - 5 * h)) / 2 + 4 * y4 + 27 * y3 / 2 + 24 * y2 + 21 * y1;
|
||||
*error = abs(f9) / (630 * h) + 7 * (abs(yh) + abs(ymh))*eps / h;
|
||||
}
|
||||
return (tmp1 + tmp2) / (105 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real, class tag>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const tag&)
|
||||
{
|
||||
// Always fails, but condition is template-arg-dependent so only evaluated if we get instantiated.
|
||||
BOOST_STATIC_ASSERT_MSG(sizeof(Real) == 0, "Finite difference not implemented for this order: try 1, 2, 4, 6 or 8");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class F, class Real, size_t order=6>
|
||||
inline Real finite_difference_derivative(const F f, Real x, Real* error = nullptr)
|
||||
{
|
||||
return detail::finite_difference_derivative(f, x, error, detail::fd_tag<order>());
|
||||
}
|
||||
|
||||
}}} // namespaces
|
||||
#endif
|
||||
@@ -2,266 +2,19 @@
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#ifndef BOOST_MATH_TOOLS_NUMERICAL_DIFFERENTIATION_HPP
|
||||
#define BOOST_MATH_TOOLS_NUMERICAL_DIFFERENTIATION_HPP
|
||||
#include <boost/math/differentiation/finite_difference.hpp>
|
||||
#include <boost/config/header_deprecated.hpp>
|
||||
|
||||
/*
|
||||
* Performs numerical differentiation by finite-differences.
|
||||
*
|
||||
* All numerical differentiation using finite-differences are ill-conditioned, and these routines are no exception.
|
||||
* A simple argument demonstrates that the error is unbounded as h->0.
|
||||
* Take the one sides finite difference formula f'(x) = (f(x+h)-f(x))/h.
|
||||
* The evaluation of f induces an error as well as the error from the finite-difference approximation, giving
|
||||
* |f'(x) - (f(x+h) -f(x))/h| < h|f''(x)|/2 + (|f(x)|+|f(x+h)|)eps/h =: g(h), where eps is the unit roundoff for the type.
|
||||
* It is reasonable to choose h in a way that minimizes the maximum error bound g(h).
|
||||
* The value of h that minimizes g is h = sqrt(2eps(|f(x)| + |f(x+h)|)/|f''(x)|), and for this value of h the error bound is
|
||||
* sqrt(2eps(|f(x+h) +f(x)||f''(x)|)).
|
||||
* In fact it is not necessary to compute the ratio (|f(x+h)| + |f(x)|)/|f''(x)|; the error bound of ~\sqrt{\epsilon} still holds if we set it to one.
|
||||
*
|
||||
*
|
||||
* For more details on this method of analysis, see
|
||||
*
|
||||
* http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
|
||||
* http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf
|
||||
*
|
||||
*
|
||||
* It can be shown on general grounds that when choosing the optimal h, the maximum error in f'(x) is ~(|f(x)|eps)^k/k+1|f^(k-1)(x)|^1/k+1.
|
||||
* From this we can see that full precision can be recovered in the limit k->infinity.
|
||||
*
|
||||
* References:
|
||||
*
|
||||
* 1) Fornberg, Bengt. "Generation of finite difference formulas on arbitrarily spaced grids." Mathematics of computation 51.184 (1988): 699-706.
|
||||
*
|
||||
*
|
||||
* The second algorithm, the complex step derivative, is not ill-conditioned.
|
||||
* However, it requires that your function can be evaluated at complex arguments.
|
||||
* The idea is that f(x+ih) = f(x) +ihf'(x) - h^2f''(x) + ... so f'(x) \approx Im[f(x+ih)]/h.
|
||||
* No subtractive cancellation occurs. The error is ~ eps|f'(x)| + eps^2|f'''(x)|/6; hard to beat that.
|
||||
*
|
||||
* References:
|
||||
*
|
||||
* 1) Squire, William, and George Trapp. "Using complex variables to estimate derivatives of real functions." Siam Review 40.1 (1998): 110-112.
|
||||
*/
|
||||
BOOST_HEADER_DEPRECATED("<boost/math/differentiation/finite_difference.hpp>");
|
||||
|
||||
#include <complex>
|
||||
#include <boost/math/special_functions/next.hpp>
|
||||
|
||||
// Make sure everyone is informed that C++17 is required:
|
||||
namespace boost{ namespace math{ namespace tools {
|
||||
|
||||
namespace detail {
|
||||
template<class Real>
|
||||
Real make_xph_representable(Real x, Real h)
|
||||
{
|
||||
using std::numeric_limits;
|
||||
// Redefine h so that x + h is representable. Not using this trick leads to large error.
|
||||
// The compiler flag -ffast-math evaporates these operations . . .
|
||||
Real temp = x + h;
|
||||
h = temp - x;
|
||||
// Handle the case x + h == x:
|
||||
if (h == 0)
|
||||
{
|
||||
h = boost::math::nextafter(x, (numeric_limits<Real>::max)()) - x;
|
||||
}
|
||||
return h;
|
||||
}
|
||||
namespace boost {
|
||||
namespace math {
|
||||
namespace differentiation {
|
||||
using finite_difference_derivative;
|
||||
using complex_step_derivative;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real complex_step_derivative(const F f, Real x)
|
||||
{
|
||||
// Is it really this easy? Yes.
|
||||
// Note that some authors recommend taking the stepsize h to be smaller than epsilon(), some recommending use of the min().
|
||||
// This idea was tested over a few billion test cases and found the make the error *much* worse.
|
||||
// Even 2eps and eps/2 made the error worse, which was surprising.
|
||||
using std::complex;
|
||||
using std::numeric_limits;
|
||||
constexpr const Real step = (numeric_limits<Real>::epsilon)();
|
||||
constexpr const Real inv_step = 1/(numeric_limits<Real>::epsilon)();
|
||||
return f(complex<Real>(x, step)).imag()*inv_step;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <unsigned>
|
||||
struct fd_tag {};
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<1>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^1/2
|
||||
// Note that this estimate of h differs from the best estimate by a factor of sqrt((|f(x)| + |f(x+h)|)/|f''(x)|).
|
||||
// Since this factor is invariant under the scaling f -> kf, then we are somewhat justified in approximating it by 1.
|
||||
// This approximation will get better as we move to higher orders of accuracy.
|
||||
Real h = 2 * sqrt(eps);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real y0 = f(x);
|
||||
Real diff = yh - y0;
|
||||
if (error)
|
||||
{
|
||||
Real ym = f(x - h);
|
||||
Real ypph = abs(yh - 2 * y0 + ym) / h;
|
||||
// h*|f''(x)|*0.5 + (|f(x+h)+|f(x)|)*eps/h
|
||||
*error = ypph / 2 + (abs(yh) + abs(y0))*eps / h;
|
||||
}
|
||||
return diff / h;
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<2>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^2/3
|
||||
// See the previous discussion to understand determination of h and the error bound.
|
||||
// Series[(f[x+h] - f[x-h])/(2*h), {h, 0, 4}]
|
||||
Real h = pow(3 * eps, static_cast<Real>(1) / static_cast<Real>(3));
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real diff = yh - ymh;
|
||||
if (error)
|
||||
{
|
||||
Real yth = f(x + 2 * h);
|
||||
Real ymth = f(x - 2 * h);
|
||||
*error = eps * (abs(yh) + abs(ymh)) / (2 * h) + abs((yth - ymth) / 2 - diff) / (6 * h);
|
||||
}
|
||||
|
||||
return diff / (2 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<4>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^4/5
|
||||
Real h = pow(11.25*eps, (Real)1 / (Real)5);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
Real ymth = f(x - 2 * h);
|
||||
Real yth = f(x + 2 * h);
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real y2 = ymth - yth;
|
||||
Real y1 = yh - ymh;
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to extract the remainder:
|
||||
// Series[(f[x-2*h]+ 8*f[x+h] - 8*f[x-h] - f[x+2*h])/(12*h), {h, 0, 7}]
|
||||
Real y_three_h = f(x + 3 * h);
|
||||
Real y_m_three_h = f(x - 3 * h);
|
||||
// Error from fifth derivative:
|
||||
*error = abs((y_three_h - y_m_three_h) / 2 + 2 * (ymth - yth) + 5 * (yh - ymh) / 2) / (30 * h);
|
||||
// Error from function evaluation:
|
||||
*error += eps * (abs(yth) + abs(ymth) + 8 * (abs(ymh) + abs(yh))) / (12 * h);
|
||||
}
|
||||
return (y2 + 8 * y1) / (12 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<6>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^6/7
|
||||
// Error: h^6f^(7)(x)/140 + 5|f(x)|eps/h
|
||||
Real h = pow(eps / 168, (Real)1 / (Real)7);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real y1 = yh - ymh;
|
||||
Real y2 = f(x - 2 * h) - f(x + 2 * h);
|
||||
Real y3 = f(x + 3 * h) - f(x - 3 * h);
|
||||
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to generate fd scheme for 7th derivative:
|
||||
// Sum[(-1)^i*Binomial[7, i]*(f[x+(3-i)*h] + f[x+(4-i)*h])/2, {i, 0, 7}]
|
||||
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
|
||||
// Series[(f[x+4*h]-f[x-4*h] + 6*(f[x-3*h] - f[x+3*h]) + 14*(f[x-h] - f[x+h] + f[x+2*h] - f[x-2*h]))/2, {h, 0, 15}]
|
||||
Real y7 = (f(x + 4 * h) - f(x - 4 * h) - 6 * y3 - 14 * y1 - 14 * y2) / 2;
|
||||
*error = abs(y7) / (140 * h) + 5 * (abs(yh) + abs(ymh))*eps / h;
|
||||
}
|
||||
return (y3 + 9 * y2 + 45 * y1) / (60 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<8>&)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
using std::abs;
|
||||
using std::numeric_limits;
|
||||
|
||||
const Real eps = (numeric_limits<Real>::epsilon)();
|
||||
// Error bound ~eps^8/9.
|
||||
// In double precision, we only expect to lose two digits of precision while using this formula, at the cost of 8 function evaluations.
|
||||
// Error: h^8|f^(9)(x)|/630 + 7|f(x)|eps/h assuming 7 unstabilized additions.
|
||||
// Mathematica code to get the error:
|
||||
// Series[(f[x+h]-f[x-h])*(4/5) + (1/5)*(f[x-2*h] - f[x+2*h]) + (4/105)*(f[x+3*h] - f[x-3*h]) + (1/280)*(f[x-4*h] - f[x+4*h]), {h, 0, 9}]
|
||||
// If we used Kahan summation, we could get the max error down to h^8|f^(9)(x)|/630 + |f(x)|eps/h.
|
||||
Real h = pow(551.25*eps, (Real)1 / (Real)9);
|
||||
h = detail::make_xph_representable(x, h);
|
||||
|
||||
Real yh = f(x + h);
|
||||
Real ymh = f(x - h);
|
||||
Real y1 = yh - ymh;
|
||||
Real y2 = f(x - 2 * h) - f(x + 2 * h);
|
||||
Real y3 = f(x + 3 * h) - f(x - 3 * h);
|
||||
Real y4 = f(x - 4 * h) - f(x + 4 * h);
|
||||
|
||||
Real tmp1 = 3 * y4 / 8 + 4 * y3;
|
||||
Real tmp2 = 21 * y2 + 84 * y1;
|
||||
|
||||
if (error)
|
||||
{
|
||||
// Mathematica code to generate fd scheme for 7th derivative:
|
||||
// Sum[(-1)^i*Binomial[9, i]*(f[x+(4-i)*h] + f[x+(5-i)*h])/2, {i, 0, 9}]
|
||||
// Mathematica to demonstrate that this is a finite difference formula for 7th derivative:
|
||||
// Series[(f[x+5*h]-f[x- 5*h])/2 + 4*(f[x-4*h] - f[x+4*h]) + 27*(f[x+3*h] - f[x-3*h])/2 + 24*(f[x-2*h] - f[x+2*h]) + 21*(f[x+h] - f[x-h]), {h, 0, 15}]
|
||||
Real f9 = (f(x + 5 * h) - f(x - 5 * h)) / 2 + 4 * y4 + 27 * y3 / 2 + 24 * y2 + 21 * y1;
|
||||
*error = abs(f9) / (630 * h) + 7 * (abs(yh) + abs(ymh))*eps / h;
|
||||
}
|
||||
return (tmp1 + tmp2) / (105 * h);
|
||||
}
|
||||
|
||||
template<class F, class Real, class tag>
|
||||
Real finite_difference_derivative(const F f, Real x, Real* error, const tag&)
|
||||
{
|
||||
// Always fails, but condition is template-arg-dependent so only evaluated if we get instantiated.
|
||||
BOOST_STATIC_ASSERT_MSG(sizeof(Real) == 0, "Finite difference not implemented for this order: try 1, 2, 4, 6 or 8");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class F, class Real, size_t order=6>
|
||||
inline Real finite_difference_derivative(const F f, Real x, Real* error = nullptr)
|
||||
{
|
||||
return detail::finite_difference_derivative(f, x, error, detail::fd_tag<order>());
|
||||
}
|
||||
|
||||
}}} // namespaces
|
||||
#endif
|
||||
|
||||
@@ -16,12 +16,12 @@
|
||||
#include <boost/math/special_functions/bessel.hpp>
|
||||
#include <boost/math/special_functions/bessel_prime.hpp>
|
||||
#include <boost/math/special_functions/next.hpp>
|
||||
#include <boost/math/tools/numerical_differentiation.hpp>
|
||||
#include <boost/math/differentiation/finite_difference.hpp>
|
||||
|
||||
using std::abs;
|
||||
using std::pow;
|
||||
using boost::math::tools::finite_difference_derivative;
|
||||
using boost::math::tools::complex_step_derivative;
|
||||
using boost::math::differentiation::finite_difference_derivative;
|
||||
using boost::math::differentiation::complex_step_derivative;
|
||||
using boost::math::cyl_bessel_j;
|
||||
using boost::math::cyl_bessel_j_prime;
|
||||
using boost::math::constants::half;
|
||||
|
||||
Reference in New Issue
Block a user