2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Suppress lots of warnings for std::float32_t.

Better configure promote_args test case.
This commit is contained in:
jzmaddock
2023-05-15 17:08:41 +01:00
parent 58264c02e1
commit c5b4d28e05
11 changed files with 326 additions and 322 deletions

View File

@@ -382,7 +382,7 @@ inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>&
RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
using boost::math::tools::max_value;
RealType min = 0.; // Minimum possible value is bottom of range of distribution.
RealType min = static_cast<RealType>(0); // Minimum possible value is bottom of range of distribution.
RealType max = max_value<RealType>();// Maximum possible value is top of range.
// int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
// digits used to control how accurate to try to make the result.
@@ -454,7 +454,7 @@ inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<
// Complement.
using boost::math::tools::max_value;
RealType min = 0.; // Minimum possible value is bottom of range of distribution.
RealType min = static_cast<RealType>(0); // Minimum possible value is bottom of range of distribution.
RealType max = max_value<RealType>();// Maximum possible value is top of range.
// int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
// digits used to control how accurate to try to make the result.

View File

@@ -486,7 +486,7 @@ namespace boost{ namespace math{
// 21 elements
static const RealType shapes[] = {
0.0,
static_cast<RealType>(0.0),
static_cast<RealType>(1.000000000000000e-004),
static_cast<RealType>(2.069138081114790e-004),
static_cast<RealType>(4.281332398719396e-004),
@@ -511,7 +511,7 @@ namespace boost{ namespace math{
// 21 elements
static const RealType guess[] = {
0.0,
static_cast<RealType>(0.0),
static_cast<RealType>(5.000050000525391e-005),
static_cast<RealType>(1.500015000148736e-004),
static_cast<RealType>(3.500035000350010e-004),

View File

@@ -53,7 +53,7 @@ namespace boost { namespace math { namespace detail{
if(n == 1) return 1 / x;
T nlx = n * log(x);
if((nlx < tools::log_max_value<T>()) && (n < (int)max_factorial<T>::value))
return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1, pol) * pow(x, -n);
return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1, pol) * static_cast<T>(pow(x, -n));
else
return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
}
@@ -159,7 +159,7 @@ namespace boost { namespace math { namespace detail{
{
for(int k = 1; k <= iter; ++k)
{
z_plus_k_pow_minus_m_minus_one = pow(z, minus_m_minus_one);
z_plus_k_pow_minus_m_minus_one = static_cast<T>(pow(z, minus_m_minus_one));
sum0 += z_plus_k_pow_minus_m_minus_one;
z += 1;
}
@@ -203,7 +203,7 @@ namespace boost { namespace math { namespace detail{
// be n! / z^(n+1), but since we're scaling by n! it's just
// 1 / z^(n+1) for now:
//
T prefix = pow(x, n + 1);
T prefix = static_cast<T>(pow(x, n + 1)); // Warning supression: Integer power returns at least a double
if(prefix == 0)
return boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
prefix = 1 / prefix;

View File

@@ -379,7 +379,7 @@ inline T digamma_imp_1_2(T x, const std::integral_constant<int, 24>*)
-0.61041765350579073e-1f
};
static const T Q[] = {
0.1e1,
0.1e1f,
0.15890202430554952e1f,
0.65341249856146947e0f,
0.63851690523355715e-1f

View File

@@ -202,20 +202,20 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.591003453790792180,
0.416000743991786912,
0.245791514264103415,
0.179481482914906162,
0.144556057087555150,
0.123200993312427711,
0.108938811574293531,
0.098853409871592910,
0.091439629201749751,
0.085842591595413900,
0.081541118718303215,
0.078199656811256481910
static_cast<T>(1.591003453790792180),
static_cast<T>(0.416000743991786912),
static_cast<T>(0.245791514264103415),
static_cast<T>(0.179481482914906162),
static_cast<T>(0.144556057087555150),
static_cast<T>(0.123200993312427711),
static_cast<T>(0.108938811574293531),
static_cast<T>(0.098853409871592910),
static_cast<T>(0.091439629201749751),
static_cast<T>(0.085842591595413900),
static_cast<T>(0.081541118718303215),
static_cast<T>(0.078199656811256481910)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.05);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.05));
}
case 2:
case 3:
@@ -223,20 +223,20 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.635256732264579992,
0.471190626148732291,
0.309728410831499587,
0.252208311773135699,
0.226725623219684650,
0.215774446729585976,
0.213108771877348910,
0.216029124605188282,
0.223255831633057896,
0.234180501294209925,
0.248557682972264071,
0.266363809892617521
static_cast<T>(1.635256732264579992),
static_cast<T>(0.471190626148732291),
static_cast<T>(0.309728410831499587),
static_cast<T>(0.252208311773135699),
static_cast<T>(0.226725623219684650),
static_cast<T>(0.215774446729585976),
static_cast<T>(0.213108771877348910),
static_cast<T>(0.216029124605188282),
static_cast<T>(0.223255831633057896),
static_cast<T>(0.234180501294209925),
static_cast<T>(0.248557682972264071),
static_cast<T>(0.266363809892617521)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.15);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.15));
}
case 4:
case 5:
@@ -244,20 +244,20 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.685750354812596043,
0.541731848613280329,
0.401524438390690257,
0.369642473420889090,
0.376060715354583645,
0.405235887085125919,
0.453294381753999079,
0.520518947651184205,
0.609426039204995055,
0.724263522282908870,
0.871013847709812357,
1.057652872753547036
static_cast<T>(1.685750354812596043),
static_cast<T>(0.541731848613280329),
static_cast<T>(0.401524438390690257),
static_cast<T>(0.369642473420889090),
static_cast<T>(0.376060715354583645),
static_cast<T>(0.405235887085125919),
static_cast<T>(0.453294381753999079),
static_cast<T>(0.520518947651184205),
static_cast<T>(0.609426039204995055),
static_cast<T>(0.724263522282908870),
static_cast<T>(0.871013847709812357),
static_cast<T>(1.057652872753547036)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.25);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.25));
}
case 6:
case 7:
@@ -265,21 +265,21 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.744350597225613243,
0.634864275371935304,
0.539842564164445538,
0.571892705193787391,
0.670295136265406100,
0.832586590010977199,
1.073857448247933265,
1.422091460675497751,
1.920387183402304829,
2.632552548331654201,
3.652109747319039160,
5.115867135558865806,
7.224080007363877411
static_cast<T>(1.744350597225613243),
static_cast<T>(0.634864275371935304),
static_cast<T>(0.539842564164445538),
static_cast<T>(0.571892705193787391),
static_cast<T>(0.670295136265406100),
static_cast<T>(0.832586590010977199),
static_cast<T>(1.073857448247933265),
static_cast<T>(1.422091460675497751),
static_cast<T>(1.920387183402304829),
static_cast<T>(2.632552548331654201),
static_cast<T>(3.652109747319039160),
static_cast<T>(5.115867135558865806),
static_cast<T>(7.224080007363877411)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.35);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.35));
}
case 8:
case 9:
@@ -287,22 +287,22 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.813883936816982644,
0.763163245700557246,
0.761928605321595831,
0.951074653668427927,
1.315180671703161215,
1.928560693477410941,
2.937509342531378755,
4.594894405442878062,
7.330071221881720772,
11.87151259742530180,
19.45851374822937738,
32.20638657246426863,
53.73749198700554656,
90.27388602940998849
static_cast<T>(1.813883936816982644),
static_cast<T>(0.763163245700557246),
static_cast<T>(0.761928605321595831),
static_cast<T>(0.951074653668427927),
static_cast<T>(1.315180671703161215),
static_cast<T>(1.928560693477410941),
static_cast<T>(2.937509342531378755),
static_cast<T>(4.594894405442878062),
static_cast<T>(7.330071221881720772),
static_cast<T>(11.87151259742530180),
static_cast<T>(19.45851374822937738),
static_cast<T>(32.20638657246426863),
static_cast<T>(53.73749198700554656),
static_cast<T>(90.27388602940998849)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.45);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.45));
}
case 10:
case 11:
@@ -310,23 +310,23 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.898924910271553526,
0.950521794618244435,
1.151077589959015808,
1.750239106986300540,
2.952676812636875180,
5.285800396121450889,
9.832485716659979747,
18.78714868327559562,
36.61468615273698145,
72.45292395127771801,
145.1079577347069102,
293.4786396308497026,
598.3851815055010179,
1228.420013075863451,
2536.529755382764488
static_cast<T>(1.898924910271553526),
static_cast<T>(0.950521794618244435),
static_cast<T>(1.151077589959015808),
static_cast<T>(1.750239106986300540),
static_cast<T>(2.952676812636875180),
static_cast<T>(5.285800396121450889),
static_cast<T>(9.832485716659979747),
static_cast<T>(18.78714868327559562),
static_cast<T>(36.61468615273698145),
static_cast<T>(72.45292395127771801),
static_cast<T>(145.1079577347069102),
static_cast<T>(293.4786396308497026),
static_cast<T>(598.3851815055010179),
static_cast<T>(1228.420013075863451),
static_cast<T>(2536.529755382764488)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.55);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.55));
}
case 12:
case 13:
@@ -334,106 +334,106 @@ BOOST_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
2.007598398424376302,
1.248457231212347337,
1.926234657076479729,
3.751289640087587680,
8.119944554932045802,
18.66572130873555361,
44.60392484291437063,
109.5092054309498377,
274.2779548232413480,
697.5598008606326163,
1795.716014500247129,
4668.381716790389910,
12235.76246813664335,
32290.17809718320818,
85713.07608195964685,
228672.1890493117096,
612757.2711915852774
static_cast<T>(2.007598398424376302),
static_cast<T>(1.248457231212347337),
static_cast<T>(1.926234657076479729),
static_cast<T>(3.751289640087587680),
static_cast<T>(8.119944554932045802),
static_cast<T>(18.66572130873555361),
static_cast<T>(44.60392484291437063),
static_cast<T>(109.5092054309498377),
static_cast<T>(274.2779548232413480),
static_cast<T>(697.5598008606326163),
static_cast<T>(1795.716014500247129),
static_cast<T>(4668.381716790389910),
static_cast<T>(12235.76246813664335),
static_cast<T>(32290.17809718320818),
static_cast<T>(85713.07608195964685),
static_cast<T>(228672.1890493117096),
static_cast<T>(612757.2711915852774)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.65);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.65));
}
case 14:
case 15:
//else if (m < 0.8)
//else if (m < static_cast<T>(0.8))
{
constexpr T coef[] =
{
2.156515647499643235,
1.791805641849463243,
3.826751287465713147,
10.38672468363797208,
31.40331405468070290,
100.9237039498695416,
337.3268282632272897,
1158.707930567827917,
4060.990742193632092,
14454.00184034344795,
52076.66107599404803,
189493.6591462156887,
695184.5762413896145,
2567994.048255284686,
9541921.966748386322,
35634927.44218076174,
133669298.4612040871,
503352186.6866284541,
1901975729.538660119,
7208915015.330103756
static_cast<T>(2.156515647499643235),
static_cast<T>(1.791805641849463243),
static_cast<T>(3.826751287465713147),
static_cast<T>(10.38672468363797208),
static_cast<T>(31.40331405468070290),
static_cast<T>(100.9237039498695416),
static_cast<T>(337.3268282632272897),
static_cast<T>(1158.707930567827917),
static_cast<T>(4060.990742193632092),
static_cast<T>(14454.00184034344795),
static_cast<T>(52076.66107599404803),
static_cast<T>(189493.6591462156887),
static_cast<T>(695184.5762413896145),
static_cast<T>(2567994.048255284686),
static_cast<T>(9541921.966748386322),
static_cast<T>(35634927.44218076174),
static_cast<T>(133669298.4612040871),
static_cast<T>(503352186.6866284541),
static_cast<T>(1901975729.538660119),
static_cast<T>(7208915015.330103756)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.75);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.75));
}
case 16:
//else if (m < 0.85)
//else if (m < static_cast<T>(0.85))
{
constexpr T coef[] =
{
2.318122621712510589,
2.616920150291232841,
7.897935075731355823,
30.50239715446672327,
131.4869365523528456,
602.9847637356491617,
2877.024617809972641,
14110.51991915180325,
70621.44088156540229,
358977.2665825309926,
1847238.263723971684,
9600515.416049214109,
50307677.08502366879,
265444188.6527127967,
1408862325.028702687,
7515687935.373774627
static_cast<T>(2.318122621712510589),
static_cast<T>(2.616920150291232841),
static_cast<T>(7.897935075731355823),
static_cast<T>(30.50239715446672327),
static_cast<T>(131.4869365523528456),
static_cast<T>(602.9847637356491617),
static_cast<T>(2877.024617809972641),
static_cast<T>(14110.51991915180325),
static_cast<T>(70621.44088156540229),
static_cast<T>(358977.2665825309926),
static_cast<T>(1847238.263723971684),
static_cast<T>(9600515.416049214109),
static_cast<T>(50307677.08502366879),
static_cast<T>(265444188.6527127967),
static_cast<T>(1408862325.028702687),
static_cast<T>(7515687935.373774627)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.825);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.825));
}
case 17:
//else if (m < 0.90)
//else if (m < static_cast<T>(0.90))
{
constexpr T coef[] =
{
2.473596173751343912,
3.727624244118099310,
15.60739303554930496,
84.12850842805887747,
506.9818197040613935,
3252.277058145123644,
21713.24241957434256,
149037.0451890932766,
1043999.331089990839,
7427974.817042038995,
53503839.67558661151,
389249886.9948708474,
2855288351.100810619,
21090077038.76684053,
156699833947.7902014,
1170222242422.439893,
8777948323668.937971,
66101242752484.95041,
499488053713388.7989,
37859743397240299.20
static_cast<T>(2.473596173751343912),
static_cast<T>(3.727624244118099310),
static_cast<T>(15.60739303554930496),
static_cast<T>(84.12850842805887747),
static_cast<T>(506.9818197040613935),
static_cast<T>(3252.277058145123644),
static_cast<T>(21713.24241957434256),
static_cast<T>(149037.0451890932766),
static_cast<T>(1043999.331089990839),
static_cast<T>(7427974.817042038995),
static_cast<T>(53503839.67558661151),
static_cast<T>(389249886.9948708474),
static_cast<T>(2855288351.100810619),
static_cast<T>(21090077038.76684053),
static_cast<T>(156699833947.7902014),
static_cast<T>(1170222242422.439893),
static_cast<T>(8777948323668.937971),
static_cast<T>(66101242752484.95041),
static_cast<T>(499488053713388.7989),
static_cast<T>(37859743397240299.20)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.875);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.875));
}
default:
//

View File

@@ -203,19 +203,19 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.550973351780472328,
-0.400301020103198524,
-0.078498619442941939,
-0.034318853117591992,
-0.019718043317365499,
-0.013059507731993309,
-0.009442372874146547,
-0.007246728512402157,
-0.005807424012956090,
-0.004809187786009338,
-0.004086399233255150
static_cast<T>(1.550973351780472328),
-static_cast<T>(0.400301020103198524),
-static_cast<T>(0.078498619442941939),
-static_cast<T>(0.034318853117591992),
-static_cast<T>(0.019718043317365499),
-static_cast<T>(0.013059507731993309),
-static_cast<T>(0.009442372874146547),
-static_cast<T>(0.007246728512402157),
-static_cast<T>(0.005807424012956090),
-static_cast<T>(0.004809187786009338),
-static_cast<T>(0.004086399233255150)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.05);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.05));
}
case 2:
case 3:
@@ -223,19 +223,19 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.510121832092819728,
-0.417116333905867549,
-0.090123820404774569,
-0.043729944019084312,
-0.027965493064761785,
-0.020644781177568105,
-0.016650786739707238,
-0.014261960828842520,
-0.012759847429264803,
-0.011799303775587354,
-0.011197445703074968
static_cast<T>(1.510121832092819728),
-static_cast<T>(0.417116333905867549),
-static_cast<T>(0.090123820404774569),
-static_cast<T>(0.043729944019084312),
-static_cast<T>(0.027965493064761785),
-static_cast<T>(0.020644781177568105),
-static_cast<T>(0.016650786739707238),
-static_cast<T>(0.014261960828842520),
-static_cast<T>(0.012759847429264803),
-static_cast<T>(0.011799303775587354),
-static_cast<T>(0.011197445703074968)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.15);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.15));
}
case 4:
case 5:
@@ -243,19 +243,19 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.467462209339427155,
-0.436576290946337775,
-0.105155557666942554,
-0.057371843593241730,
-0.041391627727340220,
-0.034527728505280841,
-0.031495443512532783,
-0.030527000890325277,
-0.030916984019238900,
-0.032371395314758122,
-0.034789960386404158
static_cast<T>(1.467462209339427155),
-static_cast<T>(0.436576290946337775),
-static_cast<T>(0.105155557666942554),
-static_cast<T>(0.057371843593241730),
-static_cast<T>(0.041391627727340220),
-static_cast<T>(0.034527728505280841),
-static_cast<T>(0.031495443512532783),
-static_cast<T>(0.030527000890325277),
-static_cast<T>(0.030916984019238900),
-static_cast<T>(0.032371395314758122),
-static_cast<T>(0.034789960386404158)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.25);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.25));
}
case 6:
case 7:
@@ -263,20 +263,20 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.422691133490879171,
-0.459513519621048674,
-0.125250539822061878,
-0.078138545094409477,
-0.064714278472050002,
-0.062084339131730311,
-0.065197032815572477,
-0.072793895362578779,
-0.084959075171781003,
-0.102539850131045997,
-0.127053585157696036,
-0.160791120691274606
static_cast<T>(1.422691133490879171),
-static_cast<T>(0.459513519621048674),
-static_cast<T>(0.125250539822061878),
-static_cast<T>(0.078138545094409477),
-static_cast<T>(0.064714278472050002),
-static_cast<T>(0.062084339131730311),
-static_cast<T>(0.065197032815572477),
-static_cast<T>(0.072793895362578779),
-static_cast<T>(0.084959075171781003),
-static_cast<T>(0.102539850131045997),
-static_cast<T>(0.127053585157696036),
-static_cast<T>(0.160791120691274606)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.35);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.35));
}
case 8:
case 9:
@@ -284,21 +284,21 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.375401971871116291,
-0.487202183273184837,
-0.153311701348540228,
-0.111849444917027833,
-0.108840952523135768,
-0.122954223120269076,
-0.152217163962035047,
-0.200495323642697339,
-0.276174333067751758,
-0.393513114304375851,
-0.575754406027879147,
-0.860523235727239756,
-1.308833205758540162
static_cast<T>(1.375401971871116291),
-static_cast<T>(0.487202183273184837),
-static_cast<T>(0.153311701348540228),
-static_cast<T>(0.111849444917027833),
-static_cast<T>(0.108840952523135768),
-static_cast<T>(0.122954223120269076),
-static_cast<T>(0.152217163962035047),
-static_cast<T>(0.200495323642697339),
-static_cast<T>(0.276174333067751758),
-static_cast<T>(0.393513114304375851),
-static_cast<T>(0.575754406027879147),
-static_cast<T>(0.860523235727239756),
-static_cast<T>(1.308833205758540162)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.45);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.45));
}
case 10:
case 11:
@@ -306,21 +306,21 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.325024497958230082,
-0.521727647557566767,
-0.194906430482126213,
-0.171623726822011264,
-0.202754652926419141,
-0.278798953118534762,
-0.420698457281005762,
-0.675948400853106021,
-1.136343121839229244,
-1.976721143954398261,
-3.531696773095722506,
-6.446753640156048150,
-11.97703130208884026
static_cast<T>(1.325024497958230082),
-static_cast<T>(0.521727647557566767),
-static_cast<T>(0.194906430482126213),
-static_cast<T>(0.171623726822011264),
-static_cast<T>(0.202754652926419141),
-static_cast<T>(0.278798953118534762),
-static_cast<T>(0.420698457281005762),
-static_cast<T>(0.675948400853106021),
-static_cast<T>(1.136343121839229244),
-static_cast<T>(1.976721143954398261),
-static_cast<T>(3.531696773095722506),
-static_cast<T>(6.446753640156048150),
-static_cast<T>(11.97703130208884026)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.55);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.55));
}
case 12:
case 13:
@@ -328,23 +328,23 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.270707479650149744,
-0.566839168287866583,
-0.262160793432492598,
-0.292244173533077419,
-0.440397840850423189,
-0.774947641381397458,
-1.498870837987561088,
-3.089708310445186667,
-6.667595903381001064,
-14.89436036517319078,
-34.18120574251449024,
-80.15895841905397306,
-191.3489480762984920,
-463.5938853480342030,
-1137.380822169360061
static_cast<T>(1.270707479650149744),
-static_cast<T>(0.566839168287866583),
-static_cast<T>(0.262160793432492598),
-static_cast<T>(0.292244173533077419),
-static_cast<T>(0.440397840850423189),
-static_cast<T>(0.774947641381397458),
-static_cast<T>(1.498870837987561088),
-static_cast<T>(3.089708310445186667),
-static_cast<T>(6.667595903381001064),
-static_cast<T>(14.89436036517319078),
-static_cast<T>(34.18120574251449024),
-static_cast<T>(80.15895841905397306),
-static_cast<T>(191.3489480762984920),
-static_cast<T>(463.5938853480342030),
-static_cast<T>(1137.380822169360061)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.65);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.65));
}
case 14:
case 15:
@@ -352,72 +352,72 @@ BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<
{
constexpr T coef[] =
{
1.211056027568459525,
-0.630306413287455807,
-0.387166409520669145,
-0.592278235311934603,
-1.237555584513049844,
-3.032056661745247199,
-8.181688221573590762,
-23.55507217389693250,
-71.04099935893064956,
-221.8796853192349888,
-712.1364793277635425,
-2336.125331440396407,
-7801.945954775964673,
-26448.19586059191933,
-90799.48341621365251,
-315126.0406449163424,
-1104011.344311591159
static_cast<T>(1.211056027568459525),
-static_cast<T>(0.630306413287455807),
-static_cast<T>(0.387166409520669145),
-static_cast<T>(0.592278235311934603),
-static_cast<T>(1.237555584513049844),
-static_cast<T>(3.032056661745247199),
-static_cast<T>(8.181688221573590762),
-static_cast<T>(23.55507217389693250),
-static_cast<T>(71.04099935893064956),
-static_cast<T>(221.8796853192349888),
-static_cast<T>(712.1364793277635425),
-static_cast<T>(2336.125331440396407),
-static_cast<T>(7801.945954775964673),
-static_cast<T>(26448.19586059191933),
-static_cast<T>(90799.48341621365251),
-static_cast<T>(315126.0406449163424),
-static_cast<T>(1104011.344311591159)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.75);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.75));
}
case 16:
//else if (m < 0.85)
{
constexpr T coef[] =
{
1.161307152196282836,
-0.701100284555289548,
-0.580551474465437362,
-1.243693061077786614,
-3.679383613496634879,
-12.81590924337895775,
-49.25672530759985272,
-202.1818735434090269,
-869.8602699308701437,
-3877.005847313289571,
-17761.70710170939814,
-83182.69029154232061,
-396650.4505013548170,
-1920033.413682634405
static_cast<T>(1.161307152196282836),
-static_cast<T>(0.701100284555289548),
-static_cast<T>(0.580551474465437362),
-static_cast<T>(1.243693061077786614),
-static_cast<T>(3.679383613496634879),
-static_cast<T>(12.81590924337895775),
-static_cast<T>(49.25672530759985272),
-static_cast<T>(202.1818735434090269),
-static_cast<T>(869.8602699308701437),
-static_cast<T>(3877.005847313289571),
-static_cast<T>(17761.70710170939814),
-static_cast<T>(83182.69029154232061),
-static_cast<T>(396650.4505013548170),
-static_cast<T>(1920033.413682634405)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.825);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.825));
}
case 17:
//else if (m < 0.90)
{
constexpr T coef[] =
{
1.124617325119752213,
-0.770845056360909542,
-0.844794053644911362,
-2.490097309450394453,
-10.23971741154384360,
-49.74900546551479866,
-267.0986675195705196,
-1532.665883825229947,
-9222.313478526091951,
-57502.51612140314030,
-368596.1167416106063,
-2415611.088701091428,
-16120097.81581656797,
-109209938.5203089915,
-749380758.1942496220,
-5198725846.725541393,
-36409256888.12139973
static_cast<T>(1.124617325119752213),
-static_cast<T>(0.770845056360909542),
-static_cast<T>(0.844794053644911362),
-static_cast<T>(2.490097309450394453),
-static_cast<T>(10.23971741154384360),
-static_cast<T>(49.74900546551479866),
-static_cast<T>(267.0986675195705196),
-static_cast<T>(1532.665883825229947),
-static_cast<T>(9222.313478526091951),
-static_cast<T>(57502.51612140314030),
-static_cast<T>(368596.1167416106063),
-static_cast<T>(2415611.088701091428),
-static_cast<T>(16120097.81581656797),
-static_cast<T>(109209938.5203089915),
-static_cast<T>(749380758.1942496220),
-static_cast<T>(5198725846.725541393),
-static_cast<T>(36409256888.12139973)
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.875);
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.875));
}
default:
//

View File

@@ -94,7 +94,7 @@ namespace boost { namespace math { namespace detail {
// http://functions.wolfram.com/07.31.03.0083.01
int n = static_cast<int>(static_cast<std::uintmax_t>(boost::math::lltrunc(-2 * a1)));
T smz = sqrt(-z);
return pow(2 / smz, -n) * boost::math::hermite(n, 1 / smz, pol);
return static_cast<T>(pow(2 / smz, -n) * boost::math::hermite(n, 1 / smz, pol)); // Warning suppression: integer power returns at least a double
}
if (is_a1_integer && is_a2_integer)

View File

@@ -322,7 +322,7 @@ T legendre_p_imp(int l, int m, T x, T sin_theta_power, const Policy& pol)
}
if (-m == l)
{
return pow((1 - x * x) / 4, T(l) / 2) / boost::math::tgamma(l + 1, pol);
return pow((1 - x * x) / 4, T(l) / 2) / boost::math::tgamma<T>(l + 1, pol);
}
if(m < 0)
{

View File

@@ -993,7 +993,7 @@ namespace boost
const RealType fabs_a = fabs(a);
const RealType fabs_ah = fabs_a*h;
RealType val = 0.0; // avoid compiler warnings, 0.0 will be overwritten in any case
RealType val = static_cast<RealType>(0.0f); // avoid compiler warnings, 0.0 will be overwritten in any case
if(fabs_a <= 1)
{

View File

@@ -956,9 +956,9 @@ T zeta_imp(T s, T sc, const Policy& pol, const Tag& tag)
else if((v & 1) == 0)
{
if(((v / 2) <= (int)boost::math::max_bernoulli_b2n<T>::value) && (v <= (int)boost::math::max_factorial<T>::value))
return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * pow(constants::pi<T, Policy>(), v) *
return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * static_cast<T>(pow(constants::pi<T, Policy>(), v)) *
boost::math::unchecked_bernoulli_b2n<T>(v / 2) / boost::math::unchecked_factorial<T>(v);
return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * pow(constants::pi<T, Policy>(), v) *
return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * static_cast<T>(pow(constants::pi<T, Policy>(), v)) *
boost::math::bernoulli_b2n<T>(v / 2) / boost::math::factorial<T>(v, pol);
}
else

View File

@@ -5,7 +5,9 @@
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/tools/promotion.hpp>
#ifndef BOOST_MATH_STANDALONE
#include <boost/multiprecision/cpp_bin_float.hpp>
#endif
#include <type_traits>
#if __has_include(<stdfloat>)
@@ -16,7 +18,7 @@ int main()
{
using boost::math::tools::promote_args_t;
#if defined(__cpp_lib_type_trait_variable_templates)
#if defined(__cpp_lib_type_trait_variable_templates) && (__cpp_lib_type_trait_variable_templates >= 201510L) && defined(__cpp_static_assert) && (__cpp_static_assert >= 201411L)
static_assert(std::is_same_v<promote_args_t<long double, float>, long double>);
static_assert(std::is_same_v<promote_args_t<long double, double>, long double>);
@@ -162,6 +164,7 @@ int main()
#endif
#endif
#ifndef BOOST_MATH_STANDALONE
static_assert(std::is_same_v<promote_args_t<float, boost::multiprecision::cpp_bin_float_50>, boost::multiprecision::cpp_bin_float_50>);
static_assert(std::is_same_v<promote_args_t<double, boost::multiprecision::cpp_bin_float_50>, boost::multiprecision::cpp_bin_float_50>);
static_assert(std::is_same_v<promote_args_t<long double, boost::multiprecision::cpp_bin_float_50>, boost::multiprecision::cpp_bin_float_50>);
@@ -177,6 +180,7 @@ int main()
#ifdef __STDCPP_FLOAT128_T__
static_assert(std::is_same_v<promote_args_t<std::float128_t, boost::multiprecision::cpp_bin_float_50>, boost::multiprecision::cpp_bin_float_50>);
#endif
#endif // BOOST_MATH_STANDALONE
#endif