mirror of
https://github.com/boostorg/math.git
synced 2026-01-27 07:02:08 +00:00
Make a few distributions CUDA-compatible.
This commit is contained in:
@@ -54,7 +54,7 @@ namespace boost
|
||||
// Common error checking routines for arcsine distribution functions:
|
||||
// Duplicating for x_min and x_max provides specific error messages.
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_x_min(const char* function, const RealType& x, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_x_min(const char* function, const RealType& x, RealType* result, const Policy& pol)
|
||||
{
|
||||
if (!(boost::math::isfinite)(x))
|
||||
{
|
||||
@@ -67,7 +67,7 @@ namespace boost
|
||||
} // bool check_x_min
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_x_max(const char* function, const RealType& x, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_x_max(const char* function, const RealType& x, RealType* result, const Policy& pol)
|
||||
{
|
||||
if (!(boost::math::isfinite)(x))
|
||||
{
|
||||
@@ -81,11 +81,16 @@ namespace boost
|
||||
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_x_minmax(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_x_minmax(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)
|
||||
{ // Check x_min < x_max
|
||||
if (x_min >= x_max)
|
||||
{
|
||||
std::string msg = "x_max argument is %1%, but must be > x_min = " + lexical_cast<std::string>(x_min) + "!";
|
||||
#ifdef __CUDA_ARCH__
|
||||
*result = policies::raise_domain_error<RealType>(
|
||||
function,
|
||||
"x_max value %1% is out of range", x_max, pol);
|
||||
#else
|
||||
std::string msg = "x_max argument is %1%, but must be > x_min = " + lexical_cast<std::string>(x_min) + "!";
|
||||
*result = policies::raise_domain_error<RealType>(
|
||||
function,
|
||||
msg.c_str(), x_max, pol);
|
||||
@@ -94,13 +99,14 @@ namespace boost
|
||||
// But would require replication of all helpers functions in /policies/error_handling.hpp for two values,
|
||||
// as well as two value versions of raise_error, raise_domain_error and do_format ...
|
||||
// so use slightly hacky lexical_cast to string instead.
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
} // bool check_x_minmax
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
|
||||
{
|
||||
if ((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
|
||||
{
|
||||
@@ -113,7 +119,7 @@ namespace boost
|
||||
} // bool check_prob
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_x(const char* function, const RealType& x_min, const RealType& x_max, const RealType& x, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_x(const char* function, const RealType& x_min, const RealType& x_max, const RealType& x, RealType* result, const Policy& pol)
|
||||
{ // Check x finite and x_min < x < x_max.
|
||||
if (!(boost::math::isfinite)(x))
|
||||
{
|
||||
@@ -137,7 +143,7 @@ namespace boost
|
||||
} // bool check_x
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_dist(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_dist(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)
|
||||
{ // Check both x_min and x_max finite, and x_min < x_max.
|
||||
return check_x_min(function, x_min, result, pol)
|
||||
&& check_x_max(function, x_max, result, pol)
|
||||
@@ -145,14 +151,14 @@ namespace boost
|
||||
} // bool check_dist
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_dist_and_x(const char* function, const RealType& x_min, const RealType& x_max, RealType x, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_dist_and_x(const char* function, const RealType& x_min, const RealType& x_max, RealType x, RealType* result, const Policy& pol)
|
||||
{
|
||||
return check_dist(function, x_min, x_max, result, pol)
|
||||
&& arcsine_detail::check_x(function, x_min, x_max, x, result, pol);
|
||||
} // bool check_dist_and_x
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_dist_and_prob(const char* function, const RealType& x_min, const RealType& x_max, RealType p, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_dist_and_prob(const char* function, const RealType& x_min, const RealType& x_max, RealType p, RealType* result, const Policy& pol)
|
||||
{
|
||||
return check_dist(function, x_min, x_max, result, pol)
|
||||
&& check_prob(function, p, result, pol);
|
||||
@@ -167,7 +173,7 @@ namespace boost
|
||||
typedef RealType value_type;
|
||||
typedef Policy policy_type;
|
||||
|
||||
arcsine_distribution(RealType x_min = 0, RealType x_max = 1) : m_x_min(x_min), m_x_max(x_max)
|
||||
BOOST_GPU_ENABLED arcsine_distribution(RealType x_min = 0, RealType x_max = 1) : m_x_min(x_min), m_x_max(x_max)
|
||||
{ // Default beta (alpha = beta = 0.5) is standard arcsine with x_min = 0, x_max = 1.
|
||||
// Generalized to allow x_min and x_max to be specified.
|
||||
RealType result;
|
||||
@@ -178,11 +184,11 @@ namespace boost
|
||||
&result, Policy());
|
||||
} // arcsine_distribution constructor.
|
||||
// Accessor functions:
|
||||
RealType x_min() const
|
||||
BOOST_GPU_ENABLED RealType x_min() const
|
||||
{
|
||||
return m_x_min;
|
||||
}
|
||||
RealType x_max() const
|
||||
BOOST_GPU_ENABLED RealType x_max() const
|
||||
{
|
||||
return m_x_max;
|
||||
}
|
||||
@@ -197,21 +203,21 @@ namespace boost
|
||||
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline const std::pair<RealType, RealType> range(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED const std::pair<RealType, RealType> range(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{ // Range of permissible values for random variable x.
|
||||
using boost::math::tools::max_value;
|
||||
return std::pair<RealType, RealType>(static_cast<RealType>(dist.x_min()), static_cast<RealType>(dist.x_max()));
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline const std::pair<RealType, RealType> support(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED const std::pair<RealType, RealType> support(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{ // Range of supported values for random variable x.
|
||||
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
||||
return std::pair<RealType, RealType>(static_cast<RealType>(dist.x_min()), static_cast<RealType>(dist.x_max()));
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType mean(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType mean(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{ // Mean of arcsine distribution .
|
||||
RealType result;
|
||||
RealType x_min = dist.x_min();
|
||||
@@ -230,7 +236,7 @@ namespace boost
|
||||
} // mean
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType variance(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType variance(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{ // Variance of standard arcsine distribution = (1-0)/8 = 0.125.
|
||||
RealType result;
|
||||
RealType x_min = dist.x_min();
|
||||
@@ -248,7 +254,7 @@ namespace boost
|
||||
} // variance
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType mode(const arcsine_distribution<RealType, Policy>& /* dist */)
|
||||
inline BOOST_GPU_ENABLED RealType mode(const arcsine_distribution<RealType, Policy>& /* dist */)
|
||||
{ //There are always [*two] values for the mode, at ['x_min] and at ['x_max], default 0 and 1,
|
||||
// so instead we raise the exception domain_error.
|
||||
return policies::raise_domain_error<RealType>(
|
||||
@@ -259,7 +265,7 @@ namespace boost
|
||||
} // mode
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType median(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType median(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{ // Median of arcsine distribution (a + b) / 2 == mean.
|
||||
RealType x_min = dist.x_min();
|
||||
RealType x_max = dist.x_max();
|
||||
@@ -277,7 +283,7 @@ namespace boost
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType skewness(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType skewness(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{
|
||||
RealType result;
|
||||
RealType x_min = dist.x_min();
|
||||
@@ -296,7 +302,7 @@ namespace boost
|
||||
} // skewness
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType kurtosis_excess(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType kurtosis_excess(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{
|
||||
RealType result;
|
||||
RealType x_min = dist.x_min();
|
||||
@@ -316,7 +322,7 @@ namespace boost
|
||||
} // kurtosis_excess
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType kurtosis(const arcsine_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType kurtosis(const arcsine_distribution<RealType, Policy>& dist)
|
||||
{
|
||||
RealType result;
|
||||
RealType x_min = dist.x_min();
|
||||
@@ -336,12 +342,12 @@ namespace boost
|
||||
} // kurtosis
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType pdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& xx)
|
||||
inline BOOST_GPU_ENABLED RealType pdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& xx)
|
||||
{ // Probability Density/Mass Function arcsine.
|
||||
BOOST_FPU_EXCEPTION_GUARD
|
||||
BOOST_MATH_STD_USING // For ADL of std functions.
|
||||
|
||||
static const char* function = "boost::math::pdf(arcsine_distribution<%1%> const&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::pdf(arcsine_distribution<%1%> const&, %1%)";
|
||||
|
||||
RealType lo = dist.x_min();
|
||||
RealType hi = dist.x_max();
|
||||
@@ -362,11 +368,11 @@ namespace boost
|
||||
} // pdf
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType cdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED RealType cdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& x)
|
||||
{ // Cumulative Distribution Function arcsine.
|
||||
BOOST_MATH_STD_USING // For ADL of std functions.
|
||||
|
||||
static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";
|
||||
|
||||
RealType x_min = dist.x_min();
|
||||
RealType x_max = dist.x_max();
|
||||
@@ -395,10 +401,10 @@ namespace boost
|
||||
} // arcsine cdf
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType cdf(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)
|
||||
inline BOOST_GPU_ENABLED RealType cdf(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)
|
||||
{ // Complemented Cumulative Distribution Function arcsine.
|
||||
BOOST_MATH_STD_USING // For ADL of std functions.
|
||||
static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";
|
||||
|
||||
RealType x = c.param;
|
||||
arcsine_distribution<RealType, Policy> const& dist = c.dist;
|
||||
@@ -431,7 +437,7 @@ namespace boost
|
||||
} // arcine ccdf
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType quantile(const arcsine_distribution<RealType, Policy>& dist, const RealType& p)
|
||||
inline BOOST_GPU_ENABLED RealType quantile(const arcsine_distribution<RealType, Policy>& dist, const RealType& p)
|
||||
{
|
||||
// Quantile or Percent Point arcsine function or
|
||||
// Inverse Cumulative probability distribution function CDF.
|
||||
@@ -445,7 +451,7 @@ namespace boost
|
||||
|
||||
using boost::math::constants::half_pi;
|
||||
|
||||
static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";
|
||||
|
||||
RealType result = 0; // of argument checks:
|
||||
RealType x_min = dist.x_min();
|
||||
@@ -475,7 +481,7 @@ namespace boost
|
||||
} // quantile
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType quantile(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)
|
||||
inline BOOST_GPU_ENABLED RealType quantile(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)
|
||||
{
|
||||
// Complement Quantile or Percent Point arcsine function.
|
||||
// Return the number of expected x for a given
|
||||
@@ -483,7 +489,7 @@ namespace boost
|
||||
BOOST_MATH_STD_USING // For ADL of std functions.
|
||||
|
||||
using boost::math::constants::half_pi;
|
||||
static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";
|
||||
|
||||
// Error checks:
|
||||
RealType q = c.param;
|
||||
|
||||
@@ -31,7 +31,7 @@ namespace detail
|
||||
{
|
||||
|
||||
template <class RealType, class Policy>
|
||||
RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealType& x, bool complement)
|
||||
BOOST_GPU_ENABLED RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealType& x, bool complement)
|
||||
{
|
||||
//
|
||||
// This calculates the cdf of the Cauchy distribution and/or its complement.
|
||||
@@ -55,7 +55,7 @@ RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealTy
|
||||
// to get the result.
|
||||
//
|
||||
BOOST_MATH_STD_USING // for ADL of std functions
|
||||
static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)";
|
||||
RealType result = 0;
|
||||
RealType location = dist.location();
|
||||
RealType scale = dist.scale();
|
||||
@@ -67,6 +67,12 @@ RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealTy
|
||||
{
|
||||
return result;
|
||||
}
|
||||
#ifdef __CUDA_ARCH__
|
||||
if(x > tools::max_value<RealType>())
|
||||
return static_cast<RealType>((complement) ? 0 : 1);
|
||||
if(x < -tools::max_value<RealType>())
|
||||
return static_cast<RealType>((complement) ? 1 : 0);
|
||||
#else
|
||||
if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
|
||||
{ // cdf +infinity is unity.
|
||||
return static_cast<RealType>((complement) ? 0 : 1);
|
||||
@@ -75,6 +81,7 @@ RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealTy
|
||||
{ // cdf -infinity is zero.
|
||||
return static_cast<RealType>((complement) ? 1 : 0);
|
||||
}
|
||||
#endif
|
||||
if(false == detail::check_x(function, x, &result, Policy()))
|
||||
{ // Catches x == NaN
|
||||
return result;
|
||||
@@ -89,7 +96,7 @@ RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealTy
|
||||
} // cdf
|
||||
|
||||
template <class RealType, class Policy>
|
||||
RealType quantile_imp(
|
||||
BOOST_GPU_ENABLED RealType quantile_imp(
|
||||
const cauchy_distribution<RealType, Policy>& dist,
|
||||
const RealType& p,
|
||||
bool complement)
|
||||
@@ -102,7 +109,7 @@ RealType quantile_imp(
|
||||
// mid-point of the distribution. This is either added or subtracted
|
||||
// from the location parameter depending on whether `complement` is true.
|
||||
//
|
||||
static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)";
|
||||
BOOST_MATH_STD_USING // for ADL of std functions
|
||||
|
||||
RealType result = 0;
|
||||
@@ -152,20 +159,20 @@ public:
|
||||
typedef RealType value_type;
|
||||
typedef Policy policy_type;
|
||||
|
||||
cauchy_distribution(RealType l_location = 0, RealType l_scale = 1)
|
||||
BOOST_GPU_ENABLED cauchy_distribution(RealType l_location = 0, RealType l_scale = 1)
|
||||
: m_a(l_location), m_hg(l_scale)
|
||||
{
|
||||
static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution";
|
||||
RealType result;
|
||||
detail::check_location(function, l_location, &result, Policy());
|
||||
detail::check_scale(function, l_scale, &result, Policy());
|
||||
} // cauchy_distribution
|
||||
|
||||
RealType location()const
|
||||
BOOST_GPU_ENABLED RealType location()const
|
||||
{
|
||||
return m_a;
|
||||
}
|
||||
RealType scale()const
|
||||
BOOST_GPU_ENABLED RealType scale()const
|
||||
{
|
||||
return m_hg;
|
||||
}
|
||||
@@ -178,7 +185,7 @@ private:
|
||||
typedef cauchy_distribution<double> cauchy;
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
|
||||
inline BOOST_GPU_ENABLED const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
|
||||
{ // Range of permissible values for random variable x.
|
||||
if (std::numeric_limits<RealType>::has_infinity)
|
||||
{
|
||||
@@ -192,7 +199,7 @@ inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealT
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
|
||||
inline BOOST_GPU_ENABLED const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
|
||||
{ // Range of supported values for random variable x.
|
||||
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
||||
if (std::numeric_limits<RealType>::has_infinity)
|
||||
@@ -207,11 +214,11 @@ inline const std::pair<RealType, RealType> support(const cauchy_distribution<Rea
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
|
||||
{
|
||||
BOOST_MATH_STD_USING // for ADL of std functions
|
||||
|
||||
static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)";
|
||||
BOOST_MATH_GPU_STATIC const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)";
|
||||
RealType result = 0;
|
||||
RealType location = dist.location();
|
||||
RealType scale = dist.scale();
|
||||
@@ -244,31 +251,31 @@ inline RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const Rea
|
||||
} // pdf
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType cdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED RealType cdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
|
||||
{
|
||||
return detail::cdf_imp(dist, x, false);
|
||||
} // cdf
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType quantile(const cauchy_distribution<RealType, Policy>& dist, const RealType& p)
|
||||
inline BOOST_GPU_ENABLED RealType quantile(const cauchy_distribution<RealType, Policy>& dist, const RealType& p)
|
||||
{
|
||||
return detail::quantile_imp(dist, p, false);
|
||||
} // quantile
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType cdf(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
|
||||
inline BOOST_GPU_ENABLED RealType cdf(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
|
||||
{
|
||||
return detail::cdf_imp(c.dist, c.param, true);
|
||||
} // cdf complement
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType quantile(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
|
||||
inline BOOST_GPU_ENABLED RealType quantile(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
|
||||
{
|
||||
return detail::quantile_imp(c.dist, c.param, true);
|
||||
} // quantile complement
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType mean(const cauchy_distribution<RealType, Policy>&)
|
||||
inline BOOST_GPU_ENABLED RealType mean(const cauchy_distribution<RealType, Policy>&)
|
||||
{ // There is no mean:
|
||||
typedef typename Policy::assert_undefined_type assert_type;
|
||||
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
||||
@@ -281,7 +288,7 @@ inline RealType mean(const cauchy_distribution<RealType, Policy>&)
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
inline BOOST_GPU_ENABLED RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
{
|
||||
// There is no variance:
|
||||
typedef typename Policy::assert_undefined_type assert_type;
|
||||
@@ -295,18 +302,18 @@ inline RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType mode(const cauchy_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType mode(const cauchy_distribution<RealType, Policy>& dist)
|
||||
{
|
||||
return dist.location();
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType median(const cauchy_distribution<RealType, Policy>& dist)
|
||||
inline BOOST_GPU_ENABLED RealType median(const cauchy_distribution<RealType, Policy>& dist)
|
||||
{
|
||||
return dist.location();
|
||||
}
|
||||
template <class RealType, class Policy>
|
||||
inline RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
inline BOOST_GPU_ENABLED RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
{
|
||||
// There is no skewness:
|
||||
typedef typename Policy::assert_undefined_type assert_type;
|
||||
@@ -320,7 +327,7 @@ inline RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
inline BOOST_GPU_ENABLED RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
{
|
||||
// There is no kurtosis:
|
||||
typedef typename Policy::assert_undefined_type assert_type;
|
||||
@@ -334,7 +341,7 @@ inline RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline RealType kurtosis_excess(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
inline BOOST_GPU_ENABLED RealType kurtosis_excess(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
||||
{
|
||||
// There is no kurtosis excess:
|
||||
typedef typename Policy::assert_undefined_type assert_type;
|
||||
|
||||
@@ -18,7 +18,7 @@ namespace boost{ namespace math{ namespace detail
|
||||
{
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_probability(const char* function, RealType const& prob, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_probability(const char* function, RealType const& prob, RealType* result, const Policy& pol)
|
||||
{
|
||||
if((prob < 0) || (prob > 1) || !(boost::math::isfinite)(prob))
|
||||
{
|
||||
@@ -31,7 +31,7 @@ inline bool check_probability(const char* function, RealType const& prob, RealTy
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_df(const char* function, RealType const& df, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_df(const char* function, RealType const& df, RealType* result, const Policy& pol)
|
||||
{ // df > 0 but NOT +infinity allowed.
|
||||
if((df <= 0) || !(boost::math::isfinite)(df))
|
||||
{
|
||||
@@ -44,7 +44,7 @@ inline bool check_df(const char* function, RealType const& df, RealType* result,
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_df_gt0_to_inf(const char* function, RealType const& df, RealType* result, const Policy& pol)
|
||||
inline BOOST_GPU_ENABLED bool check_df_gt0_to_inf(const char* function, RealType const& df, RealType* result, const Policy& pol)
|
||||
{ // df > 0 or +infinity are allowed.
|
||||
if( (df <= 0) || (boost::math::isnan)(df) )
|
||||
{ // is bad df <= 0 or NaN or -infinity.
|
||||
@@ -58,7 +58,7 @@ inline bool check_df_gt0_to_inf(const char* function, RealType const& df, RealTy
|
||||
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_scale(
|
||||
inline BOOST_GPU_ENABLED bool check_scale(
|
||||
const char* function,
|
||||
RealType scale,
|
||||
RealType* result,
|
||||
@@ -75,7 +75,7 @@ inline bool check_scale(
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_location(
|
||||
inline BOOST_GPU_ENABLED bool check_location(
|
||||
const char* function,
|
||||
RealType location,
|
||||
RealType* result,
|
||||
@@ -92,7 +92,7 @@ inline bool check_location(
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_x(
|
||||
inline BOOST_GPU_ENABLED bool check_x(
|
||||
const char* function,
|
||||
RealType x,
|
||||
RealType* result,
|
||||
@@ -113,7 +113,7 @@ inline bool check_x(
|
||||
} // bool check_x
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_x_gt0(
|
||||
inline BOOST_GPU_ENABLED bool check_x_gt0(
|
||||
const char* function,
|
||||
RealType x,
|
||||
RealType* result,
|
||||
@@ -134,7 +134,7 @@ inline bool check_x_gt0(
|
||||
} // bool check_x_gt0
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_positive_x(
|
||||
inline BOOST_GPU_ENABLED bool check_positive_x(
|
||||
const char* function,
|
||||
RealType x,
|
||||
RealType* result,
|
||||
@@ -154,7 +154,7 @@ inline bool check_positive_x(
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_non_centrality(
|
||||
inline BOOST_GPU_ENABLED bool check_non_centrality(
|
||||
const char* function,
|
||||
RealType ncp,
|
||||
RealType* result,
|
||||
@@ -171,7 +171,7 @@ inline bool check_non_centrality(
|
||||
}
|
||||
|
||||
template <class RealType, class Policy>
|
||||
inline bool check_finite(
|
||||
inline BOOST_GPU_ENABLED bool check_finite(
|
||||
const char* function,
|
||||
RealType x,
|
||||
RealType* result,
|
||||
|
||||
@@ -39,24 +39,24 @@
|
||||
namespace boost{ namespace math{
|
||||
|
||||
template <class Distribution>
|
||||
typename Distribution::value_type variance(const Distribution& dist);
|
||||
BOOST_GPU_ENABLED typename Distribution::value_type variance(const Distribution& dist);
|
||||
|
||||
template <class Distribution>
|
||||
inline typename Distribution::value_type standard_deviation(const Distribution& dist)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type standard_deviation(const Distribution& dist)
|
||||
{
|
||||
BOOST_MATH_STD_USING // ADL of sqrt.
|
||||
return sqrt(variance(dist));
|
||||
}
|
||||
|
||||
template <class Distribution>
|
||||
inline typename Distribution::value_type variance(const Distribution& dist)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type variance(const Distribution& dist)
|
||||
{
|
||||
typename Distribution::value_type result = standard_deviation(dist);
|
||||
return result * result;
|
||||
}
|
||||
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type hazard(const Distribution& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type hazard(const Distribution& dist, const RealType& x)
|
||||
{ // hazard function
|
||||
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#HAZ
|
||||
typedef typename Distribution::value_type value_type;
|
||||
@@ -75,7 +75,7 @@ inline typename Distribution::value_type hazard(const Distribution& dist, const
|
||||
}
|
||||
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type chf(const Distribution& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type chf(const Distribution& dist, const RealType& x)
|
||||
{ // cumulative hazard function.
|
||||
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#HAZ
|
||||
BOOST_MATH_STD_USING
|
||||
@@ -83,7 +83,7 @@ inline typename Distribution::value_type chf(const Distribution& dist, const Rea
|
||||
}
|
||||
|
||||
template <class Distribution>
|
||||
inline typename Distribution::value_type coefficient_of_variation(const Distribution& dist)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type coefficient_of_variation(const Distribution& dist)
|
||||
{
|
||||
typedef typename Distribution::value_type value_type;
|
||||
typedef typename Distribution::policy_type policy_type;
|
||||
@@ -104,19 +104,19 @@ inline typename Distribution::value_type coefficient_of_variation(const Distribu
|
||||
// implementation with all arguments of the same type:
|
||||
//
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type pdf(const Distribution& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type pdf(const Distribution& dist, const RealType& x)
|
||||
{
|
||||
typedef typename Distribution::value_type value_type;
|
||||
return pdf(dist, static_cast<value_type>(x));
|
||||
}
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type cdf(const Distribution& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type cdf(const Distribution& dist, const RealType& x)
|
||||
{
|
||||
typedef typename Distribution::value_type value_type;
|
||||
return cdf(dist, static_cast<value_type>(x));
|
||||
}
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type quantile(const Distribution& dist, const RealType& x)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type quantile(const Distribution& dist, const RealType& x)
|
||||
{
|
||||
typedef typename Distribution::value_type value_type;
|
||||
return quantile(dist, static_cast<value_type>(x));
|
||||
@@ -130,21 +130,21 @@ inline typename Distribution::value_type chf(const Distribution& dist, const Rea
|
||||
}
|
||||
*/
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type cdf(const complemented2_type<Distribution, RealType>& c)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type cdf(const complemented2_type<Distribution, RealType>& c)
|
||||
{
|
||||
typedef typename Distribution::value_type value_type;
|
||||
return cdf(complement(c.dist, static_cast<value_type>(c.param)));
|
||||
}
|
||||
|
||||
template <class Distribution, class RealType>
|
||||
inline typename Distribution::value_type quantile(const complemented2_type<Distribution, RealType>& c)
|
||||
inline BOOST_GPU_ENABLED typename Distribution::value_type quantile(const complemented2_type<Distribution, RealType>& c)
|
||||
{
|
||||
typedef typename Distribution::value_type value_type;
|
||||
return quantile(complement(c.dist, static_cast<value_type>(c.param)));
|
||||
}
|
||||
|
||||
template <class Dist>
|
||||
inline typename Dist::value_type median(const Dist& d)
|
||||
inline BOOST_GPU_ENABLED typename Dist::value_type median(const Dist& d)
|
||||
{ // median - default definition for those distributions for which a
|
||||
// simple closed form is not known,
|
||||
// and for which a domain_error and/or NaN generating function is NOT defined.
|
||||
|
||||
108
test/cuda/arcsine_cdf_double.cu
Normal file
108
test/cuda/arcsine_cdf_double.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/arcsine.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef double float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = cdf(boost::math::arcsine_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(cdf(boost::math::arcsine_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/arcsine_cdf_float.cu
Normal file
108
test/cuda/arcsine_cdf_float.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/arcsine.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef float float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = cdf(boost::math::arcsine_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(cdf(boost::math::arcsine_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/arcsine_pdf_double.cu
Normal file
108
test/cuda/arcsine_pdf_double.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/arcsine.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef double float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = pdf(boost::math::arcsine_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(pdf(boost::math::arcsine_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/arcsine_pdf_float.cu
Normal file
108
test/cuda/arcsine_pdf_float.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/arcsine.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef float float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = pdf(boost::math::arcsine_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(pdf(boost::math::arcsine_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/arcsine_quan_double.cu
Normal file
108
test/cuda/arcsine_quan_double.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/arcsine.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef double float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = quantile(boost::math::arcsine_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(quantile(boost::math::arcsine_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/arcsine_quan_float.cu
Normal file
108
test/cuda/arcsine_quan_float.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/arcsine.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef float float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = quantile(boost::math::arcsine_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(quantile(boost::math::arcsine_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/cauchy_cdf_double.cu
Normal file
108
test/cuda/cauchy_cdf_double.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/cauchy.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef double float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = cdf(boost::math::cauchy_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist(-10000, 10000);
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(cdf(boost::math::cauchy_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/cauchy_cdf_float.cu
Normal file
108
test/cuda/cauchy_cdf_float.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/cauchy.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef float float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = cdf(boost::math::cauchy_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist(-10000, 10000);
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(cdf(boost::math::cauchy_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/cauchy_pdf_double.cu
Normal file
108
test/cuda/cauchy_pdf_double.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/cauchy.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef double float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = pdf(boost::math::cauchy_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist(-10000, 10000);
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(pdf(boost::math::cauchy_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/cauchy_pdf_float.cu
Normal file
108
test/cuda/cauchy_pdf_float.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/cauchy.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef float float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = pdf(boost::math::cauchy_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist(-10000, 10000);
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(pdf(boost::math::cauchy_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/cauchy_quan_double.cu
Normal file
108
test/cuda/cauchy_quan_double.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/cauchy.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef double float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = quantile(boost::math::cauchy_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(quantile(boost::math::cauchy_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
108
test/cuda/cauchy_quan_float.cu
Normal file
108
test/cuda/cauchy_quan_float.cu
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright John Maddock 2016.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <boost/math/distributions/cauchy.hpp>
|
||||
#include <boost/math/special_functions/relative_difference.hpp>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/random/uniform_real_distribution.hpp>
|
||||
#include "cuda_managed_ptr.hpp"
|
||||
#include "stopwatch.hpp"
|
||||
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
typedef float float_type;
|
||||
|
||||
/**
|
||||
* CUDA Kernel Device code
|
||||
*
|
||||
*/
|
||||
__global__ void cuda_test(const float_type *in1, float_type *out, int numElements)
|
||||
{
|
||||
using std::cos;
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i < numElements)
|
||||
{
|
||||
out[i] = quantile(boost::math::cauchy_distribution<float_type>(), in1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Host main routine
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
try{
|
||||
|
||||
// Error code to check return values for CUDA calls
|
||||
cudaError_t err = cudaSuccess;
|
||||
|
||||
// Print the vector length to be used, and compute its size
|
||||
int numElements = 50000;
|
||||
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
|
||||
|
||||
// Allocate the managed input vector A
|
||||
cuda_managed_ptr<float_type> input_vector1(numElements);
|
||||
|
||||
// Allocate the managed output vector C
|
||||
cuda_managed_ptr<float_type> output_vector(numElements);
|
||||
|
||||
boost::random::mt19937 gen;
|
||||
boost::random::uniform_real_distribution<float_type> dist;
|
||||
// Initialize the input vectors
|
||||
for (int i = 0; i < numElements; ++i)
|
||||
{
|
||||
input_vector1[i] = dist(gen);
|
||||
}
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
int threadsPerBlock = 512;
|
||||
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
|
||||
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
|
||||
|
||||
watch w;
|
||||
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(input_vector1.get(), output_vector.get(), numElements);
|
||||
std::cout << "CUDA kernal done in " << w.elapsed() << "s" << std::endl;
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// Verify that the result vector is correct
|
||||
std::vector<float_type> results;
|
||||
results.reserve(numElements);
|
||||
w.reset();
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
results.push_back(quantile(boost::math::cauchy_distribution<float_type>(), input_vector1[i]));
|
||||
double t = w.elapsed();
|
||||
// check the results
|
||||
for(int i = 0; i < numElements; ++i)
|
||||
{
|
||||
if (boost::math::epsilon_difference(output_vector[i], results[i]) > 100.0)
|
||||
{
|
||||
std::cerr << "Result verification failed at element " << i << "!" << std::endl;
|
||||
std::cerr << "Error rate was: " << boost::math::epsilon_difference(output_vector[i], results[i]) << "eps" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Test PASSED with calculation time: " << t << "s" << std::endl;
|
||||
std::cout << "Done\n";
|
||||
}
|
||||
catch(const std::exception& e)
|
||||
{
|
||||
std::cerr << "Stopped with exception: " << e.what() << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user