2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-27 19:12:08 +00:00

Added new distributions.

[SVN r66728]
This commit is contained in:
Paul A. Bristow
2010-11-24 16:50:06 +00:00
parent ec88511ead
commit a3d2de43de
4 changed files with 1855 additions and 0 deletions

View File

@@ -0,0 +1,516 @@
// boost\math\distributions\geometric.hpp
// Copyright John Maddock 2010.
// Copyright Paul A. Bristow 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// geometric distribution is a discrete probability distribution.
// It expresses the probability distribution of the number (k) of
// events, occurrences, failures or arrivals before the first success.
// supported on the set {0, 1, 2, 3...}
// Note that the set includes zero (unlike some definitions that start at one).
// The random variate k is the number of events, occurrences or arrivals.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// Note that the geometric distribution
// (like others including the binomial, geometric & Bernoulli)
// is strictly defined as a discrete function:
// only integral values of k are envisaged.
// However because the method of calculation uses a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.
// See http://en.wikipedia.org/wiki/geometric_distribution
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
// http://mathworld.wolfram.com/GeometricDistribution.html
#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
#include <boost/math/distributions/complement.hpp> // complement.
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/if.hpp>
#include <limits> // using std::numeric_limits;
#include <utility>
#if defined (BOOST_MSVC)
# pragma warning(push)
// This believed not now necessary, so commented out.
//# pragma warning(disable: 4702) // unreachable code.
// in domain_error_imp in error_handling.
#endif
namespace boost
{
namespace math
{
namespace geometric_detail
{
// Common error checking routines for geometric distribution function:
template <class RealType, class Policy>
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
{
if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
{
*result = policies::raise_domain_error<RealType>(
function,
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)
{
return check_success_fraction(function, p, result, pol);
}
template <class RealType, class Policy>
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol)
{
if(check_dist(function, p, result, pol) == false)
{
return false;
}
if( !(boost::math::isfinite)(k) || (k < 0) )
{ // Check k failures.
*result = policies::raise_domain_error<RealType>(
function,
"Number of failures argument is %1%, but must be >= 0 !", k, pol);
return false;
}
return true;
} // Check_dist_and_k
template <class RealType, class Policy>
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)
{
if(check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol) == false)
{
return false;
}
return true;
} // check_dist_and_prob
} // namespace geometric_detail
template <class RealType = double, class Policy = policies::policy<> >
class geometric_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
geometric_distribution(RealType p) : m_p(p)
{ // Constructor stores success_fraction p.
RealType result;
geometric_detail::check_dist(
"geometric_distribution<%1%>::geometric_distribution",
m_p, // Check success_fraction 0 <= p <= 1.
&result, Policy());
} // geometric_distribution constructor.
// Private data getter class member functions.
RealType success_fraction() const
{ // Probability of success as fraction in range 0 to 1.
return m_p;
}
RealType successes() const
{ // Total number of successes r = 1 (for compatibility with negative binomial?).
return 1;
}
// Parameter estimation.
// (These are copies of negative_binomial distribution with successes = 1).
static RealType find_lower_bound_on_p(
RealType trials,
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
{
static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";
RealType result; // of error checks.
RealType successes = 1;
RealType failures = trials - successes;
if(false == detail::check_probability(function, alpha, &result, Policy())
&& geometric_detail::check_dist_and_k(
function, RealType(0), failures, &result, Policy()))
{
return result;
}
// Use complement ibeta_inv function for lower bound.
// This is adapted from the corresponding binomial formula
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
// This is a Clopper-Pearson interval, and may be overly conservative,
// see also "A Simple Improved Inferential Method for Some
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
//
return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
} // find_lower_bound_on_p
static RealType find_upper_bound_on_p(
RealType trials,
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
{
static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";
RealType result; // of error checks.
RealType successes = 1;
RealType failures = trials - successes;
if(false == geometric_detail::check_dist_and_k(
function, RealType(0), failures, &result, Policy())
&& detail::check_probability(function, alpha, &result, Policy()))
{
return result;
}
if(failures == 0)
{
return 1;
}// Use complement ibetac_inv function for upper bound.
// Note adjusted failures value: *not* failures+1 as usual.
// This is adapted from the corresponding binomial formula
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
// This is a Clopper-Pearson interval, and may be overly conservative,
// see also "A Simple Improved Inferential Method for Some
// Discrete Distributions" Yong CAI and K. Krishnamoorthy
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
//
return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
} // find_upper_bound_on_p
// Estimate number of trials :
// "How many trials do I need to be P% sure of seeing k or fewer failures?"
static RealType find_minimum_number_of_trials(
RealType k, // number of failures (k >= 0).
RealType p, // success fraction 0 <= p <= 1.
RealType alpha) // risk level threshold 0 <= alpha <= 1.
{
static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";
// Error checks:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function, p, k, &result, Policy())
&& detail::check_probability(function, alpha, &result, Policy()))
{
return result;
}
result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k
return result + k;
} // RealType find_number_of_failures
static RealType find_maximum_number_of_trials(
RealType k, // number of failures (k >= 0).
RealType p, // success fraction 0 <= p <= 1.
RealType alpha) // risk level threshold 0 <= alpha <= 1.
{
static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";
// Error checks:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function, p, k, &result, Policy())
&& detail::check_probability(function, alpha, &result, Policy()))
{
return result;
}
result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k
return result + k;
} // RealType find_number_of_trials complemented
private:
//RealType m_r; // successes fixed at unity.
RealType m_p; // success_fraction
}; // template <class RealType, class Policy> class geometric_distribution
typedef geometric_distribution<double> geometric; // Reserved name of type double.
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
}
template <class RealType, class Policy>
inline RealType mean(const geometric_distribution<RealType, Policy>& dist)
{ // Mean of geometric distribution = (1-p)/p.
return (1 - dist.success_fraction() ) / dist.success_fraction();
} // mean
// median implemented via quantile(half) in derived accessors.
template <class RealType, class Policy>
inline RealType mode(const geometric_distribution<RealType, Policy>&)
{ // Mode of geometric distribution = zero.
BOOST_MATH_STD_USING // ADL of std functions.
return 0;
} // mode
template <class RealType, class Policy>
inline RealType variance(const geometric_distribution<RealType, Policy>& dist)
{ // Variance of Binomial distribution = (1-p) / p^2.
return (1 - dist.success_fraction())
/ (dist.success_fraction() * dist.success_fraction());
} // variance
template <class RealType, class Policy>
inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)
{ // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
BOOST_MATH_STD_USING // ADL of std functions.
RealType p = dist.success_fraction();
return (2 - p) / sqrt(1 - p);
} // skewness
template <class RealType, class Policy>
inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)
{ // kurtosis of geometric distribution
// http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
RealType p = dist.success_fraction();
return 3 + (p*p - 6*p + 6) / (1 - p);
} // kurtosis
template <class RealType, class Policy>
inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)
{ // kurtosis excess of geometric distribution
// http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
RealType p = dist.success_fraction();
return (p*p - 6*p + 6) / (1 - p);
} // kurtosis_excess
// RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
// standard_deviation provided by derived accessors.
// RealType hazard(const geometric_distribution<RealType, Policy>& dist)
// hazard of geometric distribution provided by derived accessors.
// RealType chf(const geometric_distribution<RealType, Policy>& dist)
// chf of geometric distribution provided by derived accessors.
template <class RealType, class Policy>
inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
BOOST_MATH_STD_USING // For ADL of math functions.
static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";
RealType p = dist.success_fraction();
RealType result;
if(false == geometric_detail::check_dist_and_k(
function,
p,
k,
&result, Policy()))
{
return result;
}
if (k == 0)
{
return p; // success_fraction
}
RealType q = 1 - p; // Inaccurate for small p?
// So try to avoid inaccuracy for large or small p.
// but has little effect > last significant bit.
//cout << "p * pow(q, k) " << result << endl; // seems best whatever p
//cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
//if (p < 0.5)
//{
// result = p * pow(q, k);
//}
//else
//{
// result = p * exp(k * log1p(-p));
//}
result = p * pow(q, k);
return result;
} // geometric_pdf
template <class RealType, class Policy>
inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function of geometric.
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
RealType p = dist.success_fraction();
// Error check:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function,
p,
k,
&result, Policy()))
{
return result;
}
if(k == 0)
{
return p; // success_fraction
}
//RealType q = 1 - p; // Bad for small p
//RealType probability = 1 - std::pow(q, k+1);
RealType z = log1p(-p) * (k+1);
RealType probability = -expm1(z);
return probability;
} // cdf Cumulative Distribution Function geometric.
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
{ // Complemented Cumulative Distribution Function geometric.
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
RealType const& k = c.param;
geometric_distribution<RealType, Policy> const& dist = c.dist;
RealType p = dist.success_fraction();
// Error check:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function,
p,
k,
&result, Policy()))
{
return result;
}
RealType z = log1p(-p) * (k+1);
RealType probability = exp(z);
return probability;
} // cdf Complemented Cumulative Distribution Function geometric.
template <class RealType, class Policy>
inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)
{ // Quantile, percentile/100 or Percent Point geometric function.
// Return the number of expected failures k for a given probability p.
// Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
// k argument may be integral, signed, or unsigned, or floating point.
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
BOOST_MATH_STD_USING // ADL of std functions.
RealType success_fraction = dist.success_fraction();
// Check dist and x.
RealType result;
if(false == geometric_detail::check_dist_and_prob
(function, success_fraction, x, &result, Policy()))
{
return result;
}
// Special cases.
if (x == 1)
{ // Would need +infinity failures for total confidence.
result = policies::raise_overflow_error<RealType>(
function,
"Probability argument is 1, which implies infinite failures !", Policy());
return result;
// usually means return +std::numeric_limits<RealType>::infinity();
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
}
if (x == 0)
{ // No failures are expected if P = 0.
return 0; // Total trials will be just dist.successes.
}
// if (P <= pow(dist.success_fraction(), 1))
if (x <= success_fraction)
{ // p <= pdf(dist, 0) == cdf(dist, 0)
return 0;
}
if (x == 1)
{
return 0;
}
// log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
result = log1p(-x) / log1p(-success_fraction) -1;
// Subtract a few epsilons here too?
// to make sure it doesn't slip over, so ceil would be one too many.
return result;
} // RealType quantile(const geometric_distribution dist, p)
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
{ // Quantile or Percent Point Binomial function.
// Return the number of expected failures k for a given
// complement of the probability Q = 1 - P.
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
// Error checks:
RealType x = c.param;
const geometric_distribution<RealType, Policy>& dist = c.dist;
RealType success_fraction = dist.success_fraction();
RealType result;
if(false == geometric_detail::check_dist_and_prob(
function,
success_fraction,
x,
&result, Policy()))
{
return result;
}
// Special cases:
if(x == 1)
{ // There may actually be no answer to this question,
// since the probability of zero failures may be non-zero,
return 0; // but zero is the best we can do:
}
if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
return 0; //
}
if(x == 0)
{ // Probability 1 - Q == 1 so infinite failures to achieve certainty.
// Would need +infinity failures for total confidence.
result = policies::raise_overflow_error<RealType>(
function,
"Probability argument complement is 0, which implies infinite failures !", Policy());
return result;
// usually means return +std::numeric_limits<RealType>::infinity();
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
}
// log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
result = log(x) / log1p(-success_fraction) -1;
return result;
} // quantile complement
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#if defined (BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP

View File

@@ -0,0 +1,578 @@
// Copyright John Maddock 2010.
// Copyright Paul A. Bristow 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
#define BOOST_STATS_INVERSE_GAUSSIAN_HPP
// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
// http://mathworld.wolfram.com/InverseGaussianDistribution.html
// The normal-inverse Gaussian distribution
// also called the Wald distribution (some sources limit this to when mean = 1).
// It is the continuous probability distribution
// that is defined as the normal variance-mean mixture where the mixing density is the
// inverse Gaussian distribution. The tails of the distribution decrease more slowly
// than the normal distribution. It is therefore suitable to model phenomena
// where numerically large values are more probable than is the case for the normal distribution.
// The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
// In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse
// relationship between the time to cover a unit distance and distance covered in unit time.
// Examples are returns from financial assets and turbulent wind speeds.
// The normal-inverse Gaussian distributions form
// a subclass of the generalised hyperbolic distributions.
// See also
// http://en.wikipedia.org/wiki/Normal_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "Normal Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/NormalDistribution.html
// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
// R package for dinverse_gaussian, ...
// http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html
//#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/math/distributions/gamma.hpp> // for gamma function
// using boost::math::gamma_p;
#include <boost/math/tr1.hpp>
//using std::tr1::tuple;
//using std::tr1::make_tuple;
#include <boost/math/tools/roots.hpp>
//using boost::math::tools::newton_raphson_iterate;
#include <utility>
namespace boost{ namespace math{
template <class RealType = double, class Policy = policies::policy<> >
class inverse_gaussian_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
inverse_gaussian_distribution(RealType mean = 1, RealType scale = 1)
: m_mean(mean), m_scale(scale)
{ // Default is a 1,1 inverse_gaussian distribution.
static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";
RealType result;
detail::check_scale(function, scale, &result, Policy());
detail::check_location(function, mean, &result, Policy());
}
RealType mean()const
{ // alias for location.
return m_mean; // aka mu
}
// Synonyms, provided to allow generic use of find_location and find_scale.
RealType location()const
{ // location, aka mu.
return m_mean;
}
RealType scale()const
{ // scale, aka lambda.
return m_scale;
}
RealType shape()const
{ // shape, aka phi = lambda/mu.
return m_scale / m_mean;
}
private:
//
// Data members:
//
RealType m_mean; // distribution mean or location, aka mu.
RealType m_scale; // distribution standard deviation or scale, aka lambda.
}; // class normal_distribution
typedef inverse_gaussian_distribution<double> inverse_gaussian;
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x, zero to max.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x, zero to max.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
{ // Probability Density Function
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result;
static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
if(false == detail::check_scale(function, scale, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if(false == detail::check_positive_x(function, x, &result, Policy()))
{
return std::numeric_limits<RealType>::quiet_NaN();
}
if (x == 0)
{
return 0; // Convenient, even if not defined mathematically.
}
result =
sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
* exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
return result;
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
{ // Cumulative Density Function.
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = dist.scale();
RealType mean = dist.mean();
static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
RealType result;
if(false == detail::check_scale(function, scale, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if(false == detail::check_positive_x(function, x, &result, Policy()))
{
return result;
}
if (x == 0)
{
return 0; // Convenient, even if not defined mathematically.
}
// Problem with this formula for large scale > 1000 or small x,
//result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
// + exp(2 * scale / mean) / 2
// * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
// so use normal distribution version:
// Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.
normal_distribution<RealType> n01;
RealType n0 = sqrt(scale / x);
n0 *= ((x / mean) -1);
RealType n1 = cdf(n01, n0);
RealType expfactor = exp(2 * scale / mean);
RealType n3 = - sqrt(scale / x);
n3 *= (x / mean) + 1;
// cout << "((x / mean) +1) = " << n3 << endl;
RealType n4 = cdf(n01, n3);
//cout << "phi1 = " << n1 << ", exp(2 * scale / mean) = " << n2 << ", exp * phi2 = " << n4 * n2 << endl;
result = n1 + expfactor * n4;
if(false)
{ // Output some diagnostic values.
cout <<"_\n cdf===========================" << endl;
cout << "sqrt(scale / x)*((x / mean) -1) = " << n0 << endl;
cout << "cdf(n01, n1) = " << n1 << endl;
cout << "exp(2 * scale / mean) = " << expfactor << endl;
cout << " - sqrt(scale / x)*((x / mean) +1) = " << n3 << endl;
cout << "cdf(n01, - sqrt(scale / x)*((x / mean) +1)) = " << n4 << endl;
cout << "exp * cdf_2 = " << n4 * expfactor << endl;
cout << "cdf_1 + exp * cdf_2 = " << result << endl;
}
return result;
} // cdf
template <class RealType>
struct inverse_gaussian_quantile_functor
{
inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType> dist, RealType const& p)
: distribution(dist), prob(p)
{
}
boost::math::tuple<RealType, RealType> operator()(RealType const& x)
{
RealType c = cdf(distribution, x);
RealType fx = c - prob; // Difference cdf - value - to minimize.
RealType dx = pdf(distribution, x); // pdf is 1st derivative.
if(false)
{
cout << "cdf(dist, " << x << ") = " << c << ", diff = " << fx << ", dx " << dx << endl;
}
// return both function evaluation difference f(x) and 1st derivative f'(x).
return std::tr1::make_tuple(fx, dx);
}
private:
const boost::math::inverse_gaussian_distribution<RealType> distribution;
RealType prob;
};
template <class RealType>
struct inverse_gaussian_quantile_complement_functor
{
inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType> dist, RealType const& p)
: distribution(dist), prob(p)
{
}
boost::math::tuple<RealType, RealType> operator()(RealType const& x)
{
RealType c = cdf(complement(distribution, x));
RealType fx = c - prob; // Difference cdf - value - to minimize.
RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
if(true)
{
std::streamsize precision = cout.precision(); // Save
if (false)
{
cout << setprecision(numeric_limits<RealType>::max_digits10)
<< "cdf((complement(dist, " << x << ")) = " << c
<< setprecision(4)
<< ", diff = " << fx << ", dx " << dx << endl;
cout.precision(precision); // restore
}
}
// return both function evaluation difference f(x) and 1st derivative f'(x).
return std::tr1::make_tuple(fx, dx);
}
private:
const boost::math::inverse_gaussian_distribution<RealType> distribution;
RealType prob;
};
namespace detail
{
template <class RealType>
inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
{ // guess at random variate value x for inverse gaussian quantile.
using boost::math::policies::policy;
// Error type.
using boost::math::policies::overflow_error;
// Action.
using boost::math::policies::ignore_error;
typedef policy<
overflow_error<ignore_error> // Ignore overflow (return infinity)
> no_overthrow_policy;
RealType x; // result is guess at random variate value x.
RealType phi = lambda / mu;
if (phi > 2.)
{ // Big phi, so starting to look like normal Gaussian distribution.
// x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
// Whitmore, G.A. and Yalovsky, M.
// A normalising logarithmic transformation for inverse Gaussian random variables,
// Technometrics 20-2, 207-208 (1978), but using expression from
// V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
//x = qnorm(p, 0, 1, true, false);
//x /= sqrt(phi);
//x = x - 1. / (2 * phi);
//x = mu * exp(x);
// x = mu * exp(qnorm(p, 0, 1, true, false) / sqrt(phi) - 1/(2 * phi));
normal_distribution<RealType, no_overthrow_policy> n01;
x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
// Might add about 0.006 to this to get closer?
//RealType pi = 3.1459;
//cout << "1 / sqrt(8 * pi * phi) = " << 1 / sqrt(8 * pi * phi) << endl;
// Bagshaw guess is:
// RealType U = quantile(n01, p); // U <- qnorm (p)
// RealType r1 = 1 + U / sqrt (phi) + U * U / (2 * phi) + U * U * U / (8 * phi * sqrt(phi));
}
else
{ // phi < 2 so much less symmetrical with long tail,
// so use gamma distribution as an approximation.
using boost::math::gamma_distribution;
// Define the distribution, using gamma_nooverflow:
typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;
gamma_distribution<RealType, no_overthrow_policy> g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
// gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
// R qgamma(0.2, 0.5, 1) 0.0320923
RealType qg = quantile(complement(g, p));
//RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
//cout << "quantile(complement(g, p)) = " << qg << ", qgamma(1.- p, 0.5, 1.0, true, false); = " << qg1 << endl; // 49.014664823030209 1.#INF
x = lambda / (qg * 2);
//
if (x > mu/2) // x > mu /2?
{ // x too large for the gamma approximation to work well.
//x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
RealType q = quantile(g, p);
// cout << "quantile((g, p)) = " << q << endl;// 49.014664823030209
//<< ", qgamma(1.- p, 0.5, 1.0); = " << x << endl; // 1.#INF
// x = mu * exp(q * static_cast<RealType>(0.1)); // Said to improve at high p
// x = mu * x; // Improves at high p?
x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
}
}
return x;
} // guess_ig
} // namespace detail
template <class RealType, class Policy>
inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions.
// No closed form exists so guess and use Newton Raphson iteration.
RealType mean = dist.mean();
RealType scale = dist.scale();
static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";
RealType result;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if(false == detail::check_probability(function, p, &result, Policy()))
return result;
if (p == 0)
{
return 0; // Convenient, even if not defined mathematically?
}
if (p == 1)
{ // Might not return infinity?
return numeric_limits<RealType>::infinity();
}
//RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1);
RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
using boost::math::tools::max_value;
RealType min = 0.; // Minimum possible value is bottom of range of distribution.
RealType max = max_value<RealType>();// Maximum possible value is top of range.
// int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
// digits used to control how accurate to try to make the result.
// To allow user to control accuracy versus speed,
int get_digits = policies::digits<RealType, Policy>();// get digits from policy,
boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
if(false)
{
cout << "Probability " << p << ", guess " << guess
<< ", min " << min << ", max " << max
//<< ", std::numeric_limits<" << typeid(RealType).name() << ">::digits = " << digits
<< ", accuracy " << get_digits << " bits."
<< ", max iterations set by policy " << m
<< endl;
}
using boost::math::tools::newton_raphson_iterate;
result =
newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType>(dist, p), guess, min, max, get_digits, m);
//cout << m << " iterations." << endl;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = c.dist.scale();
RealType mean = c.dist.mean();
RealType x = c.param;
static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
// infinite arguments not supported.
//if((boost::math::isinf)(x))
//{
// if(x < 0) return 1; // cdf complement -infinity is unity.
// return 0; // cdf complement +infinity is zero
//}
// These produce MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
//{ // cdf complement +infinity is zero.
// return 0;
//}
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
//{ // cdf complement -infinity is unity.
// return 1;
//}
RealType result;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if(false == detail::check_x(function, x, &result, Policy()))
return result;
normal_distribution<RealType> n01;
RealType n0 = sqrt(scale / x);
n0 *= ((x / mean) -1);
RealType cdf_1 = cdf(complement(n01, n0));
RealType expfactor = exp(2 * scale / mean);
RealType n3 = - sqrt(scale / x);
n3 *= (x / mean) + 1;
//RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
RealType n4 = cdf(n01, n3); // =
result = cdf_1 - expfactor * n6;
if(false)
{
cout <<"_\n cdf(complement ===========================" << endl;
cout << "sqrt(scale / x)*((x / mean) -1) = " << n0 << endl;
cout << "cdf(complement(n01, n1)) = " << cdf_1 << endl;
cout << "-sqrt(scale / x) * ((x / mean) +1) = " << n3 << endl;
cout << "exp(2 * scale / mean) = " << expfactor << endl;
cout << "cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1))) = " << n6 << endl;
cout << "cdf((n01, ) exp(2 * scale / mean) * (x / mean) + 1) = " << n4 << endl;
cout << "exp * cdf_2 = " << result << endl;
}
//cout << "cdf(complement) result = " << result << endl;
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = c.dist.scale();
RealType mean = c.dist.mean();
static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
RealType result;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
RealType q = c.param;
if(false == detail::check_probability(function, q, &result, Policy()))
return result;
RealType guess = detail::guess_ig(q, mean, scale);
// Complement.
using boost::math::tools::max_value;
RealType min = 0.; // Minimum possible value is bottom of range of distribution.
RealType max = max_value<RealType>();// Maximum possible value is top of range.
// int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
// digits used to control how accurate to try to make the result.
int get_digits = policies::digits<RealType, Policy>();
boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
if(false)
{
cout << "Probability " << q << ", guess at x = " << guess
//<< ", min " << min << ", max " << max
////<< ", std::numeric_limits<" << typeid(RealType).name() << ">::digits = " << digits
// << ", accuracy " << get_digits << " bits."
// << ", max iterations set by policy " << m
<< endl;
}
using boost::math::tools::newton_raphson_iterate;
result =
newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType>(c.dist, q), guess, min, max, get_digits, m);
//cout << m << " iterations." << endl;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
{ // aka mu
return dist.mean();
}
template <class RealType, class Policy>
inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
{ // aka lambda
return dist.scale();
}
template <class RealType, class Policy>
inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
{ // aka phi
return dist.shape();
}
template <class RealType, class Policy>
inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = sqrt(mean * mean * mean / scale);
return result;
}
template <class RealType, class Policy>
inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale))
- 3 * mean / (2 * scale));
return result;
}
template <class RealType, class Policy>
inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = 3 * sqrt(mean/scale);
return result;
}
template <class RealType, class Policy>
inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = 15 * mean / scale -3;
return result;
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = 15 * mean / scale;
return result;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP

View File

@@ -0,0 +1,361 @@
// Copyright John Maddock 2010.
// Copyright Paul A. Bristow 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_INVERSE_NORMAL_HPP
#define BOOST_STATS_INVERSE_NORMAL_HPP
// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
// http://mathworld.wolfram.com/InverseGaussianDistribution.html
// The normal-inverse Gaussian distribution (also called the Wald distribution when mean = 1)
// is the continuous probability distribution
// that is defined as the normal variance-mean mixture where the mixing density is the
// inverse Gaussian distribution. The tails of the distribution decrease more slowly
// than the normal distribution. It is therefore suitable to model phenomena
// where numerically large values are more probable than is the case for the normal distribution.
// Examples are returns from financial assets and turbulent wind speeds.
// The normal-inverse Gaussian distributions form
// a subclass of the generalised hyperbolic distributions.
// See also
// http://en.wikipedia.org/wiki/Normal_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "Normal Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/NormalDistribution.html
// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/invGauss.html
// R package for dinvGauss, ...
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/normal.hpp>
#include <utility>
namespace boost{ namespace math{
template <class RealType = double, class Policy = policies::policy<> >
class inverse_normal_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
inverse_normal_distribution(RealType mean = 1, RealType sd = 1)
: m_mean(mean), m_sd(sd)
{ // Default is a 1,1 inverse_normal distribution.
static const char* function = "boost::math::inverse_normal_distribution<%1%>::inverse_normal_distribution";
RealType result;
detail::check_scale(function, sd, &result, Policy());
detail::check_location(function, mean, &result, Policy());
}
RealType mean()const
{ // alias for location.
return m_mean; // aka mu
}
RealType standard_deviation()const
{ // alias for scale.
return m_sd; // aka lambda.
}
// Synonyms, provided to allow generic use of find_location and find_scale.
RealType location()const
{ // location, aka mu.
return m_mean;
}
RealType scale()const
{ // scale, aka lambda.
return m_sd;
}
private:
//
// Data members:
//
RealType m_mean; // distribution mean or location, aka mu.
RealType m_sd; // distribution standard deviation or scale, aka lambda.
}; // class normal_distribution
typedef inverse_normal_distribution<double> inverse_normal;
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const inverse_normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x, zero to max.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const inverse_normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x, zero to max.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline RealType pdf(const inverse_normal_distribution<RealType, Policy>& dist, const RealType& x)
{ // Probability Density Function
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result;
static const char* function = "boost::math::pdf(const inverse_normal_distribution<%1%>&, %1%)";
if(false == detail::check_scale(function, scale, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if(false == detail::check_x_gt0(function, x, &result, Policy()))
{
return numeric_limits<RealType>::quiet_NaN();
}
//result =
// sqrt(scale / (2 * constants::pi<RealType>() * x * x * x))
// * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
result =
sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
* exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
return result;
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const inverse_normal_distribution<RealType, Policy>& dist, const RealType& x)
{ // Cumulative Density Function.
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = dist.scale();
RealType mean = dist.mean();
static const char* function = "boost::math::cdf(const inverse_normal_distribution<%1%>&, %1%)";
RealType result;
if(false == detail::check_scale(function, scale, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if(false == detail::check_x_gt0(function, x, &result, Policy()))
{
return result;
}
//result = 0.5 * (erf(sqrt(scale / x) * (x / mean -1) / sqrt(2.L), Policy()) + 1)
// + exp(2 * scale / mean) / 2
// * (1 - erf(sqrt(scale / x) * (x / mean +1) / sqrt(2.L), Policy()));
result = 0.5 * (erf(sqrt(scale / x) * (x / mean - 1) / constants::root_two<RealType>(), Policy()) + 1)
+ exp(2 * scale / mean) / 2
* (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
return result;
} // cdf
template <class RealType, class Policy>
inline RealType quantile(const inverse_normal_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType mean = dist.mean();
RealType scale = dist.scale();
static const char* function = "boost::math::quantile(const inverse_normal_distribution<%1%>&, %1%)";
RealType result;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if(false == detail::check_probability(function, x, &result, Policy()))
return result;
cout << "x " << x << endl;
RealType a = sqrt(scale / x); // a scale = lambda/x
RealType b = x / mean; // b = x/mu
// pnorm q, mean, sd, lower.tail = true;
//double q=1.0-pnorm(+a*(b-1.0), 0, 1, true, false);
//double p= pnorm(-a*(b+1.0), 0, 1, true, false);
//boost::math::normal_distribution<RealType> norm01;
using boost::math::normal;
normal norm01;
double qx = a * (b - 1.0);
RealType q = 1 - ((qx <= 0) ? 0 : cdf(norm01, qx));
cout << "a = " << a << ", b = " << b << ", qx = " << qx << ", pnorm= " << pnorm01(qx) << ", cdf= " << cdf(norm01, qx) << " q = " << q << endl;
//cout << "1 - pnorm01(qx) " << 1.0 - pnorm01(qx) << endl;
RealType px = -a * (b + 1.0);
RealType p = pnorm01(px);
RealType cdfpx = (px <= 0) ? 0 : cdf(norm01, px);
cout << "-a*(b+1.0) == px = " << px <<", pnorm01(p) = " << p << ", cdfpx = " << cdfpx << endl;
if (p == 0)
{
result = q;
}
else
{
RealType r2 = 2 * scale / mean;
if (r2 >= numeric_limits<RealType>::max() )
{
result = numeric_limits<RealType>::quiet_NaN();
}
else
{
result = q - exp(r2) * p;
}
}
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<inverse_normal_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = c.dist.standard_deviation();
RealType mean = c.dist.mean();
RealType x = c.param;
static const char* function = "boost::math::cdf(const complement(inverse_normal_distribution<%1%>&), %1%)";
if((boost::math::isinf)(x))
{
if(x < 0) return 1; // cdf complement -infinity is unity.
return 0; // cdf complement +infinity is zero
}
// These produce MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
//{ // cdf complement +infinity is zero.
// return 0;
//}
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
//{ // cdf complement -infinity is unity.
// return 1;
//}
RealType result;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if(false == detail::check_x(function, x, &result, Policy()))
return result;
RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
result = boost::math::erfc(diff, Policy()) / 2;
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<inverse_normal_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = c.dist.standard_deviation();
RealType mean = c.dist.mean();
static const char* function = "boost::math::quantile(const complement(inverse_normal_distribution<%1%>&), %1%)";
RealType result;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
RealType q = c.param;
if(false == detail::check_probability(function, q, &result, Policy()))
return result;
result = boost::math::erfc_inv(2 * q, Policy());
result *= sd * constants::root_two<RealType>();
result += mean;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType mean(const inverse_normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType standard_deviation(const inverse_normal_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = sqrt(mean * mean * mean / scale)
return result;
}
template <class RealType, class Policy>
inline RealType mode(const inverse_normal_distribution<RealType, Policy>& dist)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale))
- 3 * mean / (2 * scale));
return result;
}
template <class RealType, class Policy>
inline RealType skewness(const inverse_normal_distribution<RealType, Policy>& /*dist*/)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = 3 * sqrt(mean/scale);
return result;
}
template <class RealType, class Policy>
inline RealType kurtosis(const inverse_normal_distribution<RealType, Policy>& /*dist*/)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = 12 * mean / scale ;
return result;
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const inverse_normal_distribution<RealType, Policy>& /*dist*/)
{
RealType scale = dist.scale();
RealType mean = dist.mean();
RealType result = 15 * mean / scale;
return result;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_INVERSE_NORMAL_HPP

View File

@@ -0,0 +1,400 @@
// Copyright John Maddock 2010.
// Copyright Paul A. Bristow 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_INVERSE_UNIFORM_HPP
#define BOOST_STATS_INVERSE_UNIFORM_HPP
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm
// http://mathworld.wolfram.com/UniformDistribution.html
// http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/UniformDistribution.html
// http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/complement.hpp>
#include <utility>
namespace boost{ namespace math
{
namespace detail
{
template <class RealType, class Policy>
inline bool check_inverse_uniform_lower(
const char* function,
RealType lower,
RealType* result, const Policy& pol)
{
if((boost::math::isfinite)(lower))
{ // any finite value is OK.
return true;
}
else
{ // Not finite.
*result = policies::raise_domain_error<RealType>(
function,
"Lower parameter is %1%, but must be >= 0!", lower, pol);
return false;
}
} // bool check_inverse_uniform_lower(
template <class RealType, class Policy>
inline bool check_inverse_uniform_upper(
const char* function,
RealType upper,
RealType* result, const Policy& pol)
{
if((boost::math::isfinite)(upper))
{ // Any finite value is OK.
return true;
}
else
{ // Not finite.
*result = policies::raise_domain_error<RealType>(
function,
"Upper parameter is %1%, but must be finite!", upper, pol);
return false;
}
} // bool check_inverse_uniform_upper(
template <class RealType, class Policy>
inline bool check_inverse_uniform_x(
const char* function,
RealType const& x,
RealType* result, const Policy& pol)
{
if((boost::math::isfinite)(x))
{ // Any finite value - if < lower or >upper will return NaN
return true;
}
else
{ // Not finite..
*result = policies::raise_domain_error<RealType>(
function,
"y parameter is %1%, but must be finite!", x, pol);
return false;
}
} // bool check_inverse_uniform_x
template <class RealType, class Policy>
inline bool check_inverse_uniform(
const char* function,
RealType lower,
RealType upper,
RealType* result, const Policy& pol)
{
if((check_inverse_uniform_lower(function, lower, result, pol) == false)
|| (check_inverse_uniform_upper(function, upper, result, pol) == false))
{
return false;
}
else if (lower >= upper) // If lower == upper then 1 / (upper-lower) = 1/0 = +infinity!
{ // upper and lower have been checked before, so must be lower >= upper.
*result = policies::raise_domain_error<RealType>(
function,
"lower parameter is %1%, but must be less than upper!", lower, pol);
return false;
}
else
{ // All OK,
return true;
}
} // bool check_inverse_uniform(
} // namespace detail
template <class RealType = double, class Policy = policies::policy<> >
class inverse_uniform_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
inverse_uniform_distribution(RealType lower = 0, RealType upper = 1) // Constructor.
: m_lower(lower), m_upper(upper) // Default is standard uniform distribution.
{
RealType result;
detail::check_inverse_uniform(
"boost::math::inverse_uniform_distribution<%1%>::inverse_uniform_distribution",
lower, upper, &result, Policy());
}
// Accessor functions.
RealType lower()const
{
return m_lower;
}
RealType upper()const
{
return m_upper;
}
private:
// Data members:
RealType m_lower; // distribution lower aka a.
RealType m_upper; // distribution upper aka b.
}; // class inverse_uniform_distribution
typedef inverse_uniform_distribution<double> inverse_uniform;
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const inverse_uniform_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable x.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(dist.lower(), dist.upper()); // 0 to 1.
// Note RealType infinity is NOT permitted, only max_value.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const inverse_uniform_distribution<RealType, Policy>& dist)
{ // Range of supported values for random variable x.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(dist.lower(), dist.upper());
}
template <class RealType, class Policy>
inline RealType pdf(const inverse_uniform_distribution<RealType, Policy>& dist, const RealType& x)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform(
"boost::math::pdf(const inverse_uniform_distribution<%1%>&, %1%)",
lower, upper, &result, Policy()))
{
return result;
}
if(false == detail::check_inverse_uniform_x(
"boost::math::pdf(const inverse_uniform_distribution<%1%>&, %1%)", x, &result, Policy()))
{
return result;
}
// Undefined (singularity) outside lower to upper.
if((x < lower) || (x > upper) )
{
return std::numeric_limits<RealType>::quiet_NaN();
}
else
{
return 1 / (upper - lower);
}
} // RealType pdf(const inverse_uniform_distribution<RealType, Policy>& dist, const RealType& x)
template <class RealType, class Policy>
inline RealType cdf(const inverse_uniform_distribution<RealType, Policy>& dist, const RealType& x)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform(
"boost::math::cdf(const inverse_uniform_distribution<%1%>&, %1%)",
lower, upper, &result, Policy()))
{
return result;
}
if(false == detail::check_inverse_uniform_x(
"boost::math::cdf(const inverse_uniform_distribution<%1%>&, %1%)",
x, &result, Policy()))
{
return result;
}
// Undefined (singularity) outside 0 to 1.
if (x < 0)
{
return std::numeric_limits<RealType>::quiet_NaN();
}
if (x > 1)
{
return std::numeric_limits<RealType>::quiet_NaN();
}
return x * (upper - lower) + lower; // lower <= x <= upper
} // RealType cdf(const inverse_uniform_distribution<RealType, Policy>& dist, const RealType& x)
template <class RealType, class Policy>
inline RealType quantile(const inverse_uniform_distribution<RealType, Policy>& dist, const RealType& p)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks
if(false == detail::check_inverse_uniform(
"boost::math::quantile(const inverse_uniform_distribution<%1%>&, %1%)",
lower, upper, &result, Policy()))
{
return result;
}
if(false == detail::check_probability(
"boost::math::quantile(const inverse_uniform_distribution<%1%>&, %1%)",
p, &result, Policy()))
{
return result;
}
if(p == 0)
{
return lower;
}
if(p == 1)
{
return upper;
}
return p * (upper - lower) + lower;
} // RealType quantile(const inverse_uniform_distribution<RealType, Policy>& dist, const RealType& p)
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<inverse_uniform_distribution<RealType, Policy>, RealType>& c)
{
RealType lower = c.dist.lower();
RealType upper = c.dist.upper();
RealType x = c.param;
RealType result; // of checks.
if(false == detail::check_inverse_uniform(
"boost::math::cdf(const inverse_uniform_distribution<%1%>&, %1%)",
lower, upper, &result, Policy()))
{
return result;
}
if(false == detail::check_inverse_uniform_x(
"boost::math::cdf(const inverse_uniform_distribution<%1%>&, %1%)",
x, &result, Policy()))
{
return result;
}
if (x < lower)
{
return 0;
}
if (x > upper)
{
return 1;
}
return (upper - x) / (upper - lower);
} // RealType cdf(const complemented2_type<inverse_uniform_distribution<RealType, Policy>, RealType>& c)
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<inverse_uniform_distribution<RealType, Policy>, RealType>& c)
{
RealType lower = c.dist.lower();
RealType upper = c.dist.upper();
RealType q = c.param;
RealType result; // of checks.
if(false == detail::check_inverse_uniform(
"boost::math::quantile(const inverse_uniform_distribution<%1%>&, %1%)",
lower, upper, &result, Policy()))
{
return result;
}
if(false == detail::check_probability(
"boost::math::quantile(const inverse_uniform_distribution<%1%>&, %1%)",
q, &result, Policy()))
if(q == 0)
{
return lower;
}
if(q == 1)
{
return upper;
}
return -q * (upper - lower) + upper;
} // RealType quantile(const complemented2_type<inverse_uniform_distribution<RealType, Policy>, RealType>& c)
template <class RealType, class Policy>
inline RealType mean(const inverse_uniform_distribution<RealType, Policy>& dist)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform(
"boost::math::mean(const inverse_uniform_distribution<%1%>&)",
lower, upper, &result, Policy()))
{
return result;
}
return (lower + upper ) / 2;
} // RealType mean(const inverse_uniform_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType variance(const inverse_uniform_distribution<RealType, Policy>& dist)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform("boost::math::variance(const inverse_uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
{
return result;
}
return (upper - lower) * ( upper - lower) / 12;
// for standard inverse_uniform = 0.833333333333333333333333333333333333333333;
} // RealType variance(const inverse_uniform_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType mode(const inverse_uniform_distribution<RealType, Policy>& dist)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform("boost::math::mode(const inverse_uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
{
return result;
}
result = lower; // Any value [lower, upper] but arbitrarily choose lower.
return result;
}
template <class RealType, class Policy>
inline RealType median(const inverse_uniform_distribution<RealType, Policy>& dist)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform("boost::math::median(const inverse_uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
{
return result;
}
return (lower + upper) / 2; //
}
template <class RealType, class Policy>
inline RealType skewness(const inverse_uniform_distribution<RealType, Policy>& dist)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform("boost::math::skewness(const inverse_uniform_distribution<%1%>&)",lower, upper, &result, Policy()))
{
return result;
}
return 0;
} // RealType skewness(const inverse_uniform_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType kurtosis_excess(const inverse_uniform_distribution<RealType, Policy>& dist)
{
RealType lower = dist.lower();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_inverse_uniform("boost::math::kurtosis_execess(const inverse_uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
{
return result;
}
return static_cast<RealType>(-6)/5; // -6/5 = -1.2;
} // RealType kurtosis_excess(const inverse_uniform_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType kurtosis(const inverse_uniform_distribution<RealType, Policy>& dist)
{
return kurtosis_excess(dist) + 3;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_INVERSE_UNIFORM_HPP