2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Tidy up comments.

This commit is contained in:
jzmaddock
2015-04-30 18:32:48 +01:00
parent 5c022355ac
commit a0fb417bc0
3 changed files with 120 additions and 105 deletions

View File

@@ -48,7 +48,7 @@ but you should never use `using` statements globally in header files).]
//using boost::math::tools::toms748_solve;
#include <boost/math/special_functions/next.hpp> // For float_distance.
#include <boost/math/tools/tuple.hpp> // for tuple and make_tuple.
#include <tuple> // for std::tuple and std::make_tuple.
#include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.
//] [/root_finding_include_1]
@@ -88,10 +88,10 @@ Lastly we show how adding the curvature /f''(x)/ too will speed convergence even
template <class T>
struct cbrt_functor_noderiv
{ // cube root of x using only function - no derivatives.
{
// cube root of x using only function - no derivatives.
cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor just stores value a to find root of.
}
{ /* Constructor just stores value a to find root of. */ }
T operator()(T const& x)
{
T fx = x*x*x - a; // Difference (estimate x^3 - a).
@@ -116,25 +116,29 @@ and has only one root (we leave negative values 'as an exercise for the student'
template <class T>
T cbrt_noderiv(T x)
{ // return cube root of x using bracket_and_solve (no derivatives).
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For bracket_and_solve_root.
{
// return cube root of x using bracket_and_solve (no derivatives).
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For bracket_and_solve_root.
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T factor = 2; // How big steps to take when searching.
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T factor = 2; // How big steps to take when searching.
const boost::uintmax_t maxit = 20; // Limit to maximum iterations.
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
const boost::uintmax_t maxit = 20; // Limit to maximum iterations.
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
// Some fraction of digits is used to control how accurate to try to make the result.
int get_digits = (digits * 3) /4; // Near maximum (3/4) possible accuracy.
eps_tolerance<T> tol(get_digits); // Set the tolerance.
std::pair<T, T> r =
bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
return r.first + (r.second - r.first)/2; // Midway between brackets.
int get_digits = digits - 3; // We have to have a non-zero interval at each step, so
// maximum accuracy is digits - 1. But we also have to
// allow for inaccuracy in f(x), otherwise the last few
// iterations just thrash around.
eps_tolerance<T> tol(get_digits); // Set the tolerance.
std::pair<T, T> r = bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
return r.first + (r.second - r.first)/2; // Midway between brackets is our result, if necessary we could
// return the result as an interval here.
}
/*`
@@ -145,8 +149,9 @@ which is more than anyone would wish to wait for!
So it may be wise to chose some reasonable estimate of how many iterations may be needed, here only 20.]
[note We could also have used a maximum iterations provided by any policy:
`boost::uintmax_t max_it = policies::get_max_root_iterations<Policy>();`]
[note We could also have used a maximum iterations provided by any Boost.Math __Policy:
internally, Boost.Math's own routines use
`boost::uintmax_t max_it = policies::get_max_root_iterations<Policy>();` to set an upper limit.]
[tip One can show how many iterations in `bracket_and_solve_root` (this information is lost outside `cbrt_noderiv`), for example with:]
@@ -202,28 +207,31 @@ struct cbrt_functor_deriv
// for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.
}
std::pair<T, T> operator()(T const& x)
{ // Return both f(x) and f'(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
return std::make_pair(fx, dx); // 'return' both fx and dx.
{
// Return both f(x) and f'(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
return std::make_pair(fx, dx); // 'return' both fx and dx.
}
private:
T a; // Store value to be 'cube_rooted'.
T a; // Store value to be 'cube_rooted'.
};
/*`Our cube root function is now:*/
template <class T>
T cbrt_deriv(T x)
{ // return cube root of x using 1st derivative and Newton_Raphson.
{
// return cube root of x using 1st derivative and Newton_Raphson.
using namespace boost::math::tools;
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
int get_digits = (digits * 3) /4; // Near maximum (3/4) possible accuracy.
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
int get_digits = static_cast<int>(digits * 0.6); // Accuracy doubles with each step, so stop when we have
// just over half the digits correct.
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
@@ -249,18 +257,19 @@ To \'return\' three values, we use a `tuple` of three floating-point values:
template <class T>
struct cbrt_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
{
// Functor returning both 1st and 2nd derivatives.
cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of, for example:
// calling cbrt_functor_2deriv<T>(x) to get cube root of x,
}
boost::math::tuple<T, T, T> operator()(T const& x)
{ // Return both f(x) and f'(x) and f''(x).
using boost::math::make_tuple;
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
T d2x = 6 * x; // 2nd derivative = 6x.
return make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
std::tuple<T, T, T> operator()(T const& x)
{
// Return both f(x) and f'(x) and f''(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
T d2x = 6 * x; // 2nd derivative = 6x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
T a; // to be 'cube_rooted'.
@@ -270,17 +279,19 @@ private:
template <class T>
T cbrt_2deriv(T x)
{ // return cube root of x using 1st and 2nd derivatives and Halley.
{
// return cube root of x using 1st and 2nd derivatives and Halley.
//using namespace std; // Help ADL of std functions.
using namespace boost::math::tools;
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
T max = ldexp(2., exponent/3);// Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
// digits used to control how accurate to try to make the result.
int get_digits = digits/2; // Near maximum (1/2) possible accuracy.
int get_digits = static_cast<int>(digits * 0.4); // Accuracy tripples with each step, so stop when just
// over one third of the digits are correct.
boost::uintmax_t maxit = 20;
T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
return result;
@@ -343,20 +354,21 @@ __spaces['f]\'\'(x) = 20x[super 3]
template <class T>
struct fifth_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
{
// Functor returning both 1st and 2nd derivatives.
fifth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of, for example:
}
{ /* Constructor stores value a to find root of, for example: */ }
std::tuple<T, T, T> operator()(T const& x)
{ // Return both f(x) and f'(x) and f''(x).
T fx = x*x*x*x*x - a; // Difference (estimate x^3 - value).
T dx = 5 * x*x*x*x; // 1st derivative = 5x^4.
T d2x = 20 * x*x*x; // 2nd derivative = 20 x^3
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
{
// Return both f(x) and f'(x) and f''(x).
T fx = boost::math::pow<5>(x) - a; // Difference (estimate x^3 - value).
T dx = 5 * boost::math::pow<4>(x); // 1st derivative = 5x^4.
T d2x = 20 * boost::math::pow<3>(x); // 2nd derivative = 20 x^3
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
T a; // to be 'fifth_rooted'.
T a; // to be 'fifth_rooted'.
}; // struct fifth_functor_2deriv
//] [/root_finding_fifth_functor_2deriv]
@@ -368,17 +380,18 @@ private:
template <class T>
T fifth_2deriv(T x)
{ // return fifth root of x using 1st and 2nd derivatives and Halley.
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // for halley_iterate.
{
// return fifth root of x using 1st and 2nd derivatives and Halley.
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // for halley_iterate.
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by five.
T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
T max = ldexp(2., exponent / 5); // Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits / 2; // Half maximum possible binary digits accuracy for type T.
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by five.
T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
T max = ldexp(2., exponent / 5); // Maximum possible value is twice our guess.
// Stop when slightly more than one of the digits are correct:
const int digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
const boost::uintmax_t maxit = 50;
boost::uintmax_t it = maxit;
T result = halley_iterate(fifth_functor_2deriv<T>(x), guess, min, max, digits, it);
@@ -393,18 +406,18 @@ int main()
std::cout << "Root finding Examples." << std::endl;
std::cout.precision(std::numeric_limits<double>::max_digits10);
// Show all possibly significant decimal digits for double.
//std::cout.precision(std::numeric_limits<double>::digits10);
// std::cout.precision(std::numeric_limits<double>::digits10);
// Show all guaranteed significant decimal digits for double.
//[root_finding_main_1
try
{
double threecubed = 27.; // Value that has an *exactly representable* integer cube root.
double threecubed = 27.; // Value that has an *exactly representable* integer cube root.
double threecubedp1 = 28.; // Value whose cube root is *not* exactly representable.
std::cout << "cbrt(28) " << boost::math::cbrt(28.) << std::endl; // boost::math:: version of cbrt.
std::cout << "std::cbrt(28) " << std::cbrt(28.) << std::endl; // std:: version of cbrt.
std::cout << "std::cbrt(28) " << std::cbrt(28.) << std::endl; // std:: version of cbrt.
std::cout <<" cast double " << static_cast<double>(3.0365889718756625194208095785056696355814539772481111) << std::endl;
// Cube root using bracketing:

View File

@@ -87,15 +87,16 @@ struct cbrt_functor_2deriv
// using boost::math::tuple; // to return three values.
std::tuple<T, T, T> operator()(T const& x)
{ // Return both f(x) and f'(x) and f''(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
// std::cout << "x = " << x << "\nfx = " << fx << std::endl;
T dx = 3 * x*x; // 1st derivative = 3x^2.
T d2x = 6 * x; // 2nd derivative = 6x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
{
// Return both f(x) and f'(x) and f''(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
// std::cout << "x = " << x << "\nfx = " << fx << std::endl;
T dx = 3 * x*x; // 1st derivative = 3x^2.
T d2x = 6 * x; // 2nd derivative = 6x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
T a; // to be 'cube_rooted'.
T a; // to be 'cube_rooted'.
}; // struct cbrt_functor_2deriv
template <int n, class T>
@@ -103,37 +104,37 @@ struct nth_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
nth_functor_2deriv(T const& to_find_root_of) : value(to_find_root_of)
{ // Constructor stores value to find root of, for example:
}
{ /* Constructor stores value to find root of, for example: */ }
// using boost::math::tuple; // to return three values.
// using std::tuple; // to return three values.
std::tuple<T, T, T> operator()(T const& x)
{ // Return both f(x) and f'(x) and f''(x).
{
// Return both f(x) and f'(x) and f''(x).
using boost::math::pow;
T fx = pow<n>(x) -value; // Difference (estimate x^3 - value).
T dx = n * pow<n - 1>(x); // 1st derivative = 5x^4.
T d2x = n * (n - 1) * pow<n - 2 >(x); // 2nd derivative = 20 x^3
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
T fx = pow<n>(x) - value; // Difference (estimate x^3 - value).
T dx = n * pow<n - 1>(x); // 1st derivative = 5x^4.
T d2x = n * (n - 1) * pow<n - 2 >(x); // 2nd derivative = 20 x^3
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
T value; // to be 'nth_rooted'.
T value; // to be 'nth_rooted'.
}; // struct nth_functor_2deriv
template <int n, class T>
T nth_2deriv(T x)
{ // return nth root of x using 1st and 2nd derivatives and Halley.
{
// return nth root of x using 1st and 2nd derivatives and Halley.
using namespace std; // Help ADL of std functions.
using namespace boost::math; // For halley_iterate.
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(static_cast<T>(1.), exponent / n); // Rough guess is to divide the exponent by three.
T min = ldexp(static_cast<T>(0.5), exponent / n); // Minimum possible value is half our guess.
T max = ldexp(static_cast<T>(2.), exponent / n); // Maximum possible value is twice our guess.
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(static_cast<T>(1.), exponent / n); // Rough guess is to divide the exponent by three.
T min = ldexp(static_cast<T>(0.5), exponent / n); // Minimum possible value is half our guess.
T max = ldexp(static_cast<T>(2.), exponent / n); // Maximum possible value is twice our guess.
int digits = std::numeric_limits<T>::digits / 2; // Half maximum possible binary digits accuracy for type T.
int digits = std::numeric_limits<T>::digits / 2; // Half maximum possible binary digits accuracy for type T.
const boost::uintmax_t maxit = 50;
boost::uintmax_t it = maxit;
T result = halley_iterate(nth_functor_2deriv<n, T>(x), guess, min, max, digits, it);

View File

@@ -47,21 +47,21 @@ struct nth_functor_2deriv
BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!");
nth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of, for example:
}
{ /* Constructor stores value a to find root of, for example: */ }
// using boost::math::tuple; // to return three values.
std::tuple<T, T, T> operator()(T const& x)
{ // Return f(x), f'(x) and f''(x).
{
// Return f(x), f'(x) and f''(x).
using boost::math::pow;
T fx = pow<N>(x) - a; // Difference (estimate x^n - a).
T dx = N * pow<N - 1>(x); // 1st derivative f'(x).
T d2x = N * (N - 1) * pow<N - 2 >(x); // 2nd derivative f''(x).
T fx = pow<N>(x) - a; // Difference (estimate x^n - a).
T dx = N * pow<N - 1>(x); // 1st derivative f'(x).
T d2x = N * (N - 1) * pow<N - 2 >(x); // 2nd derivative f''(x).
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
T a; // to be 'nth_rooted'.
T a; // to be 'nth_rooted'.
};
//] [/root_finding_nth_functor_2deriv]
@@ -98,12 +98,13 @@ T nth_2deriv(T x)
typedef double guess_type; // double may restrict (exponent) range for a multiprecision T?
int exponent;
frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(static_cast<guess_type>(1.), exponent / N); // Rough guess is to divide the exponent by n.
frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(static_cast<guess_type>(1.), exponent / N); // Rough guess is to divide the exponent by n.
T min = ldexp(static_cast<guess_type>(1.) / 2, exponent / N); // Minimum possible value is half our guess.
T max = ldexp(static_cast<guess_type>(2.), exponent / N); // Maximum possible value is twice our guess.
T max = ldexp(static_cast<guess_type>(2.), exponent / N); // Maximum possible value is twice our guess.
int digits = 2 * std::numeric_limits<T>::digits / 3; // Two thirds maximum possible binary digits accuracy for type T.
int digits = std::numeric_limits<T>::digits * 0.4; // Accuracy tripples with each step, so stop when
// slightly more than one third of the digits are correct.
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
T result = halley_iterate(nth_functor_2deriv<N, T>(x), guess, min, max, digits, it);
@@ -209,4 +210,4 @@ RUN SUCCESSFUL (total time: 63ms)
/*
Throw out of range using GCC release mode :-(
*/
*/