mirror of
https://github.com/boostorg/math.git
synced 2026-02-02 08:52:15 +00:00
Implemented large a series expansion
This commit is contained in:
@@ -1290,6 +1290,33 @@ BOOST_MATH_GPU_ENABLED T incomplete_tgamma_large_x(const T& a, const T& x, const
|
||||
return result;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
struct incomplete_tgamma_lower_large_a_series
|
||||
{
|
||||
typedef T result_type;
|
||||
BOOST_MATH_GPU_ENABLED incomplete_tgamma_lower_large_a_series(const T& a, const T& x)
|
||||
: a_poch(a + 1), z(x), term(1 / a) {}
|
||||
BOOST_MATH_GPU_ENABLED T operator()()
|
||||
{
|
||||
T result = term;
|
||||
term *= z / a_poch;
|
||||
a_poch += 1;
|
||||
return result;
|
||||
}
|
||||
T a_poch, z, term;
|
||||
};
|
||||
|
||||
template <class T, class Policy>
|
||||
T incomplete_tgamma_lower_large_a(const T& a, const T&x, const Policy & pol)
|
||||
{
|
||||
BOOST_MATH_STD_USING
|
||||
incomplete_tgamma_lower_large_a_series<T> s(a, x);
|
||||
boost::math::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>();
|
||||
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
|
||||
boost::math::policies::check_series_iterations<T>("boost::math::tgamma_p<%1%>(%1%,%1%)", max_iter, pol);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Main incomplete gamma entry point, handles all four incomplete gamma's:
|
||||
@@ -1813,6 +1840,45 @@ BOOST_MATH_GPU_ENABLED T lgamma_incomplete_imp(T a, T x, const Policy& pol)
|
||||
return log(gamma_q(a, x, pol));
|
||||
}
|
||||
|
||||
// Calculate log of incomplete gamma function
|
||||
template <class T, class Policy>
|
||||
BOOST_MATH_GPU_ENABLED T lgamma_incomplete_lower_imp(T a, T x, const Policy& pol)
|
||||
{
|
||||
using namespace boost::math; // temporary until we're in the right namespace
|
||||
|
||||
BOOST_MATH_STD_USING_CORE
|
||||
|
||||
// Check for invalid inputs (a < 0 or x < 0)
|
||||
constexpr auto function = "boost::math::lgamma_p<%1%>(%1%, %1%)";
|
||||
if(a <= 0)
|
||||
return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
|
||||
if(x < 0)
|
||||
return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
|
||||
|
||||
// Need to change this to be more appropriate!
|
||||
if (a > 100){
|
||||
return log(detail::incomplete_tgamma_lower_large_a(a, x, pol)) + a * log(x) - x - lgamma(a, pol);
|
||||
}
|
||||
|
||||
//
|
||||
// Can't do better than taking the log of P, but...
|
||||
//
|
||||
// Figure out whether we need P or Q, since if we calculate P and it's too close to unity
|
||||
// we will lose precision in the result, selection logic here is extracted from gamma_incomplete_imp_final:
|
||||
//
|
||||
bool need_p = false;
|
||||
if ((x < 0.5) && (T(-0.4) / log(x) < a))
|
||||
need_p = true;
|
||||
else if ((x < 1.1) && (x >= 0.5) && (x * 0.75f < a))
|
||||
need_p = true;
|
||||
else if ((x < a) && (x >= 1.1))
|
||||
need_p = true;
|
||||
|
||||
if (need_p)
|
||||
return log(gamma_p(a, x, pol));
|
||||
return log1p(-gamma_q(a, x, pol), pol);
|
||||
}
|
||||
|
||||
//
|
||||
// Ratios of two gamma functions:
|
||||
//
|
||||
|
||||
Reference in New Issue
Block a user