[Polygamma] Add equations and graphs.
110
doc/equations/polygamma7.mml
Normal file
@@ -0,0 +1,110 @@
|
||||
<?xml version='1.0'?>
|
||||
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
|
||||
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
|
||||
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
|
||||
<html xmlns='http://www.w3.org/1999/xhtml'>
|
||||
<head><title>polygamma7</title>
|
||||
<!-- MathML created with MathCast Equation Editor version 0.89 -->
|
||||
</head>
|
||||
<body>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mfrac>
|
||||
<mo>∂</mo>
|
||||
<mrow>
|
||||
<mo>∂</mo>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mi>cos</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>sin</mi>
|
||||
<mi>n</mi>
|
||||
</msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<mo>=</mo>
|
||||
<mo>−</mo>
|
||||
<mfrac>
|
||||
<mn>1</mn>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>+</mo>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>cos</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>+</mo>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mi>k</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>cos</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>k</mi>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mi>sin</mi>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mi>x</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
</mrow>
|
||||
</math>
|
||||
</body>
|
||||
</html>
|
||||
BIN
doc/equations/polygamma7.png
Normal file
|
After Width: | Height: | Size: 8.3 KiB |
2
doc/equations/polygamma7.svg
Normal file
|
After Width: | Height: | Size: 13 KiB |
@@ -1,2 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="33.233965pt" width="84.139631pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -18.482051 84.139631 33.233965"><svg:metadata><svgmath:metrics top="33.2339648438" axis="18.7362890625" baseline="14.7519140625" bottom="0.0"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.428711" font-family="Times New Roman" font-style="italic" fill="black">ζ</svg:text><svg:g transform="translate(6.363281, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g><svg:g transform="translate(8.777344, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(19.136719, 0.000000)"/><svg:g transform="translate(34.470055, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(44.570969, 0.000000)"/><svg:g transform="translate(56.570969, -3.984375)"><svg:text font-size="23.233083" text-anchor="middle" y="6.399891" x="8.281323" font-family="Times New Roman" fill="black">∑</svg:text><svg:g transform="translate(1.670835, 18.636445)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.890791" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text><svg:g transform="translate(4.155996, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(8.960977, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:g transform="translate(5.244409, -10.570488)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="3.036914" font-family="Times New Roman" font-style="italic" fill="black">∞</svg:text></svg:g></svg:g><svg:g transform="translate(73.719553, -3.984375)"><svg:g transform="translate(2.210039, -1.599609)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(0.585938, 11.273438)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text><svg:g transform="translate(5.853516, -5.908887)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.736865" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:line stroke-width="0.585938" x1="0.000000" y1="0.000000" stroke="black" stroke-linecap="butt" stroke-dasharray="none" x2="10.420078" y2="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="33.233965pt" width="84.139631pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -18.482051 84.139631 33.233965"><svg:metadata><svgmath:metrics top="33.2339648438" axis="18.7362890625" baseline="14.7519140625" bottom="0.0"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.428711" font-family="Times New Roman" font-style="italic" fill="black">ζ</svg:text><svg:g transform="translate(6.363281, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g><svg:g transform="translate(8.777344, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(19.136719, 0.000000)"/><svg:g transform="translate(34.470055, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(44.570969, 0.000000)"/><svg:g transform="translate(56.570969, -3.984375)"><svg:text font-size="23.233083" text-anchor="middle" y="6.399891" x="8.281323" font-family="Times New Roman" fill="black">∑</svg:text><svg:g transform="translate(1.670835, 18.636445)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.890791" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text><svg:g transform="translate(4.155996, -2.828906)"><svg:text font-size="8.520000" text-anchor="middle" y="2.828906" x="2.402490" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(8.960977, 0.000000)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="2.130000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:g transform="translate(5.244409, -10.570488)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="3.036914" font-family="Times New Roman" font-style="italic" fill="black">∞</svg:text></svg:g></svg:g><svg:g transform="translate(73.719553, -3.984375)"><svg:g transform="translate(2.210039, -1.599609)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(0.585938, 11.273438)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.663086" font-family="Times New Roman" font-style="italic" fill="black">k</svg:text><svg:g transform="translate(5.853516, -5.908887)"><svg:text font-size="8.520000" text-anchor="middle" y="0.000000" x="1.736865" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:line stroke-width="0.585938" y2="0.000000" y1="0.000000" stroke="black" stroke-linecap="butt" stroke-dasharray="none" x2="10.420078" x1="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
|
Before Width: | Height: | Size: 3.3 KiB After Width: | Height: | Size: 3.3 KiB |
|
Before Width: | Height: | Size: 9.7 KiB After Width: | Height: | Size: 9.7 KiB |
|
Before Width: | Height: | Size: 7.1 KiB After Width: | Height: | Size: 7.1 KiB |
@@ -1,2 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="22.359362pt" width="108.981109pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -16.494128 108.981109 22.359362"><svg:metadata><svgmath:metrics top="22.3593624127" axis="9.849609375" baseline="5.865234375" bottom="0.0"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.434570" font-family="Times New Roman" font-style="italic" fill="black">ς</svg:text><svg:g transform="translate(5.109375, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g><svg:g transform="translate(8.777344, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(21.216148, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(31.903000, -3.984375)"><svg:g transform="translate(0.585938, -4.165990)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="4.001953" font-family="Times New Roman" font-style="italic" fill="black">C</svg:text><svg:g transform="translate(11.110023, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(20.544266, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(28.149734, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text><svg:g transform="translate(8.666664, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(18.100906, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:g transform="translate(26.878250, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(61.690742, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(71.124984, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:g transform="translate(27.097976, 9.708984)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text><svg:g transform="translate(8.666664, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(18.100906, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:line stroke-width="0.585938" x1="0.000000" y1="0.000000" stroke="black" stroke-linecap="butt" stroke-dasharray="none" x2="77.078109" y2="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="22.359362pt" width="108.981109pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -16.494128 108.981109 22.359362"><svg:metadata><svgmath:metrics top="22.3593624127" axis="9.849609375" baseline="5.865234375" bottom="0.0"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.434570" font-family="Times New Roman" font-style="italic" fill="black">ς</svg:text><svg:g transform="translate(5.109375, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g><svg:g transform="translate(8.777344, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(21.216148, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(31.903000, -3.984375)"><svg:g transform="translate(0.585938, -4.165990)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="4.001953" font-family="Times New Roman" font-style="italic" fill="black">C</svg:text><svg:g transform="translate(11.110023, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(20.544266, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(28.149734, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text><svg:g transform="translate(8.666664, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(18.100906, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:g transform="translate(26.878250, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(61.690742, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(71.124984, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:g transform="translate(27.097976, 9.708984)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text><svg:g transform="translate(8.666664, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(18.100906, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g></svg:g><svg:line stroke-width="0.585938" y2="0.000000" y1="0.000000" stroke="black" stroke-linecap="butt" stroke-dasharray="none" x2="77.078109" x1="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
|
Before Width: | Height: | Size: 4.3 KiB After Width: | Height: | Size: 4.3 KiB |
@@ -1,2 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="19.558594pt" width="127.082015pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -13.693359 127.082015 19.558594"><svg:metadata><svgmath:metrics top="19.55859375" axis="9.849609375" baseline="5.865234375" bottom="0.0"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.434570" font-family="Times New Roman" font-style="italic" fill="black">ς</svg:text><svg:g transform="translate(5.109375, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g><svg:g transform="translate(8.777344, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(21.216148, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(31.317063, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="4.001953" font-family="Times New Roman" font-style="italic" fill="black">C</svg:text></svg:g><svg:g transform="translate(42.427086, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(51.861328, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(59.466797, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text><svg:g transform="translate(7.447914, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(16.882156, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g></svg:g><svg:g transform="translate(26.878250, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(93.007804, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(103.027984, -3.984375)"><svg:g transform="translate(9.027016, -1.599609)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(0.585938, 9.708984)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text><svg:g transform="translate(7.447914, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(16.882156, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:line stroke-width="0.585938" x1="0.000000" y1="0.000000" stroke="black" stroke-linecap="butt" stroke-dasharray="none" x2="24.054031" y2="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="19.558594pt" width="127.082015pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -13.693359 127.082015 19.558594"><svg:metadata><svgmath:metrics top="19.55859375" axis="9.849609375" baseline="5.865234375" bottom="0.0"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.434570" font-family="Times New Roman" font-style="italic" fill="black">ς</svg:text><svg:g transform="translate(5.109375, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text></svg:g><svg:g transform="translate(8.777344, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(21.216148, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(31.317063, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="4.001953" font-family="Times New Roman" font-style="italic" fill="black">C</svg:text></svg:g><svg:g transform="translate(42.427086, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(51.861328, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.940430" font-family="Times New Roman" font-style="italic" fill="black">R</svg:text></svg:g><svg:g transform="translate(59.466797, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text><svg:g transform="translate(7.447914, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(16.882156, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g></svg:g><svg:g transform="translate(26.878250, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(93.007804, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">+</svg:text></svg:g><svg:g transform="translate(103.027984, -3.984375)"><svg:g transform="translate(9.027016, -1.599609)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g><svg:g transform="translate(0.585938, 9.708984)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.446289" font-family="Times New Roman" font-style="italic" fill="black">s</svg:text><svg:g transform="translate(7.447914, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(16.882156, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">1</svg:text></svg:g></svg:g><svg:line stroke-width="0.585938" y2="0.000000" y1="0.000000" stroke="black" stroke-linecap="butt" stroke-dasharray="none" x2="24.054031" x1="0.000000" fill="none"/></svg:g></svg:svg>
|
||||
|
Before Width: | Height: | Size: 4.3 KiB After Width: | Height: | Size: 4.3 KiB |
|
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
53
doc/equations/zeta7.mml
Normal file
@@ -0,0 +1,53 @@
|
||||
<?xml version='1.0'?>
|
||||
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
|
||||
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
|
||||
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
|
||||
<html xmlns='http://www.w3.org/1999/xhtml'>
|
||||
<head><title>zeta7</title>
|
||||
<!-- MathML created with MathCast Equation Editor version 0.89 -->
|
||||
</head>
|
||||
<body>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>ζ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mfrac>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mi>n</mi>
|
||||
</msup>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<msub>
|
||||
<mi>B</mi>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>+</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mspace width="1em"/>
|
||||
<mo>;</mo>
|
||||
<mspace width="1em"/>
|
||||
<mi>n</mi>
|
||||
<mo>∈</mo>
|
||||
<mi>ℕ</mi>
|
||||
</mrow>
|
||||
</math>
|
||||
</body>
|
||||
</html>
|
||||
BIN
doc/equations/zeta7.png
Normal file
|
After Width: | Height: | Size: 3.0 KiB |
2
doc/equations/zeta7.svg
Normal file
|
After Width: | Height: | Size: 5.2 KiB |
31
doc/equations/zeta8.mml
Normal file
@@ -0,0 +1,31 @@
|
||||
<?xml version='1.0'?>
|
||||
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
|
||||
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
|
||||
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
|
||||
<html xmlns='http://www.w3.org/1999/xhtml'>
|
||||
<head><title>zeta8</title>
|
||||
<!-- MathML created with MathCast Equation Editor version 0.89 -->
|
||||
</head>
|
||||
<body>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>ζ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mn>2</mn>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mn>0</mn>
|
||||
<mspace width="1em"/>
|
||||
<mo>;</mo>
|
||||
<mspace width="1em"/>
|
||||
<mi>n</mi>
|
||||
<mo>∈</mo>
|
||||
<mi>ℕ</mi>
|
||||
</mrow>
|
||||
</math>
|
||||
</body>
|
||||
</html>
|
||||
BIN
doc/equations/zeta8.png
Normal file
|
After Width: | Height: | Size: 2.0 KiB |
2
doc/equations/zeta8.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg:svg xmlns="http://www.w3.org/1998/Math/MathML" xmlns:svg="http://www.w3.org/2000/svg" height="12.503906pt" width="115.929050pt" xmlns:svgmath="http://www.grigoriev.ru/svgmath" viewBox="0 -9.914062 115.929050 12.503906"><svg:metadata><svgmath:metrics top="11.267578125" axis="6.57421875" baseline="2.58984375" bottom="0.0234626745435"/></svg:metadata><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="2.428711" font-family="Times New Roman" font-style="italic" fill="black">ζ</svg:text><svg:g transform="translate(6.363281, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">(</svg:text></svg:g><svg:g transform="translate(3.996094, 0.000000)"><svg:g transform="translate(0.000000, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">−</svg:text></svg:g><svg:g transform="translate(7.434245, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">2</svg:text></svg:g><svg:g transform="translate(13.434245, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g></svg:g><svg:g transform="translate(23.430339, -3.984375)"><svg:text font-size="12.012889" transform="scale(0.998927, 1)" text-anchor="middle" y="3.981593" x="2.000193" font-family="Times New Roman" fill="black">)</svg:text></svg:g></svg:g><svg:g transform="translate(37.123050, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="3.383789" font-family="Times New Roman" fill="black">=</svg:text></svg:g><svg:g transform="translate(47.223964, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" fill="black">0</svg:text></svg:g><svg:g transform="translate(53.223964, 0.000000)"/><svg:g transform="translate(65.223964, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.984375" x="1.666992" font-family="Times New Roman" fill="black">;</svg:text></svg:g><svg:g transform="translate(71.891285, 0.000000)"/><svg:g transform="translate(83.891285, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="3.000000" font-family="Times New Roman" font-style="italic" fill="black">n</svg:text></svg:g><svg:g transform="translate(93.224621, -3.984375)"><svg:text font-size="12.000000" text-anchor="middle" y="3.468750" x="4.769531" font-family="Lucida Sans Unicode" fill="black">∈</svg:text></svg:g><svg:g transform="translate(106.097019, 0.000000)"><svg:text font-size="12.000000" text-anchor="middle" y="0.000000" x="4.916016" font-family="Lucida Sans Unicode" font-style="italic" fill="black">ℕ</svg:text></svg:g></svg:svg>
|
||||
|
After Width: | Height: | Size: 3.0 KiB |
78
doc/equations/zeta9.mml
Normal file
@@ -0,0 +1,78 @@
|
||||
<?xml version='1.0'?>
|
||||
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN'
|
||||
'http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd'
|
||||
[<!ENTITY mathml 'http://www.w3.org/1998/Math/MathML'>]>
|
||||
<html xmlns='http://www.w3.org/1999/xhtml'>
|
||||
<head><title>zeta9</title>
|
||||
<!-- MathML created with MathCast Equation Editor version 0.89 -->
|
||||
</head>
|
||||
<body>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
|
||||
<mrow>
|
||||
<mi>ζ</mi>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>=</mo>
|
||||
<mfrac>
|
||||
<mrow>
|
||||
<msup>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mrow>
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mn>2</mn>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mi>n</mi>
|
||||
<mo>−</mo>
|
||||
<mn>1</mn>
|
||||
</mrow>
|
||||
</msup>
|
||||
<msup>
|
||||
<mi>π</mi>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</msup>
|
||||
</mrow>
|
||||
<mrow>
|
||||
<mfenced>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</mfenced>
|
||||
<mo>!</mo>
|
||||
</mrow>
|
||||
</mfrac>
|
||||
<msub>
|
||||
<mi>B</mi>
|
||||
<mrow>
|
||||
<mn>2</mn>
|
||||
<mi>n</mi>
|
||||
</mrow>
|
||||
</msub>
|
||||
<mspace width="1em"/>
|
||||
<mo>;</mo>
|
||||
<mspace width="1em"/>
|
||||
<mi>n</mi>
|
||||
<mo>∈</mo>
|
||||
<mi>ℕ</mi>
|
||||
</mrow>
|
||||
</math>
|
||||
</body>
|
||||
</html>
|
||||
BIN
doc/equations/zeta9.png
Normal file
|
After Width: | Height: | Size: 4.6 KiB |
2
doc/equations/zeta9.svg
Normal file
|
After Width: | Height: | Size: 7.4 KiB |
@@ -8,15 +8,15 @@
|
||||
# Paths to tools come first, change these to match your system:
|
||||
#
|
||||
math2svg='m:\download\open\SVGMath-0.3.1\math2svg.py'
|
||||
python=/cygdrive/c/Python26/python.exe
|
||||
inkscape=/cygdrive/c/progra~1/Inkscape/inkscape
|
||||
python='/cygdrive/c/program files/Python27/python.exe'
|
||||
inkscape='/cygdrive/c/Program Files (x86)/Inkscape/inkscape.exe'
|
||||
# Image DPI:
|
||||
dpi=96
|
||||
|
||||
for svgfile in $*; do
|
||||
pngfile=$(basename $svgfile .svg).png
|
||||
echo Generating $pngfile
|
||||
$inkscape -d $dpi -e $(cygpath -a -w $pngfile) $(cygpath -a -w $svgfile)
|
||||
"$inkscape" -d $dpi -e $(cygpath -a -w $pngfile) $(cygpath -a -w $svgfile)
|
||||
done
|
||||
|
||||
|
||||
|
||||
BIN
doc/graphs/polygamma2.png
Normal file
|
After Width: | Height: | Size: 28 KiB |
70
doc/graphs/polygamma2.svg
Normal file
@@ -0,0 +1,70 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg width="600" height ="400" version="1.1"
|
||||
xmlns:svg ="http://www.w3.org/2000/svg"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:cc="http://web.resource.org/cc/"
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns ="http://www.w3.org/2000/svg"
|
||||
>
|
||||
<!-- SVG plot written using Boost.Plot program (Creator Jacob Voytko) -->
|
||||
<!-- Use, modification and distribution of Boost.Plot subject to the -->
|
||||
<!-- Boost Software License, Version 1.0.-->
|
||||
<!-- (See accompanying file LICENSE_1_0.txt -->
|
||||
<!-- or copy at http://www.boost.org/LICENSE_1_0.txt) -->
|
||||
|
||||
<!-- SVG Plot Copyright John Maddock 2008 -->
|
||||
<meta name="copyright" content="John Maddock" />
|
||||
<meta name="date" content="2008" />
|
||||
<!-- Use, modification and distribution of this Scalable Vector Graphic file -->
|
||||
<!-- are subject to the Boost Software License, Version 1.0. -->
|
||||
<!-- (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
|
||||
|
||||
<clipPath id="plot_window"><rect x="85.2" y="59" width="487.8" height="281"/></clipPath>
|
||||
<g id="imageBackground" stroke="rgb(119,136,153)" fill="rgb(255,255,255)" stroke-width="2"><rect x="0" y="0" width="600" height="400"/></g>
|
||||
<g id="plotBackground" stroke="rgb(119,136,153)" fill="rgb(255,255,255)" stroke-width="2"><rect x="84.2" y="58" width="489.8" height="283"/></g>
|
||||
<g id="yMinorGrid" stroke="rgb(200,220,255)" stroke-width="0.5"></g>
|
||||
<g id="yMajorGrid" stroke="rgb(200,220,255)" stroke-width="1"></g>
|
||||
<g id="xMinorGrid" stroke="rgb(200,220,255)" stroke-width="0.5"></g>
|
||||
<g id="xMajorGrid" stroke="rgb(200,220,255)" stroke-width="1"></g>
|
||||
<g id="yAxis" stroke="rgb(0,0,0)" stroke-width="1"><line x1="339.4" y1="58" x2="339.4" y2="346"/><line x1="84.2" y1="58" x2="84.2" y2="341"/></g>
|
||||
<g id="xAxis" stroke="rgb(0,0,0)" stroke-width="1"><line x1="79.2" y1="202.3" x2="574" y2="202.3"/><line x1="79.2" y1="341" x2="574" y2="341"/></g>
|
||||
<g id="yMinorTicks" stroke="rgb(0,0,0)" stroke-width="1"><path d="M82.2,195.3 L84.2,195.3 M82.2,188.4 L84.2,188.4 M82.2,181.5 L84.2,181.5 M82.2,167.6 L84.2,167.6 M82.2,160.7 L84.2,160.7 M82.2,153.7 L84.2,153.7 M82.2,139.8 L84.2,139.8 M82.2,132.9 L84.2,132.9 M82.2,126 L84.2,126 M82.2,112.1 L84.2,112.1 M82.2,105.2 L84.2,105.2 M82.2,98.23 L84.2,98.23 M82.2,84.36 L84.2,84.36 M82.2,77.42 L84.2,77.42 M82.2,70.49 L84.2,70.49 M82.2,202.3 L84.2,202.3 M82.2,209.2 L84.2,209.2 M82.2,216.1 L84.2,216.1 M82.2,223.1 L84.2,223.1 M82.2,230 L84.2,230 M82.2,237 L84.2,237 M82.2,243.9 L84.2,243.9 M82.2,250.8 L84.2,250.8 M82.2,257.8 L84.2,257.8 M82.2,264.7 L84.2,264.7 M82.2,271.6 L84.2,271.6 M82.2,278.6 L84.2,278.6 M82.2,285.5 L84.2,285.5 M82.2,292.4 L84.2,292.4 M82.2,299.4 L84.2,299.4 M82.2,306.3 L84.2,306.3 M82.2,313.3 L84.2,313.3 M82.2,320.2 L84.2,320.2 M82.2,327.1 L84.2,327.1 M82.2,334.1 L84.2,334.1 M82.2,341 L84.2,341 " fill="none"/></g>
|
||||
<g id="xMinorTicks" stroke="rgb(0,0,0)" stroke-width="1"><path d="M395.6,341 L395.6,343 M451.9,341 L451.9,343 M508.1,341 L508.1,343 M283.1,341 L283.1,343 M226.9,341 L226.9,343 M170.6,341 L170.6,343 " fill="none"/></g>
|
||||
<g id="yMajorTicks" stroke="rgb(0,0,0)" stroke-width="2"><path d="M79.2,202.3 L84.2,202.3 M79.2,174.5 L84.2,174.5 M79.2,146.8 L84.2,146.8 M79.2,119 L84.2,119 M79.2,91.29 L84.2,91.29 M79.2,63.55 L84.2,63.55 M79.2,202.3 L84.2,202.3 M79.2,230 L84.2,230 M79.2,257.8 L84.2,257.8 M79.2,285.5 L84.2,285.5 M79.2,313.3 L84.2,313.3 M79.2,341 L84.2,341 " fill="none"/></g>
|
||||
<g id="xMajorTicks" stroke="rgb(0,0,0)" stroke-width="2"><path d="M339.4,341 L339.4,346 M564.4,341 L564.4,346 M339.4,341 L339.4,346 M114.4,341 L114.4,346 " fill="none"/></g>
|
||||
<g id="xTicksValues">
|
||||
<text x="339.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="564.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">5</text>
|
||||
<text x="339.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="114.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">-5</text></g>
|
||||
<g id="yTicksValues">
|
||||
<text x="73.2" y="204.7" text-anchor="end" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="73.2" y="176.9" text-anchor="end" font-size="12" font-family="Verdana">10</text>
|
||||
<text x="73.2" y="149.2" text-anchor="end" font-size="12" font-family="Verdana">20</text>
|
||||
<text x="73.2" y="121.4" text-anchor="end" font-size="12" font-family="Verdana">30</text>
|
||||
<text x="73.2" y="93.69" text-anchor="end" font-size="12" font-family="Verdana">40</text>
|
||||
<text x="73.2" y="65.95" text-anchor="end" font-size="12" font-family="Verdana">50</text>
|
||||
<text x="73.2" y="204.7" text-anchor="end" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="73.2" y="232.4" text-anchor="end" font-size="12" font-family="Verdana">-10</text>
|
||||
<text x="73.2" y="260.2" text-anchor="end" font-size="12" font-family="Verdana">-20</text>
|
||||
<text x="73.2" y="287.9" text-anchor="end" font-size="12" font-family="Verdana">-30</text>
|
||||
<text x="73.2" y="315.7" text-anchor="end" font-size="12" font-family="Verdana">-40</text>
|
||||
<text x="73.2" y="343.4" text-anchor="end" font-size="12" font-family="Verdana">-50</text></g>
|
||||
<g id="yLabel">
|
||||
<text x="42.9" y="199.5" text-anchor="middle" transform = "rotate(-90 42.9 199.5 )" font-size="14" font-family="Verdana">polygamma(2, x)</text></g>
|
||||
<g id="xLabel">
|
||||
<text x="329.1" y="376.7" text-anchor="middle" font-size="14" font-family="Verdana">x</text></g>
|
||||
<g id="plotLines" stroke-width="2"><g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M354.9,341 L355.9,316.7 L357,297.8 L358,282.9 L359.1,271 L360.1,261.4 L361.2,253.5 L362.2,247 L363.3,241.6 L364.3,237 L365.4,233.1 L366.4,229.8 L367.5,227 L368.5,224.6 L369.6,222.4 L370.6,220.6 L371.7,219 L372.7,217.5 L373.8,216.3 L374.8,215.1 L375.8,214.1 L376.9,213.3 L377.9,212.4 L379,211.7 L380,211.1 L381.1,210.5 L382.1,209.9 L383.2,209.5 L384.2,209 L385.3,208.6 L386.3,208.2 L387.4,207.9 L388.4,207.6 L389.5,207.3 L390.5,207 L391.6,206.8 L392.6,206.5 L393.7,206.3 L394.7,206.1 L395.7,205.9 L396.8,205.8 L397.8,205.6 L398.9,205.5 L399.9,205.3 L401,205.2 L402,205.1 L403.1,204.9 L404.1,204.8 L405.2,204.7 L406.2,204.6 L407.3,204.5 L408.3,204.5 L409.4,204.4 L410.4,204.3 L411.5,204.2 L412.5,204.2 L413.6,204.1 L414.6,204 L415.7,204 L416.7,203.9 L417.7,203.9 L418.8,203.8 L419.8,203.8 L420.9,203.7 L421.9,203.7 L423,203.6 L424,203.6 L425.1,203.5 L426.1,203.5 L427.2,203.5 L428.2,203.4 L429.3,203.4 L430.3,203.4 L431.4,203.3 L432.4,203.3 L433.5,203.3 L434.5,203.3 L435.6,203.2 L436.6,203.2 L437.6,203.2 L438.7,203.2 L439.7,203.1 L440.8,203.1 L441.8,203.1 L442.9,203.1 L443.9,203.1 L445,203 L446,203 L447.1,203 L448.1,203 L449.2,203 L450.2,203 L451.3,202.9 L452.3,202.9 L453.4,202.9 L454.4,202.9 L455.5,202.9 L456.5,202.9 L457.6,202.9 L458.6,202.8 L459.6,202.8 L460.7,202.8 L461.7,202.8 L462.8,202.8 L463.8,202.8 L464.9,202.8 L465.9,202.8 L467,202.8 L468,202.8 L469.1,202.7 L470.1,202.7 L471.2,202.7 L472.2,202.7 L473.3,202.7 L474.3,202.7 L475.4,202.7 L476.4,202.7 L477.5,202.7 L478.5,202.7 L479.5,202.7 L480.6,202.7 L481.6,202.7 L482.7,202.6 L483.7,202.6 L484.8,202.6 L485.8,202.6 L486.9,202.6 L487.9,202.6 L489,202.6 L490,202.6 L491.1,202.6 L492.1,202.6 L493.2,202.6 L494.2,202.6 L495.3,202.6 L496.3,202.6 L497.4,202.6 L498.4,202.6 L499.5,202.6 L500.5,202.6 L501.5,202.6 L502.6,202.6 L503.6,202.5 L504.7,202.5 L505.7,202.5 L506.8,202.5 L507.8,202.5 L508.9,202.5 L509.9,202.5 L511,202.5 L512,202.5 L513.1,202.5 L514.1,202.5 L515.2,202.5 L516.2,202.5 L517.3,202.5 L518.3,202.5 L519.4,202.5 L520.4,202.5 L521.4,202.5 L522.5,202.5 L523.5,202.5 L524.6,202.5 L525.6,202.5 L526.7,202.5 L527.7,202.5 L528.8,202.5 L529.8,202.5 L530.9,202.5 L531.9,202.5 L533,202.5 L534,202.5 L535.1,202.5 L536.1,202.5 L537.2,202.5 L538.2,202.5 L539.3,202.5 L540.3,202.4 L541.4,202.4 L542.4,202.4 L543.4,202.4 L544.5,202.4 L545.5,202.4 L546.6,202.4 L547.6,202.4 L548.7,202.4 L549.7,202.4 L550.8,202.4 L551.8,202.4 L552.9,202.4 L553.9,202.4 L555,202.4 L556,202.4 L557.1,202.4 L558.1,202.4 L559.2,202.4 L560.2,202.4 L561.3,202.4 L562.3,202.4 L563.3,202.4 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M309.3,341 L309.3,338.5 L309.4,336 L309.5,333.6 L309.6,331.2 L309.6,328.8 L309.7,326.5 L309.8,324.3 L309.9,322 L309.9,319.9 L310,317.7 L310.1,315.6 L310.2,313.5 L310.3,311.5 L310.3,309.5 L310.4,307.5 L310.5,305.6 L310.6,303.7 L310.6,301.8 L310.7,300 L310.8,298.1 L310.9,296.4 L311,294.6 L311,292.9 L311.1,291.2 L311.2,289.5 L311.3,287.8 L311.3,286.2 L311.4,284.6 L311.5,283 L311.6,281.5 L311.6,279.9 L311.7,278.4 L311.8,276.9 L311.9,275.4 L312,274 L312,272.5 L312.1,271.1 L312.2,269.7 L312.3,268.3 L312.3,267 L312.4,265.6 L312.5,264.3 L312.6,263 L312.6,261.7 L312.7,260.4 L312.8,259.1 L312.9,257.9 L313,256.6 L313,255.4 L313.1,254.2 L313.2,253 L313.3,251.8 L313.3,250.6 L313.4,249.5 L313.5,248.3 L313.6,247.2 L313.6,246.1 L313.7,244.9 L313.8,243.8 L313.9,242.7 L314,241.6 L314,240.6 L314.1,239.5 L314.2,238.4 L314.3,237.4 L314.3,236.3 L314.4,235.3 L314.5,234.2 L314.6,233.2 L314.7,232.2 L314.7,231.2 L314.8,230.2 L314.9,229.2 L315,228.2 L315,227.2 L315.1,226.2 L315.2,225.3 L315.3,224.3 L315.3,223.3 L315.4,222.4 L315.5,221.4 L315.6,220.4 L315.7,219.5 L315.7,218.5 L315.8,217.6 L315.9,216.7 L316,215.7 L316,214.8 L316.1,213.9 L316.2,212.9 L316.3,212 L316.3,211.1 L316.4,210.2 L316.5,209.2 L316.6,208.3 L316.7,207.4 L316.7,206.5 L316.8,205.5 L316.9,204.6 L317,203.7 L317,202.8 L317.1,201.9 L317.2,200.9 L317.3,200 L317.4,199.1 L317.4,198.2 L317.5,197.3 L317.6,196.3 L317.7,195.4 L317.7,194.5 L317.8,193.5 L317.9,192.6 L318,191.7 L318,190.7 L318.1,189.8 L318.2,188.8 L318.3,187.9 L318.4,186.9 L318.4,186 L318.5,185 L318.6,184 L318.7,183 L318.7,182.1 L318.8,181.1 L318.9,180.1 L319,179.1 L319,178.1 L319.1,177.1 L319.2,176.1 L319.3,175 L319.4,174 L319.4,173 L319.5,171.9 L319.6,170.9 L319.7,169.8 L319.7,168.8 L319.8,167.7 L319.9,166.6 L320,165.5 L320,164.4 L320.1,163.3 L320.2,162.1 L320.3,161 L320.4,159.9 L320.4,158.7 L320.5,157.5 L320.6,156.3 L320.7,155.1 L320.7,153.9 L320.8,152.7 L320.9,151.5 L321,150.2 L321.1,149 L321.1,147.7 L321.2,146.4 L321.3,145.1 L321.4,143.8 L321.4,142.4 L321.5,141.1 L321.6,139.7 L321.7,138.3 L321.7,136.9 L321.8,135.5 L321.9,134 L322,132.5 L322.1,131 L322.1,129.5 L322.2,128 L322.3,126.5 L322.4,124.9 L322.4,123.3 L322.5,121.7 L322.6,120 L322.7,118.3 L322.7,116.6 L322.8,114.9 L322.9,113.2 L323,111.4 L323.1,109.6 L323.1,107.7 L323.2,105.9 L323.3,104 L323.4,102.1 L323.4,100.1 L323.5,98.1 L323.6,96.07 L323.7,94.01 L323.8,91.91 L323.8,89.78 L323.9,87.6 L324,85.39 L324.1,83.14 L324.1,80.85 L324.2,78.51 L324.3,76.13 L324.4,73.71 L324.4,71.24 L324.5,68.73 L324.6,66.16 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M264.2,341 L264.3,338.5 L264.4,336 L264.4,333.5 L264.5,331.1 L264.6,328.7 L264.7,326.4 L264.8,324.1 L264.8,321.9 L264.9,319.7 L265,317.5 L265.1,315.4 L265.1,313.3 L265.2,311.3 L265.3,309.2 L265.4,307.3 L265.4,305.3 L265.5,303.4 L265.6,301.5 L265.7,299.6 L265.8,297.8 L265.8,296 L265.9,294.2 L266,292.5 L266.1,290.8 L266.1,289.1 L266.2,287.4 L266.3,285.8 L266.4,284.1 L266.4,282.5 L266.5,281 L266.6,279.4 L266.7,277.9 L266.8,276.4 L266.8,274.9 L266.9,273.4 L267,272 L267.1,270.6 L267.1,269.1 L267.2,267.8 L267.3,266.4 L267.4,265 L267.4,263.7 L267.5,262.4 L267.6,261.1 L267.7,259.8 L267.8,258.5 L267.8,257.2 L267.9,256 L268,254.7 L268.1,253.5 L268.1,252.3 L268.2,251.1 L268.3,249.9 L268.4,248.7 L268.4,247.6 L268.5,246.4 L268.6,245.3 L268.7,244.2 L268.8,243 L268.8,241.9 L268.9,240.8 L269,239.8 L269.1,238.7 L269.1,237.6 L269.2,236.5 L269.3,235.5 L269.4,234.4 L269.4,233.4 L269.5,232.4 L269.6,231.3 L269.7,230.3 L269.8,229.3 L269.8,228.3 L269.9,227.3 L270,226.3 L270.1,225.3 L270.1,224.3 L270.2,223.4 L270.3,222.4 L270.4,221.4 L270.4,220.5 L270.5,219.5 L270.6,218.6 L270.7,217.6 L270.8,216.7 L270.8,215.7 L270.9,214.8 L271,213.8 L271.1,212.9 L271.1,212 L271.2,211 L271.3,210.1 L271.4,209.2 L271.5,208.2 L271.5,207.3 L271.6,206.4 L271.7,205.5 L271.8,204.5 L271.8,203.6 L271.9,202.7 L272,201.8 L272.1,200.8 L272.1,199.9 L272.2,199 L272.3,198.1 L272.4,197.1 L272.5,196.2 L272.5,195.3 L272.6,194.4 L272.7,193.4 L272.8,192.5 L272.8,191.5 L272.9,190.6 L273,189.7 L273.1,188.7 L273.1,187.8 L273.2,186.8 L273.3,185.9 L273.4,184.9 L273.5,183.9 L273.5,183 L273.6,182 L273.7,181 L273.8,180 L273.8,179 L273.9,178 L274,177 L274.1,176 L274.1,175 L274.2,174 L274.3,173 L274.4,171.9 L274.5,170.9 L274.5,169.8 L274.6,168.8 L274.7,167.7 L274.8,166.6 L274.8,165.5 L274.9,164.5 L275,163.3 L275.1,162.2 L275.1,161.1 L275.2,160 L275.3,158.8 L275.4,157.7 L275.5,156.5 L275.5,155.3 L275.6,154.1 L275.7,152.9 L275.8,151.7 L275.8,150.5 L275.9,149.3 L276,148 L276.1,146.7 L276.1,145.4 L276.2,144.1 L276.3,142.8 L276.4,141.5 L276.5,140.1 L276.5,138.8 L276.6,137.4 L276.7,136 L276.8,134.6 L276.8,133.1 L276.9,131.7 L277,130.2 L277.1,128.7 L277.1,127.2 L277.2,125.6 L277.3,124.1 L277.4,122.5 L277.5,120.9 L277.5,119.3 L277.6,117.6 L277.7,115.9 L277.8,114.2 L277.8,112.5 L277.9,110.7 L278,108.9 L278.1,107.1 L278.1,105.3 L278.2,103.4 L278.3,101.5 L278.4,99.57 L278.5,97.6 L278.5,95.6 L278.6,93.57 L278.7,91.5 L278.8,89.39 L278.8,87.25 L278.9,85.06 L279,82.84 L279.1,80.58 L279.1,78.28 L279.2,75.94 L279.3,73.55 L279.4,71.12 L279.5,68.64 L279.5,66.12 L279.6,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M219.2,341 L219.3,338.4 L219.4,335.9 L219.4,333.5 L219.5,331.1 L219.6,328.7 L219.7,326.4 L219.7,324.1 L219.8,321.8 L219.9,319.6 L220,317.5 L220.1,315.3 L220.1,313.3 L220.2,311.2 L220.3,309.2 L220.4,307.2 L220.4,305.2 L220.5,303.3 L220.6,301.4 L220.7,299.5 L220.7,297.7 L220.8,295.9 L220.9,294.1 L221,292.4 L221.1,290.7 L221.1,289 L221.2,287.3 L221.3,285.7 L221.4,284 L221.4,282.4 L221.5,280.9 L221.6,279.3 L221.7,277.8 L221.7,276.3 L221.8,274.8 L221.9,273.3 L222,271.9 L222.1,270.4 L222.1,269 L222.2,267.6 L222.3,266.2 L222.4,264.9 L222.4,263.5 L222.5,262.2 L222.6,260.9 L222.7,259.6 L222.7,258.3 L222.8,257.1 L222.9,255.8 L223,254.6 L223.1,253.3 L223.1,252.1 L223.2,250.9 L223.3,249.7 L223.4,248.6 L223.4,247.4 L223.5,246.3 L223.6,245.1 L223.7,244 L223.7,242.9 L223.8,241.8 L223.9,240.7 L224,239.6 L224.1,238.5 L224.1,237.4 L224.2,236.3 L224.3,235.3 L224.4,234.2 L224.4,233.2 L224.5,232.2 L224.6,231.1 L224.7,230.1 L224.7,229.1 L224.8,228.1 L224.9,227.1 L225,226.1 L225.1,225.1 L225.1,224.1 L225.2,223.2 L225.3,222.2 L225.4,221.2 L225.4,220.3 L225.5,219.3 L225.6,218.3 L225.7,217.4 L225.7,216.4 L225.8,215.5 L225.9,214.6 L226,213.6 L226.1,212.7 L226.1,211.7 L226.2,210.8 L226.3,209.9 L226.4,208.9 L226.4,208 L226.5,207.1 L226.6,206.2 L226.7,205.2 L226.7,204.3 L226.8,203.4 L226.9,202.5 L227,201.5 L227.1,200.6 L227.1,199.7 L227.2,198.8 L227.3,197.8 L227.4,196.9 L227.4,196 L227.5,195.1 L227.6,194.1 L227.7,193.2 L227.7,192.3 L227.8,191.3 L227.9,190.4 L228,189.4 L228.1,188.5 L228.1,187.5 L228.2,186.6 L228.3,185.6 L228.4,184.7 L228.4,183.7 L228.5,182.7 L228.6,181.8 L228.7,180.8 L228.7,179.8 L228.8,178.8 L228.9,177.8 L229,176.8 L229.1,175.8 L229.1,174.8 L229.2,173.8 L229.3,172.7 L229.4,171.7 L229.4,170.7 L229.5,169.6 L229.6,168.6 L229.7,167.5 L229.7,166.4 L229.8,165.3 L229.9,164.2 L230,163.1 L230.1,162 L230.1,160.9 L230.2,159.8 L230.3,158.6 L230.4,157.5 L230.4,156.3 L230.5,155.1 L230.6,153.9 L230.7,152.7 L230.7,151.5 L230.8,150.3 L230.9,149.1 L231,147.8 L231.1,146.5 L231.1,145.2 L231.2,143.9 L231.3,142.6 L231.4,141.3 L231.4,140 L231.5,138.6 L231.6,137.2 L231.7,135.8 L231.7,134.4 L231.8,133 L231.9,131.5 L232,130 L232.1,128.5 L232.1,127 L232.2,125.5 L232.3,123.9 L232.4,122.3 L232.4,120.7 L232.5,119.1 L232.6,117.5 L232.7,115.8 L232.7,114.1 L232.8,112.4 L232.9,110.6 L233,108.8 L233.1,107 L233.1,105.2 L233.2,103.3 L233.3,101.4 L233.4,99.47 L233.4,97.51 L233.5,95.51 L233.6,93.48 L233.7,91.41 L233.7,89.31 L233.8,87.18 L233.9,85 L234,82.79 L234.1,80.53 L234.1,78.24 L234.2,75.9 L234.3,73.52 L234.4,71.1 L234.4,68.63 L234.5,66.11 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M174.2,341 L174.3,338.4 L174.4,335.9 L174.4,333.5 L174.5,331.1 L174.6,328.7 L174.7,326.4 L174.7,324.1 L174.8,321.8 L174.9,319.6 L175,317.5 L175,315.3 L175.1,313.2 L175.2,311.2 L175.3,309.1 L175.4,307.2 L175.4,305.2 L175.5,303.3 L175.6,301.4 L175.7,299.5 L175.7,297.7 L175.8,295.9 L175.9,294.1 L176,292.3 L176,290.6 L176.1,288.9 L176.2,287.3 L176.3,285.6 L176.4,284 L176.4,282.4 L176.5,280.8 L176.6,279.3 L176.7,277.7 L176.7,276.2 L176.8,274.7 L176.9,273.3 L177,271.8 L177,270.4 L177.1,269 L177.2,267.6 L177.3,266.2 L177.4,264.8 L177.4,263.5 L177.5,262.2 L177.6,260.8 L177.7,259.5 L177.7,258.3 L177.8,257 L177.9,255.7 L178,254.5 L178,253.3 L178.1,252.1 L178.2,250.9 L178.3,249.7 L178.4,248.5 L178.4,247.3 L178.5,246.2 L178.6,245 L178.7,243.9 L178.7,242.8 L178.8,241.7 L178.9,240.6 L179,239.5 L179,238.4 L179.1,237.3 L179.2,236.3 L179.3,235.2 L179.4,234.2 L179.4,233.1 L179.5,232.1 L179.6,231.1 L179.7,230.1 L179.7,229 L179.8,228 L179.9,227 L180,226 L180,225 L180.1,224.1 L180.2,223.1 L180.3,222.1 L180.4,221.1 L180.4,220.2 L180.5,219.2 L180.6,218.3 L180.7,217.3 L180.7,216.4 L180.8,215.4 L180.9,214.5 L181,213.5 L181,212.6 L181.1,211.7 L181.2,210.7 L181.3,209.8 L181.4,208.9 L181.4,207.9 L181.5,207 L181.6,206.1 L181.7,205.2 L181.7,204.2 L181.8,203.3 L181.9,202.4 L182,201.5 L182,200.5 L182.1,199.6 L182.2,198.7 L182.3,197.8 L182.4,196.8 L182.4,195.9 L182.5,195 L182.6,194 L182.7,193.1 L182.7,192.2 L182.8,191.2 L182.9,190.3 L183,189.4 L183,188.4 L183.1,187.5 L183.2,186.5 L183.3,185.5 L183.4,184.6 L183.4,183.6 L183.5,182.6 L183.6,181.7 L183.7,180.7 L183.7,179.7 L183.8,178.7 L183.9,177.7 L184,176.7 L184,175.7 L184.1,174.7 L184.2,173.7 L184.3,172.7 L184.4,171.6 L184.4,170.6 L184.5,169.5 L184.6,168.5 L184.7,167.4 L184.7,166.3 L184.8,165.2 L184.9,164.2 L185,163.1 L185,161.9 L185.1,160.8 L185.2,159.7 L185.3,158.5 L185.4,157.4 L185.4,156.2 L185.5,155.1 L185.6,153.9 L185.7,152.7 L185.7,151.4 L185.8,150.2 L185.9,149 L186,147.7 L186,146.5 L186.1,145.2 L186.2,143.9 L186.3,142.6 L186.4,141.2 L186.4,139.9 L186.5,138.5 L186.6,137.1 L186.7,135.7 L186.7,134.3 L186.8,132.9 L186.9,131.4 L187,130 L187,128.5 L187.1,127 L187.2,125.4 L187.3,123.9 L187.4,122.3 L187.4,120.7 L187.5,119.1 L187.6,117.4 L187.7,115.7 L187.7,114 L187.8,112.3 L187.9,110.6 L188,108.8 L188,107 L188.1,105.1 L188.2,103.3 L188.3,101.4 L188.4,99.43 L188.4,97.47 L188.5,95.48 L188.6,93.45 L188.7,91.39 L188.7,89.29 L188.8,87.15 L188.9,84.98 L189,82.77 L189,80.51 L189.1,78.22 L189.2,75.89 L189.3,73.51 L189.4,71.09 L189.4,68.62 L189.5,66.11 L189.6,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M129.2,341 L129.3,338.4 L129.4,335.9 L129.4,333.5 L129.5,331.1 L129.6,328.7 L129.7,326.4 L129.7,324.1 L129.8,321.8 L129.9,319.6 L130,317.4 L130,315.3 L130.1,313.2 L130.2,311.2 L130.3,309.1 L130.4,307.1 L130.4,305.2 L130.5,303.3 L130.6,301.4 L130.7,299.5 L130.7,297.7 L130.8,295.9 L130.9,294.1 L131,292.3 L131,290.6 L131.1,288.9 L131.2,287.2 L131.3,285.6 L131.4,284 L131.4,282.4 L131.5,280.8 L131.6,279.2 L131.7,277.7 L131.7,276.2 L131.8,274.7 L131.9,273.2 L132,271.8 L132,270.3 L132.1,268.9 L132.2,267.5 L132.3,266.2 L132.4,264.8 L132.4,263.5 L132.5,262.1 L132.6,260.8 L132.7,259.5 L132.7,258.2 L132.8,257 L132.9,255.7 L133,254.5 L133,253.3 L133.1,252 L133.2,250.8 L133.3,249.7 L133.4,248.5 L133.4,247.3 L133.5,246.2 L133.6,245 L133.7,243.9 L133.7,242.8 L133.8,241.7 L133.9,240.6 L134,239.5 L134,238.4 L134.1,237.3 L134.2,236.2 L134.3,235.2 L134.4,234.1 L134.4,233.1 L134.5,232.1 L134.6,231 L134.7,230 L134.7,229 L134.8,228 L134.9,227 L135,226 L135,225 L135.1,224 L135.2,223 L135.3,222.1 L135.4,221.1 L135.4,220.1 L135.5,219.2 L135.6,218.2 L135.7,217.3 L135.7,216.3 L135.8,215.4 L135.9,214.4 L136,213.5 L136,212.6 L136.1,211.6 L136.2,210.7 L136.3,209.8 L136.4,208.8 L136.4,207.9 L136.5,207 L136.6,206 L136.7,205.1 L136.7,204.2 L136.8,203.3 L136.9,202.3 L137,201.4 L137,200.5 L137.1,199.6 L137.2,198.6 L137.3,197.7 L137.4,196.8 L137.4,195.9 L137.5,194.9 L137.6,194 L137.7,193.1 L137.7,192.1 L137.8,191.2 L137.9,190.3 L138,189.3 L138,188.4 L138.1,187.4 L138.2,186.5 L138.3,185.5 L138.4,184.5 L138.4,183.6 L138.5,182.6 L138.6,181.6 L138.7,180.7 L138.7,179.7 L138.8,178.7 L138.9,177.7 L139,176.7 L139,175.7 L139.1,174.7 L139.2,173.6 L139.3,172.6 L139.4,171.6 L139.4,170.5 L139.5,169.5 L139.6,168.4 L139.7,167.4 L139.7,166.3 L139.8,165.2 L139.9,164.1 L140,163 L140,161.9 L140.1,160.8 L140.2,159.7 L140.3,158.5 L140.4,157.4 L140.4,156.2 L140.5,155 L140.6,153.8 L140.7,152.6 L140.7,151.4 L140.8,150.2 L140.9,148.9 L141,147.7 L141,146.4 L141.1,145.1 L141.2,143.8 L141.3,142.5 L141.4,141.2 L141.4,139.9 L141.5,138.5 L141.6,137.1 L141.7,135.7 L141.7,134.3 L141.8,132.9 L141.9,131.4 L142,129.9 L142,128.5 L142.1,126.9 L142.2,125.4 L142.3,123.8 L142.4,122.3 L142.4,120.7 L142.5,119 L142.6,117.4 L142.7,115.7 L142.7,114 L142.8,112.3 L142.9,110.5 L143,108.8 L143,106.9 L143.1,105.1 L143.2,103.2 L143.3,101.3 L143.4,99.42 L143.4,97.46 L143.5,95.46 L143.6,93.44 L143.7,91.37 L143.7,89.27 L143.8,87.14 L143.9,84.97 L144,82.76 L144,80.51 L144.1,78.21 L144.2,75.88 L144.3,73.51 L144.4,71.09 L144.4,68.62 L144.5,66.11 L144.6,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M84.2,341 L84.28,338.4 L84.35,335.9 L84.43,333.5 L84.51,331.1 L84.58,328.7 L84.66,326.4 L84.74,324.1 L84.82,321.8 L84.89,319.6 L84.97,317.4 L85.05,315.3 L85.12,313.2 L85.2,311.2 L85.28,309.1 L85.35,307.1 L85.43,305.2 L85.51,303.3 L85.58,301.4 L85.66,299.5 L85.74,297.7 L85.82,295.8 L85.89,294.1 L85.97,292.3 L86.05,290.6 L86.12,288.9 L86.2,287.2 L86.28,285.6 L86.35,284 L86.43,282.4 L86.51,280.8 L86.58,279.2 L86.66,277.7 L86.74,276.2 L86.82,274.7 L86.89,273.2 L86.97,271.8 L87.05,270.3 L87.12,268.9 L87.2,267.5 L87.28,266.1 L87.35,264.8 L87.43,263.4 L87.51,262.1 L87.58,260.8 L87.66,259.5 L87.74,258.2 L87.82,257 L87.89,255.7 L87.97,254.5 L88.05,253.2 L88.12,252 L88.2,250.8 L88.28,249.6 L88.35,248.5 L88.43,247.3 L88.51,246.1 L88.58,245 L88.66,243.9 L88.74,242.7 L88.82,241.6 L88.89,240.5 L88.97,239.4 L89.05,238.4 L89.12,237.3 L89.2,236.2 L89.28,235.2 L89.35,234.1 L89.43,233.1 L89.51,232 L89.58,231 L89.66,230 L89.74,229 L89.81,228 L89.89,227 L89.97,226 L90.05,225 L90.12,224 L90.2,223 L90.28,222.1 L90.35,221.1 L90.43,220.1 L90.51,219.2 L90.58,218.2 L90.66,217.3 L90.74,216.3 L90.81,215.4 L90.89,214.4 L90.97,213.5 L91.05,212.5 L91.12,211.6 L91.2,210.7 L91.28,209.7 L91.35,208.8 L91.43,207.9 L91.51,206.9 L91.58,206 L91.66,205.1 L91.74,204.2 L91.81,203.2 L91.89,202.3 L91.97,201.4 L92.05,200.5 L92.12,199.6 L92.2,198.6 L92.28,197.7 L92.35,196.8 L92.43,195.8 L92.51,194.9 L92.58,194 L92.66,193 L92.74,192.1 L92.81,191.2 L92.89,190.2 L92.97,189.3 L93.05,188.3 L93.12,187.4 L93.2,186.4 L93.28,185.5 L93.35,184.5 L93.43,183.6 L93.51,182.6 L93.58,181.6 L93.66,180.6 L93.74,179.7 L93.81,178.7 L93.89,177.7 L93.97,176.7 L94.05,175.7 L94.12,174.6 L94.2,173.6 L94.28,172.6 L94.35,171.6 L94.43,170.5 L94.51,169.5 L94.58,168.4 L94.66,167.3 L94.74,166.3 L94.81,165.2 L94.89,164.1 L94.97,163 L95.05,161.9 L95.12,160.8 L95.2,159.6 L95.28,158.5 L95.35,157.3 L95.43,156.2 L95.51,155 L95.58,153.8 L95.66,152.6 L95.74,151.4 L95.81,150.2 L95.89,148.9 L95.97,147.7 L96.05,146.4 L96.12,145.1 L96.2,143.8 L96.28,142.5 L96.35,141.2 L96.43,139.8 L96.51,138.5 L96.58,137.1 L96.66,135.7 L96.74,134.3 L96.81,132.9 L96.89,131.4 L96.97,129.9 L97.05,128.4 L97.12,126.9 L97.2,125.4 L97.28,123.8 L97.35,122.3 L97.43,120.7 L97.51,119 L97.58,117.4 L97.66,115.7 L97.74,114 L97.81,112.3 L97.89,110.5 L97.97,108.7 L98.05,106.9 L98.12,105.1 L98.2,103.2 L98.28,101.3 L98.35,99.41 L98.43,97.45 L98.51,95.46 L98.58,93.43 L98.66,91.37 L98.74,89.27 L98.81,87.13 L98.89,84.96 L98.97,82.75 L99.04,80.5 L99.12,78.21 L99.2,75.88 L99.28,73.5 L99.35,71.08 L99.43,68.62 L99.51,66.11 L99.58,63.55 " fill="none"/></g>
|
||||
</g>
|
||||
<g id="plotPoints" clip-path="url(#plot_window)"></g>
|
||||
<g id="title">
|
||||
<text x="300" y="40" text-anchor="middle" font-size="20" font-family="Verdana">Polygamma</text></g>
|
||||
<g id="plotXValues"></g>
|
||||
<g id="plotYValues"></g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 24 KiB |
BIN
doc/graphs/polygamma3.png
Normal file
|
After Width: | Height: | Size: 31 KiB |
67
doc/graphs/polygamma3.svg
Normal file
@@ -0,0 +1,67 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg width="600" height ="400" version="1.1"
|
||||
xmlns:svg ="http://www.w3.org/2000/svg"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:cc="http://web.resource.org/cc/"
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns ="http://www.w3.org/2000/svg"
|
||||
>
|
||||
<!-- SVG plot written using Boost.Plot program (Creator Jacob Voytko) -->
|
||||
<!-- Use, modification and distribution of Boost.Plot subject to the -->
|
||||
<!-- Boost Software License, Version 1.0.-->
|
||||
<!-- (See accompanying file LICENSE_1_0.txt -->
|
||||
<!-- or copy at http://www.boost.org/LICENSE_1_0.txt) -->
|
||||
|
||||
<!-- SVG Plot Copyright John Maddock 2008 -->
|
||||
<meta name="copyright" content="John Maddock" />
|
||||
<meta name="date" content="2008" />
|
||||
<!-- Use, modification and distribution of this Scalable Vector Graphic file -->
|
||||
<!-- are subject to the Boost Software License, Version 1.0. -->
|
||||
<!-- (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
|
||||
|
||||
<clipPath id="plot_window"><rect x="85.2" y="59" width="487.8" height="281"/></clipPath>
|
||||
<g id="imageBackground" stroke="rgb(119,136,153)" fill="rgb(255,255,255)" stroke-width="2"><rect x="0" y="0" width="600" height="400"/></g>
|
||||
<g id="plotBackground" stroke="rgb(119,136,153)" fill="rgb(255,255,255)" stroke-width="2"><rect x="84.2" y="58" width="489.8" height="283"/></g>
|
||||
<g id="yMinorGrid" stroke="rgb(200,220,255)" stroke-width="0.5"></g>
|
||||
<g id="yMajorGrid" stroke="rgb(200,220,255)" stroke-width="1"></g>
|
||||
<g id="xMinorGrid" stroke="rgb(200,220,255)" stroke-width="0.5"></g>
|
||||
<g id="xMajorGrid" stroke="rgb(200,220,255)" stroke-width="1"></g>
|
||||
<g id="yAxis" stroke="rgb(0,0,0)" stroke-width="1"><line x1="340.1" y1="58" x2="340.1" y2="341"/><line x1="84.2" y1="58" x2="84.2" y2="341"/></g>
|
||||
<g id="xAxis" stroke="rgb(0,0,0)" stroke-width="1"><line x1="84.2" y1="341" x2="574" y2="341"/></g>
|
||||
<g id="yMinorTicks" stroke="rgb(0,0,0)" stroke-width="1"><path d="M82.2,332.3 L84.2,332.3 M82.2,323.7 L84.2,323.7 M82.2,315 L84.2,315 M82.2,297.7 L84.2,297.7 M82.2,289 L84.2,289 M82.2,280.3 L84.2,280.3 M82.2,263 L84.2,263 M82.2,254.3 L84.2,254.3 M82.2,245.6 L84.2,245.6 M82.2,228.3 L84.2,228.3 M82.2,219.6 L84.2,219.6 M82.2,210.9 L84.2,210.9 M82.2,193.6 L84.2,193.6 M82.2,184.9 L84.2,184.9 M82.2,176.3 L84.2,176.3 M82.2,158.9 L84.2,158.9 M82.2,150.3 L84.2,150.3 M82.2,141.6 L84.2,141.6 M82.2,124.2 L84.2,124.2 M82.2,115.6 L84.2,115.6 M82.2,106.9 L84.2,106.9 M82.2,89.56 L84.2,89.56 M82.2,80.89 L84.2,80.89 M82.2,72.22 L84.2,72.22 " fill="none"/></g>
|
||||
<g id="xMinorTicks" stroke="rgb(0,0,0)" stroke-width="1"><path d="M396.2,341 L396.2,343 M452.2,341 L452.2,343 M508.3,341 L508.3,343 M284,341 L284,343 M227.9,341 L227.9,343 M171.8,341 L171.8,343 " fill="none"/></g>
|
||||
<g id="yMajorTicks" stroke="rgb(0,0,0)" stroke-width="2"><path d="M79.2,341 L84.2,341 M79.2,306.3 L84.2,306.3 M79.2,271.6 L84.2,271.6 M79.2,237 L84.2,237 M79.2,202.3 L84.2,202.3 M79.2,167.6 L84.2,167.6 M79.2,132.9 L84.2,132.9 M79.2,98.23 L84.2,98.23 M79.2,63.55 L84.2,63.55 " fill="none"/></g>
|
||||
<g id="xMajorTicks" stroke="rgb(0,0,0)" stroke-width="2"><path d="M340.1,341 L340.1,346 M564.4,341 L564.4,346 M340.1,341 L340.1,346 M115.7,341 L115.7,346 " fill="none"/></g>
|
||||
<g id="xTicksValues">
|
||||
<text x="340.1" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="564.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">5</text>
|
||||
<text x="340.1" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="115.7" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">-5</text></g>
|
||||
<g id="yTicksValues">
|
||||
<text x="73.2" y="343.4" text-anchor="end" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="73.2" y="308.7" text-anchor="end" font-size="12" font-family="Verdana">100</text>
|
||||
<text x="73.2" y="274" text-anchor="end" font-size="12" font-family="Verdana">200</text>
|
||||
<text x="73.2" y="239.4" text-anchor="end" font-size="12" font-family="Verdana">300</text>
|
||||
<text x="73.2" y="204.7" text-anchor="end" font-size="12" font-family="Verdana">400</text>
|
||||
<text x="73.2" y="170" text-anchor="end" font-size="12" font-family="Verdana">500</text>
|
||||
<text x="73.2" y="135.3" text-anchor="end" font-size="12" font-family="Verdana">600</text>
|
||||
<text x="73.2" y="100.6" text-anchor="end" font-size="12" font-family="Verdana">700</text>
|
||||
<text x="73.2" y="65.95" text-anchor="end" font-size="12" font-family="Verdana">800</text></g>
|
||||
<g id="yLabel">
|
||||
<text x="42.9" y="199.5" text-anchor="middle" transform = "rotate(-90 42.9 199.5 )" font-size="14" font-family="Verdana">polygamma(3, x)</text></g>
|
||||
<g id="xLabel">
|
||||
<text x="329.1" y="376.7" text-anchor="middle" font-size="14" font-family="Verdana">x</text></g>
|
||||
<g id="plotLines" stroke-width="2"><g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M353.3,63.55 L354.3,136.8 L355.4,187.4 L356.5,223.2 L357.5,249.1 L358.6,268.3 L359.6,282.7 L360.7,293.7 L361.7,302.2 L362.8,308.8 L363.8,314.1 L364.9,318.4 L366,321.8 L367,324.6 L368.1,326.9 L369.1,328.8 L370.2,330.4 L371.2,331.7 L372.3,332.9 L373.3,333.8 L374.4,334.7 L375.5,335.4 L376.5,336 L377.6,336.5 L378.6,337 L379.7,337.4 L380.7,337.7 L381.8,338 L382.8,338.3 L383.9,338.5 L385,338.8 L386,338.9 L387.1,339.1 L388.1,339.3 L389.2,339.4 L390.2,339.5 L391.3,339.6 L392.3,339.7 L393.4,339.8 L394.5,339.9 L395.5,340 L396.6,340.1 L397.6,340.1 L398.7,340.2 L399.7,340.2 L400.8,340.3 L401.8,340.3 L402.9,340.4 L404,340.4 L405,340.4 L406.1,340.5 L407.1,340.5 L408.2,340.5 L409.2,340.6 L410.3,340.6 L411.3,340.6 L412.4,340.6 L413.5,340.7 L414.5,340.7 L415.6,340.7 L416.6,340.7 L417.7,340.7 L418.7,340.7 L419.8,340.7 L420.8,340.8 L421.9,340.8 L423,340.8 L424,340.8 L425.1,340.8 L426.1,340.8 L427.2,340.8 L428.2,340.8 L429.3,340.8 L430.3,340.8 L431.4,340.8 L432.5,340.9 L433.5,340.9 L434.6,340.9 L435.6,340.9 L436.7,340.9 L437.7,340.9 L438.8,340.9 L439.8,340.9 L440.9,340.9 L442,340.9 L443,340.9 L444.1,340.9 L445.1,340.9 L446.2,340.9 L447.2,340.9 L448.3,340.9 L449.3,340.9 L450.4,340.9 L451.5,340.9 L452.5,340.9 L453.6,340.9 L454.6,340.9 L455.7,340.9 L456.7,340.9 L457.8,340.9 L458.8,340.9 L459.9,340.9 L461,340.9 L462,340.9 L463.1,341 L464.1,341 L465.2,341 L466.2,341 L467.3,341 L468.3,341 L469.4,341 L470.5,341 L471.5,341 L472.6,341 L473.6,341 L474.7,341 L475.7,341 L476.8,341 L477.8,341 L478.9,341 L480,341 L481,341 L482.1,341 L483.1,341 L484.2,341 L485.2,341 L486.3,341 L487.3,341 L488.4,341 L489.5,341 L490.5,341 L491.6,341 L492.6,341 L493.7,341 L494.7,341 L495.8,341 L496.8,341 L497.9,341 L499,341 L500,341 L501.1,341 L502.1,341 L503.2,341 L504.2,341 L505.3,341 L506.3,341 L507.4,341 L508.5,341 L509.5,341 L510.6,341 L511.6,341 L512.7,341 L513.7,341 L514.8,341 L515.8,341 L516.9,341 L518,341 L519,341 L520.1,341 L521.1,341 L522.2,341 L523.2,341 L524.3,341 L525.3,341 L526.4,341 L527.5,341 L528.5,341 L529.6,341 L530.6,341 L531.7,341 L532.7,341 L533.8,341 L534.8,341 L535.9,341 L537,341 L538,341 L539.1,341 L540.1,341 L541.2,341 L542.2,341 L543.3,341 L544.3,341 L545.4,341 L546.5,341 L547.5,341 L548.6,341 L549.6,341 L550.7,341 L551.7,341 L552.8,341 L553.8,341 L554.9,341 L556,341 L557,341 L558.1,341 L559.1,341 L560.2,341 L561.2,341 L562.3,341 L563.3,341 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M308.5,63.55 L308.6,70.67 L308.7,77.56 L308.8,84.21 L308.9,90.63 L309,96.84 L309.1,102.8 L309.2,108.6 L309.3,114.3 L309.3,119.7 L309.4,124.9 L309.5,130 L309.6,134.9 L309.7,139.7 L309.8,144.3 L309.9,148.8 L310,153.1 L310.1,157.2 L310.2,161.3 L310.3,165.2 L310.3,169 L310.4,172.7 L310.5,176.3 L310.6,179.7 L310.7,183.1 L310.8,186.3 L310.9,189.4 L311,192.5 L311.1,195.4 L311.2,198.3 L311.3,201.1 L311.3,203.8 L311.4,206.4 L311.5,208.9 L311.6,211.4 L311.7,213.8 L311.8,216.1 L311.9,218.3 L312,220.5 L312.1,222.6 L312.2,224.6 L312.3,226.6 L312.4,228.5 L312.4,230.4 L312.5,232.2 L312.6,233.9 L312.7,235.6 L312.8,237.3 L312.9,238.9 L313,240.4 L313.1,241.9 L313.2,243.4 L313.3,244.8 L313.4,246.1 L313.4,247.5 L313.5,248.7 L313.6,250 L313.7,251.2 L313.8,252.3 L313.9,253.4 L314,254.5 L314.1,255.6 L314.2,256.6 L314.3,257.5 L314.4,258.5 L314.4,259.4 L314.5,260.3 L314.6,261.1 L314.7,261.9 L314.8,262.7 L314.9,263.4 L315,264.2 L315.1,264.8 L315.2,265.5 L315.3,266.1 L315.4,266.8 L315.5,267.3 L315.5,267.9 L315.6,268.4 L315.7,268.9 L315.8,269.4 L315.9,269.8 L316,270.3 L316.1,270.7 L316.2,271 L316.3,271.4 L316.4,271.7 L316.5,272 L316.5,272.3 L316.6,272.6 L316.7,272.8 L316.8,273 L316.9,273.2 L317,273.4 L317.1,273.5 L317.2,273.6 L317.3,273.7 L317.4,273.8 L317.5,273.9 L317.5,273.9 L317.6,273.9 L317.7,273.9 L317.8,273.9 L317.9,273.8 L318,273.8 L318.1,273.7 L318.2,273.5 L318.3,273.4 L318.4,273.2 L318.5,273 L318.6,272.8 L318.6,272.6 L318.7,272.3 L318.8,272.1 L318.9,271.8 L319,271.4 L319.1,271.1 L319.2,270.7 L319.3,270.3 L319.4,269.9 L319.5,269.5 L319.6,269 L319.6,268.5 L319.7,268 L319.8,267.4 L319.9,266.8 L320,266.2 L320.1,265.6 L320.2,264.9 L320.3,264.2 L320.4,263.5 L320.5,262.8 L320.6,262 L320.7,261.2 L320.7,260.4 L320.8,259.5 L320.9,258.6 L321,257.6 L321.1,256.7 L321.2,255.7 L321.3,254.6 L321.4,253.6 L321.5,252.4 L321.6,251.3 L321.7,250.1 L321.7,248.9 L321.8,247.6 L321.9,246.3 L322,244.9 L322.1,243.5 L322.2,242.1 L322.3,240.6 L322.4,239 L322.5,237.4 L322.6,235.8 L322.7,234.1 L322.7,232.3 L322.8,230.5 L322.9,228.7 L323,226.8 L323.1,224.8 L323.2,222.7 L323.3,220.6 L323.4,218.5 L323.5,216.2 L323.6,213.9 L323.7,211.5 L323.8,209.1 L323.8,206.5 L323.9,203.9 L324,201.2 L324.1,198.5 L324.2,195.6 L324.3,192.6 L324.4,189.6 L324.5,186.5 L324.6,183.2 L324.7,179.9 L324.8,176.4 L324.8,172.8 L324.9,169.2 L325,165.4 L325.1,161.4 L325.2,157.4 L325.3,153.2 L325.4,148.9 L325.5,144.4 L325.6,139.8 L325.7,135 L325.8,130.1 L325.8,125 L325.9,119.8 L326,114.3 L326.1,108.7 L326.2,102.9 L326.3,96.9 L326.4,90.68 L326.5,84.24 L326.6,77.58 L326.7,70.69 L326.8,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M263.7,63.55 L263.8,70.66 L263.8,77.53 L263.9,84.17 L264,90.58 L264.1,96.78 L264.2,102.8 L264.3,108.6 L264.4,114.2 L264.5,119.6 L264.6,124.8 L264.7,129.9 L264.8,134.8 L264.8,139.5 L264.9,144.1 L265,148.6 L265.1,152.9 L265.2,157.1 L265.3,161.1 L265.4,165 L265.5,168.8 L265.6,172.5 L265.7,176 L265.8,179.5 L265.8,182.8 L265.9,186.1 L266,189.2 L266.1,192.3 L266.2,195.2 L266.3,198.1 L266.4,200.8 L266.5,203.5 L266.6,206.1 L266.7,208.7 L266.8,211.1 L266.8,213.5 L266.9,215.8 L267,218 L267.1,220.2 L267.2,222.3 L267.3,224.3 L267.4,226.3 L267.5,228.2 L267.6,230.1 L267.7,231.9 L267.8,233.6 L267.9,235.3 L267.9,237 L268,238.6 L268.1,240.1 L268.2,241.6 L268.3,243.1 L268.4,244.5 L268.5,245.8 L268.6,247.1 L268.7,248.4 L268.8,249.6 L268.9,250.8 L268.9,252 L269,253.1 L269.1,254.2 L269.2,255.2 L269.3,256.2 L269.4,257.2 L269.5,258.1 L269.6,259 L269.7,259.9 L269.8,260.7 L269.9,261.6 L269.9,262.3 L270,263.1 L270.1,263.8 L270.2,264.5 L270.3,265.1 L270.4,265.8 L270.5,266.4 L270.6,267 L270.7,267.5 L270.8,268 L270.9,268.5 L271,269 L271,269.5 L271.1,269.9 L271.2,270.3 L271.3,270.7 L271.4,271 L271.5,271.3 L271.6,271.6 L271.7,271.9 L271.8,272.2 L271.9,272.4 L272,272.6 L272,272.8 L272.1,273 L272.2,273.1 L272.3,273.2 L272.4,273.3 L272.5,273.4 L272.6,273.5 L272.7,273.5 L272.8,273.5 L272.9,273.5 L273,273.5 L273,273.4 L273.1,273.3 L273.2,273.2 L273.3,273.1 L273.4,273 L273.5,272.8 L273.6,272.6 L273.7,272.4 L273.8,272.2 L273.9,271.9 L274,271.6 L274,271.3 L274.1,271 L274.2,270.7 L274.3,270.3 L274.4,269.9 L274.5,269.5 L274.6,269 L274.7,268.5 L274.8,268 L274.9,267.5 L275,267 L275.1,266.4 L275.1,265.8 L275.2,265.2 L275.3,264.5 L275.4,263.8 L275.5,263.1 L275.6,262.3 L275.7,261.6 L275.8,260.8 L275.9,259.9 L276,259 L276.1,258.1 L276.1,257.2 L276.2,256.2 L276.3,255.2 L276.4,254.2 L276.5,253.1 L276.6,252 L276.7,250.8 L276.8,249.6 L276.9,248.4 L277,247.1 L277.1,245.8 L277.1,244.5 L277.2,243.1 L277.3,241.6 L277.4,240.1 L277.5,238.6 L277.6,237 L277.7,235.3 L277.8,233.7 L277.9,231.9 L278,230.1 L278.1,228.2 L278.1,226.3 L278.2,224.4 L278.3,222.3 L278.4,220.2 L278.5,218 L278.6,215.8 L278.7,213.5 L278.8,211.1 L278.9,208.7 L279,206.1 L279.1,203.5 L279.2,200.9 L279.2,198.1 L279.3,195.2 L279.4,192.3 L279.5,189.2 L279.6,186.1 L279.7,182.9 L279.8,179.5 L279.9,176.1 L280,172.5 L280.1,168.8 L280.2,165 L280.2,161.1 L280.3,157.1 L280.4,152.9 L280.5,148.6 L280.6,144.2 L280.7,139.6 L280.8,134.8 L280.9,129.9 L281,124.8 L281.1,119.6 L281.2,114.2 L281.2,108.6 L281.3,102.8 L281.4,96.78 L281.5,90.58 L281.6,84.17 L281.7,77.53 L281.8,70.66 L281.9,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M218.8,63.55 L218.9,70.66 L219,77.53 L219.1,84.16 L219.2,90.57 L219.3,96.77 L219.3,102.8 L219.4,108.5 L219.5,114.1 L219.6,119.6 L219.7,124.8 L219.8,129.9 L219.9,134.8 L220,139.5 L220.1,144.1 L220.2,148.6 L220.3,152.9 L220.3,157 L220.4,161.1 L220.5,165 L220.6,168.8 L220.7,172.5 L220.8,176 L220.9,179.5 L221,182.8 L221.1,186 L221.2,189.2 L221.3,192.2 L221.3,195.2 L221.4,198 L221.5,200.8 L221.6,203.5 L221.7,206.1 L221.8,208.6 L221.9,211.1 L222,213.5 L222.1,215.8 L222.2,218 L222.3,220.2 L222.3,222.3 L222.4,224.3 L222.5,226.3 L222.6,228.2 L222.7,230.1 L222.8,231.9 L222.9,233.6 L223,235.3 L223.1,236.9 L223.2,238.5 L223.3,240.1 L223.4,241.6 L223.4,243 L223.5,244.4 L223.6,245.8 L223.7,247.1 L223.8,248.4 L223.9,249.6 L224,250.8 L224.1,251.9 L224.2,253 L224.3,254.1 L224.4,255.2 L224.4,256.2 L224.5,257.1 L224.6,258.1 L224.7,259 L224.8,259.9 L224.9,260.7 L225,261.5 L225.1,262.3 L225.2,263 L225.3,263.7 L225.4,264.4 L225.4,265.1 L225.5,265.7 L225.6,266.3 L225.7,266.9 L225.8,267.5 L225.9,268 L226,268.5 L226.1,269 L226.2,269.4 L226.3,269.8 L226.4,270.2 L226.4,270.6 L226.5,271 L226.6,271.3 L226.7,271.6 L226.8,271.9 L226.9,272.1 L227,272.4 L227.1,272.6 L227.2,272.8 L227.3,272.9 L227.4,273.1 L227.5,273.2 L227.5,273.3 L227.6,273.4 L227.7,273.4 L227.8,273.5 L227.9,273.5 L228,273.5 L228.1,273.4 L228.2,273.4 L228.3,273.3 L228.4,273.2 L228.5,273.1 L228.5,272.9 L228.6,272.8 L228.7,272.6 L228.8,272.4 L228.9,272.1 L229,271.9 L229.1,271.6 L229.2,271.3 L229.3,271 L229.4,270.6 L229.5,270.2 L229.5,269.8 L229.6,269.4 L229.7,269 L229.8,268.5 L229.9,268 L230,267.5 L230.1,266.9 L230.2,266.3 L230.3,265.7 L230.4,265.1 L230.5,264.4 L230.6,263.7 L230.6,263 L230.7,262.3 L230.8,261.5 L230.9,260.7 L231,259.9 L231.1,259 L231.2,258.1 L231.3,257.1 L231.4,256.2 L231.5,255.2 L231.6,254.1 L231.6,253 L231.7,251.9 L231.8,250.8 L231.9,249.6 L232,248.4 L232.1,247.1 L232.2,245.8 L232.3,244.4 L232.4,243 L232.5,241.6 L232.6,240.1 L232.6,238.5 L232.7,236.9 L232.8,235.3 L232.9,233.6 L233,231.9 L233.1,230.1 L233.2,228.2 L233.3,226.3 L233.4,224.3 L233.5,222.3 L233.6,220.2 L233.6,218 L233.7,215.8 L233.8,213.5 L233.9,211.1 L234,208.6 L234.1,206.1 L234.2,203.5 L234.3,200.8 L234.4,198 L234.5,195.2 L234.6,192.2 L234.7,189.2 L234.7,186 L234.8,182.8 L234.9,179.5 L235,176 L235.1,172.5 L235.2,168.8 L235.3,165 L235.4,161.1 L235.5,157.1 L235.6,152.9 L235.7,148.6 L235.7,144.1 L235.8,139.5 L235.9,134.8 L236,129.9 L236.1,124.8 L236.2,119.6 L236.3,114.2 L236.4,108.6 L236.5,102.8 L236.6,96.77 L236.7,90.57 L236.7,84.16 L236.8,77.53 L236.9,70.66 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M173.9,63.55 L174,70.66 L174.1,77.52 L174.2,84.16 L174.3,90.57 L174.4,96.77 L174.5,102.8 L174.6,108.5 L174.7,114.1 L174.8,119.6 L174.8,124.8 L174.9,129.9 L175,134.8 L175.1,139.5 L175.2,144.1 L175.3,148.6 L175.4,152.9 L175.5,157 L175.6,161.1 L175.7,165 L175.8,168.8 L175.8,172.5 L175.9,176 L176,179.5 L176.1,182.8 L176.2,186 L176.3,189.2 L176.4,192.2 L176.5,195.2 L176.6,198 L176.7,200.8 L176.8,203.5 L176.8,206.1 L176.9,208.6 L177,211.1 L177.1,213.4 L177.2,215.7 L177.3,218 L177.4,220.1 L177.5,222.3 L177.6,224.3 L177.7,226.3 L177.8,228.2 L177.8,230 L177.9,231.8 L178,233.6 L178.1,235.3 L178.2,236.9 L178.3,238.5 L178.4,240.1 L178.5,241.5 L178.6,243 L178.7,244.4 L178.8,245.8 L178.9,247.1 L178.9,248.3 L179,249.6 L179.1,250.8 L179.2,251.9 L179.3,253 L179.4,254.1 L179.5,255.2 L179.6,256.2 L179.7,257.1 L179.8,258.1 L179.9,259 L179.9,259.8 L180,260.7 L180.1,261.5 L180.2,262.3 L180.3,263 L180.4,263.7 L180.5,264.4 L180.6,265.1 L180.7,265.7 L180.8,266.3 L180.9,266.9 L180.9,267.4 L181,268 L181.1,268.5 L181.2,268.9 L181.3,269.4 L181.4,269.8 L181.5,270.2 L181.6,270.6 L181.7,270.9 L181.8,271.3 L181.9,271.6 L181.9,271.9 L182,272.1 L182.1,272.3 L182.2,272.6 L182.3,272.7 L182.4,272.9 L182.5,273.1 L182.6,273.2 L182.7,273.3 L182.8,273.4 L182.9,273.4 L183,273.4 L183,273.5 L183.1,273.4 L183.2,273.4 L183.3,273.4 L183.4,273.3 L183.5,273.2 L183.6,273.1 L183.7,272.9 L183.8,272.7 L183.9,272.6 L184,272.3 L184,272.1 L184.1,271.9 L184.2,271.6 L184.3,271.3 L184.4,270.9 L184.5,270.6 L184.6,270.2 L184.7,269.8 L184.8,269.4 L184.9,268.9 L185,268.5 L185,268 L185.1,267.4 L185.2,266.9 L185.3,266.3 L185.4,265.7 L185.5,265.1 L185.6,264.4 L185.7,263.7 L185.8,263 L185.9,262.3 L186,261.5 L186,260.7 L186.1,259.8 L186.2,259 L186.3,258.1 L186.4,257.1 L186.5,256.2 L186.6,255.2 L186.7,254.1 L186.8,253 L186.9,251.9 L187,250.8 L187.1,249.6 L187.1,248.3 L187.2,247.1 L187.3,245.8 L187.4,244.4 L187.5,243 L187.6,241.5 L187.7,240.1 L187.8,238.5 L187.9,236.9 L188,235.3 L188.1,233.6 L188.1,231.8 L188.2,230 L188.3,228.2 L188.4,226.3 L188.5,224.3 L188.6,222.3 L188.7,220.2 L188.8,218 L188.9,215.7 L189,213.4 L189.1,211.1 L189.1,208.6 L189.2,206.1 L189.3,203.5 L189.4,200.8 L189.5,198 L189.6,195.2 L189.7,192.2 L189.8,189.2 L189.9,186 L190,182.8 L190.1,179.5 L190.1,176 L190.2,172.5 L190.3,168.8 L190.4,165 L190.5,161.1 L190.6,157 L190.7,152.9 L190.8,148.6 L190.9,144.1 L191,139.5 L191.1,134.8 L191.2,129.9 L191.2,124.8 L191.3,119.6 L191.4,114.1 L191.5,108.5 L191.6,102.8 L191.7,96.77 L191.8,90.57 L191.9,84.16 L192,77.52 L192.1,70.66 L192.2,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M129.1,63.55 L129.2,70.66 L129.2,77.52 L129.3,84.16 L129.4,90.57 L129.5,96.76 L129.6,102.8 L129.7,108.5 L129.8,114.1 L129.9,119.6 L130,124.8 L130.1,129.9 L130.2,134.8 L130.2,139.5 L130.3,144.1 L130.4,148.6 L130.5,152.9 L130.6,157 L130.7,161.1 L130.8,165 L130.9,168.8 L131,172.5 L131.1,176 L131.2,179.5 L131.3,182.8 L131.3,186 L131.4,189.2 L131.5,192.2 L131.6,195.2 L131.7,198 L131.8,200.8 L131.9,203.5 L132,206.1 L132.1,208.6 L132.2,211.1 L132.3,213.4 L132.3,215.7 L132.4,218 L132.5,220.1 L132.6,222.2 L132.7,224.3 L132.8,226.3 L132.9,228.2 L133,230 L133.1,231.8 L133.2,233.6 L133.3,235.3 L133.3,236.9 L133.4,238.5 L133.5,240.1 L133.6,241.5 L133.7,243 L133.8,244.4 L133.9,245.8 L134,247.1 L134.1,248.3 L134.2,249.6 L134.3,250.8 L134.4,251.9 L134.4,253 L134.5,254.1 L134.6,255.1 L134.7,256.2 L134.8,257.1 L134.9,258.1 L135,259 L135.1,259.8 L135.2,260.7 L135.3,261.5 L135.4,262.3 L135.4,263 L135.5,263.7 L135.6,264.4 L135.7,265.1 L135.8,265.7 L135.9,266.3 L136,266.9 L136.1,267.4 L136.2,268 L136.3,268.5 L136.4,268.9 L136.4,269.4 L136.5,269.8 L136.6,270.2 L136.7,270.6 L136.8,270.9 L136.9,271.3 L137,271.6 L137.1,271.8 L137.2,272.1 L137.3,272.3 L137.4,272.6 L137.4,272.7 L137.5,272.9 L137.6,273 L137.7,273.2 L137.8,273.3 L137.9,273.3 L138,273.4 L138.1,273.4 L138.2,273.4 L138.3,273.4 L138.4,273.4 L138.5,273.3 L138.5,273.3 L138.6,273.2 L138.7,273 L138.8,272.9 L138.9,272.7 L139,272.6 L139.1,272.3 L139.2,272.1 L139.3,271.8 L139.4,271.6 L139.5,271.3 L139.5,270.9 L139.6,270.6 L139.7,270.2 L139.8,269.8 L139.9,269.4 L140,268.9 L140.1,268.5 L140.2,268 L140.3,267.4 L140.4,266.9 L140.5,266.3 L140.5,265.7 L140.6,265.1 L140.7,264.4 L140.8,263.7 L140.9,263 L141,262.3 L141.1,261.5 L141.2,260.7 L141.3,259.8 L141.4,259 L141.5,258.1 L141.5,257.1 L141.6,256.2 L141.7,255.1 L141.8,254.1 L141.9,253 L142,251.9 L142.1,250.8 L142.2,249.6 L142.3,248.3 L142.4,247.1 L142.5,245.8 L142.6,244.4 L142.6,243 L142.7,241.5 L142.8,240.1 L142.9,238.5 L143,236.9 L143.1,235.3 L143.2,233.6 L143.3,231.8 L143.4,230 L143.5,228.2 L143.6,226.3 L143.6,224.3 L143.7,222.2 L143.8,220.1 L143.9,218 L144,215.7 L144.1,213.4 L144.2,211.1 L144.3,208.6 L144.4,206.1 L144.5,203.5 L144.6,200.8 L144.6,198 L144.7,195.2 L144.8,192.2 L144.9,189.2 L145,186 L145.1,182.8 L145.2,179.5 L145.3,176 L145.4,172.5 L145.5,168.8 L145.6,165 L145.6,161.1 L145.7,157 L145.8,152.9 L145.9,148.6 L146,144.1 L146.1,139.5 L146.2,134.8 L146.3,129.9 L146.4,124.8 L146.5,119.6 L146.6,114.1 L146.7,108.5 L146.7,102.8 L146.8,96.76 L146.9,90.57 L147,84.16 L147.1,77.52 L147.2,70.66 L147.3,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M84.2,63.55 L84.29,70.66 L84.38,77.52 L84.47,84.16 L84.56,90.57 L84.66,96.76 L84.75,102.8 L84.84,108.5 L84.93,114.1 L85.02,119.6 L85.11,124.8 L85.2,129.9 L85.29,134.8 L85.38,139.5 L85.48,144.1 L85.57,148.6 L85.66,152.9 L85.75,157 L85.84,161.1 L85.93,165 L86.02,168.8 L86.11,172.4 L86.2,176 L86.3,179.5 L86.39,182.8 L86.48,186 L86.57,189.2 L86.66,192.2 L86.75,195.2 L86.84,198 L86.93,200.8 L87.02,203.5 L87.12,206.1 L87.21,208.6 L87.3,211.1 L87.39,213.4 L87.48,215.7 L87.57,218 L87.66,220.1 L87.75,222.2 L87.84,224.3 L87.94,226.3 L88.03,228.2 L88.12,230 L88.21,231.8 L88.3,233.6 L88.39,235.3 L88.48,236.9 L88.57,238.5 L88.66,240 L88.76,241.5 L88.85,243 L88.94,244.4 L89.03,245.7 L89.12,247.1 L89.21,248.3 L89.3,249.6 L89.39,250.8 L89.48,251.9 L89.58,253 L89.67,254.1 L89.76,255.1 L89.85,256.2 L89.94,257.1 L90.03,258.1 L90.12,259 L90.21,259.8 L90.31,260.7 L90.4,261.5 L90.49,262.3 L90.58,263 L90.67,263.7 L90.76,264.4 L90.85,265.1 L90.94,265.7 L91.03,266.3 L91.13,266.9 L91.22,267.4 L91.31,268 L91.4,268.5 L91.49,268.9 L91.58,269.4 L91.67,269.8 L91.76,270.2 L91.85,270.6 L91.95,270.9 L92.04,271.3 L92.13,271.6 L92.22,271.8 L92.31,272.1 L92.4,272.3 L92.49,272.5 L92.58,272.7 L92.67,272.9 L92.77,273 L92.86,273.2 L92.95,273.3 L93.04,273.3 L93.13,273.4 L93.22,273.4 L93.31,273.4 L93.4,273.4 L93.49,273.4 L93.59,273.3 L93.68,273.3 L93.77,273.2 L93.86,273 L93.95,272.9 L94.04,272.7 L94.13,272.5 L94.22,272.3 L94.31,272.1 L94.41,271.8 L94.5,271.6 L94.59,271.3 L94.68,270.9 L94.77,270.6 L94.86,270.2 L94.95,269.8 L95.04,269.4 L95.13,268.9 L95.23,268.5 L95.32,268 L95.41,267.4 L95.5,266.9 L95.59,266.3 L95.68,265.7 L95.77,265.1 L95.86,264.4 L95.95,263.7 L96.05,263 L96.14,262.3 L96.23,261.5 L96.32,260.7 L96.41,259.8 L96.5,259 L96.59,258.1 L96.68,257.1 L96.77,256.2 L96.87,255.1 L96.96,254.1 L97.05,253 L97.14,251.9 L97.23,250.8 L97.32,249.6 L97.41,248.3 L97.5,247.1 L97.59,245.7 L97.69,244.4 L97.78,243 L97.87,241.5 L97.96,240 L98.05,238.5 L98.14,236.9 L98.23,235.3 L98.32,233.6 L98.41,231.8 L98.51,230 L98.6,228.2 L98.69,226.3 L98.78,224.3 L98.87,222.2 L98.96,220.1 L99.05,218 L99.14,215.7 L99.23,213.4 L99.33,211.1 L99.42,208.6 L99.51,206.1 L99.6,203.5 L99.69,200.8 L99.78,198 L99.87,195.2 L99.96,192.2 L100.1,189.2 L100.1,186 L100.2,182.8 L100.3,179.5 L100.4,176 L100.5,172.5 L100.6,168.8 L100.7,165 L100.8,161.1 L100.9,157 L101,152.9 L101.1,148.6 L101.1,144.1 L101.2,139.5 L101.3,134.8 L101.4,129.9 L101.5,124.8 L101.6,119.6 L101.7,114.1 L101.8,108.5 L101.9,102.8 L102,96.76 L102.1,90.57 L102.2,84.16 L102.2,77.52 L102.3,70.66 " fill="none"/></g>
|
||||
</g>
|
||||
<g id="plotPoints" clip-path="url(#plot_window)"></g>
|
||||
<g id="title">
|
||||
<text x="300" y="40" text-anchor="middle" font-size="20" font-family="Verdana">Polygamma</text></g>
|
||||
<g id="plotXValues"></g>
|
||||
<g id="plotYValues"></g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 23 KiB |
@@ -220,10 +220,10 @@ double find_end_point(F f, double x0, double target, bool rising, double x_off =
|
||||
{
|
||||
boost::math::tools::eps_tolerance<double> tol(50);
|
||||
boost::uintmax_t max_iter = 1000;
|
||||
return boost::math::tools::bracket_and_solve_root(
|
||||
return x_off + boost::math::tools::bracket_and_solve_root(
|
||||
location_finder<F>(f, target, x_off),
|
||||
x0,
|
||||
double(1.5),
|
||||
1.5,
|
||||
rising,
|
||||
tol,
|
||||
max_iter).first;
|
||||
@@ -248,10 +248,11 @@ int main()
|
||||
double (*f2i)(int, double);
|
||||
double (*f3)(double, double, double);
|
||||
double (*f4)(double, double, double, double);
|
||||
|
||||
double max_val;
|
||||
#if 0
|
||||
f = boost::math::zeta;
|
||||
plot.add(f, 1 + find_end_point(f, 0.1, 40.0, false, 1.0), 10, "");
|
||||
plot.add(f, -20, 1 + find_end_point(f, -0.1, -40.0, false, 1.0), "");
|
||||
plot.add(f, find_end_point(f, 0.1, 40.0, false, 1.0), 10, "");
|
||||
plot.add(f, -20, find_end_point(f, -0.1, -40.0, false, 1.0), "");
|
||||
plot.plot("Zeta Function Over [-20,10]", "zeta1.svg", "z", "zeta(z)");
|
||||
|
||||
plot.clear();
|
||||
@@ -259,34 +260,34 @@ int main()
|
||||
plot.plot("Zeta Function Over [-14,0]", "zeta2.svg", "z", "zeta(z)");
|
||||
|
||||
f = boost::math::tgamma;
|
||||
double max_val = f(6);
|
||||
max_val = f(6);
|
||||
plot.clear();
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false), 6, "");
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, -max_val, true, -1), find_end_point(f, -0.1, -max_val, false), "");
|
||||
plot.add(f, -2 + find_end_point(f, 0.1, max_val, false, -2), -1 + find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, -3 + find_end_point(f, 0.1, -max_val, true, -3), -2 + find_end_point(f, -0.1, -max_val, false, -2), "");
|
||||
plot.add(f, -4 + find_end_point(f, 0.1, max_val, false, -4), -3 + find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true, -1), find_end_point(f, -0.1, -max_val, false), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -2), find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true, -3), find_end_point(f, -0.1, -max_val, false, -2), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -4), find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.plot("tgamma", "tgamma.svg", "z", "tgamma(z)");
|
||||
|
||||
f = boost::math::lgamma;
|
||||
max_val = f(10);
|
||||
plot.clear();
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false), 10, "");
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, max_val, false, -1), find_end_point(f, -0.1, max_val, true), "");
|
||||
plot.add(f, -2 + find_end_point(f, 0.1, max_val, false, -2), -1 + find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, -3 + find_end_point(f, 0.1, max_val, false, -3), -2 + find_end_point(f, -0.1, max_val, true, -2), "");
|
||||
plot.add(f, -4 + find_end_point(f, 0.1, max_val, false, -4), -3 + find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.add(f, -5 + find_end_point(f, 0.1, max_val, false, -5), -4 + find_end_point(f, -0.1, max_val, true, -4), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -1), find_end_point(f, -0.1, max_val, true), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -2), find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -3), find_end_point(f, -0.1, max_val, true, -2), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -4), find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -5), find_end_point(f, -0.1, max_val, true, -4), "");
|
||||
plot.plot("lgamma", "lgamma.svg", "z", "lgamma(z)");
|
||||
|
||||
f = boost::math::digamma;
|
||||
max_val = 10;
|
||||
plot.clear();
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true), 10, "");
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, -max_val, true, -1), find_end_point(f, -0.1, max_val, true), "");
|
||||
plot.add(f, -2 + find_end_point(f, 0.1, -max_val, true, -2), -1 + find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, -3 + find_end_point(f, 0.1, -max_val, true, -3), -2 + find_end_point(f, -0.1, max_val, true, -2), "");
|
||||
plot.add(f, -4 + find_end_point(f, 0.1, -max_val, true, -4), -3 + find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true, -1), find_end_point(f, -0.1, max_val, true), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true, -2), find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true, -3), find_end_point(f, -0.1, max_val, true, -2), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true, -4), find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.plot("digamma", "digamma.svg", "z", "digamma(z)");
|
||||
|
||||
f = boost::math::erf;
|
||||
@@ -300,16 +301,16 @@ int main()
|
||||
|
||||
f = boost::math::erf_inv;
|
||||
plot.clear();
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, -3, true, -1), 1 + find_end_point(f, -0.1, 3, true, 1), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -3, true, -1), find_end_point(f, -0.1, 3, true, 1), "");
|
||||
plot.plot("erf_inv", "erf_inv.svg", "z", "erf_inv(z)");
|
||||
f = boost::math::erfc_inv;
|
||||
plot.clear();
|
||||
plot.add(f, find_end_point(f, 0.1, 3, false), 2 + find_end_point(f, -0.1, -3, false, 2), "");
|
||||
plot.add(f, find_end_point(f, 0.1, 3, false), find_end_point(f, -0.1, -3, false, 2), "");
|
||||
plot.plot("erfc_inv", "erfc_inv.svg", "z", "erfc_inv(z)");
|
||||
|
||||
f = boost::math::log1p;
|
||||
plot.clear();
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, -10, true, -1), 10, "");
|
||||
plot.add(f, find_end_point(f, 0.1, -10, true, -1), 10, "");
|
||||
plot.plot("log1p", "log1p.svg", "z", "log1p(z)");
|
||||
|
||||
f = boost::math::expm1;
|
||||
@@ -324,7 +325,7 @@ int main()
|
||||
|
||||
f = sqrt1pm1;
|
||||
plot.clear();
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, -10, true, -1), 5, "");
|
||||
plot.add(f, find_end_point(f, 0.1, -10, true, -1), 5, "");
|
||||
plot.plot("sqrt1pm1", "sqrt1pm1.svg", "z", "sqrt1pm1(z)");
|
||||
|
||||
f2 = boost::math::powm1;
|
||||
@@ -359,7 +360,7 @@ int main()
|
||||
|
||||
f = boost::math::atanh;
|
||||
plot.clear();
|
||||
plot.add(f, -1 + find_end_point(f, 0.1, -5, true, -1), 1 + find_end_point(f, -0.1, 5, true, 1), "");
|
||||
plot.add(f, find_end_point(f, 0.1, -5, true, -1), find_end_point(f, -0.1, 5, true, 1), "");
|
||||
plot.plot("atanh", "atanh.svg", "z", "atanh(z)");
|
||||
|
||||
f2 = boost::math::tgamma_delta_ratio;
|
||||
@@ -401,7 +402,7 @@ int main()
|
||||
max_val = f(4);
|
||||
plot.clear();
|
||||
plot.add(f, find_end_point(f, 0.1, -max_val, true), 4, "");
|
||||
plot.add(f, -3, find_end_point(f, -0.1, -max_val, false), "");
|
||||
plot.add(f, find_end_point(f, -0.1, -max_val, false), "");
|
||||
plot.plot("Exponential Integral Ei", "expint_i.svg", "z", "expint(z)");
|
||||
|
||||
f2u = boost::math::expint;
|
||||
@@ -450,15 +451,15 @@ int main()
|
||||
"n = 2");
|
||||
plot.add(boost::bind(f2u, 3, _1),
|
||||
find_end_point(boost::bind(f2u, 3, _1), -2, 20, false),
|
||||
8 + find_end_point(boost::bind(f2u, 3, _1), 1, 20, false, 8),
|
||||
find_end_point(boost::bind(f2u, 3, _1), 1, 20, false, 8),
|
||||
"n = 3");
|
||||
plot.add(boost::bind(f2u, 4, _1),
|
||||
find_end_point(boost::bind(f2u, 4, _1), -2, 20, false),
|
||||
8 + find_end_point(boost::bind(f2u, 4, _1), 1, 20, true, 8),
|
||||
find_end_point(boost::bind(f2u, 4, _1), 1, 20, true, 8),
|
||||
"n = 4");
|
||||
plot.add(boost::bind(f2u, 5, _1),
|
||||
find_end_point(boost::bind(f2u, 5, _1), -2, 20, false),
|
||||
8 + find_end_point(boost::bind(f2u, 5, _1), 1, 20, true, 8),
|
||||
find_end_point(boost::bind(f2u, 5, _1), 1, 20, true, 8),
|
||||
"n = 5");
|
||||
plot.plot("Laguerre Polynomials", "laguerre.svg", "x", "laguerre(n, x)");
|
||||
|
||||
@@ -555,17 +556,17 @@ int main()
|
||||
plot.add(boost::bind(f3, _1, 0.25, boost::math::constants::pi<double>() / 2),
|
||||
find_end_point(
|
||||
boost::bind(f3, _1, 0.25, boost::math::constants::pi<double>() / 2),
|
||||
0.5, 4, false, -1) - 1,
|
||||
0.5, 4, false, -1),
|
||||
find_end_point(
|
||||
boost::bind(f3, _1, 0.25, boost::math::constants::pi<double>() / 2),
|
||||
-0.5, 4, true, 1) + 1, "n=0.25 φ=π/2");
|
||||
-0.5, 4, true, 1), "n=0.25 φ=π/2");
|
||||
plot.add(boost::bind(f3, _1, 0.75, boost::math::constants::pi<double>() / 2),
|
||||
find_end_point(
|
||||
boost::bind(f3, _1, 0.75, boost::math::constants::pi<double>() / 2),
|
||||
0.5, 4, false, -1) - 1,
|
||||
0.5, 4, false, -1),
|
||||
find_end_point(
|
||||
boost::bind(f3, _1, 0.75, boost::math::constants::pi<double>() / 2),
|
||||
-0.5, 4, true, 1) + 1, "n=0.75 φ=π/2");
|
||||
-0.5, 4, true, 1), "n=0.75 φ=π/2");
|
||||
plot.plot("Elliptic Of the Third Kind", "ellint_3.svg", "k", "ellint_3(k, n, phi)");
|
||||
|
||||
f2 = boost::math::jacobi_sn;
|
||||
@@ -695,7 +696,40 @@ int main()
|
||||
plot.clear();
|
||||
plot.add(f, -20, 3, "");
|
||||
plot.plot("Bi'", "airy_bip.svg", "z", "airy_bi_prime(z)");
|
||||
#endif
|
||||
f = boost::math::trigamma;
|
||||
max_val = 30;
|
||||
plot.clear();
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false), 5, "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -1), find_end_point(f, -0.1, max_val, true), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -2), find_end_point(f, -0.1, max_val, true, -1), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -3), find_end_point(f, -0.1, max_val, true, -2), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -4), find_end_point(f, -0.1, max_val, true, -3), "");
|
||||
plot.add(f, find_end_point(f, 0.1, max_val, false, -5), find_end_point(f, -0.1, max_val, true, -4), "");
|
||||
plot.plot("Trigamma", "trigamma.svg", "x", "trigamma(x)");
|
||||
|
||||
f2i = boost::math::polygamma;
|
||||
max_val = -50;
|
||||
plot.clear();
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true), 5, "");
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true, -1), find_end_point(boost::bind(f2i, 2, _1), -0.1, -max_val, true), "");
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true, -2), find_end_point(boost::bind(f2i, 2, _1), -0.1, -max_val, true, -1), "");
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true, -3), find_end_point(boost::bind(f2i, 2, _1), -0.1, -max_val, true, -2), "");
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true, -4), find_end_point(boost::bind(f2i, 2, _1), -0.1, -max_val, true, -3), "");
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true, -5), find_end_point(boost::bind(f2i, 2, _1), -0.1, -max_val, true, -4), "");
|
||||
plot.add(boost::bind(f2i, 2, _1), find_end_point(boost::bind(f2i, 2, _1), 0.1, max_val, true, -6), find_end_point(boost::bind(f2i, 2, _1), -0.1, -max_val, true, -5), "");
|
||||
plot.plot("Polygamma", "polygamma2.svg", "x", "polygamma(2, x)");
|
||||
|
||||
max_val = 800;
|
||||
plot.clear();
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false), 5, "");
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false, -1), find_end_point(boost::bind(f2i, 3, _1), -0.1, max_val, true), "");
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false, -2), find_end_point(boost::bind(f2i, 3, _1), -0.1, max_val, true, -1), "");
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false, -3), find_end_point(boost::bind(f2i, 3, _1), -0.1, max_val, true, -2), "");
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false, -4), find_end_point(boost::bind(f2i, 3, _1), -0.1, max_val, true, -3), "");
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false, -5), find_end_point(boost::bind(f2i, 3, _1), -0.1, max_val, true, -4), "");
|
||||
plot.add(boost::bind(f2i, 3, _1), find_end_point(boost::bind(f2i, 3, _1), 0.1, max_val, false, -6), find_end_point(boost::bind(f2i, 3, _1), -0.1, max_val, true, -5), "");
|
||||
plot.plot("Polygamma", "polygamma3.svg", "x", "polygamma(3, x)");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
BIN
doc/graphs/trigamma.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
70
doc/graphs/trigamma.svg
Normal file
@@ -0,0 +1,70 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg width="600" height ="400" version="1.1"
|
||||
xmlns:svg ="http://www.w3.org/2000/svg"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:cc="http://web.resource.org/cc/"
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns ="http://www.w3.org/2000/svg"
|
||||
>
|
||||
<!-- SVG plot written using Boost.Plot program (Creator Jacob Voytko) -->
|
||||
<!-- Use, modification and distribution of Boost.Plot subject to the -->
|
||||
<!-- Boost Software License, Version 1.0.-->
|
||||
<!-- (See accompanying file LICENSE_1_0.txt -->
|
||||
<!-- or copy at http://www.boost.org/LICENSE_1_0.txt) -->
|
||||
|
||||
<!-- SVG Plot Copyright John Maddock 2008 -->
|
||||
<meta name="copyright" content="John Maddock" />
|
||||
<meta name="date" content="2008" />
|
||||
<!-- Use, modification and distribution of this Scalable Vector Graphic file -->
|
||||
<!-- are subject to the Boost Software License, Version 1.0. -->
|
||||
<!-- (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
|
||||
|
||||
<clipPath id="plot_window"><rect x="76.8" y="59" width="496.2" height="281"/></clipPath>
|
||||
<g id="imageBackground" stroke="rgb(119,136,153)" fill="rgb(255,255,255)" stroke-width="2"><rect x="0" y="0" width="600" height="400"/></g>
|
||||
<g id="plotBackground" stroke="rgb(119,136,153)" fill="rgb(255,255,255)" stroke-width="2"><rect x="75.8" y="58" width="498.2" height="283"/></g>
|
||||
<g id="yMinorGrid" stroke="rgb(200,220,255)" stroke-width="0.5"></g>
|
||||
<g id="yMajorGrid" stroke="rgb(200,220,255)" stroke-width="1"></g>
|
||||
<g id="xMinorGrid" stroke="rgb(200,220,255)" stroke-width="0.5"></g>
|
||||
<g id="xMajorGrid" stroke="rgb(200,220,255)" stroke-width="1"></g>
|
||||
<g id="yAxis" stroke="rgb(0,0,0)" stroke-width="1"><line x1="315.2" y1="58" x2="315.2" y2="341"/><line x1="75.8" y1="58" x2="75.8" y2="341"/></g>
|
||||
<g id="xAxis" stroke="rgb(0,0,0)" stroke-width="1"><line x1="75.8" y1="341" x2="574" y2="341"/></g>
|
||||
<g id="yMinorTicks" stroke="rgb(0,0,0)" stroke-width="1"><path d="M73.8,331.4 L75.8,331.4 M73.8,319.8 L75.8,319.8 M73.8,308.1 L75.8,308.1 M73.8,284.8 L75.8,284.8 M73.8,273.2 L75.8,273.2 M73.8,261.5 L75.8,261.5 M73.8,238.2 L75.8,238.2 M73.8,226.6 L75.8,226.6 M73.8,215 L75.8,215 M73.8,191.7 L75.8,191.7 M73.8,180 L75.8,180 M73.8,168.4 L75.8,168.4 M73.8,145.1 L75.8,145.1 M73.8,133.4 L75.8,133.4 M73.8,121.8 L75.8,121.8 M73.8,98.49 L75.8,98.49 M73.8,86.84 L75.8,86.84 M73.8,75.2 L75.8,75.2 " fill="none"/></g>
|
||||
<g id="xMinorTicks" stroke="rgb(0,0,0)" stroke-width="1"><path d="M327.6,341 L327.6,343 M340.1,341 L340.1,343 M352.5,341 L352.5,343 M377.5,341 L377.5,343 M389.9,341 L389.9,343 M402.4,341 L402.4,343 M427.3,341 L427.3,343 M439.7,341 L439.7,343 M452.2,341 L452.2,343 M477.1,341 L477.1,343 M489.5,341 L489.5,343 M502,341 L502,343 M526.9,341 L526.9,343 M539.3,341 L539.3,343 M551.8,341 L551.8,343 M302.7,341 L302.7,343 M290.3,341 L290.3,343 M277.8,341 L277.8,343 M252.9,341 L252.9,343 M240.5,341 L240.5,343 M228,341 L228,343 M203.1,341 L203.1,343 M190.7,341 L190.7,343 M178.2,341 L178.2,343 M153.3,341 L153.3,343 M140.9,341 L140.9,343 M128.4,341 L128.4,343 M103.5,341 L103.5,343 M91.05,341 L91.05,343 M78.6,341 L78.6,343 " fill="none"/></g>
|
||||
<g id="yMajorTicks" stroke="rgb(0,0,0)" stroke-width="2"><path d="M70.8,296.5 L75.8,296.5 M70.8,249.9 L75.8,249.9 M70.8,203.3 L75.8,203.3 M70.8,156.7 L75.8,156.7 M70.8,110.1 L75.8,110.1 M70.8,63.55 L75.8,63.55 " fill="none"/></g>
|
||||
<g id="xMajorTicks" stroke="rgb(0,0,0)" stroke-width="2"><path d="M315.2,341 L315.2,346 M365,341 L365,346 M414.8,341 L414.8,346 M464.6,341 L464.6,346 M514.4,341 L514.4,346 M564.2,341 L564.2,346 M315.2,341 L315.2,346 M265.4,341 L265.4,346 M215.6,341 L215.6,346 M165.8,341 L165.8,346 M116,341 L116,346 " fill="none"/></g>
|
||||
<g id="xTicksValues">
|
||||
<text x="315.2" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="365" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">1</text>
|
||||
<text x="414.8" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">2</text>
|
||||
<text x="464.6" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">3</text>
|
||||
<text x="514.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">4</text>
|
||||
<text x="564.2" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">5</text>
|
||||
<text x="315.2" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">0</text>
|
||||
<text x="265.4" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">-1</text>
|
||||
<text x="215.6" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">-2</text>
|
||||
<text x="165.8" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">-3</text>
|
||||
<text x="116" y="361.6" text-anchor="middle" font-size="12" font-family="Verdana">-4</text></g>
|
||||
<g id="yTicksValues">
|
||||
<text x="64.8" y="298.9" text-anchor="end" font-size="12" font-family="Verdana">5</text>
|
||||
<text x="64.8" y="252.3" text-anchor="end" font-size="12" font-family="Verdana">10</text>
|
||||
<text x="64.8" y="205.7" text-anchor="end" font-size="12" font-family="Verdana">15</text>
|
||||
<text x="64.8" y="159.1" text-anchor="end" font-size="12" font-family="Verdana">20</text>
|
||||
<text x="64.8" y="112.5" text-anchor="end" font-size="12" font-family="Verdana">25</text>
|
||||
<text x="64.8" y="65.95" text-anchor="end" font-size="12" font-family="Verdana">30</text></g>
|
||||
<g id="yLabel">
|
||||
<text x="42.9" y="199.5" text-anchor="middle" transform = "rotate(-90 42.9 199.5 )" font-size="14" font-family="Verdana">trigamma(x)</text></g>
|
||||
<g id="xLabel">
|
||||
<text x="324.9" y="376.7" text-anchor="middle" font-size="14" font-family="Verdana">x</text></g>
|
||||
<g id="plotLines" stroke-width="2"><g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M324.5,63.55 L325.7,121.5 L326.9,162.7 L328.1,192.9 L329.3,215.9 L330.5,233.7 L331.7,247.8 L332.9,259.2 L334.1,268.5 L335.3,276.2 L336.5,282.7 L337.7,288.2 L338.9,292.9 L340.1,297 L341.3,300.5 L342.5,303.6 L343.7,306.4 L344.9,308.8 L346.1,310.9 L347.3,312.9 L348.5,314.6 L349.7,316.2 L350.9,317.6 L352.1,318.9 L353.3,320.1 L354.5,321.1 L355.7,322.1 L356.9,323.1 L358.1,323.9 L359.2,324.7 L360.4,325.4 L361.6,326.1 L362.8,326.7 L364,327.3 L365.2,327.8 L366.4,328.4 L367.6,328.8 L368.8,329.3 L370,329.7 L371.2,330.1 L372.4,330.5 L373.6,330.9 L374.8,331.2 L376,331.5 L377.2,331.9 L378.4,332.1 L379.6,332.4 L380.8,332.7 L382,332.9 L383.2,333.2 L384.4,333.4 L385.6,333.6 L386.8,333.8 L388,334.1 L389.2,334.2 L390.4,334.4 L391.6,334.6 L392.8,334.8 L394,334.9 L395.2,335.1 L396.4,335.3 L397.6,335.4 L398.8,335.6 L400,335.7 L401.2,335.8 L402.4,335.9 L403.6,336.1 L404.8,336.2 L406,336.3 L407.2,336.4 L408.4,336.5 L409.6,336.6 L410.8,336.7 L412,336.8 L413.2,336.9 L414.4,337 L415.6,337.1 L416.8,337.2 L418,337.3 L419.2,337.4 L420.4,337.4 L421.6,337.5 L422.8,337.6 L424,337.7 L425.2,337.7 L426.4,337.8 L427.6,337.9 L428.8,338 L430,338 L431.2,338.1 L432.4,338.1 L433.6,338.2 L434.8,338.3 L436,338.3 L437.2,338.4 L438.4,338.4 L439.6,338.5 L440.8,338.5 L442,338.6 L443.2,338.6 L444.4,338.7 L445.6,338.7 L446.8,338.8 L448,338.8 L449.2,338.9 L450.4,338.9 L451.6,339 L452.7,339 L453.9,339 L455.1,339.1 L456.3,339.1 L457.5,339.2 L458.7,339.2 L459.9,339.2 L461.1,339.3 L462.3,339.3 L463.5,339.4 L464.7,339.4 L465.9,339.4 L467.1,339.5 L468.3,339.5 L469.5,339.5 L470.7,339.6 L471.9,339.6 L473.1,339.6 L474.3,339.6 L475.5,339.7 L476.7,339.7 L477.9,339.7 L479.1,339.8 L480.3,339.8 L481.5,339.8 L482.7,339.8 L483.9,339.9 L485.1,339.9 L486.3,339.9 L487.5,339.9 L488.7,340 L489.9,340 L491.1,340 L492.3,340 L493.5,340.1 L494.7,340.1 L495.9,340.1 L497.1,340.1 L498.3,340.2 L499.5,340.2 L500.7,340.2 L501.9,340.2 L503.1,340.2 L504.3,340.3 L505.5,340.3 L506.7,340.3 L507.9,340.3 L509.1,340.3 L510.3,340.4 L511.5,340.4 L512.7,340.4 L513.9,340.4 L515.1,340.4 L516.3,340.4 L517.5,340.5 L518.7,340.5 L519.9,340.5 L521.1,340.5 L522.3,340.5 L523.5,340.5 L524.7,340.6 L525.9,340.6 L527.1,340.6 L528.3,340.6 L529.5,340.6 L530.7,340.6 L531.9,340.7 L533.1,340.7 L534.3,340.7 L535.5,340.7 L536.7,340.7 L537.9,340.7 L539.1,340.7 L540.3,340.8 L541.5,340.8 L542.7,340.8 L543.9,340.8 L545.1,340.8 L546.3,340.8 L547.4,340.8 L548.6,340.8 L549.8,340.9 L551,340.9 L552.2,340.9 L553.4,340.9 L554.6,340.9 L555.8,340.9 L557,340.9 L558.2,340.9 L559.4,341 L560.6,341 L561.8,341 L563,341 L564.2,341 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M274.9,63.55 L275.1,71.46 L275.2,78.99 L275.4,86.18 L275.6,93.04 L275.7,99.59 L275.9,105.8 L276,111.8 L276.2,117.5 L276.3,123 L276.5,128.3 L276.6,133.3 L276.8,138.1 L276.9,142.7 L277.1,147.2 L277.2,151.4 L277.4,155.5 L277.6,159.5 L277.7,163.2 L277.9,166.9 L278,170.4 L278.2,173.7 L278.3,177 L278.5,180.1 L278.6,183.1 L278.8,186 L278.9,188.8 L279.1,191.5 L279.2,194.1 L279.4,196.6 L279.6,199 L279.7,201.4 L279.9,203.6 L280,205.8 L280.2,207.9 L280.3,210 L280.5,211.9 L280.6,213.8 L280.8,215.7 L280.9,217.4 L281.1,219.2 L281.2,220.8 L281.4,222.4 L281.6,224 L281.7,225.5 L281.9,226.9 L282,228.3 L282.2,229.7 L282.3,231 L282.5,232.3 L282.6,233.5 L282.8,234.7 L282.9,235.9 L283.1,237 L283.3,238.1 L283.4,239.1 L283.6,240.1 L283.7,241.1 L283.9,242 L284,242.9 L284.2,243.8 L284.3,244.7 L284.5,245.5 L284.6,246.3 L284.8,247 L284.9,247.8 L285.1,248.5 L285.3,249.2 L285.4,249.8 L285.6,250.5 L285.7,251.1 L285.9,251.7 L286,252.2 L286.2,252.8 L286.3,253.3 L286.5,253.8 L286.6,254.2 L286.8,254.7 L286.9,255.1 L287.1,255.5 L287.3,255.9 L287.4,256.3 L287.6,256.6 L287.7,257 L287.9,257.3 L288,257.6 L288.2,257.9 L288.3,258.1 L288.5,258.3 L288.6,258.6 L288.8,258.8 L288.9,259 L289.1,259.1 L289.3,259.3 L289.4,259.4 L289.6,259.5 L289.7,259.6 L289.9,259.7 L290,259.8 L290.2,259.8 L290.3,259.8 L290.5,259.8 L290.6,259.8 L290.8,259.8 L291,259.8 L291.1,259.7 L291.3,259.6 L291.4,259.5 L291.6,259.4 L291.7,259.3 L291.9,259.1 L292,259 L292.2,258.8 L292.3,258.6 L292.5,258.4 L292.6,258.1 L292.8,257.9 L293,257.6 L293.1,257.3 L293.3,257 L293.4,256.7 L293.6,256.3 L293.7,255.9 L293.9,255.5 L294,255.1 L294.2,254.7 L294.3,254.2 L294.5,253.7 L294.6,253.2 L294.8,252.7 L295,252.1 L295.1,251.6 L295.3,251 L295.4,250.3 L295.6,249.7 L295.7,249 L295.9,248.3 L296,247.6 L296.2,246.8 L296.3,246 L296.5,245.2 L296.6,244.4 L296.8,243.5 L297,242.6 L297.1,241.6 L297.3,240.6 L297.4,239.6 L297.6,238.6 L297.7,237.5 L297.9,236.4 L298,235.2 L298.2,234 L298.3,232.7 L298.5,231.5 L298.7,230.1 L298.8,228.7 L299,227.3 L299.1,225.8 L299.3,224.3 L299.4,222.7 L299.6,221 L299.7,219.3 L299.9,217.6 L300,215.7 L300.2,213.9 L300.3,211.9 L300.5,209.9 L300.7,207.8 L300.8,205.6 L301,203.3 L301.1,201 L301.3,198.6 L301.4,196.1 L301.6,193.5 L301.7,190.8 L301.9,188 L302,185 L302.2,182 L302.3,178.9 L302.5,175.6 L302.7,172.2 L302.8,168.7 L303,165 L303.1,161.2 L303.3,157.2 L303.4,153.1 L303.6,148.8 L303.7,144.3 L303.9,139.6 L304,134.7 L304.2,129.6 L304.3,124.3 L304.5,118.7 L304.7,112.9 L304.8,106.8 L305,100.4 L305.1,93.7 L305.3,86.7 L305.4,79.35 L305.6,71.64 L305.7,63.55 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M225.2,63.55 L225.3,71.27 L225.5,78.63 L225.6,85.65 L225.8,92.35 L225.9,98.76 L226.1,104.9 L226.3,110.7 L226.4,116.3 L226.6,121.7 L226.7,126.8 L226.9,131.8 L227,136.5 L227.2,141 L227.3,145.4 L227.5,149.5 L227.6,153.6 L227.8,157.4 L227.9,161.1 L228.1,164.7 L228.2,168.1 L228.4,171.4 L228.5,174.6 L228.7,177.7 L228.9,180.6 L229,183.5 L229.2,186.2 L229.3,188.9 L229.5,191.4 L229.6,193.9 L229.8,196.3 L229.9,198.6 L230.1,200.8 L230.2,203 L230.4,205 L230.5,207 L230.7,209 L230.8,210.8 L231,212.6 L231.2,214.4 L231.3,216.1 L231.5,217.7 L231.6,219.3 L231.8,220.8 L231.9,222.3 L232.1,223.7 L232.2,225.1 L232.4,226.4 L232.5,227.7 L232.7,229 L232.8,230.2 L233,231.4 L233.1,232.5 L233.3,233.6 L233.4,234.6 L233.6,235.7 L233.8,236.7 L233.9,237.6 L234.1,238.5 L234.2,239.4 L234.4,240.3 L234.5,241.1 L234.7,241.9 L234.8,242.7 L235,243.4 L235.1,244.2 L235.3,244.8 L235.4,245.5 L235.6,246.2 L235.7,246.8 L235.9,247.4 L236.1,247.9 L236.2,248.5 L236.4,249 L236.5,249.5 L236.7,250 L236.8,250.4 L237,250.9 L237.1,251.3 L237.3,251.7 L237.4,252.1 L237.6,252.4 L237.7,252.7 L237.9,253.1 L238,253.4 L238.2,253.6 L238.3,253.9 L238.5,254.1 L238.7,254.4 L238.8,254.6 L239,254.8 L239.1,254.9 L239.3,255.1 L239.4,255.2 L239.6,255.3 L239.7,255.4 L239.9,255.5 L240,255.6 L240.2,255.6 L240.3,255.7 L240.5,255.7 L240.6,255.7 L240.8,255.7 L241,255.6 L241.1,255.6 L241.3,255.5 L241.4,255.4 L241.6,255.3 L241.7,255.2 L241.9,255 L242,254.9 L242.2,254.7 L242.3,254.5 L242.5,254.3 L242.6,254 L242.8,253.8 L242.9,253.5 L243.1,253.2 L243.2,252.9 L243.4,252.6 L243.6,252.3 L243.7,251.9 L243.9,251.5 L244,251.1 L244.2,250.7 L244.3,250.2 L244.5,249.8 L244.6,249.3 L244.8,248.8 L244.9,248.2 L245.1,247.7 L245.2,247.1 L245.4,246.5 L245.5,245.8 L245.7,245.2 L245.9,244.5 L246,243.8 L246.2,243.1 L246.3,242.3 L246.5,241.5 L246.6,240.7 L246.8,239.8 L246.9,238.9 L247.1,238 L247.2,237.1 L247.4,236.1 L247.5,235.1 L247.7,234 L247.8,233 L248,231.8 L248.1,230.7 L248.3,229.5 L248.5,228.2 L248.6,226.9 L248.8,225.6 L248.9,224.2 L249.1,222.8 L249.2,221.3 L249.4,219.8 L249.5,218.2 L249.7,216.6 L249.8,214.9 L250,213.2 L250.1,211.4 L250.3,209.5 L250.4,207.6 L250.6,205.6 L250.7,203.5 L250.9,201.4 L251.1,199.1 L251.2,196.8 L251.4,194.5 L251.5,192 L251.7,189.4 L251.8,186.8 L252,184 L252.1,181.2 L252.3,178.2 L252.4,175.1 L252.6,172 L252.7,168.6 L252.9,165.2 L253,161.6 L253.2,157.9 L253.4,154 L253.5,150 L253.7,145.8 L253.8,141.4 L254,136.9 L254.1,132.1 L254.3,127.2 L254.4,122 L254.6,116.6 L254.7,111 L254.9,105.1 L255,98.97 L255.2,92.53 L255.3,85.79 L255.5,78.73 L255.6,71.32 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M175.4,63.55 L175.5,71.2 L175.7,78.49 L175.9,85.44 L176,92.09 L176.2,98.43 L176.3,104.5 L176.5,110.3 L176.6,115.9 L176.8,121.2 L176.9,126.3 L177.1,131.2 L177.2,135.9 L177.4,140.3 L177.5,144.7 L177.7,148.8 L177.8,152.8 L178,156.6 L178.1,160.3 L178.3,163.9 L178.5,167.3 L178.6,170.6 L178.8,173.7 L178.9,176.8 L179.1,179.7 L179.2,182.5 L179.4,185.3 L179.5,187.9 L179.7,190.4 L179.8,192.9 L180,195.2 L180.1,197.5 L180.3,199.7 L180.4,201.9 L180.6,203.9 L180.7,205.9 L180.9,207.8 L181,209.7 L181.2,211.5 L181.4,213.2 L181.5,214.9 L181.7,216.5 L181.8,218.1 L182,219.6 L182.1,221.1 L182.3,222.5 L182.4,223.9 L182.6,225.2 L182.7,226.5 L182.9,227.7 L183,228.9 L183.2,230.1 L183.3,231.2 L183.5,232.3 L183.6,233.4 L183.8,234.4 L184,235.3 L184.1,236.3 L184.3,237.2 L184.4,238.1 L184.6,239 L184.7,239.8 L184.9,240.6 L185,241.3 L185.2,242.1 L185.3,242.8 L185.5,243.5 L185.6,244.1 L185.8,244.8 L185.9,245.4 L186.1,246 L186.2,246.5 L186.4,247.1 L186.6,247.6 L186.7,248.1 L186.9,248.6 L187,249 L187.2,249.5 L187.3,249.9 L187.5,250.3 L187.6,250.6 L187.8,251 L187.9,251.3 L188.1,251.6 L188.2,251.9 L188.4,252.2 L188.5,252.5 L188.7,252.7 L188.8,252.9 L189,253.1 L189.1,253.3 L189.3,253.5 L189.5,253.6 L189.6,253.7 L189.8,253.9 L189.9,254 L190.1,254 L190.2,254.1 L190.4,254.1 L190.5,254.2 L190.7,254.2 L190.8,254.2 L191,254.2 L191.1,254.1 L191.3,254.1 L191.4,254 L191.6,253.9 L191.7,253.8 L191.9,253.7 L192.1,253.5 L192.2,253.3 L192.4,253.2 L192.5,253 L192.7,252.8 L192.8,252.5 L193,252.3 L193.1,252 L193.3,251.7 L193.4,251.4 L193.6,251.1 L193.7,250.7 L193.9,250.4 L194,250 L194.2,249.6 L194.3,249.1 L194.5,248.7 L194.6,248.2 L194.8,247.7 L195,247.2 L195.1,246.7 L195.3,246.1 L195.4,245.5 L195.6,244.9 L195.7,244.3 L195.9,243.6 L196,243 L196.2,242.2 L196.3,241.5 L196.5,240.7 L196.6,240 L196.8,239.1 L196.9,238.3 L197.1,237.4 L197.2,236.5 L197.4,235.5 L197.6,234.6 L197.7,233.6 L197.9,232.5 L198,231.4 L198.2,230.3 L198.3,229.1 L198.5,227.9 L198.6,226.7 L198.8,225.4 L198.9,224.1 L199.1,222.7 L199.2,221.3 L199.4,219.8 L199.5,218.3 L199.7,216.8 L199.8,215.1 L200,213.5 L200.2,211.7 L200.3,209.9 L200.5,208.1 L200.6,206.2 L200.8,204.2 L200.9,202.1 L201.1,200 L201.2,197.8 L201.4,195.5 L201.5,193.1 L201.7,190.7 L201.8,188.1 L202,185.5 L202.1,182.8 L202.3,179.9 L202.4,177 L202.6,174 L202.7,170.8 L202.9,167.5 L203.1,164.1 L203.2,160.5 L203.4,156.8 L203.5,153 L203.7,149 L203.8,144.9 L204,140.5 L204.1,136 L204.3,131.3 L204.4,126.4 L204.6,121.3 L204.7,116 L204.9,110.4 L205,104.6 L205.2,98.53 L205.3,92.17 L205.5,85.51 L205.7,78.53 L205.8,71.22 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M125.6,63.55 L125.8,71.16 L125.9,78.41 L126.1,85.34 L126.2,91.95 L126.4,98.27 L126.5,104.3 L126.7,110.1 L126.8,115.6 L127,120.9 L127.1,126 L127.3,130.9 L127.4,135.5 L127.6,140 L127.7,144.3 L127.9,148.4 L128,152.4 L128.2,156.2 L128.3,159.9 L128.5,163.4 L128.7,166.8 L128.8,170.1 L129,173.2 L129.1,176.3 L129.3,179.2 L129.4,182 L129.6,184.7 L129.7,187.4 L129.9,189.9 L130,192.3 L130.2,194.7 L130.3,197 L130.5,199.2 L130.6,201.3 L130.8,203.3 L130.9,205.3 L131.1,207.2 L131.2,209.1 L131.4,210.9 L131.6,212.6 L131.7,214.3 L131.9,215.9 L132,217.5 L132.2,219 L132.3,220.4 L132.5,221.9 L132.6,223.2 L132.8,224.6 L132.9,225.8 L133.1,227.1 L133.2,228.3 L133.4,229.4 L133.5,230.5 L133.7,231.6 L133.8,232.7 L134,233.7 L134.1,234.7 L134.3,235.6 L134.5,236.5 L134.6,237.4 L134.8,238.3 L134.9,239.1 L135.1,239.9 L135.2,240.6 L135.4,241.4 L135.5,242.1 L135.7,242.8 L135.8,243.4 L136,244.1 L136.1,244.7 L136.3,245.3 L136.4,245.8 L136.6,246.4 L136.7,246.9 L136.9,247.4 L137,247.8 L137.2,248.3 L137.4,248.7 L137.5,249.1 L137.7,249.5 L137.8,249.9 L138,250.3 L138.1,250.6 L138.3,250.9 L138.4,251.2 L138.6,251.5 L138.7,251.7 L138.9,252 L139,252.2 L139.2,252.4 L139.3,252.6 L139.5,252.7 L139.6,252.9 L139.8,253 L139.9,253.1 L140.1,253.2 L140.3,253.3 L140.4,253.3 L140.6,253.4 L140.7,253.4 L140.9,253.4 L141,253.4 L141.2,253.4 L141.3,253.4 L141.5,253.3 L141.6,253.2 L141.8,253.1 L141.9,253 L142.1,252.9 L142.2,252.7 L142.4,252.6 L142.5,252.4 L142.7,252.2 L142.8,252 L143,251.8 L143.2,251.5 L143.3,251.2 L143.5,250.9 L143.6,250.6 L143.8,250.3 L143.9,250 L144.1,249.6 L144.2,249.2 L144.4,248.8 L144.5,248.4 L144.7,247.9 L144.8,247.4 L145,247 L145.1,246.4 L145.3,245.9 L145.4,245.3 L145.6,244.8 L145.8,244.2 L145.9,243.5 L146.1,242.9 L146.2,242.2 L146.4,241.5 L146.5,240.7 L146.7,240 L146.8,239.2 L147,238.4 L147.1,237.5 L147.3,236.6 L147.4,235.7 L147.6,234.8 L147.7,233.8 L147.9,232.8 L148,231.7 L148.2,230.7 L148.3,229.5 L148.5,228.4 L148.7,227.2 L148.8,226 L149,224.7 L149.1,223.4 L149.3,222 L149.4,220.6 L149.6,219.1 L149.7,217.6 L149.9,216 L150,214.4 L150.2,212.7 L150.3,211 L150.5,209.2 L150.6,207.4 L150.8,205.5 L150.9,203.5 L151.1,201.4 L151.2,199.3 L151.4,197.1 L151.6,194.8 L151.7,192.5 L151.9,190 L152,187.5 L152.2,184.9 L152.3,182.2 L152.5,179.3 L152.6,176.4 L152.8,173.4 L152.9,170.2 L153.1,166.9 L153.2,163.5 L153.4,160 L153.5,156.3 L153.7,152.5 L153.8,148.5 L154,144.4 L154.1,140.1 L154.3,135.6 L154.5,130.9 L154.6,126.1 L154.8,121 L154.9,115.7 L155.1,110.2 L155.2,104.4 L155.4,98.32 L155.5,91.99 L155.7,85.37 L155.8,78.44 L156,71.17 " fill="none"/></g>
|
||||
<g clip-path="url(#plot_window)" stroke="rgb(0,0,139)" stroke-width="1"><path d="M75.8,63.55 L75.95,71.13 L76.11,78.37 L76.26,85.27 L76.41,91.86 L76.56,98.16 L76.72,104.2 L76.87,109.9 L77.02,115.5 L77.17,120.7 L77.33,125.8 L77.48,130.7 L77.63,135.3 L77.78,139.8 L77.94,144.1 L78.09,148.2 L78.24,152.2 L78.39,156 L78.55,159.6 L78.7,163.1 L78.85,166.5 L79,169.8 L79.16,172.9 L79.31,176 L79.46,178.9 L79.61,181.7 L79.77,184.4 L79.92,187 L80.07,189.6 L80.22,192 L80.38,194.3 L80.53,196.6 L80.68,198.8 L80.83,200.9 L80.99,203 L81.14,205 L81.29,206.9 L81.44,208.7 L81.6,210.5 L81.75,212.2 L81.9,213.9 L82.05,215.5 L82.21,217.1 L82.36,218.6 L82.51,220.1 L82.67,221.5 L82.82,222.8 L82.97,224.2 L83.12,225.4 L83.28,226.7 L83.43,227.9 L83.58,229 L83.73,230.1 L83.89,231.2 L84.04,232.3 L84.19,233.3 L84.34,234.3 L84.5,235.2 L84.65,236.1 L84.8,237 L84.95,237.8 L85.11,238.7 L85.26,239.5 L85.41,240.2 L85.56,241 L85.72,241.7 L85.87,242.3 L86.02,243 L86.17,243.6 L86.33,244.2 L86.48,244.8 L86.63,245.4 L86.78,245.9 L86.94,246.4 L87.09,246.9 L87.24,247.4 L87.39,247.9 L87.55,248.3 L87.7,248.7 L87.85,249.1 L88,249.5 L88.16,249.8 L88.31,250.1 L88.46,250.4 L88.62,250.7 L88.77,251 L88.92,251.3 L89.07,251.5 L89.23,251.7 L89.38,251.9 L89.53,252.1 L89.68,252.3 L89.84,252.4 L89.99,252.5 L90.14,252.7 L90.29,252.7 L90.45,252.8 L90.6,252.9 L90.75,252.9 L90.9,253 L91.06,253 L91.21,253 L91.36,252.9 L91.51,252.9 L91.67,252.8 L91.82,252.8 L91.97,252.7 L92.12,252.6 L92.28,252.4 L92.43,252.3 L92.58,252.1 L92.73,251.9 L92.89,251.7 L93.04,251.5 L93.19,251.3 L93.34,251 L93.5,250.8 L93.65,250.5 L93.8,250.2 L93.95,249.8 L94.11,249.5 L94.26,249.1 L94.41,248.7 L94.56,248.3 L94.72,247.9 L94.87,247.5 L95.02,247 L95.18,246.5 L95.33,246 L95.48,245.4 L95.63,244.9 L95.79,244.3 L95.94,243.7 L96.09,243.1 L96.24,242.4 L96.4,241.7 L96.55,241 L96.7,240.3 L96.85,239.5 L97.01,238.7 L97.16,237.9 L97.31,237.1 L97.46,236.2 L97.62,235.3 L97.77,234.3 L97.92,233.4 L98.07,232.3 L98.23,231.3 L98.38,230.2 L98.53,229.1 L98.68,227.9 L98.84,226.7 L98.99,225.5 L99.14,224.2 L99.29,222.9 L99.45,221.5 L99.6,220.1 L99.75,218.7 L99.9,217.2 L100.1,215.6 L100.2,214 L100.4,212.3 L100.5,210.6 L100.7,208.8 L100.8,207 L101,205.1 L101.1,203.1 L101.3,201 L101.4,198.9 L101.6,196.7 L101.7,194.4 L101.9,192.1 L102,189.6 L102.2,187.1 L102.3,184.5 L102.5,181.8 L102.7,179 L102.8,176.1 L103,173 L103.1,169.9 L103.3,166.6 L103.4,163.2 L103.6,159.7 L103.7,156 L103.9,152.2 L104,148.3 L104.2,144.1 L104.3,139.9 L104.5,135.4 L104.6,130.7 L104.8,125.9 L104.9,120.8 L105.1,115.5 L105.2,110 L105.4,104.2 L105.5,98.2 L105.7,91.89 L105.9,85.29 L106,78.38 L106.2,71.14 " fill="none"/></g>
|
||||
</g>
|
||||
<g id="plotPoints" clip-path="url(#plot_window)"></g>
|
||||
<g id="title">
|
||||
<text x="300" y="40" text-anchor="middle" font-size="20" font-family="Verdana">Trigamma</text></g>
|
||||
<g id="plotXValues"></g>
|
||||
<g id="plotYValues"></g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 21 KiB |
@@ -111,7 +111,7 @@ This manual is also available in <a href="http://sourceforge.net/projects/boost/
|
||||
</div>
|
||||
</div>
|
||||
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
||||
<td align="left"><p><small>Last revised: November 08, 2014 at 11:40:24 GMT</small></p></td>
|
||||
<td align="left"><p><small>Last revised: November 08, 2014 at 18:57:03 GMT</small></p></td>
|
||||
<td align="right"><div class="copyright-footer"></div></td>
|
||||
</tr></table>
|
||||
<hr>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="idm1504580752"></a>Function Index</h2></div></div></div>
|
||||
<a name="idm1504600816"></a>Function Index</h2></div></div></div>
|
||||
<p><a class="link" href="s01.html#idx_id_0">A</a> <a class="link" href="s01.html#idx_id_1">B</a> <a class="link" href="s01.html#idx_id_2">C</a> <a class="link" href="s01.html#idx_id_3">D</a> <a class="link" href="s01.html#idx_id_4">E</a> <a class="link" href="s01.html#idx_id_5">F</a> <a class="link" href="s01.html#idx_id_6">G</a> <a class="link" href="s01.html#idx_id_7">H</a> <a class="link" href="s01.html#idx_id_8">I</a> <a class="link" href="s01.html#idx_id_9">J</a> <a class="link" href="s01.html#idx_id_10">K</a> <a class="link" href="s01.html#idx_id_11">L</a> <a class="link" href="s01.html#idx_id_12">M</a> <a class="link" href="s01.html#idx_id_13">N</a> <a class="link" href="s01.html#idx_id_14">O</a> <a class="link" href="s01.html#idx_id_15">P</a> <a class="link" href="s01.html#idx_id_16">Q</a> <a class="link" href="s01.html#idx_id_17">R</a> <a class="link" href="s01.html#idx_id_18">S</a> <a class="link" href="s01.html#idx_id_19">T</a> <a class="link" href="s01.html#idx_id_20">U</a> <a class="link" href="s01.html#idx_id_21">V</a> <a class="link" href="s01.html#idx_id_23">Z</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="idm1502735136"></a>Class Index</h2></div></div></div>
|
||||
<a name="idm1502786464"></a>Class Index</h2></div></div></div>
|
||||
<p><a class="link" href="s02.html#idx_id_25">B</a> <a class="link" href="s02.html#idx_id_26">C</a> <a class="link" href="s02.html#idx_id_27">D</a> <a class="link" href="s02.html#idx_id_28">E</a> <a class="link" href="s02.html#idx_id_29">F</a> <a class="link" href="s02.html#idx_id_30">G</a> <a class="link" href="s02.html#idx_id_31">H</a> <a class="link" href="s02.html#idx_id_32">I</a> <a class="link" href="s02.html#idx_id_35">L</a> <a class="link" href="s02.html#idx_id_36">M</a> <a class="link" href="s02.html#idx_id_37">N</a> <a class="link" href="s02.html#idx_id_38">O</a> <a class="link" href="s02.html#idx_id_39">P</a> <a class="link" href="s02.html#idx_id_40">Q</a> <a class="link" href="s02.html#idx_id_41">R</a> <a class="link" href="s02.html#idx_id_42">S</a> <a class="link" href="s02.html#idx_id_43">T</a> <a class="link" href="s02.html#idx_id_44">U</a> <a class="link" href="s02.html#idx_id_46">W</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="idm1502620064"></a>Typedef Index</h2></div></div></div>
|
||||
<a name="idm1502671520"></a>Typedef Index</h2></div></div></div>
|
||||
<p><a class="link" href="s03.html#idx_id_48">A</a> <a class="link" href="s03.html#idx_id_49">B</a> <a class="link" href="s03.html#idx_id_50">C</a> <a class="link" href="s03.html#idx_id_51">D</a> <a class="link" href="s03.html#idx_id_52">E</a> <a class="link" href="s03.html#idx_id_53">F</a> <a class="link" href="s03.html#idx_id_54">G</a> <a class="link" href="s03.html#idx_id_55">H</a> <a class="link" href="s03.html#idx_id_56">I</a> <a class="link" href="s03.html#idx_id_59">L</a> <a class="link" href="s03.html#idx_id_61">N</a> <a class="link" href="s03.html#idx_id_62">O</a> <a class="link" href="s03.html#idx_id_63">P</a> <a class="link" href="s03.html#idx_id_65">R</a> <a class="link" href="s03.html#idx_id_66">S</a> <a class="link" href="s03.html#idx_id_67">T</a> <a class="link" href="s03.html#idx_id_68">U</a> <a class="link" href="s03.html#idx_id_69">V</a> <a class="link" href="s03.html#idx_id_70">W</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="idm1502409248"></a>Macro Index</h2></div></div></div>
|
||||
<a name="idm1502395040"></a>Macro Index</h2></div></div></div>
|
||||
<p><a class="link" href="s04.html#idx_id_73">B</a> <a class="link" href="s04.html#idx_id_77">F</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -23,7 +23,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="idm1502002336"></a>Index</h2></div></div></div>
|
||||
<a name="idm1502250400"></a>Index</h2></div></div></div>
|
||||
<p><a class="link" href="s05.html#idx_id_96">A</a> <a class="link" href="s05.html#idx_id_97">B</a> <a class="link" href="s05.html#idx_id_98">C</a> <a class="link" href="s05.html#idx_id_99">D</a> <a class="link" href="s05.html#idx_id_100">E</a> <a class="link" href="s05.html#idx_id_101">F</a> <a class="link" href="s05.html#idx_id_102">G</a> <a class="link" href="s05.html#idx_id_103">H</a> <a class="link" href="s05.html#idx_id_104">I</a> <a class="link" href="s05.html#idx_id_105">J</a> <a class="link" href="s05.html#idx_id_106">K</a> <a class="link" href="s05.html#idx_id_107">L</a> <a class="link" href="s05.html#idx_id_108">M</a> <a class="link" href="s05.html#idx_id_109">N</a> <a class="link" href="s05.html#idx_id_110">O</a> <a class="link" href="s05.html#idx_id_111">P</a> <a class="link" href="s05.html#idx_id_112">Q</a> <a class="link" href="s05.html#idx_id_113">R</a> <a class="link" href="s05.html#idx_id_114">S</a> <a class="link" href="s05.html#idx_id_115">T</a> <a class="link" href="s05.html#idx_id_116">U</a> <a class="link" href="s05.html#idx_id_117">V</a> <a class="link" href="s05.html#idx_id_118">W</a> <a class="link" href="s05.html#idx_id_119">Z</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
<a name="math_toolkit.conventions"></a><a class="link" href="conventions.html" title="Document Conventions">Document Conventions</a>
|
||||
</h2></div></div></div>
|
||||
<p>
|
||||
<a class="indexterm" name="idm1568176912"></a>
|
||||
<a class="indexterm" name="idm1568337152"></a>
|
||||
</p>
|
||||
<p>
|
||||
This documentation aims to use of the following naming and formatting conventions.
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
<a name="math_toolkit.navigation"></a><a class="link" href="navigation.html" title="Navigation">Navigation</a>
|
||||
</h2></div></div></div>
|
||||
<p>
|
||||
<a class="indexterm" name="idm1568190608"></a>
|
||||
<a class="indexterm" name="idm1568350848"></a>
|
||||
</p>
|
||||
<p>
|
||||
Boost.Math documentation is provided in both HTML and PDF formats.
|
||||
|
||||
@@ -54,7 +54,12 @@
|
||||
<span class="inlinemediaobject"><img src="../../../equations/polygamma1.png"></span>
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../graphs/polygamma.png" align="middle"></span>
|
||||
The following graphs illustrate the behaviour of the function for odd and
|
||||
even order:
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../graphs/polygamma2.png" align="middle"></span>
|
||||
<span class="inlinemediaobject"><img src="../../../graphs/polygamma3.png" align="middle"></span>
|
||||
</p>
|
||||
<p>
|
||||
The final <a class="link" href="../../policy.html" title="Chapter 14. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
||||
@@ -217,7 +222,13 @@
|
||||
</p>
|
||||
<p>
|
||||
The coefficients of the cosine terms can be calculated iteratively starting
|
||||
from <span class="emphasis"><em>C<sub>1,0</sub> = -1</em></span>: see polygamma.hpp for the full details.
|
||||
from <span class="emphasis"><em>C<sub>1,0</sub> = -1</em></span> and then using
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../equations/polygamma7.png"></span>
|
||||
</p>
|
||||
<p>
|
||||
to generate coefficients for n+1.
|
||||
</p>
|
||||
<p>
|
||||
Once x is positive then we have two methods available to us, for small x
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
<span class="inlinemediaobject"><img src="../../../equations/trigamma1.png"></span>
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../graphs/digamma.png" align="middle"></span>
|
||||
<span class="inlinemediaobject"><img src="../../../graphs/trigamma.png" align="middle"></span>
|
||||
</p>
|
||||
<p>
|
||||
The final <a class="link" href="../../policy.html" title="Chapter 14. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
||||
|
||||
@@ -292,6 +292,23 @@
|
||||
of: ε/R(0). This saves us quite a few digits when dealing with large z, especially
|
||||
when ε is small.
|
||||
</p>
|
||||
<p>
|
||||
Finally, there are some special cases for integer arguments, there are closed
|
||||
forms for negative or even integers:
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../equations/zeta7.png"></span>
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../equations/zeta8.png"></span>
|
||||
</p>
|
||||
<p>
|
||||
<span class="inlinemediaobject"><img src="../../../equations/zeta9.png"></span>
|
||||
</p>
|
||||
<p>
|
||||
and for positive odd integers we simply cache pre-computed values as these
|
||||
are of great benefit to some infinite series calculations.
|
||||
</p>
|
||||
</div>
|
||||
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
||||
<td align="left"></td>
|
||||
|
||||
@@ -23,7 +23,10 @@ derivative of the digamma function:
|
||||
|
||||
[equation polygamma1]
|
||||
|
||||
[graph polygamma]
|
||||
The following graphs illustrate the behaviour of the function for odd and even order:
|
||||
|
||||
[graph polygamma2]
|
||||
[graph polygamma3]
|
||||
|
||||
[optional_policy]
|
||||
|
||||
@@ -70,7 +73,11 @@ has the general form:
|
||||
[equation polygamma3]
|
||||
|
||||
The coefficients of the cosine terms can be calculated iteratively starting
|
||||
from ['C[sub 1,0] = -1]: see polygamma.hpp for the full details.
|
||||
from ['C[sub 1,0] = -1] and then using
|
||||
|
||||
[equation polygamma7]
|
||||
|
||||
to generate coefficients for n+1.
|
||||
|
||||
Once x is positive then we have two methods available to us, for small x
|
||||
we use the series expansion:
|
||||
|
||||
@@ -23,7 +23,7 @@ derivative of the digamma function:
|
||||
|
||||
[equation trigamma1]
|
||||
|
||||
[graph digamma]
|
||||
[graph trigamma]
|
||||
|
||||
[optional_policy]
|
||||
|
||||
|
||||
@@ -112,6 +112,18 @@ required for R(z-n) is not full machine precision, but an absolute error
|
||||
of: [epsilon]/R(0). This saves us quite a few digits when dealing with large
|
||||
z, especially when [epsilon] is small.
|
||||
|
||||
Finally, there are some special cases for integer arguments, there are
|
||||
closed forms for negative or even integers:
|
||||
|
||||
[equation zeta7]
|
||||
|
||||
[equation zeta8]
|
||||
|
||||
[equation zeta9]
|
||||
|
||||
and for positive odd integers we simply cache pre-computed values as these are of great
|
||||
benefit to some infinite series calculations.
|
||||
|
||||
[endsect]
|
||||
[/ :error_function The Error Functions]
|
||||
|
||||
|
||||