2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-29 07:42:11 +00:00

Corrected Bessel zeros when used with a multiprecision type having et_on.

[SVN r82615]
This commit is contained in:
Christopher Kormanyos
2013-01-25 21:51:40 +00:00
parent 4a64953dc7
commit 68e04a0bed
3 changed files with 13 additions and 25 deletions

View File

@@ -376,7 +376,7 @@ inline T cyl_bessel_j_zero_imp(T v, unsigned m, const Policy& pol)
// Handle negative order or if the zero'th zero is requested.
// Return NaN if NaN is available or return 0 if NaN is not available.
if((v < T(0)) || (m == 0U))
if((v < 0) || (m == 0U))
return (std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T(0));
// Set up the initial guess for the upcoming root-finding.
@@ -419,7 +419,7 @@ inline void cyl_bessel_j_zero_imp(output_iterator out_it,
while(out_it != end_it)
{
*out_it = boost::math::detail::cyl_bessel_j_zero_imp(v, start_index, pol);
*out_it = boost::math::detail::cyl_bessel_j_zero_imp<T, Policy>(v, start_index, pol);
++start_index;
++out_it;
}

View File

@@ -33,7 +33,7 @@
namespace bessel_zero
{
template<class T>
T equation_nist_10_21_19(const T& v, const T& a)
T equation_nist_10_21_19(T v, T a)
{
// Get the initial estimate of the m'th root of Jv or Yv.
// This subroutine is used for the order m with m > 1.
@@ -60,9 +60,9 @@
class equation_as_9_3_39_and_its_derivative
{
public:
equation_as_9_3_39_and_its_derivative(const T& zt) : zeta(zt) { }
equation_as_9_3_39_and_its_derivative(T zt) : zeta(zt) { }
boost::math::tuple<T, T> operator()(const T& z) const
boost::math::tuple<T, T> operator()(T z) const
{
BOOST_MATH_STD_USING // ADL of std names, needed for acos, sqrt.
@@ -86,7 +86,7 @@
};
template<class T>
static T equation_as_9_5_26(const T& v, const T& ai_bi_root)
static T equation_as_9_5_26(T v, T ai_bi_root)
{
BOOST_MATH_STD_USING // ADL of std names, needed for pow.
@@ -165,7 +165,7 @@
namespace cyl_bessel_j_zero_detail
{
template<class T>
T equation_nist_10_21_40_a(const T& v)
T equation_nist_10_21_40_a(T v)
{
BOOST_MATH_STD_USING // ADL of std names, needed for pow.
@@ -180,7 +180,7 @@
}
template<class T>
T initial_guess(const T& v, unsigned m)
T initial_guess(T v, unsigned m)
{
// Compute an estimate of the m'th root of cyl_bessel_j.
@@ -241,11 +241,11 @@
class function_object
{
public:
function_object(const T& v,
function_object(T v,
const Policy& pol) : my_v(v),
my_pol(pol) { }
boost::math::tuple<T, T> operator()(const T& x) const
boost::math::tuple<T, T> operator()(T x) const
{
// Obtain Jv(x) and Jv'(x).
const T j_v (boost::math::detail::cyl_bessel_j_imp( my_v, x, boost::math::detail::bessel_no_int_tag(), my_pol));
@@ -265,7 +265,7 @@
namespace cyl_neumann_zero_detail
{
template<class T>
T equation_nist_10_21_40_b(const T& v)
T equation_nist_10_21_40_b(T v)
{
BOOST_MATH_STD_USING // ADL of std names, needed for pow.
@@ -341,11 +341,11 @@
class function_object
{
public:
function_object(const T& v,
function_object(T v,
const Policy& pol) : my_v(v),
my_pol(pol) { }
boost::math::tuple<T, T> operator()(const T& x) const
boost::math::tuple<T, T> operator()(T x) const
{
// Obtain Yv(x) and Yv'(x).
const T y_v (boost::math::detail::cyl_neumann_imp( my_v, x, boost::math::detail::bessel_no_int_tag(), my_pol));

View File

@@ -623,12 +623,6 @@ namespace boost
template <class T1, class T2, class Policy>
std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> cyl_hankel_1(T1 v, T2 x, const Policy& pol);
template <class output_iterator, class T>
inline void cyl_bessel_j_zero_imp(output_iterator out_it,
T v,
std::size_t number_of_zeros,
unsigned start_index);
template <class T, class Policy>
typename detail::bessel_traits<T, T, Policy>::result_type cyl_neuman_zero(T v, unsigned m, const Policy& pol);
@@ -638,12 +632,6 @@ namespace boost
template <class T1, class T2, class Policy>
std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> cyl_hankel_1(T1 v, T2 x, const Policy& pol);
template <class output_iterator, class T>
inline void cyl_neuman_zero_imp(output_iterator out_it,
T v,
std::size_t number_of_zeros,
unsigned start_index);
template <class T1, class T2>
std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> cyl_hankel_1(T1 v, T2 x);