mirror of
https://github.com/boostorg/math.git
synced 2026-01-26 18:52:10 +00:00
updated text
updated table with equations [SVN r50239]
This commit is contained in:
@@ -41,7 +41,7 @@ probability density function:
|
||||
[equation laplace_pdf]
|
||||
|
||||
The location and scale parameters are equivalent to the mean and
|
||||
standard deviation of the logarithm of the random variable.
|
||||
standard deviation.
|
||||
|
||||
The following graph illustrates the effect of the location
|
||||
parameter on the PDF, note that the range of the random
|
||||
@@ -61,11 +61,9 @@ The next graph illustrates the effect of the scale parameter on the PDF:
|
||||
Constructs a laplace distribution with location /location/ and
|
||||
scale /scale/.
|
||||
|
||||
The location parameter is the same as the mean of the logarithm of the
|
||||
random variate.
|
||||
The location parameter is the same as the mean of the random variate.
|
||||
|
||||
The scale parameter is the same as the standard deviation of the
|
||||
logarithm of the random variate.
|
||||
The scale parameter is proportional to the standard deviation of the random variate.
|
||||
|
||||
Requires that the scale parameter is greater than zero, otherwise calls
|
||||
__domain_error.
|
||||
@@ -83,14 +81,12 @@ Returns the /scale/ parameter of this distribution.
|
||||
All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions] that are generic to all
|
||||
distributions are supported: __usual_accessors.
|
||||
|
||||
The domain of the random variable is \[0,+[infin]\].
|
||||
The domain of the random variable is \[-[infin],+[infin]\].
|
||||
|
||||
[h4 Accuracy]
|
||||
|
||||
The laplace distribution is implemented in terms of the
|
||||
standard library log and exp functions, plus the
|
||||
[link math_toolkit.special.sf_erf.error_function error function],
|
||||
and as such should have very low error rates.
|
||||
standard library log and exp functions and as such should have very low error rates.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
@@ -100,17 +96,37 @@ and /q = 1-p/.
|
||||
|
||||
[table
|
||||
[[Function][Implementation Notes]]
|
||||
[[pdf][Using the relation: pdf = e[super -(ln(x) - m)[super 2 ] \/ 2s[super 2 ] ] \/ (x * s * sqrt(2pi)) ]]
|
||||
[[cdf][Using the relation: p = cdf(normal_distribtion<RealType>(m, s), log(x)) ]]
|
||||
[[cdf complement][Using the relation: q = cdf(complement(normal_distribtion<RealType>(m, s), log(x))) ]]
|
||||
[[quantile][Using the relation: x = exp(quantile(normal_distribtion<RealType>(m, s), p))]]
|
||||
[[quantile from the complement][Using the relation: x = exp(quantile(complement(normal_distribtion<RealType>(m, s), q)))]]
|
||||
[[mean][e[super m + s[super 2 ] / 2 ] ]]
|
||||
[[variance][(e[super s[super 2] ] - 1) * e[super 2m + s[super 2 ] ] ]]
|
||||
[[mode][e[super m + s[super 2 ] ] ]]
|
||||
[[skewness][sqrt(e[super s[super 2] ] - 1) * (2 + e[super s[super 2] ]) ]]
|
||||
[[kurtosis][e[super 4s[super 2] ] + 2e[super 3s[super 2] ] + 3e[super 2s[super 2] ] - 3]]
|
||||
[[kurtosis excess][e[super 4s[super 2] ] + 2e[super 3s[super 2] ] + 3e[super 2s[super 2] ] - 6 ]]
|
||||
[[pdf][Using the relation: pdf = e[super -abs(x-m) \/ s] \/ (2 * s) ]]
|
||||
[[cdf][Using the relations:
|
||||
|
||||
x < m : p = e[super (x-m)/s ] \/ s
|
||||
|
||||
x >= m : p = 1 - e[super (m-x)/s ] \/ s
|
||||
]]
|
||||
[[cdf complement][Using the relation:
|
||||
|
||||
-x < m : q = e[super (-x-m)/s ] \/ s
|
||||
|
||||
-x >= m : q = 1 - e[super (m+x)/s ] \/ s
|
||||
]]
|
||||
[[quantile][Using the relations:
|
||||
|
||||
p < 0.5 : x = m + s * log(2*p)
|
||||
|
||||
p >= 0.5 : x = m - s * log(2-2*p)
|
||||
]]
|
||||
[[quantile from the complement][Using the relation:
|
||||
|
||||
q > 0.5: x = m + s*log(2-2*q)
|
||||
|
||||
q <=0.5: x = m - s*log( 2*q )
|
||||
]]
|
||||
[[mean][m]]
|
||||
[[variance][2 * s[super 2] ]]
|
||||
[[mode][m]]
|
||||
[[skewness][0]]
|
||||
[[kurtosis][6]]
|
||||
[[kurtosis excess][3]]
|
||||
]
|
||||
|
||||
[h4 References]
|
||||
|
||||
Reference in New Issue
Block a user