mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
[CI SKIP] More cosmetic and link edits to get Inspect.exe passes except for links to [@boost: which shoudl work OK when built for the documentation. Ready to merge with develop, touch wood.
This commit is contained in:
@@ -208,7 +208,7 @@ Now even when the confidence level is very high, the limits are really
|
||||
quite close to the experimentally calculated value of 0.2. Furthermore
|
||||
the difference between the two calculation methods is now really quite small.
|
||||
|
||||
[endsect]
|
||||
[endsect] [/section:binom_conf Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution]
|
||||
|
||||
[section:binom_size_eg Estimating Sample Sizes for a Binomial Distribution.]
|
||||
|
||||
|
||||
@@ -29,7 +29,7 @@ given by:
|
||||
|
||||
[equation cauchy_ref1]
|
||||
|
||||
The location parameter x[sub 0] is the location of the
|
||||
The location parameter ['x[sub 0]] is the location of the
|
||||
peak of the distribution (the mode of the distribution),
|
||||
while the scale parameter [gamma] specifies half the width
|
||||
of the PDF at half the maximum height. If the location is
|
||||
@@ -103,7 +103,7 @@ In the following table __x0 is the location parameter of the distribution,
|
||||
|
||||
[table
|
||||
[[Function][Implementation Notes]]
|
||||
[[pdf][Using the relation: pdf = 1 / ([pi] * [gamma] * (1 + ((x - __x0) / [gamma])[super 2]) ]]
|
||||
[[pdf][Using the relation: ['pdf = 1 / ([pi] * [gamma] * (1 + ((x - __x0) / [gamma])[super 2]) ]]]
|
||||
[[cdf and its complement][
|
||||
The cdf is normally given by:
|
||||
|
||||
@@ -130,7 +130,7 @@ or not, and whether /x/ is less than __x0 or not.
|
||||
from the probability or its complement. First the argument /p/ is
|
||||
reduced to the range \[-0.5, 0.5\], then the relation
|
||||
|
||||
x = __x0 [plusminus] [gamma] / tan([pi] * p)
|
||||
[expression x = __x0 [plusminus] [gamma] / tan([pi] * p)]
|
||||
|
||||
is used to obtain the result. Whether we're adding
|
||||
or subtracting from __x0 is determined by whether we're
|
||||
|
||||
@@ -47,7 +47,7 @@ probability density function:
|
||||
[equation gamma_dist_ref1]
|
||||
|
||||
Sometimes an alternative formulation is used: given parameters
|
||||
[alpha]= k and [beta]= 1 / [theta], then the
|
||||
[alpha] = k and [beta] = 1 / [theta], then the
|
||||
distribution can be defined by the PDF:
|
||||
|
||||
[equation gamma_dist_ref2]
|
||||
|
||||
@@ -63,7 +63,7 @@ The geometric distribution assumes that success_fraction /p/ is fixed for all /k
|
||||
|
||||
The probability that there are /k/ failures before the first success
|
||||
|
||||
[expression Pr(Y=/k/) = (1-/p/)[super /k/]/p/]
|
||||
[expression Pr(Y=/k/) = (1-/p/)[super /k/] /p/]
|
||||
|
||||
For example, when throwing a 6-face dice the success probability /p/ = 1/6 = 0.1666[recur].
|
||||
Throwing repeatedly until a /three/ appears,
|
||||
@@ -71,7 +71,7 @@ the probability distribution of the number of times /not-a-three/ is thrown is g
|
||||
|
||||
Geometric distribution has the Probability Density Function PDF:
|
||||
|
||||
[expression (1-/p/)[super /k/]/p/]
|
||||
[expression (1-/p/)[super /k/] /p/]
|
||||
|
||||
The following graph illustrates how the PDF and CDF vary for three examples
|
||||
of the success fraction /p/,
|
||||
|
||||
@@ -32,7 +32,7 @@ It is also called the double exponential distribution.
|
||||
[/ Wikipedia definition is The difference between two independent identically distributed
|
||||
exponential random variables is governed by a Laplace distribution.]
|
||||
|
||||
For location parameter /[mu]/ and scale parameter /[sigma]/, it is defined by the
|
||||
For location parameter ['[mu]] and scale parameter ['[sigma]], it is defined by the
|
||||
probability density function:
|
||||
|
||||
[equation laplace_pdf]
|
||||
|
||||
@@ -31,7 +31,7 @@ is a continuous distribution with the
|
||||
|
||||
[expression f(x; sigma) = x * exp(-x[super 2]/2 [sigma][super 2]) / [sigma][super 2]]
|
||||
|
||||
For sigma parameter /[sigma]/ > 0, and /x/ > 0.
|
||||
For sigma parameter ['[sigma]] > 0, and /x/ > 0.
|
||||
|
||||
The Rayleigh distribution is often used where two orthogonal components
|
||||
have an absolute value,
|
||||
|
||||
@@ -45,9 +45,8 @@ The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distributi
|
||||
is a distribution with the
|
||||
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function]:
|
||||
|
||||
[expression f(x) =]
|
||||
[expression[:2(x-a)/(b-a) (c-a) [:for a <= x <= c]]]
|
||||
[expression[:2(b-x)/(b-a) (b-c) [:for c < x <= b]]]
|
||||
[expression f(x) = 2(x-a)/(b-a) (c-a) [sixemspace] for a <= x <= c]
|
||||
[expression f(x) = 2(b-x)/(b-a) (b-c) [sixemspace] for c < x <= b]
|
||||
|
||||
Parameter ['a] (lower) can be any finite value.
|
||||
Parameter ['b] (upper) can be any finite value > a (lower).
|
||||
|
||||
@@ -32,15 +32,14 @@ The [@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 continu
|
||||
is a distribution with the
|
||||
[@http://en.wikipedia.org/wiki/Probability_density_function probability density function]:
|
||||
|
||||
[expression f(x) =]
|
||||
[expression 1 / (upper - lower) for lower < x < upper]
|
||||
[expression zero for x < lower or x > upper]
|
||||
[expression f(x) =1 / (upper - lower) [sixemspace] for lower < x < upper]
|
||||
[expression f(x) =zero [sixemspace] for x < lower or x > upper]
|
||||
|
||||
and in this implementation:
|
||||
|
||||
[expression 1 / (upper - lower) for x = lower or x = upper]
|
||||
[expression 1 / (upper - lower) [sixemspace] for x = lower or x = upper]
|
||||
|
||||
The choice of x = lower or x = upper is made because statistical use of this distribution judged is most likely:
|
||||
The choice of /x = lower/ or /x = upper/ is made because statistical use of this distribution judged is most likely:
|
||||
the method of maximum likelihood uses this definition.
|
||||
|
||||
There is also a [@http://en.wikipedia.org/wiki/Discrete_uniform_distribution *discrete* uniform distribution].
|
||||
@@ -48,7 +47,7 @@ There is also a [@http://en.wikipedia.org/wiki/Discrete_uniform_distribution *di
|
||||
Parameters lower and upper can be any finite value.
|
||||
|
||||
The [@http://en.wikipedia.org/wiki/Random_variate random variate]
|
||||
x must also be finite, and is supported lower <= x <= upper.
|
||||
/x/ must also be finite, and is supported /lower <= x <= upper/.
|
||||
|
||||
The lower parameter is also called the
|
||||
[@http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm location parameter],
|
||||
|
||||
@@ -38,7 +38,6 @@ with small differences, and due to the way floating-point values are encoded can
|
||||
edit distance. This is the method documented below: if `float_distance` is a surgeon's scalpel, then `relative_difference` is more
|
||||
like a Swiss army knife: both have important but different use cases.
|
||||
|
||||
|
||||
[h5:fp_relative Relative Comparison of Floating-point Values]
|
||||
|
||||
|
||||
|
||||
@@ -126,7 +126,7 @@ This manual is also available in <a href="http://sourceforge.net/projects/boost/
|
||||
</div>
|
||||
</div>
|
||||
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
||||
<td align="left"><p><small>Last revised: August 12, 2019 at 14:22:55 GMT</small></p></td>
|
||||
<td align="left"><p><small>Last revised: August 12, 2019 at 16:46:42 GMT</small></p></td>
|
||||
<td align="right"><div class="copyright-footer"></div></td>
|
||||
</tr></table>
|
||||
<hr>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="id1971716"></a>Function Index</h2></div></div></div>
|
||||
<a name="id1971899"></a>Function Index</h2></div></div></div>
|
||||
<p><a class="link" href="s01.html#idx_id_0">1</a> <a class="link" href="s01.html#idx_id_1">2</a> <a class="link" href="s01.html#idx_id_2">4</a> <a class="link" href="s01.html#idx_id_5">A</a> <a class="link" href="s01.html#idx_id_6">B</a> <a class="link" href="s01.html#idx_id_7">C</a> <a class="link" href="s01.html#idx_id_8">D</a> <a class="link" href="s01.html#idx_id_9">E</a> <a class="link" href="s01.html#idx_id_10">F</a> <a class="link" href="s01.html#idx_id_11">G</a> <a class="link" href="s01.html#idx_id_12">H</a> <a class="link" href="s01.html#idx_id_13">I</a> <a class="link" href="s01.html#idx_id_14">J</a> <a class="link" href="s01.html#idx_id_15">K</a> <a class="link" href="s01.html#idx_id_16">L</a> <a class="link" href="s01.html#idx_id_17">M</a> <a class="link" href="s01.html#idx_id_18">N</a> <a class="link" href="s01.html#idx_id_19">O</a> <a class="link" href="s01.html#idx_id_20">P</a> <a class="link" href="s01.html#idx_id_21">Q</a> <a class="link" href="s01.html#idx_id_22">R</a> <a class="link" href="s01.html#idx_id_23">S</a> <a class="link" href="s01.html#idx_id_24">T</a> <a class="link" href="s01.html#idx_id_25">U</a> <a class="link" href="s01.html#idx_id_26">V</a> <a class="link" href="s01.html#idx_id_27">W</a> <a class="link" href="s01.html#idx_id_28">X</a> <a class="link" href="s01.html#idx_id_29">Y</a> <a class="link" href="s01.html#idx_id_30">Z</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="id1996110"></a>Class Index</h2></div></div></div>
|
||||
<a name="id1999980"></a>Class Index</h2></div></div></div>
|
||||
<p><a class="link" href="s02.html#idx_id_36">A</a> <a class="link" href="s02.html#idx_id_37">B</a> <a class="link" href="s02.html#idx_id_38">C</a> <a class="link" href="s02.html#idx_id_39">D</a> <a class="link" href="s02.html#idx_id_40">E</a> <a class="link" href="s02.html#idx_id_41">F</a> <a class="link" href="s02.html#idx_id_42">G</a> <a class="link" href="s02.html#idx_id_43">H</a> <a class="link" href="s02.html#idx_id_44">I</a> <a class="link" href="s02.html#idx_id_47">L</a> <a class="link" href="s02.html#idx_id_48">M</a> <a class="link" href="s02.html#idx_id_49">N</a> <a class="link" href="s02.html#idx_id_50">O</a> <a class="link" href="s02.html#idx_id_51">P</a> <a class="link" href="s02.html#idx_id_52">Q</a> <a class="link" href="s02.html#idx_id_53">R</a> <a class="link" href="s02.html#idx_id_54">S</a> <a class="link" href="s02.html#idx_id_55">T</a> <a class="link" href="s02.html#idx_id_56">U</a> <a class="link" href="s02.html#idx_id_57">V</a> <a class="link" href="s02.html#idx_id_58">W</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="id2001226"></a>Typedef Index</h2></div></div></div>
|
||||
<a name="id2002651"></a>Typedef Index</h2></div></div></div>
|
||||
<p><a class="link" href="s03.html#idx_id_67">A</a> <a class="link" href="s03.html#idx_id_68">B</a> <a class="link" href="s03.html#idx_id_69">C</a> <a class="link" href="s03.html#idx_id_70">D</a> <a class="link" href="s03.html#idx_id_71">E</a> <a class="link" href="s03.html#idx_id_72">F</a> <a class="link" href="s03.html#idx_id_73">G</a> <a class="link" href="s03.html#idx_id_74">H</a> <a class="link" href="s03.html#idx_id_75">I</a> <a class="link" href="s03.html#idx_id_78">L</a> <a class="link" href="s03.html#idx_id_80">N</a> <a class="link" href="s03.html#idx_id_81">O</a> <a class="link" href="s03.html#idx_id_82">P</a> <a class="link" href="s03.html#idx_id_84">R</a> <a class="link" href="s03.html#idx_id_85">S</a> <a class="link" href="s03.html#idx_id_86">T</a> <a class="link" href="s03.html#idx_id_87">U</a> <a class="link" href="s03.html#idx_id_88">V</a> <a class="link" href="s03.html#idx_id_89">W</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="id2004621"></a>Macro Index</h2></div></div></div>
|
||||
<a name="id2005974"></a>Macro Index</h2></div></div></div>
|
||||
<p><a class="link" href="s04.html#idx_id_99">B</a> <a class="link" href="s04.html#idx_id_103">F</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -23,7 +23,7 @@
|
||||
</div>
|
||||
<div class="section">
|
||||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||||
<a name="id2006057"></a>Index</h2></div></div></div>
|
||||
<a name="id2007433"></a>Index</h2></div></div></div>
|
||||
<p><a class="link" href="s05.html#idx_id_124">1</a> <a class="link" href="s05.html#idx_id_125">2</a> <a class="link" href="s05.html#idx_id_126">4</a> <a class="link" href="s05.html#idx_id_127">5</a> <a class="link" href="s05.html#idx_id_128">7</a> <a class="link" href="s05.html#idx_id_129">A</a> <a class="link" href="s05.html#idx_id_130">B</a> <a class="link" href="s05.html#idx_id_131">C</a> <a class="link" href="s05.html#idx_id_132">D</a> <a class="link" href="s05.html#idx_id_133">E</a> <a class="link" href="s05.html#idx_id_134">F</a> <a class="link" href="s05.html#idx_id_135">G</a> <a class="link" href="s05.html#idx_id_136">H</a> <a class="link" href="s05.html#idx_id_137">I</a> <a class="link" href="s05.html#idx_id_138">J</a> <a class="link" href="s05.html#idx_id_139">K</a> <a class="link" href="s05.html#idx_id_140">L</a> <a class="link" href="s05.html#idx_id_141">M</a> <a class="link" href="s05.html#idx_id_142">N</a> <a class="link" href="s05.html#idx_id_143">O</a> <a class="link" href="s05.html#idx_id_144">P</a> <a class="link" href="s05.html#idx_id_145">Q</a> <a class="link" href="s05.html#idx_id_146">R</a> <a class="link" href="s05.html#idx_id_147">S</a> <a class="link" href="s05.html#idx_id_148">T</a> <a class="link" href="s05.html#idx_id_149">U</a> <a class="link" href="s05.html#idx_id_150">V</a> <a class="link" href="s05.html#idx_id_151">W</a> <a class="link" href="s05.html#idx_id_152">X</a> <a class="link" href="s05.html#idx_id_153">Y</a> <a class="link" href="s05.html#idx_id_154">Z</a></p>
|
||||
<div class="variablelist"><dl class="variablelist">
|
||||
<dt>
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
<a name="math_toolkit.contact"></a><a class="link" href="contact.html" title="Contact Info and Support">Contact Info and Support</a>
|
||||
</h2></div></div></div>
|
||||
<p>
|
||||
The main place to see and raise issues is now at <a href="%40https://github.com/boostorg/math/" target="_top">GIThub</a>.
|
||||
The main place to see and raise issues is now at <a href="https://github.com/boostorg/math/" target="_top">GIThub</a>.
|
||||
Currently open bug reports can be viewed <a href="https://github.com/boostorg/math/issues" target="_top">here</a>.
|
||||
</p>
|
||||
<p>
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
<a name="math_toolkit.conventions"></a><a class="link" href="conventions.html" title="Document Conventions">Document Conventions</a>
|
||||
</h2></div></div></div>
|
||||
<p>
|
||||
<a class="indexterm" name="id998501"></a>
|
||||
<a class="indexterm" name="id999858"></a>
|
||||
</p>
|
||||
<p>
|
||||
This documentation aims to use of the following naming and formatting conventions.
|
||||
|
||||
@@ -59,10 +59,11 @@
|
||||
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
The location parameter x<sub>0</sub> is the location of the peak of the distribution
|
||||
(the mode of the distribution), while the scale parameter γ specifies half
|
||||
the width of the PDF at half the maximum height. If the location is zero,
|
||||
and the scale 1, then the result is a standard Cauchy distribution.
|
||||
The location parameter <span class="emphasis"><em>x<sub>0</sub></em></span> is the location of the peak
|
||||
of the distribution (the mode of the distribution), while the scale parameter
|
||||
γ specifies half the width of the PDF at half the maximum height. If the
|
||||
location is zero, and the scale 1, then the result is a standard Cauchy
|
||||
distribution.
|
||||
</p>
|
||||
<p>
|
||||
The distribution is important in physics as it is the solution to the differential
|
||||
@@ -189,7 +190,8 @@
|
||||
</td>
|
||||
<td>
|
||||
<p>
|
||||
Using the relation: pdf = 1 / (π * γ * (1 + ((x - x<sub>0 </sub>) / γ)<sup>2</sup>)
|
||||
Using the relation: <span class="emphasis"><em>pdf = 1 / (π * γ * (1 + ((x - x<sub>0 </sub>)
|
||||
/ γ)<sup>2</sup>) </em></span>
|
||||
</p>
|
||||
</td>
|
||||
</tr>
|
||||
@@ -245,9 +247,9 @@
|
||||
from the probability or its complement. First the argument <span class="emphasis"><em>p</em></span>
|
||||
is reduced to the range [-0.5, 0.5], then the relation
|
||||
</p>
|
||||
<p>
|
||||
x = x<sub>0 </sub> ± γ / tan(π * p)
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">x = x<sub>0 </sub> ± γ / tan(π * p)</span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
is used to obtain the result. Whether we're adding or subtracting
|
||||
from x<sub>0 </sub> is determined by whether we're starting from the complement
|
||||
|
||||
@@ -83,8 +83,8 @@
|
||||
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
Sometimes an alternative formulation is used: given parameters α= k and
|
||||
β= 1 / θ, then the distribution can be defined by the PDF:
|
||||
Sometimes an alternative formulation is used: given parameters α = k and
|
||||
β = 1 / θ, then the distribution can be defined by the PDF:
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="inlinemediaobject"><img src="../../../../equations/gamma_dist_ref2.svg"></span>
|
||||
|
||||
@@ -105,7 +105,7 @@
|
||||
first success
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">Pr(Y=<span class="emphasis"><em>k</em></span>) = (1-<span class="emphasis"><em>p</em></span>)<sup><span class="emphasis"><em>k</em></span></sup><span class="emphasis"><em>p</em></span></span>
|
||||
<span class="serif_italic">Pr(Y=<span class="emphasis"><em>k</em></span>) = (1-<span class="emphasis"><em>p</em></span>)<sup><span class="emphasis"><em>k</em></span></sup> <span class="emphasis"><em>p</em></span></span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
For example, when throwing a 6-face dice the success probability <span class="emphasis"><em>p</em></span>
|
||||
@@ -117,7 +117,7 @@
|
||||
Geometric distribution has the Probability Density Function PDF:
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">(1-<span class="emphasis"><em>p</em></span>)<sup><span class="emphasis"><em>k</em></span></sup><span class="emphasis"><em>p</em></span></span>
|
||||
<span class="serif_italic">(1-<span class="emphasis"><em>p</em></span>)<sup><span class="emphasis"><em>k</em></span></sup> <span class="emphasis"><em>p</em></span></span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
The following graph illustrates how the PDF and CDF vary for three examples
|
||||
|
||||
@@ -56,8 +56,8 @@
|
||||
1972, p. 930). It is also called the double exponential distribution.
|
||||
</p>
|
||||
<p>
|
||||
For location parameter /μ/ and scale parameter /σ/, it is defined by the
|
||||
probability density function:
|
||||
For location parameter <span class="emphasis"><em>μ</em></span> and scale parameter <span class="emphasis"><em>σ</em></span>,
|
||||
it is defined by the probability density function:
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="inlinemediaobject"><img src="../../../../equations/laplace_pdf.svg"></span>
|
||||
|
||||
@@ -58,7 +58,8 @@
|
||||
<span class="serif_italic">f(x; sigma) = x * exp(-x<sup>2</sup>/2 σ<sup>2</sup>) / σ<sup>2</sup></span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
For sigma parameter /σ/ > 0, and <span class="emphasis"><em>x</em></span> > 0.
|
||||
For sigma parameter <span class="emphasis"><em>σ</em></span> > 0, and <span class="emphasis"><em>x</em></span>
|
||||
> 0.
|
||||
</p>
|
||||
<p>
|
||||
The Rayleigh distribution is often used where two orthogonal components
|
||||
|
||||
@@ -74,31 +74,12 @@
|
||||
density function</a>:
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">f(x) =</span>
|
||||
<span class="serif_italic">f(x) = 2(x-a)/(b-a) (c-a)   for a <= x <=
|
||||
c</span>
|
||||
</p></blockquote></div>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">
|
||||
<div class="blockquote"><blockquote class="blockquote">
|
||||
<p>
|
||||
2(x-a)/(b-a) (c-a)
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
for a <= x <= c
|
||||
</p></blockquote></div>
|
||||
</blockquote></div>
|
||||
</span>
|
||||
</p></blockquote></div>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">
|
||||
<div class="blockquote"><blockquote class="blockquote">
|
||||
<p>
|
||||
2(b-x)/(b-a) (b-c)
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
for c < x <= b
|
||||
</p></blockquote></div>
|
||||
</blockquote></div>
|
||||
</span>
|
||||
<span class="serif_italic">f(x) = 2(b-x)/(b-a) (b-c)   for c < x <=
|
||||
b</span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
Parameter <span class="emphasis"><em>a</em></span> (lower) can be any finite value. Parameter
|
||||
|
||||
@@ -59,26 +59,23 @@
|
||||
density function</a>:
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">f(x) =</span>
|
||||
<span class="serif_italic">f(x) =1 / (upper - lower)   for lower <
|
||||
x < upper</span>
|
||||
</p></blockquote></div>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">1 / (upper - lower) for lower < x <
|
||||
upper</span>
|
||||
</p></blockquote></div>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">zero for x < lower or x > upper</span>
|
||||
<span class="serif_italic">f(x) =zero   for x < lower or x > upper</span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
and in this implementation:
|
||||
</p>
|
||||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||||
<span class="serif_italic">1 / (upper - lower) for x = lower or x =
|
||||
<span class="serif_italic">1 / (upper - lower)   for x = lower or x =
|
||||
upper</span>
|
||||
</p></blockquote></div>
|
||||
<p>
|
||||
The choice of x = lower or x = upper is made because statistical use of
|
||||
this distribution judged is most likely: the method of maximum likelihood
|
||||
uses this definition.
|
||||
The choice of <span class="emphasis"><em>x = lower</em></span> or <span class="emphasis"><em>x = upper</em></span>
|
||||
is made because statistical use of this distribution judged is most likely:
|
||||
the method of maximum likelihood uses this definition.
|
||||
</p>
|
||||
<p>
|
||||
There is also a <a href="http://en.wikipedia.org/wiki/Discrete_uniform_distribution" target="_top"><span class="bold"><strong>discrete</strong></span> uniform distribution</a>.
|
||||
@@ -88,7 +85,8 @@
|
||||
</p>
|
||||
<p>
|
||||
The <a href="http://en.wikipedia.org/wiki/Random_variate" target="_top">random variate</a>
|
||||
x must also be finite, and is supported lower <= x <= upper.
|
||||
<span class="emphasis"><em>x</em></span> must also be finite, and is supported <span class="emphasis"><em>lower
|
||||
<= x <= upper</em></span>.
|
||||
</p>
|
||||
<p>
|
||||
The lower parameter is also called the <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm" target="_top">location
|
||||
|
||||
@@ -99,7 +99,7 @@
|
||||
<span class="phrase"><a name="math_toolkit.factorials.sf_binomial.testing"></a></span><a class="link" href="sf_binomial.html#math_toolkit.factorials.sf_binomial.testing">Testing</a>
|
||||
</h5>
|
||||
<p>
|
||||
The spot tests for the binomial coefficients use data generated by functions.wolfram.com.
|
||||
The spot tests for the binomial coefficients use data generated by <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>.
|
||||
</p>
|
||||
<h5>
|
||||
<a name="math_toolkit.factorials.sf_binomial.h2"></a>
|
||||
|
||||
@@ -119,7 +119,8 @@
|
||||
<span class="phrase"><a name="math_toolkit.factorials.sf_double_factorial.testing"></a></span><a class="link" href="sf_double_factorial.html#math_toolkit.factorials.sf_double_factorial.testing">Testing</a>
|
||||
</h5>
|
||||
<p>
|
||||
The spot tests for the double factorial use data generated by functions.wolfram.com.
|
||||
The spot tests for the double factorial use data generated by <a href="http://www.wolframalpha.com/" target="_top">Wolfram
|
||||
Alpha</a>.
|
||||
</p>
|
||||
<h5>
|
||||
<a name="math_toolkit.factorials.sf_double_factorial.h2"></a>
|
||||
|
||||
@@ -78,7 +78,7 @@
|
||||
<span class="phrase"><a name="math_toolkit.factorials.sf_falling_factorial.testing"></a></span><a class="link" href="sf_falling_factorial.html#math_toolkit.factorials.sf_falling_factorial.testing">Testing</a>
|
||||
</h5>
|
||||
<p>
|
||||
The spot tests for the falling factorials use data generated by <a href="../../functions.wolfram.com" target="_top">functions.wolfram.com</a>.
|
||||
The spot tests for the falling factorials use data generated by <a href="https://functions.wolfram.com" target="_top">functions.wolfram.com</a>.
|
||||
</p>
|
||||
<h5>
|
||||
<a name="math_toolkit.factorials.sf_falling_factorial.h2"></a>
|
||||
|
||||
@@ -83,7 +83,7 @@
|
||||
<span class="phrase"><a name="math_toolkit.factorials.sf_rising_factorial.testing"></a></span><a class="link" href="sf_rising_factorial.html#math_toolkit.factorials.sf_rising_factorial.testing">Testing</a>
|
||||
</h5>
|
||||
<p>
|
||||
The spot tests for the rising factorials use data generated by <a href="../../functions.wolfram.com" target="_top">functions.wolfram.com</a>.
|
||||
The spot tests for the rising factorials use data generated by <a href="https://functions.wolfram.com" target="_top">functions.wolfram.com</a>.
|
||||
</p>
|
||||
<h5>
|
||||
<a name="math_toolkit.factorials.sf_rising_factorial.h2"></a>
|
||||
|
||||
@@ -66,7 +66,7 @@
|
||||
</li>
|
||||
<li class="listitem">
|
||||
If you do not find satisfaction for your idea/feature/complaint, please
|
||||
reach the author(s) preferably through the <a href="../boost%40lists.boost.org" target="_top">Boost
|
||||
reach the author(s) preferably through the <a href="../../../../../lists.boost.org" target="_top">Boost
|
||||
development list</a>, or raise a new <a href="https://github.com/boostorg/math/issues" target="_top">Boost.Math
|
||||
issue</a>, or email the author(s) direct.
|
||||
</li>
|
||||
|
||||
@@ -28,12 +28,12 @@
|
||||
and the Remez Algorithm</a>
|
||||
</h3></div></div></div>
|
||||
<p>
|
||||
The directory libs/math/minimax contains a command-line driven program for
|
||||
the generation of minimax approximations using the Remez algorithm. Both
|
||||
polynomial and rational approximations are supported, although the latter
|
||||
are tricky to converge: it is not uncommon for convergence of rational forms
|
||||
to fail. No such limitations are present for polynomial approximations which
|
||||
should always converge smoothly.
|
||||
The directory <code class="computeroutput"><span class="identifier">libs</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">minimax</span></code>
|
||||
contains an interactive command-line driven program for the generation of
|
||||
minimax approximations using the Remez algorithm. Both polynomial and rational
|
||||
approximations are supported, although the latter are tricky to converge:
|
||||
it is not uncommon for convergence of rational forms to fail. No such limitations
|
||||
are present for polynomial approximations which should always converge smoothly.
|
||||
</p>
|
||||
<p>
|
||||
It's worth stressing that developing rational approximations to functions
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
<a name="math_toolkit.navigation"></a><a class="link" href="navigation.html" title="Navigation">Navigation</a>
|
||||
</h2></div></div></div>
|
||||
<p>
|
||||
<a class="indexterm" name="id998395"></a>
|
||||
<a class="indexterm" name="id999704"></a>
|
||||
</p>
|
||||
<p>
|
||||
Boost.Math documentation is provided in both HTML and PDF formats.
|
||||
|
||||
@@ -191,11 +191,6 @@
|
||||
<span class="identifier">probability</span> <span class="special">=</span> <span class="number">0.6</span><span class="special">;</span>
|
||||
<span class="identifier">q</span> <span class="special">=</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">flip</span><span class="special">,</span> <span class="identifier">probability</span><span class="special">);</span>
|
||||
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Quantile (flip, "</span> <span class="special"><<</span> <span class="identifier">probability</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">q</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// Quantile (flip, 0.6) = 5</span>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="special">}</span>
|
||||
<span class="keyword">catch</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">exception</span><span class="special">&</span> <span class="identifier">e</span><span class="special">)</span>
|
||||
<span class="special">{</span>
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[section:minimax Minimax Approximations and the Remez Algorithm]
|
||||
|
||||
The directory libs/math/minimax contains a command-line driven
|
||||
The directory `libs/math/minimax` contains an interactive command-line driven
|
||||
program for the generation of minimax approximations using the Remez
|
||||
algorithm. Both polynomial and rational approximations are supported,
|
||||
although the latter are tricky to converge: it is not uncommon for
|
||||
|
||||
@@ -33,17 +33,19 @@
|
||||
All of the tools in this header require a description of the recurrence relation: this takes the form of
|
||||
a functor that returns a tuple containing the 3 coefficients, specifically, given a recurrence relation:
|
||||
|
||||
[/\Large $$ a_nF_{n-1} + b_nF_n + c_nF_{n+1} = 0 $$] [equation three_term_recurrence.svg]
|
||||
[/\Large $$ a_nF_{n-1} + b_nF_n + c_nF_{n+1} = 0 $$]
|
||||
[equation three_term_recurrence]
|
||||
|
||||
And a functor F then the expression:
|
||||
And a functor `F` then the expression:
|
||||
|
||||
F(n);
|
||||
[expression F(n);]
|
||||
|
||||
Returns a tuple containing [role serif_italic { a[sub n], b[sub n], c[sub n] }].
|
||||
|
||||
For example, the recurrence relation for the Bessel J and Y functions when written in this form is:
|
||||
|
||||
[/\Large $$ J_{v-1}(x) - \frac{2v}{x}J_v(x) + J_{v+1}(x)= 0 $$][$../equations/three_term_recurrence_bessel_jy.svg]
|
||||
[/\Large $$ J_{v-1}(x) - \frac{2v}{x}J_v(x) + J_{v+1}(x)= 0 $$]
|
||||
[$../equations/three_term_recurrence_bessel_jy.svg]
|
||||
|
||||
Therefore, given local variables /x/ and /v/ of type `double` the recurrence relation for Bessel J and Y can be encoded
|
||||
in a lambda expression like this:
|
||||
@@ -52,7 +54,8 @@ in a lambda expression like this:
|
||||
|
||||
Similarly, the Bessel I and K recurrence relation differs just by the sign of the final term:
|
||||
|
||||
[/\Large $$ I_{v-1}(x) - \frac{2v}{x}I_v(x) - I_{v+1}(x)= 0 $$][$../equations/three_term_recurrence_bessel_ik.svg]
|
||||
[/\Large $$ I_{v-1}(x) - \frac{2v}{x}I_v(x) - I_{v+1}(x)= 0 $$]
|
||||
[$../equations/three_term_recurrence_bessel_ik.svg]
|
||||
|
||||
And this could be encoded as:
|
||||
|
||||
@@ -63,9 +66,10 @@ The tools are then as follows:
|
||||
template <class Recurrence, class T>
|
||||
T function_ratio_from_backwards_recurrence(const Recurrence& r, const T& factor, boost::uintmax_t& max_iter);
|
||||
|
||||
Given a functor r which encodes the recurrence relation for function F at some location /n/, then returns the ratio:
|
||||
Given a functor `r` which encodes the recurrence relation for function `F` at some location /n/, then returns the ratio:
|
||||
|
||||
[/\Large $$ F_n / F_{n-1} $$][$../equations/three_term_recurrence_backwards_ratio.svg]
|
||||
[/\Large $$ F_n / F_{n-1} $$]
|
||||
[$../equations/three_term_recurrence_backwards_ratio.svg]
|
||||
|
||||
This calculation is stable only if recurrence is stable in the backwards direction. Further the ratio calculated
|
||||
is for the dominant solution (in the backwards direction) of the recurrence relation, if there are multiple solutions,
|
||||
@@ -78,9 +82,10 @@ the maximum number of permitted iterations in the associated continued fraction.
|
||||
template <class Recurrence, class T>
|
||||
T function_ratio_from_forwards_recurrence(const Recurrence& r, const T& factor, boost::uintmax_t& max_iter);
|
||||
|
||||
Given a functor r which encodes the recurrence relation for function F at some location /n/, then returns the ratio:
|
||||
Given a functor `r` which encodes the recurrence relation for function F at some location /n/, then returns the ratio:
|
||||
|
||||
[/\Large $$ F_n / F_{n+1} $$][$../equations/three_term_recurrence_forwards_ratio.svg]
|
||||
[/\Large $$ F_n / F_{n+1} $$]
|
||||
[$../equations/three_term_recurrence_forwards_ratio.svg]
|
||||
|
||||
This calculation is stable only if recurrence is stable in the forwards direction. Further the ratio calculated
|
||||
is for the dominant solution (in the forwards direction) of the recurrence relation, if there are multiple solutions,
|
||||
|
||||
@@ -446,6 +446,7 @@ and use the function's name as the link text.]
|
||||
[def __Mathematica [@http://www.wolfram.com/products/mathematica/index.html Wolfram Mathematica]]
|
||||
[def __Maple [@https://www.maplesoft.com Maple]]
|
||||
[def __WolframAlpha [@http://www.wolframalpha.com/ Wolfram Alpha]]
|
||||
[def __Wolfram_functions [@https://functions.wolfram.com functions.wolfram.com]]
|
||||
[def __TOMS748 [@http://portal.acm.org/citation.cfm?id=210111 TOMS Algorithm 748: enclosing zeros of continuous functions]]
|
||||
[def __TOMS910 [@http://portal.acm.org/citation.cfm?id=1916469 TOMS Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations]]
|
||||
[def __why_complements [link why_complements why complements?]]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[section:contact Contact Info and Support]
|
||||
|
||||
The main place to see and raise issues is now at [@ @https://github.com/boostorg/math/ GIThub].
|
||||
The main place to see and raise issues is now at [@https://github.com/boostorg/math/ GIThub].
|
||||
Currently open bug reports can be viewed [@https://github.com/boostorg/math/issues here].
|
||||
|
||||
All old bug reports, including closed ones, can be viewed on Trac (now read-only)
|
||||
|
||||
@@ -70,7 +70,7 @@ Entries may indicate that updates or corrections that solve your problem are in
|
||||
you are most welcome to submit [@https://github.com/boostorg/math/pulls pull requests].
|
||||
* If you do not understand why things work the way they do, see the ['rationale] section.
|
||||
* If you do not find satisfaction for your idea/feature/complaint,
|
||||
please reach the author(s) preferably through the [@boost@lists.boost.org Boost development list],
|
||||
please reach the author(s) preferably through the [@boost:lists.boost.org Boost development list],
|
||||
or raise a new [@https://github.com/boostorg/math/issues Boost.Math issue],
|
||||
or email the author(s) direct.
|
||||
|
||||
|
||||
@@ -175,8 +175,7 @@ of epsilon higher.
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
The spot tests for the double factorial use data
|
||||
generated by functions.wolfram.com.
|
||||
The spot tests for the double factorial use data generated by __WolframAlpha.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
@@ -235,7 +234,7 @@ the __tgamma_delta_ratio function.
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
The spot tests for the rising factorials use data generated by [@functions.wolfram.com functions.wolfram.com].
|
||||
The spot tests for the rising factorials use data generated by __Wolfram_functions.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
@@ -284,7 +283,7 @@ the __tgamma_delta_ratio function.
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
The spot tests for the falling factorials use data generated by [@functions.wolfram.com].
|
||||
The spot tests for the falling factorials use data generated by __Wolfram_functions.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
@@ -342,8 +341,7 @@ and the __beta function for larger arguments.
|
||||
|
||||
[h4 Testing]
|
||||
|
||||
The spot tests for the binomial coefficients use data
|
||||
generated by functions.wolfram.com.
|
||||
The spot tests for the binomial coefficients use data generated by __WolframAlpha.
|
||||
|
||||
[h4 Implementation]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user