2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Documentation for Jacobi polynomials.

This commit is contained in:
NAThompson
2019-08-28 16:21:03 -04:00
parent 7c4f6e06e5
commit 1f0c1bb8dc
4 changed files with 132 additions and 3 deletions

52
doc/graphs/jacobi.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 42 KiB

View File

@@ -18,7 +18,7 @@
[block '''</chapter>''']]
[/insert Equation as an image, previous generated with an external tool like Latex.]
[template equation[name]
[template equation[name]
[:
'''<inlinemediaobject>
<imageobject role="html">
@@ -35,7 +35,7 @@
[/insert Graph as an SVG or PNG image, previous generated with an external tool like SVG_plot.]
[template graph[name]
[template graph[name]
[:
'''<inlinemediaobject>
<imageobject role="html">
@@ -50,7 +50,7 @@
[/insert Indented one-line expression italic and serif font probably using Unicode symbols for Greek and symbols.]
[/Example: [expression [sub 1]F[sub 0](a, z) = (1-z)[super -a]]]
[template expression[equation]
[template expression[equation]
[:
[role serif_italic [equation]]
]
@@ -628,6 +628,7 @@ and as a CD ISBN 0-9504833-2-X 978-0-9504833-2-0, Classification 519.2-dc22.
[include sf/spherical_harmonic.qbk]
[include sf/cardinal_b_splines.qbk]
[include sf/gegenbauer.qbk]
[include sf/jacobi.qbk]
[endsect] [/section:sf_poly Polynomials]
[section:bessel Bessel Functions]

62
doc/sf/jacobi.qbk Normal file
View File

@@ -0,0 +1,62 @@
[/
Copyright 2019, Nick Thompson
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:jacobi Jacobi Polynomials]
[h4 Synopsis]
``
#include <boost/math/special_functions/jacobi.hpp>
``
namespace boost{ namespace math{
template<typename Real>
Real jacobi(unsigned n, Real alpha, Real beta, Real x);
template<typename Real>
Real jacobi_derivative(unsigned n, Real alpha, Real beta, Real x, unsigned k);
template<typename Real>
Real jacobi_prime(unsigned n, Real alpha, Real beta, Real x);
template<typename Real>
Real jacobi_double_prime(unsigned n, Real alpha, Real beta, Real x);
}} // namespaces
Jacobi polynomials are a family of orthogonal polynomials.
A basic usage is as follows:
using boost::math::jacobi;
double x = 0.5;
double alpha = 0.3;
double beta = 7.2;
unsigned n = 3;
double y = jacobi(n, alpha, beta, x);
All derivatives of the Jacobi polynomials are available.
The /k/-th derivative of the /n/-th Gegenbauer polynomial is given by
using boost::math::jacobi_derivative;
double x = 0.5;
double alpha = 0.3;
double beta = 7.2;
unsigned n = 3;
double y = jacobi_derivative(n, alpha, beta, x, k);
For consistency with the rest of the library, `jacobi_prime` is provided which simply returns `jacobi_derivative(n, lambda, x,1)`.
[$../graphs/jacobi.svg]
[h3 Implementation]
The implementation uses the 3-term recurrence for the Jacobi polynomials, rising.
[endsect]

View File

@@ -14,6 +14,8 @@ namespace boost { namespace math {
template<typename Real>
Real jacobi(unsigned n, Real alpha, Real beta, Real x)
{
static_assert(!std::is_integral<Real>::value, "Jacobi polynomials do not work with integer arguments.");
if (n == 0) {
return Real(1);
}
@@ -51,5 +53,17 @@ Real jacobi_derivative(unsigned n, Real alpha, Real beta, Real x, unsigned k)
return scale*jacobi<Real>(n-k, alpha + k, beta+k, x);
}
template<typename Real>
Real jacobi_prime(unsigned n, Real alpha, Real beta, Real x)
{
return jacobi_derivative<Real>(n, alpha, beta, x, 1);
}
template<typename Real>
Real jacobi_double_prime(unsigned n, Real alpha, Real beta, Real x)
{
return jacobi_derivative<Real>(n, alpha, beta, x, 2);
}
}}
#endif