mirror of
https://github.com/boostorg/lambda.git
synced 2026-01-21 04:52:25 +00:00
Compare commits
4 Commits
svn-branch
...
boost-1.29
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d4bde698f6 | ||
|
|
ae0ed56337 | ||
|
|
0323ca1876 | ||
|
|
4227c144de |
@@ -1,5 +0,0 @@
|
||||
project boost/doc ;
|
||||
import boostbook : boostbook ;
|
||||
|
||||
boostbook lambda-doc : lambda.xml ;
|
||||
|
||||
61
doc/apa.html
Normal file
61
doc/apa.html
Normal file
@@ -0,0 +1,61 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>A. Rationale for some of the design decisions</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s09.html" title="9. Contributors"><link rel="next" href="bi01.html" title="Bibliography"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">A. Rationale for some of the design decisions</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s09.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="bi01.html">Next</a></td></tr></table><hr></div><div class="appendix"><h2 class="title" style="clear: both"><a name="id2808831"></a>A. Rationale for some of the design decisions</h2><div class="section"><div class="titlepage"><div><h3 class="title"><a name="sect:why_weak_arity"></a>1.
|
||||
Lambda functor arity
|
||||
</h3></div></div><p>
|
||||
The highest placeholder index in a lambda expression determines the arity of the resulting function object.
|
||||
However, this is just the minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded.
|
||||
Consider the two bind expressions and their invocations below:
|
||||
|
||||
<pre class="programlisting">
|
||||
bind(g, _3, _3, _3)(x, y, z);
|
||||
bind(g, _1, _1, _1)(x, y, z);
|
||||
</pre>
|
||||
|
||||
This first line discards arguments <tt>x</tt> and
|
||||
<tt>y</tt>, and makes the call:
|
||||
<pre class="programlisting">
|
||||
g(z, z, z)
|
||||
</pre>
|
||||
whereas the second line discards arguments <tt>y</tt> and
|
||||
<tt>z</tt>, and calls:
|
||||
<pre class="programlisting">
|
||||
g(x, x, x)
|
||||
</pre>
|
||||
In earlier versions of the library, the latter line resulted in a compile
|
||||
time error.
|
||||
|
||||
This is basically a tradeoff between safety and flexibility, and the issue
|
||||
was extensively discussed during the Boost review period of the library.
|
||||
The main points for the <span class="emphasis"><i>strict arity</i></span> checking
|
||||
was that it might
|
||||
catch a programming error at an earlier time and that a lambda expression that
|
||||
explicitly discards its arguments is easy to write:
|
||||
<pre class="programlisting">
|
||||
(_3, bind(g, _1, _1, _1))(x, y, z);
|
||||
</pre>
|
||||
This lambda expression takes three arguments.
|
||||
The left-hand argument of the comma operator does nothing, and as comma
|
||||
returns the result of evaluating the right-hand argument we end up with
|
||||
the call
|
||||
<tt>g(x, x, x)</tt>
|
||||
even with the strict arity.
|
||||
</p><p>
|
||||
The main points against the strict arity checking were that the need to
|
||||
discard arguments is commonplace, and should therefore be straightforward,
|
||||
and that strict arity checking does not really buy that much more safety,
|
||||
particularly as it is not symmetric.
|
||||
For example, if the programmer wanted to write the expression
|
||||
<tt>_1 + _2</tt> but mistakenly wrote <tt>_1 + 2</tt>,
|
||||
with strict arity checking, the complier would spot the error.
|
||||
However, if the erroneous expression was <tt>1 + _2</tt> instead,
|
||||
the error would go unnoticed.
|
||||
Furthermore, weak arity checking simplifies the implementation a bit.
|
||||
Following the recommendation of the Boost review, strict arity checking
|
||||
was dropped.
|
||||
</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s09.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="bi01.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">9. Contributors </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Bibliography</td></tr></table></div></body></html>
|
||||
57
doc/ar01s02.html
Normal file
57
doc/ar01s02.html
Normal file
@@ -0,0 +1,57 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>2. Getting Started</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="next" href="ar01s03.html" title="3. Introduction"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">2. Getting Started</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="index.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s03.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="sect:getting_started"></a>2. Getting Started</h2></div></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2790109"></a>2.1. Installing the library</h3></div></div><p>
|
||||
The library consists of include files only, hence there is no
|
||||
installation procedure. The <tt>boost</tt> include directory
|
||||
must be on the include path.
|
||||
There are a number of include files that give different functionality:
|
||||
|
||||
|
||||
<div class="itemizedlist"><ul type="disc"><li><p>
|
||||
<tt>lambda/lambda.hpp</tt> defines lambda expressions for different C++
|
||||
operators, see <a href="ar01s05.html#sect:operator_expressions" title="5.2. Operator expressions">Section 5.2</a>.
|
||||
</p></li><li><p>
|
||||
<tt>lambda/bind.hpp</tt> defines <tt>bind</tt> functions for up to 9 arguments, see <a href="ar01s05.html#sect:bind_expressions" title="5.3. Bind expressions">Section 5.3</a>.</p></li><li><p>
|
||||
<tt>lambda/if.hpp</tt> defines lambda function equivalents for if statements and the conditional operator, see <a href="ar01s05.html#sect:lambda_expressions_for_control_structures" title="5.6. Lambda expressions for control structures">Section 5.6</a> (includes <tt>lambda.hpp</tt>).
|
||||
</p></li><li><p>
|
||||
<tt>lambda/loops.hpp</tt> defines lambda function equivalent for looping constructs, see <a href="ar01s05.html#sect:lambda_expressions_for_control_structures" title="5.6. Lambda expressions for control structures">Section 5.6</a>.
|
||||
</p></li><li><p>
|
||||
<tt>lambda/switch.hpp</tt> defines lambda function equivalent for the switch statement, see <a href="ar01s05.html#sect:lambda_expressions_for_control_structures" title="5.6. Lambda expressions for control structures">Section 5.6</a>.
|
||||
</p></li><li><p>
|
||||
<tt>lambda/construct.hpp</tt> provides tools for writing lambda expressions with constructor, destructor, new and delete invocations, see <a href="ar01s05.html#sect:construction_and_destruction" title="5.8. Construction and destruction">Section 5.8</a> (includes <tt>lambda.hpp</tt>).
|
||||
</p></li><li><p>
|
||||
<tt>lambda/casts.hpp</tt> provides lambda versions of different casts, as well as <tt>sizeof</tt> and <tt>typeid</tt>, see <a href="ar01s05.html#sect:cast_expressions" title="5.10.1.
|
||||
Cast expressions
|
||||
">Section 5.10.1</a>.
|
||||
</p></li><li><p>
|
||||
<tt>lambda/exceptions.hpp</tt> gives tools for throwing and catching
|
||||
exceptions within lambda functions, <a href="ar01s05.html#sect:exceptions" title="5.7. Exceptions">Section 5.7</a> (includes
|
||||
<tt>lambda.hpp</tt>).
|
||||
</p></li><li><p>
|
||||
<tt>lambda/algorithm.hpp</tt> and <tt>lambda/numeric.hpp</tt> (cf. standard <tt>algortihm</tt> and <tt>numeric</tt> headers) allow nested STL algorithm invocations, see <a href="ar01s05.html#sect:nested_stl_algorithms" title="5.11. Nesting STL algorithm invocations">Section 5.11</a>.
|
||||
</p></li></ul></div>
|
||||
|
||||
Any other header files in the package are for internal use.
|
||||
Additionally, the library depends on two other Boost Libraries, the
|
||||
<span class="emphasis"><i>Tuple</i></span> [<a href="bi01.html#cit:boost::tuple" title="[tuple]">tuple</a>] and the <span class="emphasis"><i>type_traits</i></span> [<a href="bi01.html#cit:boost::type_traits" title="[type_traits]">type_traits</a>] libraries, and on the <tt>boost/ref.hpp</tt> header.
|
||||
</p><p>
|
||||
All definitions are placed in the namespace <tt>boost::lambda</tt> and its subnamespaces.
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2741935"></a>2.2. Conventions used in this document</h3></div></div><p>In most code examples, we omit the namespace prefixes for names in the <tt>std</tt> and <tt>boost::lambda</tt> namespaces.
|
||||
Implicit using declarations
|
||||
<pre class="programlisting">
|
||||
using namespace std;
|
||||
using namespace boost::lambda;
|
||||
</pre>
|
||||
are assumed to be in effect.
|
||||
</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="index.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ar01s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 3. Introduction</td></tr></table></div></body></html>
|
||||
175
doc/ar01s03.html
Normal file
175
doc/ar01s03.html
Normal file
@@ -0,0 +1,175 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>3. Introduction</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s02.html" title="2. Getting Started"><link rel="next" href="ar01s04.html" title="4. Using the library"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">3. Introduction</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s02.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s04.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="id2741982"></a>3. Introduction</h2></div></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2741989"></a>3.1. Motivation</h3></div></div><p>The Standard Template Library (STL)
|
||||
[<a href="bi01.html#cit:stepanov:94" title="[STL94]">STL94</a>], now part of the C++ Standard Library [<a href="bi01.html#cit:c++:98" title="[C++98]">C++98</a>], is a generic container and algorithm library.
|
||||
Typically STL algorithms operate on container elements via <span class="emphasis"><i>function objects</i></span>. These function objects are passed as arguments to the algorithms.
|
||||
</p><p>
|
||||
Any C++ construct that can be called with the function call syntax
|
||||
is a function object.
|
||||
The STL contains predefined function objects for some common cases (such as <tt>plus</tt>, <tt>less</tt> and <tt>not1</tt>).
|
||||
As an example, one possible implementation for the standard <tt>plus</tt> template is:
|
||||
|
||||
<pre class="programlisting">
|
||||
template <class T> : public binary_function<T, T, T>
|
||||
struct plus {
|
||||
T operator()(const T& i, const T& j) const {
|
||||
return i + j;
|
||||
}
|
||||
};
|
||||
</pre>
|
||||
|
||||
The base class <tt>binary_function<T, T, T></tt> contains typedefs for the argument and return types of the function object, which are needed to make the function object <span class="emphasis"><i>adaptable</i></span>.
|
||||
</p><p>
|
||||
In addition to the basic function object classes, such as the one above,
|
||||
the STL contains <span class="emphasis"><i>binder</i></span> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value.
|
||||
For example, instead of having to explicitly write a function object class like:
|
||||
|
||||
<pre class="programlisting">
|
||||
class plus_1 {
|
||||
int _i;
|
||||
public:
|
||||
plus_1(const int& i) : _i(i) {}
|
||||
int operator()(const int& j) { return _i + j; }
|
||||
};
|
||||
</pre>
|
||||
|
||||
the equivalent functionality can be achieved with the <tt>plus</tt> template and one of the binder templates (<tt>bind1st</tt>).
|
||||
E.g., the following two expressions create function objects with identical functionalities;
|
||||
when invoked, both return the result of adding <tt>1</tt> to the argument of the function object:
|
||||
|
||||
<pre class="programlisting">
|
||||
plus_1(1)
|
||||
bind1st(plus<int>(), 1)
|
||||
</pre>
|
||||
|
||||
The subexpression <tt>plus<int>()</tt> in the latter line is a binary function object which computes the sum of two integers, and <tt>bind1st</tt> invokes this function object partially binding the first argument to <tt>1</tt>.
|
||||
As an example of using the above function object, the following code adds <tt>1</tt> to each element of some container <tt>a</tt> and outputs the results into the standard output stream <tt>cout</tt>.
|
||||
|
||||
<pre class="programlisting">
|
||||
transform(a.begin(), a.end(), ostream_iterator<int>(cout),
|
||||
bind1st(plus<int>(), 1));
|
||||
</pre>
|
||||
|
||||
</p><p>
|
||||
To make the binder templates more generally applicable, the STL contains <span class="emphasis"><i>adaptors</i></span> for making
|
||||
pointers or references to functions, and pointers to member functions,
|
||||
adaptable.
|
||||
|
||||
Finally, some STL implementations contain function composition operations as
|
||||
extensions to the standard [<a href="bi01.html#cit:sgi:02" title="[SGI02]">SGI02</a>].
|
||||
</p><p>
|
||||
All these tools aim at one goal: to make it possible to specify
|
||||
<span class="emphasis"><i>unnamed functions</i></span> in a call of an STL algorithm,
|
||||
in other words, to pass code fragments as an argument to a function.
|
||||
|
||||
However, this goal is attained only partially.
|
||||
The simple example above shows that the definition of unnamed functions
|
||||
with the standard tools is cumbersome.
|
||||
|
||||
Complex expressions involving functors, adaptors, binders and
|
||||
function composition operations tend to be difficult to comprehend.
|
||||
|
||||
In addition to this, there are significant restrictions in applying
|
||||
the standard tools. E.g. the standard binders allow only one argument
|
||||
of a binary function to be bound; there are no binders for
|
||||
3-ary, 4-ary etc. functions.
|
||||
</p><p>
|
||||
The Boost Lambda Library provides solutions for the problems described above:
|
||||
|
||||
<div class="itemizedlist"><ul type="disc"><li><p>
|
||||
Unnamed functions can be created easily with an intuitive syntax.
|
||||
|
||||
The above example can be written as:
|
||||
|
||||
<pre class="programlisting">
|
||||
transform(a.begin(), a.end(), ostream_iterator<int>(cout),
|
||||
1 + _1);
|
||||
</pre>
|
||||
|
||||
or even more intuitively:
|
||||
|
||||
<pre class="programlisting">
|
||||
for_each(a.begin(), a.end(), cout << (1 + _1));
|
||||
</pre>
|
||||
</p></li><li><p>
|
||||
Most of the restrictions in argument binding are removed,
|
||||
arbitrary arguments of practically any C++ function can be bound.
|
||||
</p></li><li><p>
|
||||
Separate function composition operations are not needed,
|
||||
as function composition is supported implicitly.
|
||||
|
||||
</p></li></ul></div>
|
||||
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2742784"></a>3.2. Introduction to lambda expressions</h3></div></div><p>
|
||||
Lambda expression are common in functional programming languages.
|
||||
Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is:
|
||||
|
||||
|
||||
<pre class="programlisting">
|
||||
lambda x<sub>1</sub> ... x<sub>n</sub>.e
|
||||
</pre>
|
||||
|
||||
|
||||
A lambda expression defines an unnamed function and consists of:
|
||||
<div class="itemizedlist"><ul type="disc"><li><p>
|
||||
the parameters of this function: <tt>x<sub>1</sub> ... x<sub>n</sub></tt>.
|
||||
|
||||
</p></li><li><p>the expression e which computes the value of the function in terms of the parameters <tt>x<sub>1</sub> ... x<sub>n</sub></tt>.
|
||||
</p></li></ul></div>
|
||||
|
||||
A simple example of a lambda expression is
|
||||
<pre class="programlisting">
|
||||
lambda x y.x+y
|
||||
</pre>
|
||||
Applying the lambda function means substituting the formal parameters with the actual arguments:
|
||||
<pre class="programlisting">
|
||||
(lambda x y.x+y) 2 3 = 2 + 3 = 5
|
||||
</pre>
|
||||
|
||||
|
||||
</p><p>
|
||||
In the C++ version of lambda expressions the <tt>lambda x<sub>1</sub> ... x<sub>n</sub></tt> part is missing and the formal parameters have predefined names.
|
||||
In the current version of the library,
|
||||
there are three such predefined formal parameters,
|
||||
called <span class="emphasis"><i>placeholders</i></span>:
|
||||
<tt>_1</tt>, <tt>_2</tt> and <tt>_3</tt>.
|
||||
They refer to the first, second and third argument of the function defined
|
||||
by the lambda expression.
|
||||
|
||||
For example, the C++ version of the definition
|
||||
<pre class="programlisting">lambda x y.x+y</pre>
|
||||
is
|
||||
<pre class="programlisting">_1 + _2</pre>
|
||||
</p><p>
|
||||
Hence, there is no syntactic keyword for C++ lambda expressions.
|
||||
The use of a placeholder as an operand implies that the operator invocation is a lambda expression.
|
||||
However, this is true only for operator invocations.
|
||||
Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs.
|
||||
Most importantly, function calls need to be wrapped inside a <tt>bind</tt> function.
|
||||
|
||||
As an example, consider the lambda expression:
|
||||
|
||||
<pre class="programlisting">lambda x y.foo(x,y)</pre>
|
||||
|
||||
Rather than <tt>foo(_1, _2)</tt>, the C++ counterpart for this expression is:
|
||||
|
||||
<pre class="programlisting">bind(foo, _1, _2)</pre>
|
||||
|
||||
We refer to this type of C++ lambda expressions as <span class="emphasis"><i>bind expressions</i></span>.
|
||||
</p><p>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <tt>(_1 + _2)(i, j)</tt>.
|
||||
|
||||
|
||||
</p><div class="section"><div class="titlepage"><div><h4 class="title"><a name="sect:partial_function_application"></a>3.2.1. Partial function application</h4></div></div><p>
|
||||
A bind expression is in effect a <span class="emphasis"><i>partial function application</i></span>.
|
||||
In partial function application, some of the arguments of a function are bound to fixed values.
|
||||
The result is another function, with possibly fewer arguments.
|
||||
When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments.
|
||||
</p></div><div class="section"><div class="titlepage"><div><h4 class="title"><a name="sect:terminology"></a>3.2.2. Terminology</h4></div></div><p>
|
||||
A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <span class="emphasis"><i>a functor</i></span>, when evaluated. We use the name <span class="emphasis"><i>lambda functor</i></span> to refer to such a function object.
|
||||
Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor.
|
||||
</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s02.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ar01s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">2. Getting Started </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 4. Using the library</td></tr></table></div></body></html>
|
||||
213
doc/ar01s04.html
Normal file
213
doc/ar01s04.html
Normal file
@@ -0,0 +1,213 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>4. Using the library</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s03.html" title="3. Introduction"><link rel="next" href="ar01s05.html" title="5. Lambda expressions in details"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">4. Using the library</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s03.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s05.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="sect:using_library"></a>4. Using the library</h2></div></div><p>
|
||||
The purpose of this section is to introduce the basic functionality of the library.
|
||||
There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections.
|
||||
|
||||
|
||||
</p><div class="section"><div class="titlepage"><div><h3 class="title"><a name="sect:introductory_examples"></a>4.1. Introductory Examples</h3></div></div><p>
|
||||
In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations.
|
||||
We start with some simple expressions and work up.
|
||||
First, we initialize the elements of a container, say, a <tt>list</tt>, to the value <tt>1</tt>:
|
||||
|
||||
|
||||
<pre class="programlisting">
|
||||
list<int> v(10);
|
||||
for_each(v.begin(), v.end(), _1 = 1);</pre>
|
||||
|
||||
The expression <tt>_1 = 1</tt> creates a lambda functor which assigns the value <tt>1</tt> to every element in <tt>v</tt>.<sup>[<a name="id2739587" href="#ftn.id2739587">1</a>]</sup>
|
||||
</p><p>
|
||||
Next, we create a container of pointers and make them point to the elements in the first container <tt>v</tt>:
|
||||
|
||||
<pre class="programlisting">
|
||||
vector<int*> vp(10);
|
||||
transform(v.begin(), v.end(), vp.begin(), &_1);</pre>
|
||||
|
||||
The expression <tt>&_1</tt> creates a function object for getting the address of each element in <tt>v</tt>.
|
||||
The addresses get assigned to the corresponding elements in <tt>vp</tt>.
|
||||
</p><p>
|
||||
The next code fragment changes the values in <tt>v</tt>.
|
||||
For each element, the function <tt>foo</tt> is called.
|
||||
The original value of the element is passed as an argument to <tt>foo</tt>.
|
||||
The result of <tt>foo</tt> is assigned back to the element:
|
||||
|
||||
|
||||
<pre class="programlisting">
|
||||
int foo(int);
|
||||
for_each(v.begin(), v.end(), _1 = bind(foo, _1));</pre>
|
||||
</p><p>
|
||||
The next step is to sort the elements of <tt>vp</tt>:
|
||||
|
||||
<pre class="programlisting">sort(vp.begin(), vp.end(), *_1 > *_2);</pre>
|
||||
|
||||
In this call to <tt>sort</tt>, we are sorting the elements by their contents in descending order.
|
||||
</p><p>
|
||||
Finally, the following <tt>for_each</tt> call outputs the sorted content of <tt>vp</tt> separated by line breaks:
|
||||
|
||||
<pre class="programlisting">
|
||||
for_each(vp.begin(), vp.end(), cout << *_1 << '\n');
|
||||
</pre>
|
||||
|
||||
Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately.
|
||||
This may cause surprises.
|
||||
For instance, if the previous example is rewritten as
|
||||
<pre class="programlisting">
|
||||
for_each(vp.begin(), vp.end(), cout << '\n' << *_1);
|
||||
</pre>
|
||||
the subexpression <tt>cout << '\n'</tt> is evaluated immediately and the effect is to output a single line break, followed by the elements of <tt>vp</tt>.
|
||||
The BLL provides functions <tt>constant</tt> and <tt>var</tt> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions:
|
||||
<pre class="programlisting">
|
||||
for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);
|
||||
</pre>
|
||||
These functions are described more thoroughly in <a href="ar01s05.html#sect:delaying_constants_and_variables" title="5.5. Delaying constants and variables">Section 5.5</a>
|
||||
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="sect:parameter_and_return_types"></a>4.2. Parameter and return types of lambda functors</h3></div></div><p>
|
||||
During the invocation of a lambda functor, the actual arguments are substituted for the placeholders.
|
||||
The placeholders do not dictate the type of these actual arguments.
|
||||
The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression.
|
||||
As an example, the expression
|
||||
<tt>_1 + _2</tt> creates a binary lambda functor.
|
||||
It can be called with two objects of any types <tt>A</tt> and <tt>B</tt> for which <tt>operator+(A,B)</tt> is defined (and for which BLL knows the return type of the operator, see below).
|
||||
</p><p>
|
||||
C++ lacks a mechanism to query a type of an expression.
|
||||
However, this precise mechanism is crucial for the implementation of C++ lambda expressions.
|
||||
Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions.
|
||||
It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types.
|
||||
Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types.
|
||||
</p><p>
|
||||
There are, however, cases when the return type cannot be deduced. For example, suppose you have defined:
|
||||
|
||||
<pre class="programlisting">C operator+(A, B);</pre>
|
||||
|
||||
The following lambda function invocation fails, since the return type cannot be deduced:
|
||||
|
||||
<pre class="programlisting">A a; B b; (_1 + _2)(a, b);</pre>
|
||||
</p><p>
|
||||
There are two alternative solutions to this.
|
||||
The first is to extend the BLL type deduction system to cover your own types (see <a href="ar01s06.html#sect:extending_return_type_system" title="6. Extending return type deduction system">Section 6</a>).
|
||||
The second is to use a special lambda expression (<tt>ret</tt>) which defines the return type in place (see <a href="ar01s05.html#sect:overriding_deduced_return_type" title="5.4. Overriding the deduced return type">Section 5.4</a>):
|
||||
|
||||
<pre class="programlisting">A a; B b; ret<C>(_1 + _2)(a, b);</pre>
|
||||
</p><p>
|
||||
For bind expressions, the return type can be defined as a template argument of the bind function as well:
|
||||
<pre class="programlisting">bind<int>(foo, _1, _2);</pre>
|
||||
|
||||
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="sect:actual_arguments_to_lambda_functors"></a>4.3. About actual arguments to lambda functors</h3></div></div><p>A general restriction for the actual arguments is that they cannot be non-const rvalues.
|
||||
For example:
|
||||
|
||||
<pre class="programlisting">
|
||||
int i = 1; int j = 2;
|
||||
(_1 + _2)(i, j); // ok
|
||||
(_1 + _2)(1, 2); // error (!)
|
||||
</pre>
|
||||
|
||||
This restriction is not as bad as it may look.
|
||||
Since the lambda functors are most often called inside STL-algorithms,
|
||||
the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues.
|
||||
And for the cases where they do, there are workarounds discussed in
|
||||
<a href="ar01s05.html#sect:rvalues_as_actual_arguments" title="5.9.2. Rvalues as actual arguments to lambda functors">Section 5.9.2</a>.
|
||||
|
||||
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="sect:storing_bound_arguments"></a>4.4. Storing bound arguments in lambda functions</h3></div></div><p>
|
||||
|
||||
By default, temporary const copies of the bound arguments are stored
|
||||
in the lambda functor.
|
||||
|
||||
This means that the value of a bound argument is fixed at the time of the
|
||||
creation of the lambda function and remains constant during the lifetime
|
||||
of the lambda function object.
|
||||
|
||||
For example:
|
||||
|
||||
<pre class="programlisting">
|
||||
int i = 1;
|
||||
(_1 + i)(i = 2);
|
||||
</pre>
|
||||
|
||||
The value of the expression in the last line is 3, not 4.
|
||||
|
||||
In other words, the lambda expression <tt>_1 + i</tt> creates
|
||||
a lambda function <tt>lambda x.x+1</tt> rather than
|
||||
<tt>lambda x.x+i</tt>.
|
||||
|
||||
</p><p>
|
||||
|
||||
As said, this is the default behavior for which there are exceptions.
|
||||
The exact rules are as follows:
|
||||
|
||||
<div class="itemizedlist"><ul type="disc"><li><p>
|
||||
|
||||
The programmer can control the storing mechanism with <tt>ref</tt>
|
||||
and <tt>cref</tt> wrappers [<a href="bi01.html#cit:boost::ref" title="[ref]">ref</a>].
|
||||
|
||||
Wrapping an argument with <tt>ref</tt>, or <tt>cref</tt>,
|
||||
instructs the library to store the argument as a reference,
|
||||
or as a reference to const respectively.
|
||||
|
||||
For example, if we rewrite the previous example and wrap the variable
|
||||
<tt>i</tt> with <tt>ref</tt>,
|
||||
we are creating the lambda expression <tt>lambda x.x+i</tt>
|
||||
and the value of the expression in the last line will be 4:
|
||||
|
||||
<pre class="programlisting">
|
||||
i = 1;
|
||||
(_1 + ref(i))(i = 2);
|
||||
</pre>
|
||||
|
||||
Note that <tt>ref</tt> and <tt>cref</tt> are different
|
||||
from <tt>var</tt> and <tt>constant</tt>.
|
||||
|
||||
While the latter ones create lambda functors, the former do not.
|
||||
For example:
|
||||
|
||||
<pre class="programlisting">
|
||||
int i;
|
||||
var(i) = 1; // ok
|
||||
ref(i) = 1; // not ok, ref(i) is not a lambda functor
|
||||
</pre>
|
||||
|
||||
The functions <tt>ref</tt> and <tt>cref</tt> mostly
|
||||
exist for historical reasons,
|
||||
and <tt>ref</tt> can always
|
||||
be replaced with <tt>var</tt>, and <tt>cref</tt> with
|
||||
<tt>constant_ref</tt>.
|
||||
See <a href="ar01s05.html#sect:delaying_constants_and_variables" title="5.5. Delaying constants and variables">Section 5.5</a> for details.
|
||||
The <tt>ref</tt> and <tt>cref</tt> functions are
|
||||
general purpose utility functions in Boost, and hence defined directly
|
||||
in the <tt>boost</tt> namespace.
|
||||
|
||||
</p></li><li><p>
|
||||
Array types cannot be copied, they are thus stored as const reference by default.
|
||||
</p></li><li><p>
|
||||
For some expressions it makes more sense to store the arguments as references.
|
||||
|
||||
For example, the obvious intention of the lambda expression
|
||||
<tt>i += _1</tt> is that calls to the lambda functor affect the
|
||||
value of the variable <tt>i</tt>,
|
||||
rather than some temporary copy of it.
|
||||
|
||||
As another example, the streaming operators take their leftmost argument
|
||||
as non-const references.
|
||||
|
||||
The exact rules are:
|
||||
|
||||
<div class="itemizedlist"><ul type="round"><li><p>The left argument of compound assignment operators (<tt>+=</tt>, <tt>*=</tt>, etc.) are stored as references to non-const.</p></li><li><p>If the left argument of <tt><<</tt> or <tt>>></tt> operator is derived from an instantiation of <tt>basic_ostream</tt> or respectively from <tt>basic_istream</tt>, the argument is stored as a reference to non-const.
|
||||
For all other types, the argument is stored as a copy.
|
||||
</p></li><li><p>
|
||||
In pointer arithmetic expressions, non-const array types are stored as non-const references.
|
||||
This is to prevent pointer arithmetic making non-const arrays const.
|
||||
|
||||
</p></li></ul></div>
|
||||
|
||||
</p></li></ul></div>
|
||||
</p></div><div class="footnotes"><br><hr width="100" align="left"><div class="footnote"><p><sup>[<a name="ftn.id2739587" href="#id2739587">1</a>] </sup>
|
||||
Strictly taken, the C++ standard defines <tt>for_each</tt> as a <span class="emphasis"><i>non-modifying sequence operation</i></span>, and the function object passed to <tt>for_each</tt> should not modify its argument.
|
||||
The requirements for the arguments of <tt>for_each</tt> are unnecessary strict, since as long as the iterators are <span class="emphasis"><i>mutable</i></span>, <tt>for_each</tt> accepts a function object that can have side-effects on their argument.
|
||||
Nevertheless, it is straightforward to provide another function template with the functionality of<tt>std::for_each</tt> but more fine-grained requirements for its arguments.
|
||||
</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s03.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ar01s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">3. Introduction </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 5. Lambda expressions in details</td></tr></table></div></body></html>
|
||||
1187
doc/ar01s05.html
Normal file
1187
doc/ar01s05.html
Normal file
File diff suppressed because it is too large
Load Diff
207
doc/ar01s06.html
Normal file
207
doc/ar01s06.html
Normal file
@@ -0,0 +1,207 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>6. Extending return type deduction system</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s05.html" title="5. Lambda expressions in details"><link rel="next" href="ar01s07.html" title="7. Practical considerations"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">6. Extending return type deduction system</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s05.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s07.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="sect:extending_return_type_system"></a>6. Extending return type deduction system</h2></div></div><p>
|
||||
|
||||
|
||||
In this section, we explain how to extend the return type deduction system
|
||||
to cover user defined operators.
|
||||
|
||||
In many cases this is not necessary,
|
||||
as the BLL defines default return types for operators.
|
||||
|
||||
For example, the default return type for all comparison operators is
|
||||
<tt>bool</tt>, and as long as the user defined comparison operators
|
||||
have a bool return type, there is no need to write new specializations
|
||||
for the return type deduction classes.
|
||||
|
||||
Sometimes this cannot be avoided, though.
|
||||
|
||||
</p><p>
|
||||
The overloadable user defined operators are either unary or binary.
|
||||
|
||||
For each arity, there are two traits templates that define the
|
||||
return types of the different operators.
|
||||
|
||||
Hence, the return type system can be extended by providing more
|
||||
specializations for these templates.
|
||||
|
||||
The templates for unary functors are
|
||||
|
||||
<tt>
|
||||
plain_return_type_1<Action, A>
|
||||
</tt>
|
||||
|
||||
and
|
||||
|
||||
<tt>
|
||||
return_type_1<Action, A>
|
||||
</tt>, and
|
||||
|
||||
<tt>
|
||||
plain_return_type_2<Action, A, B>
|
||||
</tt>
|
||||
|
||||
and
|
||||
|
||||
<tt>
|
||||
return_type_2<Action, A, B>
|
||||
</tt>
|
||||
|
||||
respectively for binary functors.
|
||||
|
||||
</p><p>
|
||||
The first parameter (<tt>Action</tt>) to all these templates
|
||||
is the <span class="emphasis"><i>action</i></span> class, which specifies the operator.
|
||||
|
||||
Operators with similar return type rules are grouped together into
|
||||
<span class="emphasis"><i>action groups</i></span>,
|
||||
and only the action class and action group together define the operator
|
||||
unambiguously.
|
||||
|
||||
As an example, the action type
|
||||
<tt>arithmetic_action<plus_action></tt> stands for
|
||||
<tt>operator+</tt>.
|
||||
|
||||
The complete listing of different action types is shown in
|
||||
<a href="ar01s06.html#table:actions" title="Table 2. Action types">Table 2</a>.
|
||||
</p><p>
|
||||
The latter parameters, <tt>A</tt> in the unary case,
|
||||
or <tt>A</tt> and <tt>B</tt> in the binary case,
|
||||
stand for the argument types of the operator call.
|
||||
|
||||
The two sets of templates,
|
||||
<tt>plain_return_type_<i><tt>n</tt></i></tt> and
|
||||
<tt>return_type_<i><tt>n</tt></i></tt>
|
||||
(<i><tt>n</tt></i> is 1 or 2) differ in the way how parameter types
|
||||
are presented to them.
|
||||
|
||||
For the former templates, the parameter types are always provided as
|
||||
non-reference types, and do not have const or volatile qualifiers.
|
||||
|
||||
This makes specializing easy, as commonly one specialization for each
|
||||
user defined operator, or operator group, is enough.
|
||||
|
||||
On the other hand, if a particular operator is overloaded for different
|
||||
cv-qualifications of the same argument types,
|
||||
and the return types of these overloaded versions differ, a more fine-grained control is needed.
|
||||
|
||||
Hence, for the latter templates, the parameter types preserve the
|
||||
cv-qualifiers, and are non-reference types as well.
|
||||
|
||||
The downside is, that for an overloaded set of operators of the
|
||||
kind described above, one may end up needing up to
|
||||
16 <tt>return_type_2</tt> specializations.
|
||||
</p><p>
|
||||
Suppose the user has overloaded the following operators for some user defined
|
||||
types <tt>X</tt>, <tt>Y</tt> and <tt>Z</tt>:
|
||||
|
||||
<pre class="programlisting">
|
||||
Z operator+(const X&, const Y&);
|
||||
Z operator-(const X&, const Y&);
|
||||
</pre>
|
||||
|
||||
Now, one can add a specialization stating, that if the left hand argument
|
||||
is of type <tt>X</tt>, and the right hand one of type
|
||||
<tt>Y</tt>, the return type of all such binary arithmetic
|
||||
operators is <tt>Z</tt>:
|
||||
|
||||
<pre class="programlisting">
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
template<class Act>
|
||||
struct plain_return_type_2<arithmetic_action<Act>, X, Y> {
|
||||
typedef Z type;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
</pre>
|
||||
|
||||
Having this specialization defined, BLL is capable of correctly
|
||||
deducing the return type of the above two operators.
|
||||
|
||||
Note, that the specializations must be in the same namespace,
|
||||
<tt>::boost::lambda</tt>, with the primary template.
|
||||
|
||||
For brevity, we do not show the namespace definitions in the examples below.
|
||||
</p><p>
|
||||
It is possible to specialize on the level of an individual operator as well,
|
||||
in addition to providing a specialization for a group of operators.
|
||||
Say, we add a new arithmetic operator for argument types <tt>X</tt>
|
||||
and <tt>Y</tt>:
|
||||
|
||||
<pre class="programlisting">
|
||||
X operator*(const X&, const Y&);
|
||||
</pre>
|
||||
|
||||
Our first rule for all arithmetic operators specifies that the return
|
||||
type of this operator is <tt>Z</tt>,
|
||||
which obviously is not the case.
|
||||
Hence, we provide a new rule for the multiplication operator:
|
||||
|
||||
<pre class="programlisting">
|
||||
template<>
|
||||
struct plain_return_type_2<arithmetic_action<multiply_action>, X, Y> {
|
||||
typedef X type;
|
||||
};
|
||||
</pre>
|
||||
</p><p>
|
||||
The specializations can define arbitrary mappings from the argument types
|
||||
to the return type.
|
||||
|
||||
Suppose we have some mathematical vector type, templated on the element type:
|
||||
|
||||
<pre class="programlisting">
|
||||
template <class T> class my_vector;
|
||||
</pre>
|
||||
|
||||
Suppose the addition operator is defined between any two
|
||||
<tt>my_vector</tt> instantiations,
|
||||
as long as the addition operator is defined between their element types.
|
||||
|
||||
Furthermore, the element type of the resulting <tt>my_vector</tt>
|
||||
is the same as the result type of the addition between the element types.
|
||||
|
||||
E.g., adding <tt>my_vector<int></tt> and
|
||||
<tt>my_vector<double></tt> results in
|
||||
<tt>my_vector<double></tt>.
|
||||
|
||||
The BLL has traits classes to perform the implicit built-in and standard
|
||||
type conversions between integral, floating point, and complex classes.
|
||||
|
||||
Using BLL tools, the addition operator described above can be defined as:
|
||||
|
||||
<pre class="programlisting">
|
||||
template<class A, class B>
|
||||
my_vector<typename return_type_2<arithmetic_action<plus_action>, A, B>::type>
|
||||
operator+(const my_vector<A>& a, const my_vector<B>& b)
|
||||
{
|
||||
typedef typename
|
||||
return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
|
||||
return my_vector<res_type>();
|
||||
}
|
||||
</pre>
|
||||
</p><p>
|
||||
To allow BLL to deduce the type of <tt>my_vector</tt>
|
||||
additions correctly, we can define:
|
||||
|
||||
<pre class="programlisting">
|
||||
template<class A, class B>
|
||||
class plain_return_type_2<arithmetic_action<plus_action>,
|
||||
my_vector<A>, my_vector<B> > {
|
||||
typedef typename
|
||||
return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
|
||||
public:
|
||||
typedef my_vector<res_type> type;
|
||||
};
|
||||
</pre>
|
||||
Note, that we are reusing the existing specializations for the
|
||||
BLL <tt>return_type_2</tt> template,
|
||||
which require that the argument types are references.
|
||||
</p><div class="table"><p><a name="table:actions"></a><b>Table 2. Action types</b></p><table summary="Action types" border="1"><colgroup><col><col></colgroup><tbody><tr><td><tt>+</tt></td><td><tt>arithmetic_action<plus_action></tt></td></tr><tr><td><tt>-</tt></td><td><tt>arithmetic_action<minus_action></tt></td></tr><tr><td><tt>*</tt></td><td><tt>arithmetic_action<multiply_action></tt></td></tr><tr><td><tt>/</tt></td><td><tt>arithmetic_action<divide_action></tt></td></tr><tr><td><tt>%</tt></td><td><tt>arithmetic_action<remainder_action></tt></td></tr><tr><td><tt>+</tt></td><td><tt>unary_arithmetic_action<plus_action></tt></td></tr><tr><td><tt>-</tt></td><td><tt>unary_arithmetic_action<minus_action></tt></td></tr><tr><td><tt>&</tt></td><td><tt>bitwise_action<and_action></tt></td></tr><tr><td><tt>|</tt></td><td><tt>bitwise_action<or_action></tt></td></tr><tr><td><tt>~</tt></td><td><tt>bitwise_action<not_action></tt></td></tr><tr><td><tt>^</tt></td><td><tt>bitwise_action<xor_action></tt></td></tr><tr><td><tt><<</tt></td><td><tt>bitwise_action<leftshift_action_no_stream></tt></td></tr><tr><td><tt>>></tt></td><td><tt>bitwise_action<rightshift_action_no_stream></tt></td></tr><tr><td><tt>&&</tt></td><td><tt>logical_action<and_action></tt></td></tr><tr><td><tt>||</tt></td><td><tt>logical_action<or_action></tt></td></tr><tr><td><tt>!</tt></td><td><tt>logical_action<not_action></tt></td></tr><tr><td><tt><</tt></td><td><tt>relational_action<less_action></tt></td></tr><tr><td><tt>></tt></td><td><tt>relational_action<greater_action></tt></td></tr><tr><td><tt><=</tt></td><td><tt>relational_action<lessorequal_action></tt></td></tr><tr><td><tt>>=</tt></td><td><tt>relational_action<greaterorequal_action></tt></td></tr><tr><td><tt>==</tt></td><td><tt>relational_action<equal_action></tt></td></tr><tr><td><tt>!=</tt></td><td><tt>relational_action<notequal_action></tt></td></tr><tr><td><tt>+=</tt></td><td><tt>arithmetic_assignment_action<plus_action></tt></td></tr><tr><td><tt>-=</tt></td><td><tt>arithmetic_assignment_action<minus_action></tt></td></tr><tr><td><tt>*=</tt></td><td><tt>arithmetic_assignment_action<multiply_action></tt></td></tr><tr><td><tt>/=</tt></td><td><tt>arithmetic_assignment_action<divide_action></tt></td></tr><tr><td><tt>%=</tt></td><td><tt>arithmetic_assignment_action<remainder_action></tt></td></tr><tr><td><tt>&=</tt></td><td><tt>bitwise_assignment_action<and_action></tt></td></tr><tr><td><tt>=|</tt></td><td><tt>bitwise_assignment_action<or_action></tt></td></tr><tr><td><tt>^=</tt></td><td><tt>bitwise_assignment_action<xor_action></tt></td></tr><tr><td><tt><<=</tt></td><td><tt>bitwise_assignment_action<leftshift_action></tt></td></tr><tr><td><tt>>>=</tt></td><td><tt>bitwise_assignment_action<rightshift_action></tt></td></tr><tr><td><tt>++</tt></td><td><tt>pre_increment_decrement_action<increment_action></tt></td></tr><tr><td><tt>--</tt></td><td><tt>pre_increment_decrement_action<decrement_action></tt></td></tr><tr><td><tt>++</tt></td><td><tt>post_increment_decrement_action<increment_action></tt></td></tr><tr><td><tt>--</tt></td><td><tt>post_increment_decrement_action<decrement_action></tt></td></tr><tr><td><tt>&</tt></td><td><tt>other_action<address_of_action></tt></td></tr><tr><td><tt>*</tt></td><td><tt>other_action<contents_of_action></tt></td></tr><tr><td><tt>,</tt></td><td><tt>other_action<comma_action></tt></td></tr></tbody></table></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s05.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ar01s07.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">5. Lambda expressions in details </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 7. Practical considerations</td></tr></table></div></body></html>
|
||||
169
doc/ar01s07.html
Normal file
169
doc/ar01s07.html
Normal file
@@ -0,0 +1,169 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>7. Practical considerations</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s06.html" title="6. Extending return type deduction system"><link rel="next" href="ar01s08.html" title="8. Relation to other Boost libraries"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">7. Practical considerations</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s06.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s08.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="id2807557"></a>7. Practical considerations</h2></div></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2807564"></a>7.1. Performance</h3></div></div><p>In theory, all overhead of using STL algorithms and lambda functors
|
||||
compared to hand written loops can be optimized away, just as the overhead
|
||||
from standard STL function objects and binders can.
|
||||
|
||||
Depending on the compiler, this can also be true in practice.
|
||||
We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4.
|
||||
The optimization flag -03 was used.
|
||||
</p><p>
|
||||
In the first test we compared lambda functors against explicitly written
|
||||
function objects.
|
||||
We used both of these styles to define unary functions which multiply the
|
||||
argument repeatedly by itself.
|
||||
We started with the identity function, going up to
|
||||
x<sup>5</sup>.
|
||||
The expressions were called inside a <tt>std::transform</tt> loop,
|
||||
reading the argument from one <tt>std::vector<int></tt>
|
||||
and placing the result into another.
|
||||
The length of the vectors was 100 elements.
|
||||
The running times are listed in
|
||||
<a href="ar01s07.html#table:increasing_arithmetic_test" title="Table 3. Test 1. CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class.
|
||||
The running times are expressed in arbitrary units.">Table 3</a>.
|
||||
|
||||
We can observe that there is no significant difference between the
|
||||
two approaches.
|
||||
</p><p>
|
||||
In the second test we again used <tt>std::transform</tt> to
|
||||
perform an operation to each element in a 100-element long vector.
|
||||
This time the element type of the vectors was <tt>double</tt>
|
||||
and we started with very simple arithmetic expressions and moved to
|
||||
more complex ones.
|
||||
The running times are listed in <a href="ar01s07.html#table:ll_vs_stl_test" title="Table 4. Test 2. CPU time of arithmetic expressions written as lambda
|
||||
expressions, as classic STL unnamed functions (using compose2, bind1st etc.) and as traditional hand-coded function object classes.
|
||||
Using BLL terminology,
|
||||
a and b are bound arguments in the expressions, and x is open.
|
||||
All variables were of types double.
|
||||
The running times are expressed in arbitrary units.">Table 4</a>.
|
||||
|
||||
Here, we also included classic STL style unnamed functions into tests.
|
||||
We do not show these expressions, as they get rather complex.
|
||||
For example, the
|
||||
last expression in <a href="ar01s07.html#table:ll_vs_stl_test" title="Table 4. Test 2. CPU time of arithmetic expressions written as lambda
|
||||
expressions, as classic STL unnamed functions (using compose2, bind1st etc.) and as traditional hand-coded function object classes.
|
||||
Using BLL terminology,
|
||||
a and b are bound arguments in the expressions, and x is open.
|
||||
All variables were of types double.
|
||||
The running times are expressed in arbitrary units.">Table 4</a> written with
|
||||
classic STL tools contains 7 calls to <tt>compose2</tt>,
|
||||
8 calls to <tt>bind1st</tt>
|
||||
and altogether 14 constructor invocations for creating
|
||||
<tt>multiplies</tt>, <tt>minus</tt>
|
||||
and <tt>plus</tt> objects.
|
||||
|
||||
In this test the BLL expressions are a little slower (roughly 10% on average,
|
||||
less than 14% in all cases)
|
||||
than the corresponding hand-written function objects.
|
||||
The performance hit is a bit greater with classic STL expressions,
|
||||
up to 27% for the simplest expressios.
|
||||
</p><p>
|
||||
The tests suggest that the BLL does not introduce a loss of performance
|
||||
compared to STL function objects.
|
||||
With a reasonable optimizing compiler, one should expect the performance characteristics be comparable to using classic STL.
|
||||
Moreover, with simple expressions the performance can be expected to be close
|
||||
to that of explicitly written function objects.
|
||||
|
||||
|
||||
|
||||
Note however, that evaluating a lambda functor consist of a sequence of calls to small functions that are declared inline.
|
||||
If the compiler fails to actually expand these functions inline,
|
||||
the performance can suffer.
|
||||
The running time can more than double if this happens.
|
||||
Although the above tests do not include such an expression, we have experiensed
|
||||
this for some seemingly simple expressions.
|
||||
|
||||
|
||||
<div class="table"><p><a name="table:increasing_arithmetic_test"></a><b>Table 3. Test 1. CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class.
|
||||
The running times are expressed in arbitrary units.</b></p><table summary="Test 1. CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class.
|
||||
The running times are expressed in arbitrary units." border="1"><colgroup><col><col><col></colgroup><thead><tr><th>expression</th><th>lambda expression</th><th>hand-coded function object</th></tr></thead><tbody><tr><td>x</td><td>240</td><td>230</td></tr><tr><td>x*x</td><td>340</td><td>350</td></tr><tr><td>x*x*x</td><td>770</td><td>760</td></tr><tr><td>x*x*x*x</td><td>1180</td><td>1210</td></tr><tr><td>x*x*x*x*x</td><td>1950</td><td>1910</td></tr></tbody></table></div>
|
||||
</p><p>
|
||||
<div class="table"><p><a name="table:ll_vs_stl_test"></a><b>Table 4. Test 2. CPU time of arithmetic expressions written as lambda
|
||||
expressions, as classic STL unnamed functions (using <tt>compose2</tt>, <tt>bind1st</tt> etc.) and as traditional hand-coded function object classes.
|
||||
Using BLL terminology,
|
||||
<tt>a</tt> and <tt>b</tt> are bound arguments in the expressions, and <tt>x</tt> is open.
|
||||
All variables were of types <tt>double</tt>.
|
||||
The running times are expressed in arbitrary units.</b></p><table summary="Test 2. CPU time of arithmetic expressions written as lambda
|
||||
expressions, as classic STL unnamed functions (using compose2, bind1st etc.) and as traditional hand-coded function object classes.
|
||||
Using BLL terminology,
|
||||
a and b are bound arguments in the expressions, and x is open.
|
||||
All variables were of types double.
|
||||
The running times are expressed in arbitrary units." border="1"><colgroup><col><col><col><col></colgroup><thead><tr><th>expression</th><th>lambda expression</th><th>classic STL expression</th><th>hand-coded function object</th></tr></thead><tbody><tr><td>ax</td><td>330</td><td>370</td><td>290</td></tr><tr><td>-ax</td><td>350</td><td>370</td><td>310</td></tr><tr><td>ax-(a+x)</td><td>470</td><td>500</td><td>420</td></tr><tr><td>(ax-(a+x))(a+x)</td><td>620</td><td>670</td><td>600</td></tr><tr><td>((ax) - (a+x))(bx - (b+x))(ax - (b+x))(bx - (a+x))</td><td>1660</td><td>1660</td><td>1460</td></tr></tbody></table></div>
|
||||
</p><p>Some additional performance testing with an earlier version of the
|
||||
library is described
|
||||
[<a href="bi01.html#cit:jarvi:00" title="[Jär00]">Jär00</a>].
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2808056"></a>7.2. About compiling</h3></div></div><p>The BLL uses templates rather heavily, performing numerous recursive instantiations of the same templates.
|
||||
This has (at least) three implications:
|
||||
<div class="itemizedlist"><ul type="disc"><li><p>
|
||||
While it is possible to write incredibly complex lambda expressions, it probably isn't a good idea.
|
||||
Compiling such expressions may end up requiring a lot of memory
|
||||
at compile time, and being slow to compile.
|
||||
</p></li><li><p>
|
||||
The types of lambda functors that result from even the simplest lambda expressions are cryptic.
|
||||
Usually the programmer doesn't need to deal with the lambda functor the types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved.
|
||||
This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations.
|
||||
</p></li><li><p>
|
||||
The C++ Standard suggests a template nesting level of 17 to help detect infinite recursion.
|
||||
Complex lambda templates can easily exceed this limit.
|
||||
Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased with a command line argument.
|
||||
</p></li></ul></div></p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2808118"></a>7.3. Portability</h3></div></div><p>
|
||||
The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with the BLL:
|
||||
|
||||
<div class="itemizedlist"><ul type="disc"><li>GCC 3.0.4
|
||||
</li><li>KCC 4.0f with EDG 2.43.1
|
||||
</li><li>GCC 2.96 (fails with one test case, the <tt>exception_test.cpp</tt> results in an internal compiler error.
|
||||
)
|
||||
|
||||
</li></ul></div>
|
||||
</p><div class="section"><div class="titlepage"><div><h4 class="title"><a name="id2808157"></a>7.3.1. Test coverage</h4></div></div><p>The following list describes the test files included and the features that each file covers:
|
||||
|
||||
<div class="itemizedlist"><ul type="disc"><li><p>
|
||||
<tt>bind_tests_simple.cpp</tt> : Bind expressions of different arities and types of target functions: function pointers, function objects and member functions.
|
||||
Function composition with bind expressions.</p></li><li><p><tt>bind_tests_simple_function_references.cpp</tt> :
|
||||
Repeats all tests from <tt>bind_tests_simple.cpp</tt> where the target function is a function pointer, but uses function references instead.
|
||||
</p></li><li><p><tt>bind_tests_advanced.cpp</tt> : Contains tests for nested bind expressions, <tt>unlambda</tt>, <tt>protect</tt>, <tt>const_parameters</tt> and <tt>break_const</tt>.
|
||||
Tests passing lambda functors as actual arguments to other lambda functors, currying, and using the <tt>sig</tt> template to specify the return type of a function object.
|
||||
</p></li><li><p>
|
||||
<tt>operator_tests_simple.cpp</tt> :
|
||||
Tests using all operators that are overloaded for lambda expressions, that is, unary and binary arithmetic,
|
||||
bitwise,
|
||||
comparison,
|
||||
logical,
|
||||
increment and decrement,
|
||||
compound,
|
||||
assignment,
|
||||
subscrict,
|
||||
address of,
|
||||
dereference, and comma operators.
|
||||
The streaming nature of shift operators is tested, as well as pointer arithmetic with plus and minus operators.
|
||||
</p></li><li><p><tt>member_pointer_test.cpp</tt> : The pointer to member operator is complex enough to warrant a separate test file.
|
||||
</p></li><li><p>
|
||||
<tt>control_structures.cpp</tt> :
|
||||
Tests for the looping and if constructs.
|
||||
</p></li><li><p>
|
||||
<tt>switch_construct.cpp</tt> :
|
||||
Includes tests for all supported arities of the switch statement, both with and without the default case.
|
||||
</p></li><li><p>
|
||||
<tt>exception_test.cpp</tt> :
|
||||
Includes tests for throwing exceptions and for try/catch constructs with varying number of catch blocks.
|
||||
</p></li><li><p>
|
||||
<tt>constructor_tests.cpp</tt> :
|
||||
Contains tests for <tt>constructor</tt>, <tt>destructor</tt>, <tt>new_ptr</tt>, <tt>delete_ptr</tt>, <tt>new_array</tt> and <tt>delete_array</tt>.
|
||||
</p></li><li><p>
|
||||
<tt>cast_test.cpp</tt> : Tests for the four cast expressions, as well as <tt>typeid</tt> and <tt>sizeof</tt>.
|
||||
</p></li><li><p>
|
||||
<tt>extending_return_type_traits.cpp</tt> : Tests extending the return type deduction system for user defined types.
|
||||
Contains several user defined operators and the corresponding specializations for the return type deduction templates.
|
||||
</p></li><li><p>
|
||||
<tt>is_instance_of_test.cpp</tt> : Includes tests for an internally used traits template, which can detect whether a given type is an instance of a certain template or not.
|
||||
</p></li><li><p>
|
||||
<tt>bll_and_function.cpp</tt> :
|
||||
Contains tests for using <tt>boost::function</tt> together with lambda functors.
|
||||
</p></li></ul></div>
|
||||
|
||||
</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s06.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ar01s08.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">6. Extending return type deduction system </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 8. Relation to other Boost libraries</td></tr></table></div></body></html>
|
||||
124
doc/ar01s08.html
Normal file
124
doc/ar01s08.html
Normal file
@@ -0,0 +1,124 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>8. Relation to other Boost libraries</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s07.html" title="7. Practical considerations"><link rel="next" href="ar01s09.html" title="9. Contributors"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">8. Relation to other Boost libraries</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s07.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s09.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="id2808502"></a>8. Relation to other Boost libraries</h2></div></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2808509"></a>8.1. Boost Function</h3></div></div><p>Sometimes it is convenient to store lambda functors in variables.
|
||||
However, the types of even the simplest lambda functors are long and unwieldy, and it is in general unfeasible to declare variables with lambda functor types.
|
||||
<span class="emphasis"><i>The Boost Function library</i></span> [<a href="bi01.html#cit:boost::function" title="[function]">function</a>] defines wrappers for arbitrary function objects, for example
|
||||
lambda functors; and these wrappers have types that are easy to type out.
|
||||
|
||||
For example:
|
||||
|
||||
<pre class="programlisting">
|
||||
boost::function<int(int, int)> f = _1 + _2;
|
||||
boost::function<int&(int&)> g = (_1 += 10);
|
||||
int i = 1, j = 2;
|
||||
f(i); // returns 3
|
||||
g(i); // sets i to = 11;
|
||||
</pre>
|
||||
|
||||
The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <tt>boost::function</tt>; even when lambda functors, which otherwise have generic parameters, are wrapped.
|
||||
Wrapping a function object with <tt>boost::function</tt> introduces a performance cost comparable to virtual function dispatch, though virtual functions are not actually used.
|
||||
|
||||
Note that storing lambda functors inside <tt>boost::function</tt>
|
||||
introduces a danger.
|
||||
Certain types of lambda functors may store references to the bound
|
||||
arguments, instead as taking copies of the arguments of the lambda expression.
|
||||
When temporary lambda functor objects are used
|
||||
in STL algorithm invocations this is always safe, as the lambda functor gets
|
||||
destructed immediately after the STL algortihm invocation is completed.
|
||||
|
||||
However, a lambda functor wrapped inside <tt>boost::function</tt>
|
||||
may continue to exist longer, creating the possibility of dangling references.
|
||||
For example:
|
||||
|
||||
<pre class="programlisting">
|
||||
int* sum = new int();
|
||||
*sum = 0;
|
||||
boost::function<int&(int)> counter = *sum += _1;
|
||||
counter(5); // ok, *sum = 5;
|
||||
delete sum;
|
||||
counter(3); // error, *sum does not exist anymore
|
||||
</pre>
|
||||
|
||||
</p></div><div class="section"><div class="titlepage"><div><h3 class="title"><a name="id2808613"></a>8.2. Boost Bind</h3></div></div><p>
|
||||
<span class="emphasis"><i>The Boost Bind</i></span> [<a href="bi01.html#cit:boost::bind" title="[bind]">bind</a>] library has partially overlapping functionality with the BLL.
|
||||
Basically, the Boost Bind library (BB in the sequel) implements the bind expression part of BLL.
|
||||
There are, however, some semantical differerences.
|
||||
</p><p>
|
||||
The BLL and BB evolved separately, and have different implementations.
|
||||
This means that the bind expressions from the BB cannot be used within
|
||||
bind expressions, or within other type of lambda expressions, of the BLL.
|
||||
The same holds for using BLL bind expressions in the BB.
|
||||
The libraries can coexist, however, as
|
||||
the names of the BB library are in <tt>boost</tt> namespace,
|
||||
whereas the BLL names are in <tt>boost::lambda</tt> namespace.
|
||||
</p><p>
|
||||
The BLL requires a compiler that is reasonably conformant to the
|
||||
C++ standard, whereas the BB library is more portable, and works with
|
||||
a larger set of compilers.
|
||||
</p><p>
|
||||
The following two sections describe what are the semantic differences
|
||||
between the bind expressions in BB and BLL.
|
||||
</p><div class="section"><div class="titlepage"><div><h4 class="title"><a name="id2808678"></a>8.2.1. First argument of bind expression</h4></div></div>
|
||||
|
||||
In BB the first argument of the bind expression, the target function,
|
||||
is treated differently from the other arguments,
|
||||
as no argument substitution takes place within that argument.
|
||||
In BLL the first argument is not a special case in this respect.
|
||||
|
||||
For example:
|
||||
|
||||
<pre class="programlisting">
|
||||
template<class F>
|
||||
int foo(const F& f) {
|
||||
int x;
|
||||
..
|
||||
bind(f, _1)(x);
|
||||
...
|
||||
}
|
||||
</pre><pre class="programlisting">
|
||||
int bar(int, int);
|
||||
nested(bind(bar, 1, _1));
|
||||
</pre>
|
||||
|
||||
The bind expression inside <tt>foo</tt> becomes:
|
||||
<pre class="programlisting">
|
||||
bind(bind(bar, 1, _1), _1)(x)
|
||||
</pre>
|
||||
|
||||
The BLL interpretes this as:
|
||||
<pre class="programlisting">
|
||||
bar(1, x)(x)
|
||||
</pre>
|
||||
whereas the BB library as
|
||||
<pre class="programlisting">
|
||||
bar(1, x)
|
||||
</pre>
|
||||
|
||||
To get this functionality in BLL, the bind expression inside the <tt>foo</tt> function can be written as:
|
||||
<pre class="programlisting">
|
||||
bind(unlambda(f), _1)(x);
|
||||
</pre>
|
||||
as explained in <a href="ar01s05.html#sect:unlambda" title="5.9.1.1. Unlambda">Section 5.9.1.1</a>.
|
||||
|
||||
</div><p>
|
||||
The BB library supports up to nine placeholders, while the BLL
|
||||
defines only three placeholders.
|
||||
The rationale for not providing more, is that the highest arity of the
|
||||
function objects accepted by any STL algorithm is two.
|
||||
The placeholder count is easy to increase in the BB library.
|
||||
In BLL it is possible, but more laborous.
|
||||
The BLL currently passes the actual arguments to the lambda functors
|
||||
internally just as they are and does not wrap them inside a tuple object.
|
||||
The reason for this is that some widely used compilers are not capable
|
||||
of optimizing the intermediate tuple objects away.
|
||||
The creation of the intermediate tuples would cause a significant
|
||||
performance hit, particularly for the simplest (and thus the most common)
|
||||
lambda functors.
|
||||
We are working on a hybrid approach, which will allow more placeholders
|
||||
but not compromise the performance of simple lambda functors.
|
||||
</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s07.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ar01s09.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">7. Practical considerations </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 9. Contributors</td></tr></table></div></body></html>
|
||||
16
doc/ar01s09.html
Normal file
16
doc/ar01s09.html
Normal file
@@ -0,0 +1,16 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>9. Contributors</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="ar01s08.html" title="8. Relation to other Boost libraries"><link rel="next" href="apa.html" title="A. Rationale for some of the design decisions"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">9. Contributors</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s08.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="apa.html">Next</a></td></tr></table><hr></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="id2808810"></a>9. Contributors</h2></div></div>
|
||||
|
||||
The main body of the library was written by Jaakko Järvi and Gary Powell.
|
||||
We've got outside help, suggestions and ideas from Jeremy Siek, Peter Higley, Peter Dimov, Valentin Bonnard, William Kempf.
|
||||
We would particularly like to mention Joel de Guzmann and his work with
|
||||
Phoenix which has influenced BLL significantly, making it considerably simpler
|
||||
to extend the library with new features.
|
||||
|
||||
</div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s08.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="apa.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">8. Relation to other Boost libraries </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> A. Rationale for some of the design decisions</td></tr></table></div></body></html>
|
||||
19
doc/bi01.html
Normal file
19
doc/bi01.html
Normal file
@@ -0,0 +1,19 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>Bibliography</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="up" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="previous" href="apa.html" title="A. Rationale for some of the design decisions"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Bibliography</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="apa.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> </td></tr></table><hr></div><div id="id2808983" class="bibliography"><div class="titlepage"><div><h2 class="title"><a name="id2808983"></a>Bibliography</h2></div></div><div class="biblioentry"><a name="cit:stepanov:94"></a><p>[STL94] <span class="authorgroup">A. A. Stepanov and M. Lee. </span><span class="title"><I>The Standard Template Library</I>. </span><span class="orgname">Hewlett-Packard Laboratories. </span><span class="pubdate">1994. </span><span class="bibliomisc">
|
||||
<a href="http://www.hpl.hp.com/techreports" target="_top">www.hpl.hp.com/techreports</a>
|
||||
. </span></p></div><div class="biblioentry"><a name="cit:sgi:02"></a><p>[SGI02] <span class="title"><I>The SGI Standard Template Library</I>. </span><span class="pubdate">2002. </span><span class="bibliomisc"><a href="http://www.sgi.com/tech/stl/" target="_top">www.sgi.com/tech/stl/</a>. </span></p></div><div class="biblioentry"><a name="cit:c++:98"></a><p>[C++98] <span class="title"><I>International Standard, Programming Languages – C++</I>. </span><span class="subtitle">ISO/IEC:14882. </span><span class="pubdate">1998. </span></p></div><div class="biblioentry"><a name="cit:jarvi:99"></a><p>[Jär99] <span class="articleinfo">
|
||||
<span class="author">Jaakko Järvi. </span>
|
||||
<span class="title"><I>C++ Function Object Binders Made Easy</I>. </span>
|
||||
. </span><span class="title"><I>Lecture Notes in Computer Science</I>. </span><span class="volumenum">1977. </span><span class="publishername">Springer. </span><span class="pubdate">2000. </span></p></div><div class="biblioentry"><a name="cit:jarvi:00"></a><p>[Jär00] <span class="author">Jaakko Järvi. </span><span class="author">Gary Powell. </span><span class="title"><I>The Lambda Library : Lambda Abstraction in C++</I>. </span><span class="orgname">Turku Centre for Computer Science. </span><span class="bibliomisc">Technical Report . </span><span class="issuenum">378. </span><span class="pubdate">2000. </span><span class="bibliomisc"><a href="http://www.tucs.fi/Publications/techreports/TR378.php" target="_top">www.tucs.fi/publications</a>. </span></p></div><div class="biblioentry"><a name="cit:jarvi:01"></a><p>[Jär01] <span class="author">Jaakko Järvi. </span><span class="author">Gary Powell. </span><span class="title"><I>The Lambda Library : Lambda Abstraction in C++</I>. </span><span class="confgroup"><span class="conftitle">Second Workshop on C++ Template Programming. </span><span class="address">Tampa Bay, OOPSLA'01. </span>. </span><span class="pubdate">2001. </span><span class="bibliomisc"><a href="http://www.oonumerics.org/tmpw01/" target="_top">www.oonumerics.org/tmpw01/</a>. </span></p></div><div class="biblioentry"><a name="cit:boost::tuple"></a><p>[tuple] <span class="title"><I>The Boost Tuple Library</I>. </span><span class="bibliomisc"><a href="http://www.boost.org/libs/tuple/doc/tuple_users_guide.html" target="_top">www.boost.org/libs/tuple/doc/tuple_users_guide.html</a>
|
||||
. </span><span class="pubdate">2002. </span></p></div><div class="biblioentry"><a name="cit:boost::type_traits"></a><p>[type_traits] <span class="title"><I>The Boost type_traits</I>. </span><span class="bibliomisc"><a href="http://www.boost.org/libs/type_traits/index.htm" target="_top">www.boost.org/libs/type_traits/</a>
|
||||
. </span><span class="pubdate">2002. </span></p></div><div class="biblioentry"><a name="cit:boost::ref"></a><p>[ref] <span class="title"><I>Boost ref</I>. </span><span class="bibliomisc"><a href="http://www.boost.org/libs/bind/ref.html" target="_top">www.boost.org/libs/bind/ref.html</a>
|
||||
. </span><span class="pubdate">2002. </span></p></div><div class="biblioentry"><a name="cit:boost::bind"></a><p>[bind] <span class="title"><I>Boost Bind Library</I>. </span><span class="bibliomisc"><a href="http://www.boost.org/libs/bind/bind.html" target="_top">www.boost.org/libs/bind/bind.html</a>
|
||||
. </span><span class="pubdate">2002. </span></p></div><div class="biblioentry"><a name="cit:boost::function"></a><p>[function] <span class="title"><I>Boost Function Library</I>. </span><span class="bibliomisc"><a href="http://www.boost.org/libs/function/" target="_top">www.boost.org/libs/function/</a>
|
||||
. </span><span class="pubdate">2002. </span></p></div><div class="biblioentry"><a name="cit:fc++"></a><p>[fc++] <span class="title"><I>The FC++ library: Functional Programming in C++</I>. </span><span class="author">Yannis Smaragdakis. </span><span class="author">Brian McNamara. </span><span class="bibliomisc"><a href="http://www.cc.gatech.edu/~yannis/fc++/" target="_top">www.cc.gatech.edu/~yannis/fc++/</a>
|
||||
. </span><span class="pubdate">2002. </span></p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="apa.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="index.html">Up</a></td><td width="40%" align="right"> </td></tr><tr><td width="40%" align="left" valign="top">A. Rationale for some of the design decisions </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> </td></tr></table></div></body></html>
|
||||
@@ -2,6 +2,6 @@
|
||||
generated
|
||||
- lambda_doc_chunks.xsl loads the stylesheets that generate a separate
|
||||
html-file for each section
|
||||
- lambda_doc.xsl loads stylesheets that generate one big html-file
|
||||
- lambda_doc.html loads stylesheets that generate one big html-file
|
||||
(you need to edit the paths in these files to make them work)
|
||||
|
||||
|
||||
@@ -1,42 +1,54 @@
|
||||
<?xml version="1.0" encoding="ISO-Latin-1"?>
|
||||
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
|
||||
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
|
||||
<library name="Lambda" dirname="lambda" id="lambda"
|
||||
last-revision="$Date$"
|
||||
xmlns:xi="http://www.w3.org/2001/XInclude">
|
||||
<libraryinfo>
|
||||
<author>
|
||||
<firstname>Jaakko</firstname>
|
||||
<surname>Järvi</surname>
|
||||
<email>jarvi at cs tamu edu</email>
|
||||
</author>
|
||||
<?xml version='1.0' encoding="ISO-Latin-1" ?>
|
||||
<!DOCTYPE article
|
||||
PUBLIC "-//OASIS//DTD DocBook XML MathML V4.1.2//EN"
|
||||
"/u/jajarvi/dtd/docbook-xml/docbookx.dtd"
|
||||
>
|
||||
<article>
|
||||
<articleinfo>
|
||||
<title>
|
||||
<inlinemediaobject>
|
||||
<imageobject>
|
||||
<imagedata fileref="../../../c++boost.gif" format="gif"/>
|
||||
</imageobject>
|
||||
<textobject>
|
||||
<phrase>C++ BOOST</phrase>
|
||||
</textobject>
|
||||
</inlinemediaobject>
|
||||
|
||||
<copyright>
|
||||
<year>1999</year>
|
||||
<year>2000</year>
|
||||
<year>2001</year>
|
||||
<year>2002</year>
|
||||
<year>2003</year>
|
||||
<year>2004</year>
|
||||
<holder>Jaakko Järvi</holder>
|
||||
<holder>Gary Powell</holder>
|
||||
</copyright>
|
||||
The Boost Lambda Library</title>
|
||||
|
||||
<!-- <author>
|
||||
<surname>Järvi</surname><firstname>Jaakko</firstname>
|
||||
<affiliation>
|
||||
|
||||
<legalnotice>
|
||||
<para>Use, modification and distribution is subject to the Boost
|
||||
Software License, Version 1.0. (See accompanying file
|
||||
<filename>LICENSE_1_0.txt</filename> or copy at <ulink
|
||||
url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)</para>
|
||||
</legalnotice>
|
||||
<orgname>Indiana University</orgname>
|
||||
<orgdiv></orgdiv>
|
||||
</affiliation>
|
||||
</author>
|
||||
-->
|
||||
<orgname>BOOST</orgname>
|
||||
<copyright>
|
||||
<year>1999-2002</year>
|
||||
<holder>Jaakko Järvi</holder>
|
||||
<holder>Gary Powell</holder>
|
||||
</copyright>
|
||||
<legalnotice>
|
||||
<para>
|
||||
The Boost Lambda Library is free software; Permission to copy,
|
||||
use, modify and distribute this software and its documentation is granted, provided this copyright
|
||||
notice appears in all copies.
|
||||
</para>
|
||||
</legalnotice>
|
||||
</articleinfo>
|
||||
|
||||
<librarypurpose>Define small unnamed function objects at the actual call site, and more</librarypurpose>
|
||||
<librarycategory name="category:higher-order"/>
|
||||
</libraryinfo>
|
||||
|
||||
<!-- -->
|
||||
|
||||
|
||||
<section id="introduction">
|
||||
|
||||
|
||||
|
||||
<title>In a nutshell</title>
|
||||
|
||||
<para>
|
||||
@@ -542,11 +554,6 @@ These functions are described more thoroughly in <xref linkend="sect:delaying_co
|
||||
<section id="sect:actual_arguments_to_lambda_functors">
|
||||
<title>About actual arguments to lambda functors</title>
|
||||
|
||||
<para><emphasis>This section is no longer (or currently) relevant;
|
||||
acual arguments can be non-const rvalues.
|
||||
The section can, however, become relevant again, if in the future BLL will support
|
||||
lambda functors with higher arities than 3.</emphasis></para>
|
||||
|
||||
<para>A general restriction for the actual arguments is that they cannot be non-const rvalues.
|
||||
For example:
|
||||
|
||||
@@ -580,18 +587,19 @@ in the lambda functor.
|
||||
This means that the value of a bound argument is fixed at the time of the
|
||||
creation of the lambda function and remains constant during the lifetime
|
||||
of the lambda function object.
|
||||
|
||||
For example:
|
||||
|
||||
<programlisting>
|
||||
int i = 1;
|
||||
(_1 = 2, _1 + i)(i);
|
||||
(_1 + i)(i = 2);
|
||||
</programlisting>
|
||||
The comma operator is overloaded to combine lambda expressions into a sequence;
|
||||
the resulting unary lambda functor first assigns 2 to its argument,
|
||||
then adds the value of <literal>i</literal> to it.
|
||||
|
||||
The value of the expression in the last line is 3, not 4.
|
||||
In other words, the lambda expression that is created is
|
||||
<literal>lambda x.(x = 2, x + 1)</literal> rather than
|
||||
<literal>lambda x.(x = 2, x + i)</literal>.
|
||||
|
||||
In other words, the lambda expression <literal>_1 + i</literal> creates
|
||||
a lambda function <literal>lambda x.x+1</literal> rather than
|
||||
<literal>lambda x.x+i</literal>.
|
||||
|
||||
</para>
|
||||
|
||||
@@ -615,12 +623,12 @@ or as a reference to const respectively.
|
||||
|
||||
For example, if we rewrite the previous example and wrap the variable
|
||||
<literal>i</literal> with <literal>ref</literal>,
|
||||
we are creating the lambda expression <literal>lambda x.(x = 2, x + i)</literal>
|
||||
we are creating the lambda expression <literal>lambda x.x+i</literal>
|
||||
and the value of the expression in the last line will be 4:
|
||||
|
||||
<programlisting>
|
||||
i = 1;
|
||||
(_1 = 2, _1 + ref(i))(i);
|
||||
(_1 + ref(i))(i = 2);
|
||||
</programlisting>
|
||||
|
||||
Note that <literal>ref</literal> and <literal>cref</literal> are different
|
||||
@@ -1148,46 +1156,18 @@ operator defined, can be used as target functions.
|
||||
|
||||
In general, BLL cannot deduce the return type of an arbitrary function object.
|
||||
|
||||
However, there are two methods for giving BLL this capability for a certain
|
||||
However, there is a method for giving BLL this capability for a certain
|
||||
function object class.
|
||||
|
||||
</para>
|
||||
|
||||
<simplesect>
|
||||
|
||||
<title>The result_type typedef</title>
|
||||
|
||||
<para>
|
||||
|
||||
The BLL supports the standard library convention of declaring the return type
|
||||
of a function object with a member typedef named <literal>result_type</literal> in the
|
||||
function object class.
|
||||
|
||||
Here is a simple example:
|
||||
<programlisting>
|
||||
<![CDATA[struct A {
|
||||
typedef B result_type;
|
||||
B operator()(X, Y, Z);
|
||||
};]]>
|
||||
</programlisting>
|
||||
|
||||
If a function object does not define a <literal>result_type</literal> typedef,
|
||||
the method described below (<literal>sig</literal> template)
|
||||
is attempted to resolve the return type of the
|
||||
function object. If a function object defines both <literal>result_type</literal>
|
||||
and <literal>sig</literal>, <literal>result_type</literal> takes precedence.
|
||||
|
||||
</para>
|
||||
|
||||
</simplesect>
|
||||
|
||||
<simplesect>
|
||||
|
||||
<title>The sig template</title>
|
||||
|
||||
<para>
|
||||
Another mechanism that make BLL aware of the return type(s) of a function object is defining
|
||||
member template struct
|
||||
To make BLL aware of the return type(s) of a function object one needs to
|
||||
provide a member template struct
|
||||
<literal><![CDATA[sig<Args>]]></literal> with a typedef
|
||||
<literal>type</literal> that specifies the return type.
|
||||
|
||||
@@ -1206,7 +1186,9 @@ is the function
|
||||
object type itself, and the remaining elements are the types of
|
||||
the arguments, with which the function object is being called.
|
||||
|
||||
This may seem overly complex compared to defining the <literal>result_type</literal> typedef.
|
||||
This may seem overly complex compared to the Standard Library
|
||||
convention for defining the return type of a function
|
||||
object with the <literal>return_type</literal> typedef.
|
||||
Howver, there are two significant restrictions with using just a simple
|
||||
typedef to express the return type:
|
||||
<orderedlist>
|
||||
@@ -1281,6 +1263,27 @@ mechanism first introduced in the FC++ library
|
||||
|
||||
</simplesect>
|
||||
|
||||
<para>
|
||||
Earlier versions of the library supported the Standard Library convention
|
||||
as the default, and required special actions to make the library recognize
|
||||
the <literal>sig</literal> template.
|
||||
Now the BLL has that reversed.
|
||||
|
||||
If one needs to use a functor that adheres to the Standard Library
|
||||
convention in a bind expression, we provide the <literal>std_functor</literal>
|
||||
wrapper, that gives the function object a <literal>sig</literal>
|
||||
template based on the <literal>result_type</literal> typedef.
|
||||
For example:
|
||||
|
||||
<programlisting>
|
||||
<![CDATA[int i = 1;
|
||||
bind(plus<int>(), _1, 1)(i); // error, no sig template
|
||||
bind(std_functor(plus<int>()), _1, 1)(i); // ok]]>
|
||||
</programlisting>
|
||||
|
||||
</para>
|
||||
|
||||
|
||||
</section>
|
||||
|
||||
|
||||
@@ -1589,7 +1592,7 @@ For example, using this syntax the <literal>if_then</literal> example above
|
||||
can be written as:
|
||||
<programlisting>
|
||||
<![CDATA[for_each(a.begin(), a.end(),
|
||||
if_(_1 % 2 == 0)[ cout << _1 ])]]>
|
||||
if(_1 % 2 == 0)[ cout << _1 ])]]>
|
||||
</programlisting>
|
||||
|
||||
As more experience is gained, we may end up deprecating one or the other
|
||||
@@ -1854,7 +1857,7 @@ and the effect of evaluating that expression.
|
||||
</row>
|
||||
<row>
|
||||
<entry><literal>destructor()(pa)</literal></entry>
|
||||
<entry><literal>pa->~A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry>
|
||||
<entry><literal>pa.->A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry><literal>new_ptr<T>()(<parameter>arg_list</parameter>)</literal></entry>
|
||||
@@ -2071,13 +2074,6 @@ was to allow nested STL algorithm invocations
|
||||
<section id="sect:rvalues_as_actual_arguments">
|
||||
<title>Rvalues as actual arguments to lambda functors</title>
|
||||
|
||||
<para><emphasis>This section and all of its subsections
|
||||
are no longer (or currently) relevant;
|
||||
acual arguments can be non-const rvalues and these workarounds are thus
|
||||
not needed.
|
||||
The section can, however, become relevant again, if in the future BLL will support
|
||||
lambda functors with higher arities than 3.</emphasis></para>
|
||||
|
||||
<para>
|
||||
Actual arguments to the lambda functors cannot be non-const rvalues.
|
||||
This is due to a deliberate design decision: either we have this restriction,
|
||||
@@ -2724,7 +2720,7 @@ Note however, that evaluating a lambda functor consist of a sequence of calls to
|
||||
If the compiler fails to actually expand these functions inline,
|
||||
the performance can suffer.
|
||||
The running time can more than double if this happens.
|
||||
Although the above tests do not include such an expression, we have experienced
|
||||
Although the above tests do not include such an expression, we have experiensed
|
||||
this for some seemingly simple expressions.
|
||||
|
||||
|
||||
@@ -2878,7 +2874,7 @@ at compile time, and being slow to compile.
|
||||
<listitem>
|
||||
<para>
|
||||
The types of lambda functors that result from even the simplest lambda expressions are cryptic.
|
||||
Usually the programmer doesn't need to deal with the lambda functor types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved.
|
||||
Usually the programmer doesn't need to deal with the lambda functor the types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved.
|
||||
This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations.
|
||||
</para>
|
||||
</listitem>
|
||||
@@ -3037,8 +3033,8 @@ For example:
|
||||
<![CDATA[boost::function<int(int, int)> f = _1 + _2;
|
||||
boost::function<int&(int&)> g = (_1 += 10);
|
||||
int i = 1, j = 2;
|
||||
f(i, j); // returns 3
|
||||
g(i); // sets i to = 11;]]>
|
||||
f(i); // returns 3
|
||||
g(i); // sets i to = 11;]]>
|
||||
</programlisting>
|
||||
|
||||
The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <literal>boost::function</literal>; even when lambda functors, which otherwise have generic parameters, are wrapped.
|
||||
@@ -3353,37 +3349,6 @@ was dropped.
|
||||
<bibliomisc><ulink url="http://www.oonumerics.org/tmpw01/">www.oonumerics.org/tmpw01/</ulink></bibliomisc>
|
||||
</biblioentry>
|
||||
|
||||
<biblioentry id="cit:jarvi:03">
|
||||
<abbrev>Jär03</abbrev>
|
||||
|
||||
<articleinfo>
|
||||
|
||||
<author>
|
||||
<surname>Järvi</surname>
|
||||
<firstname>Jaakko</firstname>
|
||||
</author>
|
||||
|
||||
<author>
|
||||
<firstname>Gary</firstname>
|
||||
<surname>Powell</surname>
|
||||
</author>
|
||||
|
||||
<author>
|
||||
<firstname>Andrew</firstname>
|
||||
<surname>Lumsdaine</surname>
|
||||
</author>
|
||||
<title>The Lambda Library : unnamed functions in C++</title>
|
||||
|
||||
</articleinfo>
|
||||
|
||||
<title>Software - Practice and Expreience</title>
|
||||
<volumenum>33:259-291</volumenum>
|
||||
|
||||
|
||||
<pubdate>2003</pubdate>
|
||||
</biblioentry>
|
||||
|
||||
|
||||
<biblioentry id="cit:boost::tuple">
|
||||
<abbrev>tuple</abbrev>
|
||||
<title>The Boost Tuple Library</title>
|
||||
@@ -3447,7 +3412,7 @@ was dropped.
|
||||
|
||||
|
||||
|
||||
</library>
|
||||
</article>
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,39 @@
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="refresh" content="0; URL=../../../doc/html/lambda.html">
|
||||
</head>
|
||||
<body>
|
||||
Automatic redirection failed, please go to <a href="../../../doc/html/lambda.html">www.boost.org/doc/html/lambda.html</a>
|
||||
</body>
|
||||
</html>
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||||
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type"><title>
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library</title><meta name="generator" content="DocBook XSL Stylesheets V1.48"><link rel="home" href="index.html" title="
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library"><link rel="next" href="ar01s02.html" title="2. Getting Started"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">
|
||||
C++ BOOST
|
||||
|
||||
The Boost Lambda Library</th></tr><tr><td width="20%" align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s02.html">Next</a></td></tr></table><hr></div><div class="article"><div class="titlepage"><div><h1 class="title"><a name="id2733457"></a>
|
||||
<span class="inlinemediaobject"><img src="../../../c++boost.gif" alt="C++ BOOST"></span>
|
||||
|
||||
The Boost Lambda Library</h1></div><div><p class="copyright">Copyright © 1999-2002 Jaakko Järvi, Gary Powell</p></div><div><div class="legalnotice"><p>
|
||||
The Boost Lambda Library is free software; Permission to copy,
|
||||
use, modify and distribute this software and its documentation is granted, provided this copyright
|
||||
notice appears in all copies.
|
||||
</p></div></div><hr></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt>1. <a href="index.html#introduction">In a nutshell</a></dt><dt>2. <a href="ar01s02.html">Getting Started</a></dt><dd><dl><dt>2.1. <a href="ar01s02.html#id2790109">Installing the library</a></dt><dt>2.2. <a href="ar01s02.html#id2741935">Conventions used in this document</a></dt></dl></dd><dt>3. <a href="ar01s03.html">Introduction</a></dt><dd><dl><dt>3.1. <a href="ar01s03.html#id2741989">Motivation</a></dt><dt>3.2. <a href="ar01s03.html#id2742784">Introduction to lambda expressions</a></dt></dl></dd><dt>4. <a href="ar01s04.html">Using the library</a></dt><dd><dl><dt>4.1. <a href="ar01s04.html#sect:introductory_examples">Introductory Examples</a></dt><dt>4.2. <a href="ar01s04.html#sect:parameter_and_return_types">Parameter and return types of lambda functors</a></dt><dt>4.3. <a href="ar01s04.html#sect:actual_arguments_to_lambda_functors">About actual arguments to lambda functors</a></dt><dt>4.4. <a href="ar01s04.html#sect:storing_bound_arguments">Storing bound arguments in lambda functions</a></dt></dl></dd><dt>5. <a href="ar01s05.html">Lambda expressions in details</a></dt><dd><dl><dt>5.1. <a href="ar01s05.html#sect:placeholders">Placeholders</a></dt><dt>5.2. <a href="ar01s05.html#sect:operator_expressions">Operator expressions</a></dt><dt>5.3. <a href="ar01s05.html#sect:bind_expressions">Bind expressions</a></dt><dt>5.4. <a href="ar01s05.html#sect:overriding_deduced_return_type">Overriding the deduced return type</a></dt><dt>5.5. <a href="ar01s05.html#sect:delaying_constants_and_variables">Delaying constants and variables</a></dt><dt>5.6. <a href="ar01s05.html#sect:lambda_expressions_for_control_structures">Lambda expressions for control structures</a></dt><dt>5.7. <a href="ar01s05.html#sect:exceptions">Exceptions</a></dt><dt>5.8. <a href="ar01s05.html#sect:construction_and_destruction">Construction and destruction</a></dt><dt>5.9. <a href="ar01s05.html#id2805476">Special lambda expressions</a></dt><dt>5.10. <a href="ar01s05.html#id2806049">Casts, sizeof and typeid</a></dt><dt>5.11. <a href="ar01s05.html#sect:nested_stl_algorithms">Nesting STL algorithm invocations</a></dt></dl></dd><dt>6. <a href="ar01s06.html">Extending return type deduction system</a></dt><dt>7. <a href="ar01s07.html">Practical considerations</a></dt><dd><dl><dt>7.1. <a href="ar01s07.html#id2807564">Performance</a></dt><dt>7.2. <a href="ar01s07.html#id2808056">About compiling</a></dt><dt>7.3. <a href="ar01s07.html#id2808118">Portability</a></dt></dl></dd><dt>8. <a href="ar01s08.html">Relation to other Boost libraries</a></dt><dd><dl><dt>8.1. <a href="ar01s08.html#id2808509">Boost Function</a></dt><dt>8.2. <a href="ar01s08.html#id2808613">Boost Bind</a></dt></dl></dd><dt>9. <a href="ar01s09.html">Contributors</a></dt><dt>A. <a href="apa.html">Rationale for some of the design decisions</a></dt><dd><dl><dt>1. <a href="apa.html#sect:why_weak_arity">
|
||||
Lambda functor arity
|
||||
</a></dt></dl></dd><dt><a href="bi01.html">Bibliography</a></dt></dl></div><div class="section"><div class="titlepage"><div><h2 class="title" style="clear: both"><a name="introduction"></a>1. In a nutshell</h2></div></div><p>
|
||||
|
||||
The Boost Lambda Library (BLL in the sequel) is a C++ template
|
||||
library, which implements form of <span class="emphasis"><i>lambda abstractions</i></span> for C++.
|
||||
The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function.
|
||||
The primary motivation for the BLL is to provide flexible and
|
||||
convenient means to define unnamed function objects for STL algorithms.
|
||||
In explaining what the library is about, a line of code says more than a thousand words; the
|
||||
following line outputs the elements of some STL container
|
||||
<tt>a</tt> separated by spaces:
|
||||
|
||||
<pre class="programlisting">for_each(a.begin(), a.end(), std::cout << _1 << ' ');</pre>
|
||||
|
||||
The expression <tt>std::cout << _1 << ' '</tt> defines a unary function object.
|
||||
The variable <tt>_1</tt> is the parameter of this function, a <span class="emphasis"><i>placeholder</i></span> for the actual argument.
|
||||
Within each iteration of <tt>for_each</tt>, the function is
|
||||
called with an element of <tt>a</tt> as the actual argument.
|
||||
This actual argument is substituted for the placeholder, and the ‘body’ of the function is evaluated.
|
||||
</p><p>The essence of BLL is letting you define small unnamed function objects, such as the one above, directly on the call site of an STL algorithm.
|
||||
</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s02.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%" align="center"> </td><td width="40%" align="right" valign="top"> 2. Getting Started</td></tr></table></div></body></html>
|
||||
|
||||
3451
doc/lambda.xml
3451
doc/lambda.xml
File diff suppressed because it is too large
Load Diff
2174
doc/lambda_docs_as_one_file.html
Normal file
2174
doc/lambda_docs_as_one_file.html
Normal file
File diff suppressed because it is too large
Load Diff
1378
include/boost/lambda/algorithm.hpp
Normal file
1378
include/boost/lambda/algorithm.hpp
Normal file
File diff suppressed because it is too large
Load Diff
24
include/boost/lambda/bind.hpp
Normal file
24
include/boost/lambda/bind.hpp
Normal file
@@ -0,0 +1,24 @@
|
||||
// -- bind.hpp -- Boost Lambda Library --------------------------------------
|
||||
|
||||
// Copyright (C) 1999-2001 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Gary Powell (gwpowell@hotmail.com)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
#ifndef BOOST_LAMBDA_BIND_HPP
|
||||
#define BOOST_LAMBDA_BIND_HPP
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
|
||||
#include "boost/lambda/detail/bind_functions.hpp"
|
||||
|
||||
#endif
|
||||
224
include/boost/lambda/casts.hpp
Normal file
224
include/boost/lambda/casts.hpp
Normal file
@@ -0,0 +1,224 @@
|
||||
// - casts.hpp -- BLambda Library -------------
|
||||
//
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
// -----------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_CASTS_HPP)
|
||||
#define BOOST_LAMBDA_CASTS_HPP
|
||||
|
||||
#include <typeinfo>
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
template<class T> class cast_action;
|
||||
|
||||
template<class T> class static_cast_action;
|
||||
template<class T> class dynamic_cast_action;
|
||||
template<class T> class const_cast_action;
|
||||
template<class T> class reinterpret_cast_action;
|
||||
|
||||
class typeid_action;
|
||||
class sizeof_action;
|
||||
|
||||
// Cast actions
|
||||
|
||||
template<class T> class cast_action<static_cast_action<T> >
|
||||
{
|
||||
public:
|
||||
template<class RET, class Arg1>
|
||||
static RET apply(Arg1 &a1) {
|
||||
return static_cast<RET>(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class cast_action<dynamic_cast_action<T> > {
|
||||
public:
|
||||
template<class RET, class Arg1>
|
||||
static RET apply(Arg1 &a1) {
|
||||
return dynamic_cast<RET>(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class cast_action<const_cast_action<T> > {
|
||||
public:
|
||||
template<class RET, class Arg1>
|
||||
static RET apply(Arg1 &a1) {
|
||||
return const_cast<RET>(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class cast_action<reinterpret_cast_action<T> > {
|
||||
public:
|
||||
template<class RET, class Arg1>
|
||||
static RET apply(Arg1 &a1) {
|
||||
return reinterpret_cast<RET>(a1);
|
||||
}
|
||||
};
|
||||
|
||||
// typedid action
|
||||
class typeid_action {
|
||||
public:
|
||||
template<class RET, class Arg1>
|
||||
static RET apply(Arg1 &a1) {
|
||||
return typeid(a1);
|
||||
}
|
||||
};
|
||||
|
||||
// sizeof action
|
||||
class sizeof_action
|
||||
{
|
||||
public:
|
||||
template<class RET, class Arg1>
|
||||
static RET apply(Arg1 &a1) {
|
||||
return sizeof(a1);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// return types of casting lambda_functors (all "T" type.)
|
||||
|
||||
template<template <class> class cast_type, class T, class A>
|
||||
struct return_type_N<cast_action< cast_type<T> >, A> {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
// return type of typeid_action
|
||||
template<class A>
|
||||
struct return_type_N<typeid_action, A> {
|
||||
typedef std::type_info const & type;
|
||||
};
|
||||
|
||||
// return type of sizeof_action
|
||||
|
||||
template<class A>
|
||||
struct return_type_N<sizeof_action, A> {
|
||||
typedef std::size_t type;
|
||||
};
|
||||
|
||||
|
||||
// the four cast & typeid overloads.
|
||||
// casts can take ordinary variables (not just lambda functors)
|
||||
|
||||
// static_cast
|
||||
template <class T, class Arg1>
|
||||
inline const lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<static_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
>
|
||||
ll_static_cast(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<static_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
( tuple<typename const_copy_argument <const Arg1>::type>(a1));
|
||||
}
|
||||
|
||||
// dynamic_cast
|
||||
template <class T, class Arg1>
|
||||
inline const lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<dynamic_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
>
|
||||
ll_dynamic_cast(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<dynamic_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
( tuple<typename const_copy_argument <const Arg1>::type>(a1));
|
||||
}
|
||||
|
||||
// const_cast
|
||||
template <class T, class Arg1>
|
||||
inline const lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<const_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
>
|
||||
ll_const_cast(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<const_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
( tuple<typename const_copy_argument <const Arg1>::type>(a1));
|
||||
}
|
||||
|
||||
// reinterpret_cast
|
||||
template <class T, class Arg1>
|
||||
inline const lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<reinterpret_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
>
|
||||
ll_reinterpret_cast(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, cast_action<reinterpret_cast_action<T> > >,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
( tuple<typename const_copy_argument <const Arg1>::type>(a1));
|
||||
}
|
||||
|
||||
// typeid
|
||||
// can be applied to a normal variable as well (can refer to a polymorphic
|
||||
// class object)
|
||||
template <class Arg1>
|
||||
inline const lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, typeid_action>,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
>
|
||||
ll_typeid(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, typeid_action>,
|
||||
tuple<typename const_copy_argument <const Arg1>::type>
|
||||
>
|
||||
( tuple<typename const_copy_argument <const Arg1>::type>(a1));
|
||||
}
|
||||
|
||||
// sizeof(expression)
|
||||
// Always takes a lambda expression (if not, built in sizeof will do)
|
||||
template <class Arg1>
|
||||
inline const lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, sizeof_action>,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
ll_sizeof(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, sizeof_action>,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1> >(a1));
|
||||
}
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
289
include/boost/lambda/closures.hpp
Normal file
289
include/boost/lambda/closures.hpp
Normal file
@@ -0,0 +1,289 @@
|
||||
/*=============================================================================
|
||||
Adaptable closures
|
||||
|
||||
Phoenix V0.9
|
||||
Copyright (c) 2001-2002 Joel de Guzman
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the copyright holder be held liable for
|
||||
any damages arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute
|
||||
it freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must
|
||||
not claim that you wrote the original software. If you use this
|
||||
software in a product, an acknowledgment in the product documentation
|
||||
would be appreciated but is not required.
|
||||
|
||||
2. Altered source versions must be plainly marked as such, and must
|
||||
not be misrepresented as being the original software.
|
||||
|
||||
3. This notice may not be removed or altered from any source
|
||||
distribution.
|
||||
|
||||
URL: http://spirit.sourceforge.net/
|
||||
|
||||
==============================================================================*/
|
||||
#ifndef PHOENIX_CLOSURES_HPP
|
||||
#define PHOENIX_CLOSURES_HPP
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
#include "boost/lambda/core.hpp"
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Adaptable closures
|
||||
//
|
||||
// The framework will not be complete without some form of closures
|
||||
// support. Closures encapsulate a stack frame where local
|
||||
// variables are created upon entering a function and destructed
|
||||
// upon exiting. Closures provide an environment for local
|
||||
// variables to reside. Closures can hold heterogeneous types.
|
||||
//
|
||||
// Phoenix closures are true hardware stack based closures. At the
|
||||
// very least, closures enable true reentrancy in lambda functions.
|
||||
// A closure provides access to a function stack frame where local
|
||||
// variables reside. Modeled after Pascal nested stack frames,
|
||||
// closures can be nested just like nested functions where code in
|
||||
// inner closures may access local variables from in-scope outer
|
||||
// closures (accessing inner scopes from outer scopes is an error
|
||||
// and will cause a run-time assertion failure).
|
||||
//
|
||||
// There are three (3) interacting classes:
|
||||
//
|
||||
// 1) closure:
|
||||
//
|
||||
// At the point of declaration, a closure does not yet create a
|
||||
// stack frame nor instantiate any variables. A closure declaration
|
||||
// declares the types and names[note] of the local variables. The
|
||||
// closure class is meant to be subclassed. It is the
|
||||
// responsibility of a closure subclass to supply the names for
|
||||
// each of the local variable in the closure. Example:
|
||||
//
|
||||
// struct my_closure : closure<int, string, double> {
|
||||
//
|
||||
// member1 num; // names the 1st (int) local variable
|
||||
// member2 message; // names the 2nd (string) local variable
|
||||
// member3 real; // names the 3rd (double) local variable
|
||||
// };
|
||||
//
|
||||
// my_closure clos;
|
||||
//
|
||||
// Now that we have a closure 'clos', its local variables can be
|
||||
// accessed lazily using the dot notation. Each qualified local
|
||||
// variable can be used just like any primitive actor (see
|
||||
// primitives.hpp). Examples:
|
||||
//
|
||||
// clos.num = 30
|
||||
// clos.message = arg1
|
||||
// clos.real = clos.num * 1e6
|
||||
//
|
||||
// The examples above are lazily evaluated. As usual, these
|
||||
// expressions return composite actors that will be evaluated
|
||||
// through a second function call invocation (see operators.hpp).
|
||||
// Each of the members (clos.xxx) is an actor. As such, applying
|
||||
// the operator() will reveal its identity:
|
||||
//
|
||||
// clos.num() // will return the current value of clos.num
|
||||
//
|
||||
// *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
|
||||
// introduced and initilally implemented the closure member names
|
||||
// that uses the dot notation.
|
||||
//
|
||||
// 2) closure_member
|
||||
//
|
||||
// The named local variables of closure 'clos' above are actually
|
||||
// closure members. The closure_member class is an actor and
|
||||
// conforms to its conceptual interface. member1..memberN are
|
||||
// predefined typedefs that correspond to each of the listed types
|
||||
// in the closure template parameters.
|
||||
//
|
||||
// 3) closure_frame
|
||||
//
|
||||
// When a closure member is finally evaluated, it should refer to
|
||||
// an actual instance of the variable in the hardware stack.
|
||||
// Without doing so, the process is not complete and the evaluated
|
||||
// member will result to an assertion failure. Remember that the
|
||||
// closure is just a declaration. The local variables that a
|
||||
// closure refers to must still be instantiated.
|
||||
//
|
||||
// The closure_frame class does the actual instantiation of the
|
||||
// local variables and links these variables with the closure and
|
||||
// all its members. There can be multiple instances of
|
||||
// closure_frames typically situated in the stack inside a
|
||||
// function. Each closure_frame instance initiates a stack frame
|
||||
// with a new set of closure local variables. Example:
|
||||
//
|
||||
// void foo()
|
||||
// {
|
||||
// closure_frame<my_closure> frame(clos);
|
||||
// /* do something */
|
||||
// }
|
||||
//
|
||||
// where 'clos' is an instance of our closure 'my_closure' above.
|
||||
// Take note that the usage above precludes locally declared
|
||||
// classes. If my_closure is a locally declared type, we can still
|
||||
// use its self_type as a paramater to closure_frame:
|
||||
//
|
||||
// closure_frame<my_closure::self_type> frame(clos);
|
||||
//
|
||||
// Upon instantiation, the closure_frame links the local variables
|
||||
// to the closure. The previous link to another closure_frame
|
||||
// instance created before is saved. Upon destruction, the
|
||||
// closure_frame unlinks itself from the closure and relinks the
|
||||
// preceding closure_frame prior to this instance.
|
||||
//
|
||||
// The local variables in the closure 'clos' above is default
|
||||
// constructed in the stack inside function 'foo'. Once 'foo' is
|
||||
// exited, all of these local variables are destructed. In some
|
||||
// cases, default construction is not desirable and we need to
|
||||
// initialize the local closure variables with some values. This
|
||||
// can be done by passing in the initializers in a compatible
|
||||
// tuple. A compatible tuple is one with the same number of
|
||||
// elements as the destination and where each element from the
|
||||
// destination can be constructed from each corresponding element
|
||||
// in the source. Example:
|
||||
//
|
||||
// tuple<int, char const*, int> init(123, "Hello", 1000);
|
||||
// closure_frame<my_closure> frame(clos, init);
|
||||
//
|
||||
// Here now, our closure_frame's variables are initialized with
|
||||
// int: 123, char const*: "Hello" and int: 1000.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// closure_frame class
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <typename ClosureT>
|
||||
class closure_frame : public ClosureT::tuple_t {
|
||||
|
||||
public:
|
||||
|
||||
closure_frame(ClosureT& clos)
|
||||
: ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
|
||||
{ clos.frame = this; }
|
||||
|
||||
template <typename TupleT>
|
||||
closure_frame(ClosureT& clos, TupleT const& init)
|
||||
: ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
|
||||
{ clos.frame = this; }
|
||||
|
||||
~closure_frame()
|
||||
{ frame = save; }
|
||||
|
||||
private:
|
||||
|
||||
closure_frame(closure_frame const&); // no copy
|
||||
closure_frame& operator=(closure_frame const&); // no assign
|
||||
|
||||
closure_frame* save;
|
||||
closure_frame*& frame;
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// closure_member class
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <int N, typename ClosureT>
|
||||
class closure_member {
|
||||
|
||||
public:
|
||||
|
||||
typedef typename ClosureT::tuple_t tuple_t;
|
||||
|
||||
closure_member()
|
||||
: frame(ClosureT::closure_frame_ref()) {}
|
||||
|
||||
template <typename TupleT>
|
||||
struct sig {
|
||||
|
||||
typedef typename detail::tuple_element_as_reference<
|
||||
N, typename ClosureT::tuple_t
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template <class Ret, class A, class B, class C>
|
||||
// typename detail::tuple_element_as_reference
|
||||
// <N, typename ClosureT::tuple_t>::type
|
||||
Ret
|
||||
call(A&, B&, C&) const
|
||||
{
|
||||
assert(frame);
|
||||
return boost::tuples::get<N>(*frame);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
typename ClosureT::closure_frame_t*& frame;
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// closure class
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <
|
||||
typename T0 = null_type,
|
||||
typename T1 = null_type,
|
||||
typename T2 = null_type,
|
||||
typename T3 = null_type,
|
||||
typename T4 = null_type
|
||||
>
|
||||
class closure {
|
||||
|
||||
public:
|
||||
|
||||
typedef tuple<T0, T1, T2, T3, T4> tuple_t;
|
||||
typedef closure<T0, T1, T2, T3, T4> self_t;
|
||||
typedef closure_frame<self_t> closure_frame_t;
|
||||
|
||||
closure()
|
||||
: frame(0) { closure_frame_ref(&frame); }
|
||||
closure_frame_t& context() { assert(frame); return frame; }
|
||||
closure_frame_t const& context() const { assert(frame); return frame; }
|
||||
|
||||
typedef lambda_functor<closure_member<0, self_t> > member1;
|
||||
typedef lambda_functor<closure_member<1, self_t> > member2;
|
||||
typedef lambda_functor<closure_member<2, self_t> > member3;
|
||||
typedef lambda_functor<closure_member<3, self_t> > member4;
|
||||
typedef lambda_functor<closure_member<4, self_t> > member5;
|
||||
|
||||
private:
|
||||
|
||||
closure(closure const&); // no copy
|
||||
closure& operator=(closure const&); // no assign
|
||||
|
||||
template <int N, typename ClosureT>
|
||||
friend struct closure_member;
|
||||
|
||||
template <typename ClosureT>
|
||||
friend class closure_frame;
|
||||
|
||||
static closure_frame_t*&
|
||||
closure_frame_ref(closure_frame_t** frame_ = 0)
|
||||
{
|
||||
static closure_frame_t** frame = 0;
|
||||
if (frame_ != 0)
|
||||
frame = frame_;
|
||||
return *frame;
|
||||
}
|
||||
|
||||
closure_frame_t* frame;
|
||||
};
|
||||
|
||||
}}
|
||||
// namespace
|
||||
|
||||
#endif
|
||||
242
include/boost/lambda/construct.hpp
Normal file
242
include/boost/lambda/construct.hpp
Normal file
@@ -0,0 +1,242 @@
|
||||
// - construct.hpp -- Lambda Library -------------
|
||||
//
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
//
|
||||
// -----------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_CONSTRUCT_HPP)
|
||||
#define BOOST_LAMBDA_CONSTRUCT_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// constructor is used together with bind. constructor<A> creates a bindable
|
||||
// function object that passes its arguments forward to a constructor call
|
||||
// of type A
|
||||
|
||||
template<class T> struct constructor {
|
||||
|
||||
template <class U> struct sig { typedef T type; };
|
||||
|
||||
T operator()() const {
|
||||
return T();
|
||||
}
|
||||
|
||||
template<class A1>
|
||||
T operator()(A1& a1) const {
|
||||
return T(a1);
|
||||
}
|
||||
|
||||
template<class A1, class A2>
|
||||
T operator()(A1& a1, A2& a2) const {
|
||||
return T(a1, a2);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3>
|
||||
T operator()(A1& a1, A2& a2, A3& a3) const {
|
||||
return T(a1, a2, a3);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4) const {
|
||||
return T(a1, a2, a3, a4);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) const {
|
||||
return T(a1, a2, a3, a4, a5);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) const {
|
||||
return T(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) const {
|
||||
return T(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) const {
|
||||
return T(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) const {
|
||||
return T(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
|
||||
T operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9, A10& a10) const {
|
||||
return T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// A standard conforming compiler could disambiguate between
|
||||
// A1* and A1&, but not all compilers do that, so we need the
|
||||
// helpers
|
||||
|
||||
|
||||
template <bool IsPointer>
|
||||
struct destructor_helper {
|
||||
|
||||
template<class A1>
|
||||
static void exec(A1& a1) {
|
||||
// remove all the qualifiers, not sure whether it is necessary
|
||||
typedef typename boost::remove_cv<A1>::type plainA1;
|
||||
a1.~plainA1();
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct destructor_helper<true> {
|
||||
|
||||
template<class A1>
|
||||
static void exec(A1* a1) {
|
||||
typedef typename boost::remove_cv<A1>::type plainA1;
|
||||
(*a1).~plainA1();
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
// destructor funtion object
|
||||
struct destructor {
|
||||
|
||||
template <class T> struct sig { typedef void type; };
|
||||
|
||||
template<class A1>
|
||||
void operator()(A1& a1) const {
|
||||
typedef typename boost::remove_cv<A1>::type plainA1;
|
||||
detail::destructor_helper<boost::is_pointer<plainA1>::value>::exec(a1);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// new_ptr is used together with bind.
|
||||
|
||||
// note: placement new is not supported
|
||||
|
||||
template<class T> struct new_ptr {
|
||||
|
||||
template <class U> struct sig { typedef T* type; };
|
||||
|
||||
T* operator()() const {
|
||||
return new T();
|
||||
}
|
||||
|
||||
template<class A1>
|
||||
T* operator()(A1& a1) const {
|
||||
return new T(a1);
|
||||
}
|
||||
|
||||
template<class A1, class A2>
|
||||
T* operator()(A1& a1, A2& a2) const {
|
||||
return new T(a1, a2);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3) const {
|
||||
return new T(a1, a2, a3);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4) const {
|
||||
return new T(a1, a2, a3, a4);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) const {
|
||||
return new T(a1, a2, a3, a4, a5);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) const {
|
||||
return new T(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) const {
|
||||
return new T(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) const {
|
||||
return new T(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) const {
|
||||
return new T(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
|
||||
T* operator()(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9, A10& a10) const {
|
||||
return new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// delete_ptr return void
|
||||
|
||||
struct delete_ptr {
|
||||
|
||||
template <class U> struct sig { typedef void type; };
|
||||
|
||||
template <class A1>
|
||||
void operator()(A1& a1) const {
|
||||
delete a1;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
// new_array is used together with bind.
|
||||
|
||||
template<class T> struct new_array {
|
||||
|
||||
template <class U> struct sig { typedef T* type; };
|
||||
|
||||
T* operator()(int size) const {
|
||||
return new T[size];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// delete_ptr return void
|
||||
|
||||
struct delete_array {
|
||||
|
||||
template <class U> struct sig { typedef void type; };
|
||||
|
||||
template <class A1>
|
||||
void operator()(A1& a1) const {
|
||||
delete[] a1;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
27
include/boost/lambda/control_structures.hpp
Normal file
27
include/boost/lambda/control_structures.hpp
Normal file
@@ -0,0 +1,27 @@
|
||||
// -- control_structures.hpp -- Boost Lambda Library --------------------------
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
#ifndef BOOST_LAMBDA_CONTROL_STRUCTURES_HPP
|
||||
#define BOOST_LAMBDA_CONTROL_STRUCTURES_HPP
|
||||
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
|
||||
// Arithmetic type promotion needed for if_then_else_return
|
||||
#include "boost/lambda/detail/operator_actions.hpp"
|
||||
#include "boost/lambda/detail/operator_return_type_traits.hpp"
|
||||
|
||||
#include "boost/lambda/detail/control_structures_impl.hpp"
|
||||
|
||||
#endif
|
||||
70
include/boost/lambda/core.hpp
Normal file
70
include/boost/lambda/core.hpp
Normal file
@@ -0,0 +1,70 @@
|
||||
// -- core.hpp -- Boost Lambda Library -------------------------------------
|
||||
//
|
||||
// Includes the core of LL, without any real features for client:
|
||||
//
|
||||
// tuples, lambda functors, return type deduction templates,
|
||||
// argument substitution mechanism (select functions)
|
||||
//
|
||||
// Some functionality comes as well:
|
||||
// Assignment and subscript operators, as well as function
|
||||
// call operator for placeholder variables.
|
||||
// -------------------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_CORE_HPP
|
||||
#define BOOST_LAMBDA_CORE_HPP
|
||||
|
||||
#include "boost/type_traits/transform_traits.hpp"
|
||||
#include "boost/type_traits/cv_traits.hpp"
|
||||
|
||||
#include "boost/tuple/tuple.hpp"
|
||||
|
||||
// inject some of the tuple names into lambda
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
using ::boost::tuples::tuple;
|
||||
using ::boost::tuples::null_type;
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#include "boost/lambda/detail/lambda_config.hpp"
|
||||
#include "boost/lambda/detail/lambda_fwd.hpp"
|
||||
|
||||
#include "boost/lambda/detail/arity_code.hpp"
|
||||
#include "boost/lambda/detail/actions.hpp"
|
||||
|
||||
#include "boost/lambda/detail/lambda_traits.hpp"
|
||||
|
||||
#include "boost/lambda/detail/function_adaptors.hpp"
|
||||
#include "boost/lambda/detail/return_type_traits.hpp"
|
||||
|
||||
#include "boost/lambda/detail/select_functions.hpp"
|
||||
|
||||
#include "boost/lambda/detail/lambda_functor_base.hpp"
|
||||
|
||||
#include "boost/lambda/detail/lambda_functors.hpp"
|
||||
|
||||
#include "boost/lambda/detail/ret.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
namespace {
|
||||
|
||||
// These are constants types and need to be initialised
|
||||
boost::lambda::placeholder1_type free1 = boost::lambda::placeholder1_type();
|
||||
boost::lambda::placeholder2_type free2 = boost::lambda::placeholder2_type();
|
||||
boost::lambda::placeholder3_type free3 = boost::lambda::placeholder3_type();
|
||||
|
||||
boost::lambda::placeholder1_type& _1 = free1;
|
||||
boost::lambda::placeholder2_type& _2 = free2;
|
||||
boost::lambda::placeholder3_type& _3 = free3;
|
||||
// _1, _2, ... naming scheme by Peter Dimov
|
||||
} // unnamed
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
|
||||
#endif //BOOST_LAMBDA_CORE_HPP
|
||||
179
include/boost/lambda/detail/actions.hpp
Normal file
179
include/boost/lambda/detail/actions.hpp
Normal file
@@ -0,0 +1,179 @@
|
||||
// -- Boost Lambda Library - actions.hpp ----------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ----------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_ACTIONS_HPP
|
||||
#define BOOST_LAMBDA_ACTIONS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
|
||||
template<int Arity, class Act> class action;
|
||||
|
||||
// these need to be defined here, since the corresponding lambda
|
||||
// functions are members of lambda_functor classes
|
||||
|
||||
class assignment_action {};
|
||||
class subscript_action {};
|
||||
|
||||
template <class Action> class other_action;
|
||||
|
||||
// action for specifying the explicit return type
|
||||
template <class RET> class explicit_return_type_action {};
|
||||
|
||||
// action for preventing the expansion of a lambda expression
|
||||
struct protect_action {};
|
||||
|
||||
// must be defined here, comma is a special case
|
||||
struct comma_action {};
|
||||
|
||||
|
||||
// actions, for which the existence of protect is checked in return type
|
||||
// deduction.
|
||||
|
||||
template <class Action> struct is_protectable {
|
||||
BOOST_STATIC_CONSTANT(bool, value = false);
|
||||
};
|
||||
|
||||
// NOTE: comma action is protectable. Other protectable actions
|
||||
// are listed in operator_actions.hpp
|
||||
|
||||
template<> struct is_protectable<other_action<comma_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// this type is used in return type deductions to signal that deduction
|
||||
// did not find a result. It does not necessarily mean an error, it commonly
|
||||
// means that something else should be tried.
|
||||
class unspecified {};
|
||||
}
|
||||
|
||||
// function action is a special case: bind functions can be called with
|
||||
// the return type specialized explicitly e.g. bind<int>(foo);
|
||||
// If this call syntax is used, the return type is stored in the latter
|
||||
// argument of function_action template. Otherwise the argument gets the type
|
||||
// 'unspecified'.
|
||||
// This argument is only relevant in the return type deduction code
|
||||
template <int I, class Result_type = detail::unspecified>
|
||||
class function_action {};
|
||||
|
||||
template<class T> class function_action<1, T> {
|
||||
public:
|
||||
template<class RET, class A1>
|
||||
static RET apply(A1& a1) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<2, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2>
|
||||
static RET apply(A1& a1, A2& a2) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<3, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<4, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<5, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<6, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<7, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<8, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
|
||||
A8& a8) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<9, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
|
||||
A8& a8, A9& a9) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<10, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9, class A10>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
|
||||
A8& a8, A9& a9, A10& a10) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
115
include/boost/lambda/detail/arity_code.hpp
Normal file
115
include/boost/lambda/detail/arity_code.hpp
Normal file
@@ -0,0 +1,115 @@
|
||||
// -- Boost Lambda Library -------------------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_ARITY_CODE_HPP
|
||||
#define BOOST_LAMBDA_ARITY_CODE_HPP
|
||||
|
||||
#include "boost/type_traits/cv_traits.hpp"
|
||||
#include "boost/type_traits/transform_traits.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// These constants state, whether a lambda_functor instantiation results from
|
||||
// an expression which contains no placeholders (NONE),
|
||||
// only free1 placeholders (FIRST),
|
||||
// free2 placeholders and maybe free1 placeholders (SECOND),
|
||||
// free3 and maybe free1 and free2 placeholders (THIRD),
|
||||
// freeE placeholders and maybe free1 and free2 (EXCEPTION).
|
||||
// RETHROW means, that a rethrow expression is used somewhere in the lambda_functor.
|
||||
|
||||
enum { NONE = 0x00, // Notice we are using bits as flags here.
|
||||
FIRST = 0x01,
|
||||
SECOND = 0x02,
|
||||
THIRD = 0x04,
|
||||
EXCEPTION = 0x08,
|
||||
RETHROW = 0x10};
|
||||
|
||||
|
||||
template<class T>
|
||||
struct get_tuple_arity;
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <class T> struct get_arity_;
|
||||
|
||||
} // end detail;
|
||||
|
||||
template <class T> struct get_arity {
|
||||
|
||||
BOOST_STATIC_CONSTANT(int, value = detail::get_arity_<typename boost::remove_cv<typename boost::remove_reference<T>::type>::type>::value);
|
||||
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<class T>
|
||||
struct get_arity_ {
|
||||
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct get_arity_<lambda_functor<T> > {
|
||||
BOOST_STATIC_CONSTANT(int, value = get_arity<T>::value);
|
||||
};
|
||||
|
||||
template<class Action, class Args>
|
||||
struct get_arity_<lambda_functor_base<Action, Args> > {
|
||||
BOOST_STATIC_CONSTANT(int, value = get_tuple_arity<Args>::value);
|
||||
};
|
||||
|
||||
template<int I>
|
||||
struct get_arity_<placeholder<I> > {
|
||||
BOOST_STATIC_CONSTANT(int, value = I);
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
template<class T>
|
||||
struct get_tuple_arity {
|
||||
BOOST_STATIC_CONSTANT(int, value = get_arity<typename T::head_type>::value | get_tuple_arity<typename T::tail_type>::value);
|
||||
};
|
||||
|
||||
|
||||
template<>
|
||||
struct get_tuple_arity<null_type> {
|
||||
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||
};
|
||||
|
||||
|
||||
// Does T have placeholder<I> as it's subexpression?
|
||||
|
||||
template<class T, int I>
|
||||
struct has_placeholder {
|
||||
BOOST_STATIC_CONSTANT(bool, value = (get_arity<T>::value & I) != 0);
|
||||
};
|
||||
|
||||
template<int I, int J>
|
||||
struct includes_placeholder {
|
||||
BOOST_STATIC_CONSTANT(bool, value = (J & I) != 0);
|
||||
};
|
||||
|
||||
template<int I, int J>
|
||||
struct lacks_placeholder {
|
||||
BOOST_STATIC_CONSTANT(bool, value = ((J & I) == 0));
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
1874
include/boost/lambda/detail/bind_functions.hpp
Normal file
1874
include/boost/lambda/detail/bind_functions.hpp
Normal file
File diff suppressed because it is too large
Load Diff
55
include/boost/lambda/detail/control_constructs_common.hpp
Normal file
55
include/boost/lambda/detail/control_constructs_common.hpp
Normal file
@@ -0,0 +1,55 @@
|
||||
// Boost Lambda Library -- control_constructs_common.hpp -------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_CONTROL_CONSTRUCTS_COMMON_HPP)
|
||||
#define BOOST_CONTROL_CONSTRUCTS_COMMON_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// special types of lambda functors, used with control structures
|
||||
// to guarantee that they are composed correctly.
|
||||
|
||||
template<class Tag, class LambdaFunctor>
|
||||
class tagged_lambda_functor;
|
||||
|
||||
template<class Tag, class Args>
|
||||
class tagged_lambda_functor<Tag, lambda_functor<Args> >
|
||||
: public lambda_functor<Args>
|
||||
{
|
||||
public:
|
||||
tagged_lambda_functor(const Args& a) : lambda_functor<Args>(a) {}
|
||||
|
||||
tagged_lambda_functor(const lambda_functor<Args>& a)
|
||||
: lambda_functor<Args>(a) {}
|
||||
|
||||
// for the no body cases in control structures.
|
||||
tagged_lambda_functor() : lambda_functor<Args>() {}
|
||||
};
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif // BOOST_CONTROL_CONSTRUCTS_COMMON_HPP
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
555
include/boost/lambda/detail/control_structures_impl.hpp
Normal file
555
include/boost/lambda/detail/control_structures_impl.hpp
Normal file
@@ -0,0 +1,555 @@
|
||||
// Boost Lambda Library -- control_structures_impl.hpp ---------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_CONTROL_CONSTRUCTS_HPP)
|
||||
#define BOOST_LAMBDA_CONTROL_CONSTRUCTS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- void return control actions ----------------------
|
||||
|
||||
class forloop_action {};
|
||||
class forloop_no_body_action {};
|
||||
class ifthen_action {};
|
||||
class ifthenelse_action {};
|
||||
class whileloop_action {};
|
||||
class whileloop_no_body_action {};
|
||||
class dowhileloop_action {};
|
||||
class dowhileloop_no_body_action {};
|
||||
// -- nonvoid return control actions ----------------------
|
||||
|
||||
class ifthenelsereturn_action {};
|
||||
|
||||
// For loop
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
forloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3>, lambda_functor<Arg4> >
|
||||
>
|
||||
>
|
||||
for_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
||||
const lambda_functor<Arg3>& a3, const lambda_functor<Arg4>& a4) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
forloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3>, lambda_functor<Arg4> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3>, lambda_functor<Arg4> >(a1, a2, a3, a4)
|
||||
);
|
||||
}
|
||||
|
||||
// No body case.
|
||||
template <class Arg1, class Arg2, class Arg3>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
forloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
>
|
||||
>
|
||||
for_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
||||
const lambda_functor<Arg3>& a3) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
forloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3> >(a1, a2, a3) );
|
||||
}
|
||||
|
||||
// While loop
|
||||
template <class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
whileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
while_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
whileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
// No body case.
|
||||
template <class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
whileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
while_loop(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
whileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1> >(a1) );
|
||||
}
|
||||
|
||||
|
||||
// Do While loop
|
||||
template <class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
dowhileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
do_while_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
dowhileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
// No body case.
|
||||
template <class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
dowhileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
do_while_loop(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
dowhileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1> >(a1));
|
||||
}
|
||||
|
||||
|
||||
// If Then
|
||||
template <class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
ifthen_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
ifthen_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) );
|
||||
}
|
||||
|
||||
// If then else
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
ifthenelse_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
>
|
||||
>
|
||||
if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
||||
const lambda_functor<Arg3>& a3) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
ifthenelse_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
(a1, a2, a3) );
|
||||
}
|
||||
|
||||
// Our version of operator?:()
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
other_action<ifthenelsereturn_action>,
|
||||
tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type,
|
||||
typename const_copy_argument<Arg3>::type>
|
||||
>
|
||||
>
|
||||
if_then_else_return(const lambda_functor<Arg1>& a1,
|
||||
const Arg2 & a2,
|
||||
const Arg3 & a3) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
other_action<ifthenelsereturn_action>,
|
||||
tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type,
|
||||
typename const_copy_argument<Arg3>::type>
|
||||
> ( tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type,
|
||||
typename const_copy_argument<Arg3>::type> (a1, a2, a3) );
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
// return type specialization for conditional expression begins -----------
|
||||
// start reading below and move upwards
|
||||
|
||||
// PHASE 6:1
|
||||
// check if A is conbertible to B and B to A
|
||||
template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn;
|
||||
|
||||
// if A can be converted to B and vice versa -> ambiguous
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> {
|
||||
typedef
|
||||
detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
|
||||
// ambiguous type in conditional expression
|
||||
};
|
||||
// if A can be converted to B and vice versa and are of same type
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
|
||||
// A can be converted to B
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> {
|
||||
typedef B type;
|
||||
};
|
||||
|
||||
// B can be converted to A
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
// neither can be converted. Then we drop the potential references, and
|
||||
// try again
|
||||
template<class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> {
|
||||
// it is safe to add const, since the result will be an rvalue and thus
|
||||
// const anyway. The const are needed eg. if the types
|
||||
// are 'const int*' and 'void *'. The remaining type should be 'const void*'
|
||||
typedef const typename boost::remove_reference<A>::type plainA;
|
||||
typedef const typename boost::remove_reference<B>::type plainB;
|
||||
// TODO: Add support for volatile ?
|
||||
|
||||
typedef typename
|
||||
return_type_2_ifthenelsereturn<
|
||||
2,
|
||||
boost::is_convertible<plainA,plainB>::value,
|
||||
boost::is_convertible<plainB,plainA>::value,
|
||||
boost::is_same<plainA,plainB>::value,
|
||||
plainA,
|
||||
plainB>::type type;
|
||||
};
|
||||
|
||||
// PHASE 6:2
|
||||
template<class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> {
|
||||
typedef
|
||||
detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
|
||||
// types_do_not_match_in_conditional_expression
|
||||
};
|
||||
|
||||
|
||||
|
||||
// PHASE 5: now we know that types are not arithmetic.
|
||||
template<class A, class B>
|
||||
struct non_numeric_types {
|
||||
typedef typename
|
||||
return_type_2_ifthenelsereturn<
|
||||
1, // phase 1
|
||||
is_convertible<A,B>::value,
|
||||
is_convertible<B,A>::value,
|
||||
is_same<A,B>::value,
|
||||
A,
|
||||
B>::type type;
|
||||
};
|
||||
|
||||
// PHASE 4 :
|
||||
// the base case covers arithmetic types with differing promote codes
|
||||
// use the type deduction of arithmetic_actions
|
||||
template<int CodeA, int CodeB, class A, class B>
|
||||
struct arithmetic_or_not {
|
||||
typedef typename
|
||||
return_type_2<arithmetic_action<plus_action>, A, B>::type type;
|
||||
// plus_action is just a random pick, has to be a concrete instance
|
||||
};
|
||||
|
||||
// this case covers the case of artihmetic types with the same promote codes.
|
||||
// non numeric deduction is used since e.g. integral promotion is not
|
||||
// performed with operator ?:
|
||||
template<int CodeA, class A, class B>
|
||||
struct arithmetic_or_not<CodeA, CodeA, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
|
||||
// if either A or B has promote code -1 it is not an arithmetic type
|
||||
template<class A, class B>
|
||||
struct arithmetic_or_not <-1, -1, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
template<int CodeB, class A, class B>
|
||||
struct arithmetic_or_not <-1, CodeB, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
template<int CodeA, class A, class B>
|
||||
struct arithmetic_or_not <CodeA, -1, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// PHASE 3 : Are the types same?
|
||||
// No, check if they are arithmetic or not
|
||||
template <class A, class B>
|
||||
struct same_or_not {
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plainA;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
||||
|
||||
typedef typename
|
||||
arithmetic_or_not<
|
||||
detail::promote_code<plainA>::value,
|
||||
detail::promote_code<plainB>::value,
|
||||
A,
|
||||
B>::type type;
|
||||
};
|
||||
// Yes, clear.
|
||||
template <class A> struct same_or_not<A, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
// PHASE 2 : Perform first the potential array_to_pointer conversion
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<ifthenelsereturn_action>, A, B> {
|
||||
|
||||
typedef typename detail::array_to_pointer<A>::type A1;
|
||||
typedef typename detail::array_to_pointer<B>::type B1;
|
||||
|
||||
typedef typename
|
||||
boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type;
|
||||
};
|
||||
|
||||
// PHASE 1 : Deduction is based on the second and third operand
|
||||
|
||||
|
||||
// return type specialization for conditional expression ends -----------
|
||||
|
||||
|
||||
|
||||
|
||||
// Control loop lambda_functor_base specializations.
|
||||
|
||||
// Specialization for for_loop.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<forloop_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
for(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS))
|
||||
|
||||
detail::select(boost::tuples::get<3>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// No body case
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<forloop_no_body_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
for(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS)) {}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Specialization for while_loop.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<whileloop_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
while(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
||||
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// No body case
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<whileloop_no_body_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
while(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) {}
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for do_while_loop.
|
||||
// Note that the first argument is the condition.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<dowhileloop_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
do {
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
} while (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) );
|
||||
}
|
||||
};
|
||||
|
||||
// No body case
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<dowhileloop_no_body_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
do {} while (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Specialization for if_then.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<ifthen_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for if_then_else.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<ifthenelse_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
else
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization of lambda_functor_base for if_then_else_return.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<other_action<ifthenelsereturn_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
private:
|
||||
typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1;
|
||||
typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2;
|
||||
public:
|
||||
typedef typename return_type_2<
|
||||
other_action<ifthenelsereturn_action>, ret1, ret2
|
||||
>::type type;
|
||||
};
|
||||
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ?
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)
|
||||
:
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif // BOOST_LAMBDA_CONTROL_CONSTRUCTS_HPP
|
||||
644
include/boost/lambda/detail/function_adaptors.hpp
Normal file
644
include/boost/lambda/detail/function_adaptors.hpp
Normal file
@@ -0,0 +1,644 @@
|
||||
// Boost Lambda Library - function_adaptors.hpp ----------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_FUNCTION_ADAPTORS_HPP
|
||||
#define BOOST_LAMBDA_FUNCTION_ADAPTORS_HPP
|
||||
|
||||
#include "boost/type_traits/same_traits.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
template <class Func> struct function_adaptor {
|
||||
|
||||
// we do not know the return type off-hand, we must ask it from Func
|
||||
template <class Args> class sig {
|
||||
typedef typename Args::head_type F;
|
||||
typedef typename detail::remove_reference_and_cv<Func>::type plainF;
|
||||
public:
|
||||
// To sig we pass a cons list, where the head is the function object type
|
||||
// itself (potentially cv-qualified)
|
||||
// and the tail contains the types of the actual arguments to be passed
|
||||
// to the function object. The arguments can be cv qualified
|
||||
// as well.
|
||||
typedef typename plainF::template sig<Args>::type type;
|
||||
};
|
||||
|
||||
template<class RET, class A1>
|
||||
static RET apply(A1& a1) {
|
||||
return a1();
|
||||
}
|
||||
template<class RET, class A1, class A2>
|
||||
static RET apply(A1& a1, A2& a2) {
|
||||
return a1(a2);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3) {
|
||||
return a1(a2, a3);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return a1(a2, a3, a4);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return a1(a2, a3, a4, a5);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return a1(a2, a3, a4, a5, a6);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7) {
|
||||
return a1(a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7, A8& a8) {
|
||||
return a1(a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8, class A9>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7, A8& a8, A9& a9) {
|
||||
return a1(a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8, class A9, class A10>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7, A8& a8, A9& a9, A10& a10) {
|
||||
return a1(a2, a3, a4, a5, a6, a7, a8, a9, a10);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Func> struct function_adaptor<const Func>; // error
|
||||
|
||||
// -- function adaptors with data member access
|
||||
template <class Object, class T>
|
||||
struct function_adaptor<T Object::*> {
|
||||
|
||||
// typedef detail::unspecified type;
|
||||
|
||||
// T can have qualifiers and can be a reference type
|
||||
// We get the return type by adding const, if the object through which
|
||||
// the data member is accessed is const, and finally adding a reference
|
||||
template<class Args> class sig {
|
||||
typedef typename boost::tuples::element<1, Args>::type argument_type;
|
||||
|
||||
typedef typename detail::IF<boost::is_const<argument_type>::value,
|
||||
typename boost::add_const<T>::type,
|
||||
T
|
||||
>::RET properly_consted_return_type;
|
||||
|
||||
typedef typename detail::IF<
|
||||
boost::is_volatile<properly_consted_return_type>::value,
|
||||
typename boost::add_volatile<properly_consted_return_type>::type,
|
||||
properly_consted_return_type
|
||||
>::RET properly_cvd_return_type;
|
||||
|
||||
|
||||
public:
|
||||
typedef typename
|
||||
boost::add_reference<properly_cvd_return_type>::type type;
|
||||
};
|
||||
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, volatile Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const volatile Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, volatile Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const volatile Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
};
|
||||
|
||||
// -- function adaptors with 1 argument apply
|
||||
|
||||
template <class Result>
|
||||
struct function_adaptor<Result (void)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply(Result (*func)()) {
|
||||
return func();
|
||||
}
|
||||
};
|
||||
|
||||
template <class Result>
|
||||
struct function_adaptor<Result (*)(void)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply(Result (*func)()) {
|
||||
return func();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 2 argument apply
|
||||
template <class Object, class Result>
|
||||
struct function_adaptor<Result (Object::*)() const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)() const, const Object* o) {
|
||||
return (o->*func)();
|
||||
}
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)() const, const Object& o) {
|
||||
return (o.*func)();
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Result>
|
||||
struct function_adaptor<Result (Object::*)()> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)(), Object* o) {
|
||||
return (o->*func)();
|
||||
}
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)(), Object& o) {
|
||||
return (o.*func)();
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Result>
|
||||
struct function_adaptor<Result (Arg1)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply(Result (*func)(Arg1), A1& a1) {
|
||||
return func(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply(Result (*func)(Arg1), A1& a1) {
|
||||
return func(a1);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 3 argument apply
|
||||
template <class Object, class Arg1, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1) const, const Object* o,
|
||||
A1& a1) {
|
||||
return (o->*func)(a1);
|
||||
}
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1) const, const Object& o,
|
||||
A1& a1) {
|
||||
return (o.*func)(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1), Object* o, A1& a1) {
|
||||
return (o->*func)(a1);
|
||||
}
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1), Object& o, A1& a1) {
|
||||
return (o.*func)(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply(Result (*func)(Arg1, Arg2), A1& a1, A2& a2) {
|
||||
return func(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply(Result (*func)(Arg1, Arg2), A1& a1, A2& a2) {
|
||||
return func(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 4 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2) const, const Object* o, A1& a1, A2& a2) {
|
||||
return (o->*func)(a1, a2);
|
||||
}
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2) const, const Object& o, A1& a1, A2& a2) {
|
||||
return (o.*func)(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2), Object* o, A1& a1, A2& a2) {
|
||||
return (o->*func)(a1, a2);
|
||||
}
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2), Object& o, A1& a1, A2& a2) {
|
||||
return (o.*func)(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3), A1& a1, A2& a2, A3& a3) {
|
||||
return func(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3), A1& a1, A2& a2, A3& a3) {
|
||||
return func(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 5 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3) const, const Object* o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o->*func)(a1, a2, a3);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3) const, const Object& o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o.*func)(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3)> {
|
||||
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3), Object* o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o->*func)(a1, a2, a3);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3), Object& o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o.*func)(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4), A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return func(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4), A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return func(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 6 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o->*func)(a1, a2, a3, a4);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o.*func)(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4), Object* o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o->*func)(a1, a2, a3, a4);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4), Object& o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o.*func)(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return func(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return func(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 7 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return func(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return func(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 8 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 9 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 10 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
109
include/boost/lambda/detail/is_instance_of.hpp
Normal file
109
include/boost/lambda/detail/is_instance_of.hpp
Normal file
@@ -0,0 +1,109 @@
|
||||
// Boost Lambda Library - is_instance_of.hpp ---------------------
|
||||
|
||||
// Copyright (C) 2001 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ---------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_IS_INSTANCE_OF
|
||||
#define BOOST_LAMBDA_IS_INSTANCE_OF
|
||||
|
||||
#include "boost/config.hpp" // for BOOST_STATIC_CONSTANT
|
||||
#include "boost/type_traits/conversion_traits.hpp" // for is_convertible
|
||||
#include "boost/preprocessor/enum_shifted_params.hpp"
|
||||
#include "boost/preprocessor/repeat_2nd.hpp"
|
||||
|
||||
// is_instance_of --------------------------------
|
||||
//
|
||||
// is_instance_of_n<A, B>::value is true, if type A is
|
||||
// an instantiation of a template B, or A derives from an instantiation
|
||||
// of template B
|
||||
//
|
||||
// n is the number of template arguments for B
|
||||
//
|
||||
// Example:
|
||||
// is_instance_of_2<std::istream, basic_stream>::value == true
|
||||
|
||||
// The original implementation was somewhat different, with different versions
|
||||
// for different compilers. However, there was still a problem
|
||||
// with gcc.3.0.2 and 3.0.3 compilers, which didn't think regard
|
||||
// is_instance_of_N<...>::value was a constant.
|
||||
// John Maddock suggested the way around this problem by building
|
||||
// is_instance_of templates using boost::is_convertible.
|
||||
// Now we only have one version of is_instance_of templates, which delagate
|
||||
// all the nasty compiler tricks to is_convertible.
|
||||
|
||||
#define BOOST_LAMBDA_CLASS(z, N,A) BOOST_PP_COMMA_IF(N) class
|
||||
#define BOOST_LAMBDA_CLASS_ARG(z, N,A) BOOST_PP_COMMA_IF(N) class A##N
|
||||
#define BOOST_LAMBDA_ARG(z, N,A) BOOST_PP_COMMA_IF(N) A##N
|
||||
|
||||
#define BOOST_LAMBDA_CLASS_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_CLASS, NAME)
|
||||
|
||||
#define BOOST_LAMBDA_CLASS_ARG_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_CLASS_ARG, NAME)
|
||||
|
||||
#define BOOST_LAMBDA_ARG_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_ARG, NAME)
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
#define BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE(INDEX) \
|
||||
\
|
||||
namespace detail { \
|
||||
\
|
||||
template <template<BOOST_LAMBDA_CLASS_LIST(INDEX,T)> class F> \
|
||||
struct BOOST_PP_CAT(conversion_tester_,INDEX) { \
|
||||
template<BOOST_LAMBDA_CLASS_ARG_LIST(INDEX,A)> \
|
||||
BOOST_PP_CAT(conversion_tester_,INDEX) \
|
||||
(const F<BOOST_LAMBDA_ARG_LIST(INDEX,A)>&); \
|
||||
}; \
|
||||
\
|
||||
} /* end detail */ \
|
||||
\
|
||||
template <class From, template <BOOST_LAMBDA_CLASS_LIST(INDEX,T)> class To> \
|
||||
struct BOOST_PP_CAT(is_instance_of_,INDEX) \
|
||||
{ \
|
||||
private: \
|
||||
typedef ::boost::is_convertible< \
|
||||
From, \
|
||||
BOOST_PP_CAT(detail::conversion_tester_,INDEX)<To> \
|
||||
> helper_type; \
|
||||
\
|
||||
public: \
|
||||
BOOST_STATIC_CONSTANT(bool, value = helper_type::value); \
|
||||
};
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_HELPER(z, N, A) BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE( BOOST_PP_INC(N) )
|
||||
|
||||
// Generate the traits for 1-4 argument templates
|
||||
|
||||
BOOST_PP_REPEAT_2ND(4,BOOST_LAMBDA_HELPER,FOO)
|
||||
|
||||
#undef BOOST_LAMBDA_HELPER
|
||||
#undef BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE
|
||||
#undef BOOST_LAMBDA_CLASS
|
||||
#undef BOOST_LAMBDA_ARG
|
||||
#undef BOOST_LAMBDA_CLASS_ARG
|
||||
#undef BOOST_LAMBDA_CLASS_LIST
|
||||
#undef BOOST_LAMBDA_ARG_LIST
|
||||
#undef BOOST_LAMBDA_CLASS_ARG_LIST
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
49
include/boost/lambda/detail/lambda_config.hpp
Normal file
49
include/boost/lambda/detail/lambda_config.hpp
Normal file
@@ -0,0 +1,49 @@
|
||||
// Boost Lambda Library - lambda_config.hpp ------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ---------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_CONFIG_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_CONFIG_HPP
|
||||
|
||||
// add to boost/config.hpp
|
||||
// for now
|
||||
|
||||
|
||||
# if defined __GNUC__
|
||||
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
|
||||
#define BOOST_NO_TEMPLATED_STREAMS
|
||||
#define BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
|
||||
#endif
|
||||
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 95)
|
||||
#define BOOST_LAMBDA_FAILS_IN_TEMPLATE_KEYWORD_AFTER_SCOPE_OPER
|
||||
#endif
|
||||
#endif // __GNUC__
|
||||
|
||||
|
||||
#if defined __KCC
|
||||
|
||||
#define BOOST_NO_FDECL_TEMPLATES_AS_TEMPLATE_TEMPLATE_PARAMS
|
||||
|
||||
#endif // __KCC
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
604
include/boost/lambda/detail/lambda_functor_base.hpp
Normal file
604
include/boost/lambda/detail/lambda_functor_base.hpp
Normal file
@@ -0,0 +1,604 @@
|
||||
// Boost Lambda Library lambda_functor_base.hpp -----------------------------
|
||||
//
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
// for return type deductions we wrap bound argument to this class,
|
||||
// which fulfils the base class contract for lambda_functors
|
||||
template <class T>
|
||||
class identity {
|
||||
|
||||
T elem;
|
||||
public:
|
||||
|
||||
typedef T element_t;
|
||||
|
||||
// take all parameters as const rererences. Note that non-const references
|
||||
// stay as they are.
|
||||
typedef typename boost::add_reference<
|
||||
typename boost::add_const<T>::type
|
||||
>::type par_t;
|
||||
|
||||
explicit identity(par_t t) : elem(t) {}
|
||||
|
||||
template <typename SigArgs>
|
||||
struct sig { typedef element_t type; };
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return elem; }
|
||||
};
|
||||
|
||||
template <class T>
|
||||
inline lambda_functor<identity<T&> > var(T& t) { return identity<T&>(t); }
|
||||
|
||||
// for lambda functors, var is an identity operator. It was forbidden
|
||||
// at some point, but we might want to var something that can be a
|
||||
// non-lambda functor or a lambda functor.
|
||||
template <class T>
|
||||
lambda_functor<T> var(const lambda_functor<T>& t) { return t; }
|
||||
|
||||
template <class T> struct var_type {
|
||||
typedef lambda_functor<identity<T&> > type;
|
||||
};
|
||||
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
lambda_functor<identity<typename bound_argument_conversion<const T>::type> >
|
||||
constant(const T& t) {
|
||||
return identity<typename bound_argument_conversion<const T>::type>(t);
|
||||
}
|
||||
template <class T>
|
||||
lambda_functor<T> constant(const lambda_functor<T>& t) { return t; }
|
||||
|
||||
template <class T> struct constant_type {
|
||||
typedef
|
||||
lambda_functor<
|
||||
identity<typename bound_argument_conversion<const T>::type>
|
||||
> type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <class T>
|
||||
inline lambda_functor<identity<const T&> > constant_ref(const T& t) {
|
||||
return identity<const T&>(t);
|
||||
}
|
||||
template <class T>
|
||||
lambda_functor<T> constant_ref(const lambda_functor<T>& t) { return t; }
|
||||
|
||||
template <class T> struct constant_ref_type {
|
||||
typedef
|
||||
lambda_functor<identity<const T&> > type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// as_lambda_functor turns any types to lambda functors
|
||||
// non-lambda_functors will be bound argument types
|
||||
template <class T>
|
||||
struct as_lambda_functor {
|
||||
typedef typename
|
||||
detail::remove_reference_and_cv<T>::type plain_T;
|
||||
typedef typename
|
||||
detail::IF<is_lambda_functor<plain_T>::value,
|
||||
plain_T,
|
||||
lambda_functor<
|
||||
identity<typename bound_argument_conversion<T>::type>
|
||||
>
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// turns arbitrary objects into lambda functors
|
||||
template <class T>
|
||||
inline
|
||||
lambda_functor<identity<typename bound_argument_conversion<const T>::type> >
|
||||
to_lambda_functor(const T& t) {
|
||||
return identity<typename bound_argument_conversion<const T>::type>(t);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline lambda_functor<T>
|
||||
to_lambda_functor(const lambda_functor<T>& t) {
|
||||
return t;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
|
||||
|
||||
// In a call constify_rvals<T>::go(x)
|
||||
// x should be of type T. If T is a non-reference type, do
|
||||
// returns x as const reference.
|
||||
// Otherwise the type doesn't change.
|
||||
// The purpose of this class is to avoid
|
||||
// 'cannot bind temporaries to non-const references' errors.
|
||||
template <class T> struct constify_rvals {
|
||||
template<class U>
|
||||
static inline const U& go(const U& u) { return u; }
|
||||
};
|
||||
|
||||
template <class T> struct constify_rvals<T&> {
|
||||
template<class U>
|
||||
static inline U& go(U& u) { return u; }
|
||||
};
|
||||
|
||||
// check whether one of the elements of a tuple (cons list) is of type
|
||||
// null_type. Needed, because the compiler goes ahead and instantiates
|
||||
// sig template for nullary case even if the nullary operator() is not
|
||||
// called
|
||||
template <class T> struct is_null_type
|
||||
{ BOOST_STATIC_CONSTANT(bool, value = false); };
|
||||
|
||||
template <> struct is_null_type<null_type>
|
||||
{ BOOST_STATIC_CONSTANT(bool, value = true); };
|
||||
|
||||
template<class Tuple> struct has_null_type {
|
||||
BOOST_STATIC_CONSTANT(bool, value = (is_null_type<typename Tuple::head_type>::value || has_null_type<typename Tuple::tail_type>::value));
|
||||
};
|
||||
template<> struct has_null_type<null_type> {
|
||||
BOOST_STATIC_CONSTANT(bool, value = false);
|
||||
};
|
||||
|
||||
|
||||
// helpers -------------------
|
||||
|
||||
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_argument_types_ {
|
||||
typedef typename as_lambda_functor<typename Args::head_type>::type lf_t;
|
||||
typedef typename lf_t::inherited::template sig<SigArgs>::type el_t;
|
||||
public:
|
||||
typedef
|
||||
boost::tuples::cons<
|
||||
el_t,
|
||||
typename deduce_argument_types_<typename Args::tail_type, SigArgs>::type
|
||||
> type;
|
||||
};
|
||||
|
||||
template<class SigArgs>
|
||||
class deduce_argument_types_<null_type, SigArgs> {
|
||||
public:
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
|
||||
// // note that tuples cannot have plain function types as elements.
|
||||
// // Hence, all other types will be non-const, except references to
|
||||
// // functions.
|
||||
// template <class T> struct remove_reference_except_from_functions {
|
||||
// typedef typename boost::remove_reference<T>::type t;
|
||||
// typedef typename detail::IF<boost::is_function<t>::value, T, t>::RET type;
|
||||
// };
|
||||
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_non_ref_argument_types_ {
|
||||
typedef typename as_lambda_functor<typename Args::head_type>::type lf_t;
|
||||
typedef typename lf_t::inherited::template sig<SigArgs>::type el_t;
|
||||
public:
|
||||
typedef
|
||||
boost::tuples::cons<
|
||||
// typename detail::remove_reference_except_from_functions<el_t>::type,
|
||||
typename boost::remove_reference<el_t>::type,
|
||||
typename deduce_non_ref_argument_types_<typename Args::tail_type, SigArgs>::type
|
||||
> type;
|
||||
};
|
||||
|
||||
template<class SigArgs>
|
||||
class deduce_non_ref_argument_types_<null_type, SigArgs> {
|
||||
public:
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// -------------
|
||||
|
||||
// take stored Args and Open Args, and return a const list with
|
||||
// deduced elements (real return types)
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_argument_types {
|
||||
typedef typename deduce_argument_types_<Args, SigArgs>::type t1;
|
||||
public:
|
||||
typedef typename detail::IF<
|
||||
has_null_type<t1>::value, null_type, t1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// take stored Args and Open Args, and return a const list with
|
||||
// deduced elements (references are stripped from the element types)
|
||||
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_non_ref_argument_types {
|
||||
typedef typename deduce_non_ref_argument_types_<Args, SigArgs>::type t1;
|
||||
public:
|
||||
typedef typename detail::IF<
|
||||
has_null_type<t1>::value, null_type, t1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template <int N, class Args, class SigArgs>
|
||||
struct nth_return_type_sig {
|
||||
typedef typename
|
||||
as_lambda_functor<
|
||||
typename boost::tuples::element<N, Args>::type
|
||||
// typename tuple_element_as_reference<N, Args>::type
|
||||
>::type lf_type;
|
||||
|
||||
typedef typename lf_type::inherited::template sig<SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<int N, class Tuple> struct element_or_null {
|
||||
typedef typename boost::tuples::element<N, Tuple>::type type;
|
||||
};
|
||||
|
||||
template<int N> struct element_or_null<N, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
// -- lambda_functor base ---------------------
|
||||
|
||||
// the explicit_return_type_action case -----------------------------------
|
||||
template<class RET, class Args>
|
||||
class lambda_functor_base<explicit_return_type_action<RET>, Args>
|
||||
{
|
||||
public:
|
||||
Args args;
|
||||
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template <class SigArgs> struct sig { typedef RET type; };
|
||||
|
||||
template<class RET_, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
return detail::constify_rvals<RET>::go(
|
||||
detail::r_select<RET>::go(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS));
|
||||
}
|
||||
};
|
||||
|
||||
// the protect_action case -----------------------------------
|
||||
template<class Args>
|
||||
class lambda_functor_base<protect_action, Args>
|
||||
{
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
CALL_USE_ARGS;
|
||||
return boost::tuples::get<0>(args);
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
// typedef typename detail::tuple_element_as_reference<0, SigArgs>::type type;
|
||||
typedef typename boost::tuples::element<0, Args>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// Do nothing --------------------------------------------------------
|
||||
class do_nothing_action {};
|
||||
|
||||
template<class Args>
|
||||
class lambda_functor_base<do_nothing_action, Args> {
|
||||
// Args args;
|
||||
public:
|
||||
// explicit lambda_functor_base(const Args& a) {}
|
||||
lambda_functor_base() {}
|
||||
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS> RET call(CALL_FORMAL_ARGS) const {
|
||||
CALL_USE_ARGS;
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig { typedef void type; };
|
||||
};
|
||||
|
||||
|
||||
// These specializatoins provide a shorter notation to define actions.
|
||||
// These lambda_functor_base instances take care of the recursive evaluation
|
||||
// of the arguments and pass the evaluated arguments to the apply function
|
||||
// of an action class. To make action X work with these classes, one must
|
||||
// instantiate the lambda_functor_base as:
|
||||
// lambda_functor_base<action<ARITY, X>, Args>
|
||||
// Where ARITY is the arity of the apply function in X
|
||||
|
||||
// The return type is queried as:
|
||||
// return_type_N<X, EvaluatedArgumentTypes>::type
|
||||
// for which there must be a specialization.
|
||||
|
||||
// Function actions, casts, throws,... all go via these classes.
|
||||
|
||||
|
||||
template<class Act, class Args>
|
||||
class lambda_functor_base<action<0, Act>, Args>
|
||||
{
|
||||
public:
|
||||
// Args args; not needed
|
||||
explicit lambda_functor_base(const Args& a) {}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename return_type_N<Act, null_type>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
CALL_USE_ARGS;
|
||||
return Act::template apply<RET>();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART
|
||||
#error "Multiple defines of BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART"
|
||||
#endif
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(ARITY) \
|
||||
template<class Act, class Args> \
|
||||
class lambda_functor_base<action<ARITY, Act>, Args> \
|
||||
{ \
|
||||
public: \
|
||||
Args args; \
|
||||
\
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::deduce_non_ref_argument_types<Args, SigArgs>::type rets_t; \
|
||||
public: \
|
||||
typedef typename \
|
||||
return_type_N_prot<Act, rets_t>::type type; \
|
||||
}; \
|
||||
\
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
using boost::tuples::get; \
|
||||
using detail::constify_rvals; \
|
||||
using detail::r_select; \
|
||||
using detail::element_or_null; \
|
||||
using detail::deduce_argument_types;
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(1)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(2)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(3)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(4)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(5)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(6)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(7)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(8)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
typedef typename element_or_null<7, rets_t>::type rt7;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(9)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
typedef typename element_or_null<7, rets_t>::type rt7;
|
||||
typedef typename element_or_null<8, rets_t>::type rt8;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt8>::go(r_select<rt8>::go(get<8>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(10)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
typedef typename element_or_null<7, rets_t>::type rt7;
|
||||
typedef typename element_or_null<8, rets_t>::type rt8;
|
||||
typedef typename element_or_null<9, rets_t>::type rt9;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt8>::go(r_select<rt8>::go(get<8>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt9>::go(r_select<rt9>::go(get<9>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
#undef BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
217
include/boost/lambda/detail/lambda_functors.hpp
Normal file
217
include/boost/lambda/detail/lambda_functors.hpp
Normal file
@@ -0,0 +1,217 @@
|
||||
// Boost Lambda Library - lambda_functors.hpp -------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
// ------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- lambda_functor --------------------------------------------
|
||||
// --------------------------------------------------------------
|
||||
|
||||
//inline const null_type const_null_type() { return null_type(); }
|
||||
|
||||
namespace detail {
|
||||
namespace {
|
||||
|
||||
static const null_type constant_null_type = null_type();
|
||||
|
||||
} // unnamed
|
||||
} // detail
|
||||
|
||||
class unused {};
|
||||
|
||||
#define cnull_type() detail::constant_null_type
|
||||
|
||||
// -- free variables types --------------------------------------------------
|
||||
|
||||
// helper to work around the case where the nullary return type deduction
|
||||
// is always performed, even though the functor is not nullary
|
||||
namespace detail {
|
||||
template<int N, class Tuple> struct get_element_or_null_type {
|
||||
typedef typename
|
||||
detail::tuple_element_as_reference<N, Tuple>::type type;
|
||||
};
|
||||
template<int N> struct get_element_or_null_type<N, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
}
|
||||
|
||||
template <int I> struct placeholder;
|
||||
|
||||
template<> struct placeholder<FIRST> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<0, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
BOOST_STATIC_ASSERT(boost::is_reference<RET>::value);
|
||||
CALL_USE_ARGS; // does nothing, prevents warnings for unused args
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct placeholder<SECOND> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<1, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return b; }
|
||||
};
|
||||
|
||||
template<> struct placeholder<THIRD> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<2, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return c; }
|
||||
};
|
||||
|
||||
template<> struct placeholder<EXCEPTION> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<3, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return env; }
|
||||
};
|
||||
|
||||
typedef const lambda_functor<placeholder<FIRST> > placeholder1_type;
|
||||
typedef const lambda_functor<placeholder<SECOND> > placeholder2_type;
|
||||
typedef const lambda_functor<placeholder<THIRD> > placeholder3_type;
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// free variables are lambda_functors. This is to allow uniform handling with
|
||||
// other lambda_functors.
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
// -- lambda_functor NONE ------------------------------------------------
|
||||
template <class T>
|
||||
class lambda_functor : public T
|
||||
{
|
||||
|
||||
BOOST_STATIC_CONSTANT(int, arity_bits = get_arity<T>::value);
|
||||
|
||||
public:
|
||||
typedef T inherited;
|
||||
|
||||
lambda_functor() {}
|
||||
lambda_functor(const lambda_functor& l) : inherited(l) {}
|
||||
|
||||
lambda_functor(const T& t) : inherited(t) {}
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename inherited::template
|
||||
sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
// Note that this return type deduction template is instantiated, even
|
||||
// if the nullary
|
||||
// operator() is not called at all. One must make sure that it does not fail.
|
||||
typedef typename
|
||||
inherited::template sig<null_type>::type
|
||||
nullary_return_type;
|
||||
|
||||
nullary_return_type operator()() const {
|
||||
return inherited::template
|
||||
call<nullary_return_type>
|
||||
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A>
|
||||
typename inherited::template sig<tuple<A&> >::type
|
||||
operator()(A& a) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&> >::type
|
||||
>(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename inherited::template sig<tuple<A&, B&> >::type
|
||||
operator()(A& a, B& b) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&, B&> >::type
|
||||
>(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename inherited::template sig<tuple<A&, B&, C&> >::type
|
||||
operator()(A& a, B& b, C& c) const
|
||||
{
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&, B&, C&> >::type
|
||||
>(a, b, c, cnull_type());
|
||||
}
|
||||
|
||||
// for internal calls with env
|
||||
template<CALL_TEMPLATE_ARGS>
|
||||
typename inherited::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
internal_call(CALL_FORMAL_ARGS) const {
|
||||
return inherited::template
|
||||
call<typename inherited::template
|
||||
sig<tuple<CALL_REFERENCE_TYPES> >::type>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
template<class A>
|
||||
const lambda_functor<lambda_functor_base<
|
||||
other_action<assignment_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> > >
|
||||
operator=(const A& a) const {
|
||||
return lambda_functor_base<
|
||||
other_action<assignment_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> >
|
||||
( boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type>(*this, a) );
|
||||
}
|
||||
|
||||
template<class A>
|
||||
const lambda_functor<lambda_functor_base<
|
||||
other_action<subscript_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> > >
|
||||
operator[](const A& a) const {
|
||||
return lambda_functor_base<
|
||||
other_action<subscript_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> >
|
||||
( boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type>(*this, a ) );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
79
include/boost/lambda/detail/lambda_fwd.hpp
Normal file
79
include/boost/lambda/detail/lambda_fwd.hpp
Normal file
@@ -0,0 +1,79 @@
|
||||
// lambda_fwd.hpp - Boost Lambda Library -------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// -------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_FWD_HPP
|
||||
#define BOOST_LAMBDA_FWD_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<class T> struct generate_error;
|
||||
|
||||
}
|
||||
// -- placeholders --------------------------------------------
|
||||
|
||||
template <int I> struct placeholder;
|
||||
|
||||
// function_adaptors
|
||||
template <class Func>
|
||||
struct function_adaptor;
|
||||
|
||||
template <int I, class Act> class action;
|
||||
|
||||
template <class Base>
|
||||
class lambda_functor;
|
||||
|
||||
template <class Act, class Args>
|
||||
class lambda_functor_base;
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
|
||||
// #define CALL_TEMPLATE_ARGS class A, class Env
|
||||
// #define CALL_FORMAL_ARGS A& a, Env& env
|
||||
// #define CALL_ACTUAL_ARGS a, env
|
||||
// #define CALL_ACTUAL_ARGS_NO_ENV a
|
||||
// #define CALL_REFERENCE_TYPES A&, Env&
|
||||
// #define CALL_PLAIN_TYPES A, Env
|
||||
#define CALL_TEMPLATE_ARGS class A, class B, class C, class Env
|
||||
#define CALL_FORMAL_ARGS A& a, B& b, C& c, Env& env
|
||||
#define CALL_ACTUAL_ARGS a, b, c, env
|
||||
#define CALL_ACTUAL_ARGS_NO_ENV a, b, c
|
||||
#define CALL_REFERENCE_TYPES A&, B&, C&, Env&
|
||||
#define CALL_PLAIN_TYPES A, B, C, Env
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
template<class A1, class A2, class A3, class A4>
|
||||
void do_nothing(A1&, A2&, A3&, A4&) {}
|
||||
|
||||
} // detail
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
// prevent the warnings from unused argumetns
|
||||
#define CALL_USE_ARGS \
|
||||
::boost::lambda::detail::do_nothing(a, b, c, env)
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
532
include/boost/lambda/detail/lambda_traits.hpp
Normal file
532
include/boost/lambda/detail/lambda_traits.hpp
Normal file
@@ -0,0 +1,532 @@
|
||||
// - lambda_traits.hpp --- Boost Lambda Library ----------------------------
|
||||
//
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// -------------------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
|
||||
|
||||
#include "boost/type_traits/transform_traits.hpp"
|
||||
#include "boost/type_traits/cv_traits.hpp"
|
||||
#include "boost/type_traits/function_traits.hpp"
|
||||
#include "boost/type_traits/object_traits.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- if construct ------------------------------------------------
|
||||
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
|
||||
|
||||
template <class Then, class Else> struct IF<false, Then, Else> {
|
||||
typedef Else RET;
|
||||
};
|
||||
|
||||
|
||||
// An if construct that doesn't instantiate the non-matching template:
|
||||
|
||||
// Called as:
|
||||
// IF_type<condition, A, B>::type
|
||||
// The matching template must define the typeded 'type'
|
||||
// I.e. A::type if condition is true, B::type if condition is false
|
||||
// Idea from Vesa Karvonen (from C&E as well I guess)
|
||||
template<class T>
|
||||
struct IF_type_
|
||||
{
|
||||
typedef typename T::type type;
|
||||
};
|
||||
|
||||
|
||||
template<bool C, class T, class E>
|
||||
struct IF_type
|
||||
{
|
||||
typedef typename
|
||||
IF_type_<typename IF<C, T, E>::RET >::type type;
|
||||
};
|
||||
|
||||
// helper that can be used to give typedef T to some type
|
||||
template <class T> struct identity_mapping { typedef T type; };
|
||||
|
||||
// An if construct for finding an integral constant 'value'
|
||||
// Does not instantiate the non-matching branch
|
||||
// Called as IF_value<condition, A, B>::value
|
||||
// If condition is true A::value must be defined, otherwise B::value
|
||||
|
||||
template<class T>
|
||||
struct IF_value_
|
||||
{
|
||||
BOOST_STATIC_CONSTANT(int, value = T::value);
|
||||
};
|
||||
|
||||
|
||||
template<bool C, class T, class E>
|
||||
struct IF_value
|
||||
{
|
||||
BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
|
||||
};
|
||||
|
||||
|
||||
// --------------------------------------------------------------
|
||||
|
||||
// removes reference from other than function types:
|
||||
template<class T> class remove_reference_if_valid
|
||||
{
|
||||
|
||||
typedef typename boost::remove_reference<T>::type plainT;
|
||||
public:
|
||||
typedef typename IF<
|
||||
boost::is_function<plainT>::value,
|
||||
T,
|
||||
plainT
|
||||
>::RET type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<class T> struct remove_reference_and_cv {
|
||||
typedef typename boost::remove_cv<
|
||||
typename boost::remove_reference<T>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// returns a reference to the element of tuple T
|
||||
template<int N, class T> struct tuple_element_as_reference {
|
||||
typedef typename
|
||||
boost::tuples::access_traits<
|
||||
typename boost::tuples::element<N, T>::type
|
||||
>::non_const_type type;
|
||||
};
|
||||
|
||||
// returns the cv and reverence stripped type of a tuple element
|
||||
template<int N, class T> struct tuple_element_stripped {
|
||||
typedef typename
|
||||
remove_reference_and_cv<
|
||||
typename boost::tuples::element<N, T>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// is_lambda_functor -------------------------------------------------
|
||||
|
||||
template <class T> struct is_lambda_functor_ {
|
||||
BOOST_STATIC_CONSTANT(bool, value = false);
|
||||
};
|
||||
|
||||
template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
} // end detail
|
||||
|
||||
|
||||
template <class T> struct is_lambda_functor {
|
||||
BOOST_STATIC_CONSTANT(bool,
|
||||
value =
|
||||
detail::is_lambda_functor_<
|
||||
typename detail::remove_reference_and_cv<T>::type
|
||||
>::value);
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// -- parameter_traits_ ---------------------------------------------
|
||||
|
||||
// An internal parameter type traits class that respects
|
||||
// the reference_wrapper class.
|
||||
|
||||
// The conversions performed are:
|
||||
// references -> compile_time_error
|
||||
// T1 -> T2,
|
||||
// reference_wrapper<T> -> T&
|
||||
// const array -> ref to const array
|
||||
// array -> ref to array
|
||||
// function -> ref to function
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
|
||||
template<class T1, class T2>
|
||||
struct parameter_traits_ {
|
||||
typedef T2 type;
|
||||
};
|
||||
|
||||
// Do not instantiate with reference types
|
||||
template<class T, class Any> struct parameter_traits_<T&, Any> {
|
||||
typedef typename
|
||||
generate_error<T&>::
|
||||
parameter_traits_class_instantiated_with_reference_type type;
|
||||
};
|
||||
|
||||
// Arrays can't be stored as plain types; convert them to references
|
||||
template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
|
||||
typedef T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n, class Any>
|
||||
struct parameter_traits_<const T[n], Any> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n, class Any>
|
||||
struct parameter_traits_<volatile T[n], Any> {
|
||||
typedef volatile T (&type)[n];
|
||||
};
|
||||
template<class T, int n, class Any>
|
||||
struct parameter_traits_<const volatile T[n], Any> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class Any>
|
||||
struct parameter_traits_<void, Any> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<const lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
// Are the volatile versions needed?
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
} // end namespace detail
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// traits classes for lambda expressions (bind functions, operators ...)
|
||||
|
||||
// must be instantiated with non-reference types
|
||||
|
||||
// The default is const plain type -------------------------
|
||||
// const T -> const T,
|
||||
// T -> const T,
|
||||
// references -> compile_time_error
|
||||
// reference_wrapper<T> -> T&
|
||||
// array -> const ref array
|
||||
template<class T>
|
||||
struct const_copy_argument {
|
||||
typedef typename
|
||||
detail::parameter_traits_<
|
||||
T,
|
||||
typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// T may be a function type. Without the IF test, const would be added
|
||||
// to a function type, which is illegal.
|
||||
|
||||
// all arrays are converted to const.
|
||||
// This traits template is used for 'const T&' parameter passing
|
||||
// and thus the knowledge of the potential
|
||||
// non-constness of an actual argument is lost.
|
||||
template<class T, int n> struct const_copy_argument <T[n]> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
template<class T, int n> struct const_copy_argument <volatile T[n]> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct const_copy_argument<T&> {};
|
||||
// do not instantiate with references
|
||||
// typedef typename detail::generate_error<T&>::references_not_allowed type;
|
||||
|
||||
|
||||
template<>
|
||||
struct const_copy_argument<void> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
|
||||
// Does the same as const_copy_argument, but passes references through as such
|
||||
template<class T>
|
||||
struct bound_argument_conversion {
|
||||
typedef typename const_copy_argument<T>::type type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bound_argument_conversion<T&> {
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
// The default is non-const reference -------------------------
|
||||
// const T -> const T&,
|
||||
// T -> T&,
|
||||
// references -> compile_time_error
|
||||
// reference_wrapper<T> -> T&
|
||||
template<class T>
|
||||
struct reference_argument {
|
||||
typedef typename detail::parameter_traits_<T, T&>::type type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct reference_argument<T&> {
|
||||
typedef typename detail::generate_error<T&>::references_not_allowed type;
|
||||
};
|
||||
|
||||
template<class Arg>
|
||||
struct reference_argument<lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg>
|
||||
struct reference_argument<const lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
// Are the volatile versions needed?
|
||||
template<class Arg>
|
||||
struct reference_argument<volatile lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg>
|
||||
struct reference_argument<const volatile lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct reference_argument<void> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Array to pointer conversion
|
||||
template <class T>
|
||||
struct array_to_pointer {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <const T[N]> {
|
||||
typedef const T* type;
|
||||
};
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <T[N]> {
|
||||
typedef T* type;
|
||||
};
|
||||
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <const T (&) [N]> {
|
||||
typedef const T* type;
|
||||
};
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <T (&) [N]> {
|
||||
typedef T* type;
|
||||
};
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// The call_traits for bind
|
||||
// Respects the reference_wrapper class.
|
||||
|
||||
// These templates are used outside of bind functions as well.
|
||||
// the bind_tuple_mapper provides a shorter notation for default
|
||||
// bound argument storing semantics, if all arguments are treated
|
||||
// uniformly.
|
||||
|
||||
// from template<class T> foo(const T& t) : bind_traits<const T>::type
|
||||
// from template<class T> foo(T& t) : bind_traits<T>::type
|
||||
|
||||
// Conversions:
|
||||
// T -> const T,
|
||||
// cv T -> cv T,
|
||||
// T& -> T&
|
||||
// reference_wrapper<T> -> T&
|
||||
// const reference_wrapper<T> -> T&
|
||||
// array -> const ref array
|
||||
|
||||
// make bound arguments const, this is a deliberate design choice, the
|
||||
// purpose is to prevent side effects to bound arguments that are stored
|
||||
// as copies
|
||||
template<class T>
|
||||
struct bind_traits {
|
||||
typedef const T type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bind_traits<T&> {
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
// null_types are an exception, we always want to store them as non const
|
||||
// so that other templates can assume that null_type is always without const
|
||||
template<>
|
||||
struct bind_traits<null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// the bind_tuple_mapper, bind_type_generators may
|
||||
// introduce const to null_type
|
||||
template<>
|
||||
struct bind_traits<const null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// Arrays can't be stored as plain types; convert them to references.
|
||||
// All arrays are converted to const. This is because bind takes its
|
||||
// parameters as const T& and thus the knowledge of the potential
|
||||
// non-constness of actual argument is lost.
|
||||
template<class T, int n> struct bind_traits <T[n]> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n>
|
||||
struct bind_traits<const T[n]> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n> struct bind_traits<volatile T[n]> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n>
|
||||
struct bind_traits<const volatile T[n]> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bind_traits<reference_wrapper<T> >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bind_traits<const reference_wrapper<T> >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct bind_traits<void> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <
|
||||
class T0 = null_type, class T1 = null_type, class T2 = null_type,
|
||||
class T3 = null_type, class T4 = null_type, class T5 = null_type,
|
||||
class T6 = null_type, class T7 = null_type, class T8 = null_type,
|
||||
class T9 = null_type
|
||||
>
|
||||
struct bind_tuple_mapper {
|
||||
typedef
|
||||
tuple<typename bind_traits<T0>::type,
|
||||
typename bind_traits<T1>::type,
|
||||
typename bind_traits<T2>::type,
|
||||
typename bind_traits<T3>::type,
|
||||
typename bind_traits<T4>::type,
|
||||
typename bind_traits<T5>::type,
|
||||
typename bind_traits<T6>::type,
|
||||
typename bind_traits<T7>::type,
|
||||
typename bind_traits<T8>::type,
|
||||
typename bind_traits<T9>::type> type;
|
||||
};
|
||||
|
||||
// bind_traits, except map const T& -> const T
|
||||
// this is needed e.g. in currying. Const reference arguments can
|
||||
// refer to temporaries, so it is not safe to store them as references.
|
||||
template <class T> struct remove_const_reference {
|
||||
typedef typename bind_traits<T>::type type;
|
||||
};
|
||||
|
||||
template <class T> struct remove_const_reference<const T&> {
|
||||
typedef const T type;
|
||||
};
|
||||
|
||||
|
||||
// maps the bind argument types to the resulting lambda functor type
|
||||
template <
|
||||
class T0 = null_type, class T1 = null_type, class T2 = null_type,
|
||||
class T3 = null_type, class T4 = null_type, class T5 = null_type,
|
||||
class T6 = null_type, class T7 = null_type, class T8 = null_type,
|
||||
class T9 = null_type
|
||||
>
|
||||
class bind_type_generator {
|
||||
|
||||
typedef typename
|
||||
detail::bind_tuple_mapper<
|
||||
T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
|
||||
>::type args_t;
|
||||
|
||||
BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
|
||||
|
||||
typedef
|
||||
action<
|
||||
nof_elems,
|
||||
function_action<nof_elems>
|
||||
> action_type;
|
||||
|
||||
public:
|
||||
typedef
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action_type,
|
||||
args_t
|
||||
>
|
||||
> type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // detail
|
||||
|
||||
template <class T> inline const T& make_const(const T& t) { return t; }
|
||||
|
||||
|
||||
} // end of namespace lambda
|
||||
} // end of namespace boost
|
||||
|
||||
|
||||
|
||||
#endif // BOOST_LAMBDA_TRAITS_HPP
|
||||
742
include/boost/lambda/detail/member_ptr.hpp
Normal file
742
include/boost/lambda/detail/member_ptr.hpp
Normal file
@@ -0,0 +1,742 @@
|
||||
// Boost Lambda Library -- member_ptr.hpp ---------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as of its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_MEMBER_PTR_HPP)
|
||||
#define BOOST_LAMBDA_MEMBER_PTR_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
class member_pointer_action {};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// the boost type_traits member_pointer traits are not enough,
|
||||
// need to know more details.
|
||||
template<class T>
|
||||
struct member_pointer {
|
||||
typedef typename boost::add_reference<T>::type type;
|
||||
typedef detail::unspecified class_type;
|
||||
typedef detail::unspecified qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<T U::*> {
|
||||
typedef typename boost::add_reference<T>::type type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<const T U::*> {
|
||||
typedef typename boost::add_reference<const T>::type type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<volatile T U::*> {
|
||||
typedef typename boost::add_reference<volatile T>::type type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<const volatile T U::*> {
|
||||
typedef typename boost::add_reference<const volatile T>::type type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
// -- nonconst member functions --
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)()> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
// -- const member functions --
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)() const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
// -- volatile --
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)() volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
// -- const volatile
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)() const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
namespace detail {
|
||||
|
||||
// this class holds a pointer to a member function and the object.
|
||||
// when called, it just calls the member function with the parameters
|
||||
// provided
|
||||
|
||||
// It would have been possible to use existing lambda_functors to represent
|
||||
// a bound member function like this, but to have a separate template is
|
||||
// safer, since now this functor doesn't mix and match with lambda_functors
|
||||
// only thing you can do with this is to call it
|
||||
|
||||
// note that previously instantiated classes
|
||||
// (other_action<member_pointer_action> and member_pointer_action_helper
|
||||
// guarantee, that A and B are
|
||||
// such types, that for objects a and b of corresponding types, a->*b leads
|
||||
// to the builtin ->* to be called. So types that would end in a call to
|
||||
// a user defined ->* do not create a member_pointer_caller object.
|
||||
|
||||
template<class RET, class A, class B>
|
||||
class member_pointer_caller {
|
||||
A a; B b;
|
||||
|
||||
public:
|
||||
member_pointer_caller(const A& aa, const B& bb) : a(aa), b(bb) {}
|
||||
|
||||
RET operator()() const { return (a->*b)(); }
|
||||
|
||||
template<class A1>
|
||||
RET operator()(const A1& a1) const { return (a->*b)(a1); }
|
||||
|
||||
template<class A1, class A2>
|
||||
RET operator()(const A1& a1, const A2& a2) const { return (a->*b)(a1, a2); }
|
||||
|
||||
template<class A1, class A2, class A3>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3) const {
|
||||
return (a->*b)(a1, a2, a3);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3,
|
||||
const A4& a4) const {
|
||||
return (a->*b)(a1, a2, a3, a4);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6, const A7& a7) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6, const A7& a7,
|
||||
const A8& a8) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8, class A9>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6, const A7& a7,
|
||||
const A8& a8, const A9& a9) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// helper templates for return type deduction and action classes
|
||||
// different cases for data member, function member, neither
|
||||
|
||||
// true-true case
|
||||
template <bool Is_data_member, bool Is_function_member>
|
||||
struct member_pointer_action_helper;
|
||||
// cannot be both, no body provided
|
||||
|
||||
// data member case
|
||||
// this means, that B is a data member and A is a pointer type,
|
||||
// so either built-in ->* should be called, or there is an error
|
||||
template <>
|
||||
struct member_pointer_action_helper<true, false> {
|
||||
public:
|
||||
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
return a->*b;
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type {
|
||||
private:
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
||||
|
||||
typedef typename detail::member_pointer<plainB>::type type0;
|
||||
// we remove the reference now, as we may have to add cv:s
|
||||
typedef typename boost::remove_reference<type0>::type type1;
|
||||
|
||||
// A is a reference to pointer
|
||||
// remove the top level cv qualifiers and reference
|
||||
typedef typename
|
||||
detail::remove_reference_and_cv<A>::type non_ref_A;
|
||||
|
||||
// A is a pointer type, so take the type pointed to
|
||||
typedef typename ::boost::remove_pointer<non_ref_A>::type non_pointer_A;
|
||||
|
||||
public:
|
||||
// For non-reference types, we must add const and/or volatile if
|
||||
// the pointer type has these qualifiers
|
||||
// If the member is a reference, these do not have any effect
|
||||
// (cv T == T if T is a reference type)
|
||||
typedef typename detail::IF<
|
||||
::boost::is_const<non_pointer_A>::value,
|
||||
typename ::boost::add_const<type1>::type,
|
||||
type1
|
||||
>::RET type2;
|
||||
typedef typename detail::IF<
|
||||
::boost::is_volatile<non_pointer_A>::value,
|
||||
typename ::boost::add_volatile<type2>::type,
|
||||
type2
|
||||
>::RET type3;
|
||||
// add reference back
|
||||
typedef typename ::boost::add_reference<type3>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// neither case
|
||||
template <>
|
||||
struct member_pointer_action_helper<false, false> {
|
||||
public:
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
// not a built in member pointer operator, just call ->*
|
||||
return a->*b;
|
||||
}
|
||||
// an overloaded member pointer operators, user should have specified
|
||||
// the return type
|
||||
// At this point we know that there is no matching specialization for
|
||||
// return_type_2, so try return_type_2_plain
|
||||
template<class A, class B>
|
||||
struct return_type {
|
||||
|
||||
typedef typename plain_return_type_2<
|
||||
other_action<member_pointer_action>, A, B
|
||||
>::type type;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
|
||||
// member pointer function case
|
||||
// This is a built in ->* call for a member function,
|
||||
// the only thing that you can do with that, is to give it some arguments
|
||||
// note, it is guaranteed that A is a pointer type, and thus it cannot
|
||||
// be a call to overloaded ->*
|
||||
template <>
|
||||
struct member_pointer_action_helper<false, true> {
|
||||
public:
|
||||
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
typedef typename ::boost::remove_cv<B>::type plainB;
|
||||
typedef typename detail::member_pointer<plainB>::type ret_t;
|
||||
typedef typename ::boost::remove_cv<A>::type plainA;
|
||||
|
||||
// we always strip cv:s to
|
||||
// make the two routes (calling and type deduction)
|
||||
// to give the same results (and the const does not make any functional
|
||||
// difference)
|
||||
return detail::member_pointer_caller<ret_t, plainA, plainB>(a, b);
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type {
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
||||
typedef typename detail::member_pointer<plainB>::type ret_t;
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plainA;
|
||||
|
||||
typedef detail::member_pointer_caller<ret_t, plainA, plainB> type;
|
||||
};
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
template<> class other_action<member_pointer_action> {
|
||||
public:
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
typedef typename
|
||||
::boost::remove_cv<B>::type plainB;
|
||||
|
||||
return detail::member_pointer_action_helper<
|
||||
boost::is_pointer<A>::value &&
|
||||
detail::member_pointer<plainB>::is_data_member,
|
||||
boost::is_pointer<A>::value &&
|
||||
detail::member_pointer<plainB>::is_function_member
|
||||
>::template apply<RET>(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
// return type deduction --
|
||||
|
||||
// If the right argument is a pointer to data member,
|
||||
// and the left argument is of compatible pointer to class type
|
||||
// return type is a reference to the data member type
|
||||
|
||||
// if right argument is a pointer to a member function, and the left
|
||||
// argument is of a compatible type, the return type is a
|
||||
// member_pointer_caller (see above)
|
||||
|
||||
// Otherwise, return type deduction fails. There is either an error,
|
||||
// or the user is trying to call an overloaded ->*
|
||||
// In such a case either ret<> must be used, or a return_type_2 user
|
||||
// defined specialization must be provided
|
||||
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<member_pointer_action>, A, B> {
|
||||
private:
|
||||
typedef typename
|
||||
detail::remove_reference_and_cv<B>::type plainB;
|
||||
public:
|
||||
typedef typename
|
||||
detail::member_pointer_action_helper<
|
||||
detail::member_pointer<plainB>::is_data_member,
|
||||
detail::member_pointer<plainB>::is_function_member
|
||||
>::template return_type<A, B>::type type;
|
||||
};
|
||||
|
||||
// this is the way the generic lambda_functor_base functions instantiate
|
||||
// return type deduction. We turn it into return_type_2, so that the
|
||||
// user can provide specializations on that level.
|
||||
template<class Args>
|
||||
struct return_type_N<other_action<member_pointer_action>, Args> {
|
||||
typedef typename boost::tuples::element<0, Args>::type A;
|
||||
typedef typename boost::tuples::element<1, Args>::type B;
|
||||
typedef typename
|
||||
return_type_2<other_action<member_pointer_action>,
|
||||
typename boost::remove_reference<A>::type,
|
||||
typename boost::remove_reference<B>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
template<class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, typename const_copy_argument<Arg2>::type>
|
||||
>
|
||||
>
|
||||
operator->*(const lambda_functor<Arg1>& a1, const Arg2& a2)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, typename const_copy_argument<Arg2>::type>
|
||||
>
|
||||
(tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type>(a1, a2));
|
||||
}
|
||||
|
||||
template<class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
operator->*(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
template<class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<typename const_copy_argument<Arg1>::type, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
operator->*(const Arg1& a1, const lambda_functor<Arg2>& a2)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<typename const_copy_argument<Arg1>::type, lambda_functor<Arg2> >
|
||||
>
|
||||
(tuple<typename const_copy_argument<Arg1>::type,
|
||||
lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
144
include/boost/lambda/detail/operator_actions.hpp
Normal file
144
include/boost/lambda/detail/operator_actions.hpp
Normal file
@@ -0,0 +1,144 @@
|
||||
// -- operator_actions.hpp - Boost Lambda Library ----------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
|
||||
// For more information, see http://lambda.cs.utu.fi
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATOR_ACTIONS_HPP
|
||||
#define BOOST_LAMBDA_OPERATOR_ACTIONS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
// -- artihmetic ----------------------
|
||||
|
||||
class plus_action {};
|
||||
class minus_action {};
|
||||
class multiply_action {};
|
||||
class divide_action {};
|
||||
class remainder_action {};
|
||||
|
||||
// -- bitwise -------------------
|
||||
|
||||
class leftshift_action {};
|
||||
class rightshift_action {};
|
||||
class xor_action {};
|
||||
|
||||
|
||||
// -- bitwise/logical -------------------
|
||||
|
||||
class and_action {};
|
||||
class or_action {};
|
||||
class not_action {};
|
||||
|
||||
// -- relational -------------------------
|
||||
|
||||
class less_action {};
|
||||
class greater_action {};
|
||||
class lessorequal_action {};
|
||||
class greaterorequal_action {};
|
||||
class equal_action {};
|
||||
class notequal_action {};
|
||||
|
||||
// -- increment/decrement ------------------------------
|
||||
|
||||
class increment_action {};
|
||||
class decrement_action {};
|
||||
|
||||
// -- void return ------------------------------
|
||||
|
||||
// -- other ------------------------------
|
||||
|
||||
class addressof_action {};
|
||||
// class comma_action {}; // defined in actions.hpp
|
||||
class contentsof_action {};
|
||||
// class member_pointer_action {}; (defined in member_ptr.hpp)
|
||||
|
||||
|
||||
// -- actioun group templates --------------------
|
||||
|
||||
template <class Action> class arithmetic_action;
|
||||
template <class Action> class bitwise_action;
|
||||
template <class Action> class logical_action;
|
||||
template <class Action> class relational_action;
|
||||
template <class Action> class arithmetic_assignment_action;
|
||||
template <class Action> class bitwise_assignment_action;
|
||||
template <class Action> class unary_arithmetic_action;
|
||||
template <class Action> class pre_increment_decrement_action;
|
||||
template <class Action> class post_increment_decrement_action;
|
||||
|
||||
// ---------------------------------------------------------
|
||||
|
||||
// actions, for which the existence of protect is checked in return type
|
||||
// deduction.
|
||||
|
||||
template <class Act> struct is_protectable<arithmetic_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<bitwise_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<logical_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<relational_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act>
|
||||
struct is_protectable<arithmetic_assignment_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<bitwise_assignment_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<unary_arithmetic_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act>
|
||||
struct is_protectable<pre_increment_decrement_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct
|
||||
is_protectable<post_increment_decrement_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
template <> struct is_protectable<other_action<addressof_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <> struct is_protectable<other_action<contentsof_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
template<> struct is_protectable<other_action<subscript_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template<> struct is_protectable<other_action<assignment_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
// NOTE: comma action is also protectable, but the specialization is
|
||||
// in actions.hpp
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
276
include/boost/lambda/detail/operator_lambda_func_base.hpp
Normal file
276
include/boost/lambda/detail/operator_lambda_func_base.hpp
Normal file
@@ -0,0 +1,276 @@
|
||||
// Boost Lambda Library - operator_lambda_func_base.hpp -----------------
|
||||
//
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATOR_LAMBDA_FUNC_BASE_HPP
|
||||
#define BOOST_LAMBDA_OPERATOR_LAMBDA_FUNC_BASE_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
// These operators cannot be implemented as apply functions of action
|
||||
// templates
|
||||
|
||||
|
||||
// Specialization for comma.
|
||||
template<class Args>
|
||||
class lambda_functor_base<other_action<comma_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS),
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
private:
|
||||
typedef typename
|
||||
detail::deduce_argument_types<Args, SigArgs>::type rets_t;
|
||||
public:
|
||||
typedef typename return_type_2_comma< // comma needs special handling
|
||||
typename detail::element_or_null<0, rets_t>::type,
|
||||
typename detail::element_or_null<1, rets_t>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// helper traits to make the expression shorter, takes binary action
|
||||
// bound argument tuple, open argument tuple and gives the return type
|
||||
|
||||
template<class Action, class Bound, class Open> class binary_rt {
|
||||
private:
|
||||
typedef typename
|
||||
detail::deduce_argument_types<Bound, Open>::type rets_t;
|
||||
public:
|
||||
typedef typename return_type_2_prot<
|
||||
Action,
|
||||
typename detail::element_or_null<0, rets_t>::type,
|
||||
typename detail::element_or_null<1, rets_t>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
// same for unary actions
|
||||
template<class Action, class Bound, class Open> class unary_rt {
|
||||
private:
|
||||
typedef typename
|
||||
detail::deduce_argument_types<Bound, Open>::type rets_t;
|
||||
public:
|
||||
typedef typename return_type_1_prot<
|
||||
Action,
|
||||
typename detail::element_or_null<0, rets_t>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
// Specialization for logical and (to preserve shortcircuiting)
|
||||
// this could be done with a macro as the others, code used to be different
|
||||
template<class Args>
|
||||
class lambda_functor_base<logical_action<and_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) &&
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename
|
||||
detail::binary_rt<logical_action<and_action>, Args, SigArgs>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// Specialization for logical or (to preserve shortcircuiting)
|
||||
// this could be done with a macro as the others, code used to be different
|
||||
template<class Args>
|
||||
class lambda_functor_base<logical_action< or_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ||
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename
|
||||
detail::binary_rt<logical_action<or_action>, Args, SigArgs>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// Specialization for subscript
|
||||
template<class Args>
|
||||
class lambda_functor_base<other_action<subscript_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)
|
||||
[detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)];
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename
|
||||
detail::binary_rt<other_action<subscript_action>, Args, SigArgs>::type
|
||||
type;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_BINARY_ACTION(SYMBOL, ACTION_CLASS) \
|
||||
template<class Args> \
|
||||
class lambda_functor_base<ACTION_CLASS, Args> { \
|
||||
public: \
|
||||
Args args; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) \
|
||||
SYMBOL \
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); \
|
||||
} \
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::binary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
|
||||
}; \
|
||||
};
|
||||
|
||||
#define BOOST_LAMBDA_PREFIX_UNARY_ACTION(SYMBOL, ACTION_CLASS) \
|
||||
template<class Args> \
|
||||
class lambda_functor_base<ACTION_CLASS, Args> { \
|
||||
public: \
|
||||
Args args; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
return SYMBOL \
|
||||
detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS); \
|
||||
} \
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::unary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
|
||||
}; \
|
||||
};
|
||||
|
||||
#define BOOST_LAMBDA_POSTFIX_UNARY_ACTION(SYMBOL, ACTION_CLASS) \
|
||||
template<class Args> \
|
||||
class lambda_functor_base<ACTION_CLASS, Args> { \
|
||||
public: \
|
||||
Args args; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
return \
|
||||
detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) SYMBOL; \
|
||||
} \
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::unary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
|
||||
}; \
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(+,arithmetic_action<plus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(-,arithmetic_action<minus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(*,arithmetic_action<multiply_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(/,arithmetic_action<divide_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(%,arithmetic_action<remainder_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(<<,bitwise_action<leftshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>>,bitwise_action<rightshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(&,bitwise_action<and_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(|,bitwise_action<or_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(^,bitwise_action<xor_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(<,relational_action<less_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>,relational_action<greater_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(<=,relational_action<lessorequal_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>=,relational_action<greaterorequal_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(==,relational_action<equal_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(!=,relational_action<notequal_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(+=,arithmetic_assignment_action<plus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(-=,arithmetic_assignment_action<minus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(*=,arithmetic_assignment_action<multiply_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(/=,arithmetic_assignment_action<divide_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(%=,arithmetic_assignment_action<remainder_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(<<=,bitwise_assignment_action<leftshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>>=,bitwise_assignment_action<rightshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(&=,bitwise_assignment_action<and_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(|=,bitwise_assignment_action<or_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(^=,bitwise_assignment_action<xor_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(=,other_action< assignment_action>)
|
||||
|
||||
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(+, unary_arithmetic_action<plus_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(-, unary_arithmetic_action<minus_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(~, bitwise_action<not_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(!, logical_action<not_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(++, pre_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(--, pre_increment_decrement_action<decrement_action>)
|
||||
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(&,other_action<addressof_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(*,other_action<contentsof_action>)
|
||||
|
||||
BOOST_LAMBDA_POSTFIX_UNARY_ACTION(++, post_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_POSTFIX_UNARY_ACTION(--, post_increment_decrement_action<decrement_action>)
|
||||
|
||||
|
||||
#undef BOOST_LAMBDA_POSTFIX_UNARY_ACTION
|
||||
#undef BOOST_LAMBDA_PREFIX_UNARY_ACTION
|
||||
#undef BOOST_LAMBDA_BINARY_ACTION
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
925
include/boost/lambda/detail/operator_return_type_traits.hpp
Normal file
925
include/boost/lambda/detail/operator_return_type_traits.hpp
Normal file
@@ -0,0 +1,925 @@
|
||||
// operator_return_type_traits.hpp -- Boost Lambda Library ------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
|
||||
#define BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
|
||||
|
||||
#include "boost/lambda/detail/is_instance_of.hpp"
|
||||
#include "boost/type_traits/same_traits.hpp"
|
||||
|
||||
#include <cstddef> // needed for the ptrdiff_t
|
||||
#include <iosfwd> // for istream and ostream
|
||||
|
||||
#include <iterator> // needed for operator&
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
// -- general helper templates for type deduction ------------------
|
||||
|
||||
// Much of the type deduction code for standard arithmetic types from Gary Powell
|
||||
|
||||
template <class A> struct promote_code { static const int value = -1; };
|
||||
// this means that a code is not defined for A
|
||||
|
||||
// -- the next 5 types are needed in if_then_else_return
|
||||
// the promotion order is not important, but they must have distinct values.
|
||||
template <> struct promote_code<bool> { static const int value = 10; };
|
||||
template <> struct promote_code<char> { static const int value = 20; };
|
||||
template <> struct promote_code<unsigned char> { static const int value = 30; };
|
||||
template <> struct promote_code<signed char> { static const int value = 40; };
|
||||
template <> struct promote_code<short int> { static const int value = 50; };
|
||||
// ----------
|
||||
|
||||
template <> struct promote_code<int> { static const int value = 100; };
|
||||
template <> struct promote_code<unsigned int> { static const int value = 200; };
|
||||
template <> struct promote_code<long> { static const int value = 300; };
|
||||
template <> struct promote_code<unsigned long> { static const int value = 400; };
|
||||
|
||||
template <> struct promote_code<float> { static const int value = 500; };
|
||||
template <> struct promote_code<double> { static const int value = 600; };
|
||||
template <> struct promote_code<long double> { static const int value = 700; };
|
||||
|
||||
// TODO: wchar_t
|
||||
|
||||
// forward delcaration of complex.
|
||||
|
||||
} // namespace detail
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
namespace std {
|
||||
template<class T> class complex;
|
||||
}
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
template <> struct promote_code< std::complex<float> > { static const int value = 800; };
|
||||
template <> struct promote_code< std::complex<double> > { static const int value = 900; };
|
||||
template <> struct promote_code< std::complex<long double> > { static const int value = 1000; };
|
||||
|
||||
// -- int promotion -------------------------------------------
|
||||
template <class T> struct promote_to_int { typedef T type; };
|
||||
|
||||
template <> struct promote_to_int<bool> { typedef int type; };
|
||||
template <> struct promote_to_int<char> { typedef int type; };
|
||||
template <> struct promote_to_int<unsigned char> { typedef int type; };
|
||||
template <> struct promote_to_int<signed char> { typedef int type; };
|
||||
template <> struct promote_to_int<short int> { typedef int type; };
|
||||
|
||||
// The unsigned short int promotion rule is this:
|
||||
// unsigned short int to signed int if a signed int can hold all values
|
||||
// of unsigned short int, otherwise go to unsigned int.
|
||||
template <> struct promote_to_int<unsigned short int>
|
||||
{
|
||||
typedef
|
||||
detail::IF<sizeof(int) <= sizeof(unsigned short int),
|
||||
// I had the logic reversed but ">" messes up the parsing.
|
||||
unsigned int,
|
||||
int>::RET type;
|
||||
};
|
||||
|
||||
|
||||
// TODO: think, should there be default behaviour for non-standard types?
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// ------------------------------------------
|
||||
// Unary actions ----------------------------
|
||||
// ------------------------------------------
|
||||
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1 {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1<unary_arithmetic_action<Act>, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
template<class Act, class A>
|
||||
struct return_type_1<unary_arithmetic_action<Act>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
unary_arithmetic_action<Act>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
template<class A>
|
||||
struct plain_return_type_1<bitwise_action<not_action>, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
// bitwise not, operator~()
|
||||
template<class A> struct return_type_1<bitwise_action<not_action>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
bitwise_action<not_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
// prefix increment and decrement operators return
|
||||
// their argument by default as a non-const reference
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1<pre_increment_decrement_action<Act>, A> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
template<class Act, class A>
|
||||
struct return_type_1<pre_increment_decrement_action<Act>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
pre_increment_decrement_action<Act>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// post decrement just returns the same plain type.
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1<post_increment_decrement_action<Act>, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
template<class Act, class A>
|
||||
struct return_type_1<post_increment_decrement_action<Act>, A>
|
||||
{
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
post_increment_decrement_action<Act>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// logical not, operator!()
|
||||
template<class A>
|
||||
struct plain_return_type_1<logical_action<not_action>, A> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
template<class A>
|
||||
struct return_type_1<logical_action<not_action>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
logical_action<not_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// address of action ---------------------------------------
|
||||
|
||||
|
||||
template<class A>
|
||||
struct return_type_1<other_action<addressof_action>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
other_action<addressof_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type1;
|
||||
|
||||
// If no user defined specialization for A, then return the
|
||||
// cv qualified pointer to A
|
||||
typedef typename detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::remove_reference<A>::type*,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// contentsof action ------------------------------------
|
||||
|
||||
// TODO: this deduction may lead to fail directly,
|
||||
// (if A has no specialization for iterator_traits and has no
|
||||
// typedef A::reference.
|
||||
// There is no easy way around this, cause there doesn't seem to be a way
|
||||
// to test whether a class is an iterator or not.
|
||||
|
||||
// The default works with std::iterators.
|
||||
|
||||
namespace detail {
|
||||
|
||||
// A is a nonreference type
|
||||
template <class A> struct contentsof_type {
|
||||
typedef typename std::iterator_traits<A>::reference type;
|
||||
};
|
||||
|
||||
// this is since the nullary () in lambda_functor is always instantiated
|
||||
template <> struct contentsof_type<null_type> {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
|
||||
template <class A> struct contentsof_type<const A> {
|
||||
typedef typename contentsof_type<A>::type type1;
|
||||
// return a reference to the underlying const type
|
||||
// the IF is because the A::reference in the primary template could
|
||||
// be some class type rather than a real reference, hence
|
||||
// we do not want to make it a reference here either
|
||||
typedef typename detail::IF<
|
||||
is_reference<type1>::value,
|
||||
const typename boost::remove_reference<type1>::type &,
|
||||
const type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template <class A> struct contentsof_type<volatile A> {
|
||||
typedef typename contentsof_type<A>::type type1;
|
||||
typedef typename detail::IF<
|
||||
is_reference<type1>::value,
|
||||
volatile typename boost::remove_reference<type1>::type &,
|
||||
volatile type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template <class A> struct contentsof_type<const volatile A> {
|
||||
typedef typename contentsof_type<A>::type type1;
|
||||
typedef typename detail::IF<
|
||||
is_reference<type1>::value,
|
||||
const volatile typename boost::remove_reference<type1>::type &,
|
||||
const volatile type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// standard iterator traits should take care of the pointer types
|
||||
// but just to be on the safe side, we have the specializations here:
|
||||
// these work even if A is cv-qualified.
|
||||
template <class A> struct contentsof_type<A*> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A> struct contentsof_type<A* const> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A> struct contentsof_type<A* volatile> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A> struct contentsof_type<A* const volatile> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
template<class A, int N> struct contentsof_type<A[N]> {
|
||||
typedef A& type;
|
||||
};
|
||||
template<class A, int N> struct contentsof_type<const A[N]> {
|
||||
typedef const A& type;
|
||||
};
|
||||
template<class A, int N> struct contentsof_type<volatile A[N]> {
|
||||
typedef volatile A& type;
|
||||
};
|
||||
template<class A, int N> struct contentsof_type<const volatile A[N]> {
|
||||
typedef const volatile A& type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
template<class A>
|
||||
struct return_type_1<other_action<contentsof_action>, A> {
|
||||
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
other_action<contentsof_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type1;
|
||||
|
||||
// If no user defined specialization for A, then return the
|
||||
// cv qualified pointer to A
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::contentsof_type<
|
||||
typename boost::remove_reference<A>::type
|
||||
>,
|
||||
detail::identity_mapping<type1>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// binary actions ---------------------------------------------------
|
||||
// ------------------------------------------------------------------
|
||||
|
||||
// here the default case is: no user defined versions:
|
||||
template <class Act, class A, class B>
|
||||
struct plain_return_type_2 {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// error classes
|
||||
class illegal_pointer_arithmetic{};
|
||||
|
||||
// pointer arithmetic type deductions ----------------------
|
||||
// value = false means that this is not a pointer arithmetic case
|
||||
// value = true means, that this can be a pointer arithmetic case, but not necessarily is
|
||||
// This means, that for user defined operators for pointer types, say for some operator+(X, *Y),
|
||||
// the deductions must be coded at an earliel level (return_type_2).
|
||||
|
||||
template<class Act, class A, class B>
|
||||
struct pointer_arithmetic_traits { static const bool value = false; };
|
||||
|
||||
template<class A, class B>
|
||||
struct pointer_arithmetic_traits<plus_action, A, B> {
|
||||
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
|
||||
|
||||
static const bool is_pointer_A = boost::is_pointer<AP>::value;
|
||||
static const bool is_pointer_B = boost::is_pointer<BP>::value;
|
||||
|
||||
static const bool value = is_pointer_A || is_pointer_B;
|
||||
|
||||
// can't add two pointers.
|
||||
// note, that we do not check wether the other type is valid for
|
||||
// addition with a pointer.
|
||||
// the compiler will catch it in the apply function
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
is_pointer_A && is_pointer_B,
|
||||
detail::return_type_deduction_failure<
|
||||
detail::illegal_pointer_arithmetic
|
||||
>,
|
||||
typename detail::IF<is_pointer_A, AP, BP>::RET
|
||||
>::RET type;
|
||||
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct pointer_arithmetic_traits<minus_action, A, B> {
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
|
||||
|
||||
static const bool is_pointer_A = boost::is_pointer<AP>::value;
|
||||
static const bool is_pointer_B = boost::is_pointer<BP>::value;
|
||||
|
||||
static const bool value = is_pointer_A || is_pointer_B;
|
||||
|
||||
static const bool same_pointer_type =
|
||||
is_pointer_A && is_pointer_B &&
|
||||
boost::is_same<
|
||||
typename boost::remove_const<
|
||||
typename boost::remove_pointer<
|
||||
typename boost::remove_const<AP>::type
|
||||
>::type
|
||||
>::type,
|
||||
typename boost::remove_const<
|
||||
typename boost::remove_pointer<
|
||||
typename boost::remove_const<BP>::type
|
||||
>::type
|
||||
>::type
|
||||
>::value;
|
||||
|
||||
// ptr - ptr has type ptrdiff_t
|
||||
// note, that we do not check if, in ptr - B, B is
|
||||
// valid for subtraction with a pointer.
|
||||
// the compiler will catch it in the apply function
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
same_pointer_type, const std::ptrdiff_t,
|
||||
typename detail::IF<
|
||||
is_pointer_A,
|
||||
AP,
|
||||
detail::return_type_deduction_failure<detail::illegal_pointer_arithmetic>
|
||||
>::RET
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// -- arithmetic actions ---------------------------------------------
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<bool is_pointer_arithmetic, class Act, class A, class B>
|
||||
struct return_type_2_arithmetic_phase_1;
|
||||
|
||||
template<class A, class B> struct return_type_2_arithmetic_phase_2;
|
||||
template<class A, class B> struct return_type_2_arithmetic_phase_3;
|
||||
|
||||
} // namespace detail
|
||||
|
||||
|
||||
// drop any qualifiers from the argument types within arithmetic_action
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<arithmetic_action<Act>, A, B>
|
||||
{
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter the whole arithmetic deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::return_type_2_arithmetic_phase_1<
|
||||
detail::pointer_arithmetic_traits<Act, A, B>::value, Act, A, B
|
||||
>,
|
||||
plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// perform integral promotion, no pointer arithmetic
|
||||
template<bool is_pointer_arithmetic, class Act, class A, class B>
|
||||
struct return_type_2_arithmetic_phase_1
|
||||
{
|
||||
typedef typename
|
||||
return_type_2_arithmetic_phase_2<
|
||||
typename remove_reference_and_cv<A>::type,
|
||||
typename remove_reference_and_cv<B>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// pointer_arithmetic
|
||||
template<class Act, class A, class B>
|
||||
struct return_type_2_arithmetic_phase_1<true, Act, A, B>
|
||||
{
|
||||
typedef typename
|
||||
pointer_arithmetic_traits<Act, A, B>::type type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2_arithmetic_phase_2 {
|
||||
typedef typename
|
||||
return_type_2_arithmetic_phase_3<
|
||||
typename promote_to_int<A>::type,
|
||||
typename promote_to_int<B>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// specialization for unsigned int.
|
||||
// We only have to do these two specialization because the value promotion will
|
||||
// take care of the other cases.
|
||||
// The unsigned int promotion rule is this:
|
||||
// unsigned int to long if a long can hold all values of unsigned int,
|
||||
// otherwise go to unsigned long.
|
||||
|
||||
// struct so I don't have to type this twice.
|
||||
struct promotion_of_unsigned_int
|
||||
{
|
||||
typedef
|
||||
detail::IF<sizeof(long) <= sizeof(unsigned int),
|
||||
// I had the logic reversed but ">" messes up the parsing.
|
||||
unsigned long,
|
||||
long>::RET type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct return_type_2_arithmetic_phase_2<unsigned int, long>
|
||||
{
|
||||
typedef promotion_of_unsigned_int::type type;
|
||||
};
|
||||
template<>
|
||||
struct return_type_2_arithmetic_phase_2<long, unsigned int>
|
||||
{
|
||||
typedef promotion_of_unsigned_int::type type;
|
||||
};
|
||||
|
||||
|
||||
template<class A, class B> struct return_type_2_arithmetic_phase_3 {
|
||||
enum { promote_code_A_value = promote_code<A>::value,
|
||||
promote_code_B_value = promote_code<B>::value }; // enums for KCC
|
||||
typedef typename
|
||||
detail::IF<
|
||||
promote_code_A_value == -1 || promote_code_B_value == -1,
|
||||
detail::return_type_deduction_failure<return_type_2_arithmetic_phase_3>,
|
||||
typename detail::IF<
|
||||
((int)promote_code_A_value > (int)promote_code_B_value),
|
||||
A,
|
||||
B
|
||||
>::RET
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// -- bitwise actions -------------------------------------------
|
||||
// note: for integral types deuduction is similar to arithmetic actions.
|
||||
|
||||
// drop any qualifiers from the argument types within arithmetic action
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<bitwise_action<Act>, A, B>
|
||||
{
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<bitwise_action<Act>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter type deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
return_type_2<arithmetic_action<plus_action>, A, B>,
|
||||
plain_return_type_2<bitwise_action<Act>, plain_A, plain_B>
|
||||
>::type type;
|
||||
|
||||
// plus_action is just a random pick, has to be a concrete instance
|
||||
|
||||
// TODO: This check is only valid for built-in types, overloaded types might
|
||||
// accept floating point operators
|
||||
|
||||
// bitwise operators not defined for floating point types
|
||||
// these test are not strictly needed here, since the error will be caught in
|
||||
// the apply function
|
||||
BOOST_STATIC_ASSERT(!(boost::is_float<plain_A>::value && boost::is_float<plain_B>::value));
|
||||
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifdef BOOST_NO_TEMPLATED_STREAMS
|
||||
|
||||
template<class A, class B>
|
||||
struct leftshift_type {
|
||||
|
||||
typedef typename detail::IF<
|
||||
boost::is_convertible<
|
||||
typename boost::remove_reference<A>::type*,
|
||||
std::ostream*
|
||||
>::value,
|
||||
std::ostream&,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct rightshift_type {
|
||||
|
||||
typedef typename detail::IF<
|
||||
|
||||
boost::is_convertible<
|
||||
typename boost::remove_reference<A>::type*,
|
||||
std::istream*
|
||||
>::value,
|
||||
std::istream&,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <class T> struct get_ostream_type {
|
||||
typedef std::basic_ostream<typename T::char_type,
|
||||
typename T::traits_type>& type;
|
||||
};
|
||||
|
||||
template <class T> struct get_istream_type {
|
||||
typedef std::basic_istream<typename T::char_type,
|
||||
typename T::traits_type>& type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct leftshift_type {
|
||||
private:
|
||||
typedef typename boost::remove_reference<A>::type plainA;
|
||||
public:
|
||||
typedef typename detail::IF_type<
|
||||
is_instance_of_2<plainA, std::basic_ostream>::value,
|
||||
get_ostream_type<plainA>, //reference to the stream
|
||||
detail::remove_reference_and_cv<A>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct rightshift_type {
|
||||
private:
|
||||
typedef typename boost::remove_reference<A>::type plainA;
|
||||
public:
|
||||
typedef typename detail::IF_type<
|
||||
is_instance_of_2<plainA, std::basic_istream>::value,
|
||||
get_istream_type<plainA>, //reference to the stream
|
||||
detail::remove_reference_and_cv<A>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
} // end detail
|
||||
|
||||
// ostream
|
||||
template<class A, class B>
|
||||
struct return_type_2<bitwise_action<leftshift_action>, A, B>
|
||||
{
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<bitwise_action<leftshift_action>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter type deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::leftshift_type<A, B>,
|
||||
plain_return_type_2<bitwise_action<leftshift_action>, plain_A, plain_B>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// istream
|
||||
template<class A, class B>
|
||||
struct return_type_2<bitwise_action<rightshift_action>, A, B>
|
||||
{
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<bitwise_action<rightshift_action>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter type deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::rightshift_type<A, B>,
|
||||
plain_return_type_2<bitwise_action<rightshift_action>, plain_A, plain_B>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// -- logical actions ----------------------------------------
|
||||
// always bool
|
||||
// NOTE: this may not be true for some weird user-defined types,
|
||||
template<class A, class B, class Act>
|
||||
struct plain_return_type_2<logical_action<Act>, A, B> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<logical_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<logical_action<Act>, plain_A, plain_B>::type type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
// -- relational actions ----------------------------------------
|
||||
// always bool
|
||||
// NOTE: this may not be true for some weird user-defined types,
|
||||
template<class A, class B, class Act>
|
||||
struct plain_return_type_2<relational_action<Act>, A, B> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<relational_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<relational_action<Act>, plain_A, plain_B>::type type;
|
||||
};
|
||||
|
||||
// Assingment actions -----------------------------------------------
|
||||
// return type is the type of the first argument as reference
|
||||
|
||||
// note that cv-qualifiers are preserved.
|
||||
// Yes, assignment operator can be const!
|
||||
|
||||
// NOTE: this may not be true for some weird user-defined types,
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<arithmetic_assignment_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
arithmetic_assignment_action<Act>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::add_reference<A>::type,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<bitwise_assignment_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
bitwise_assignment_action<Act>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::add_reference<A>::type,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<assignment_action>, A, B> {
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
other_action<assignment_action>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::add_reference<A>::type,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// -- other actions ----------------------------------------
|
||||
|
||||
// comma action ----------------------------------
|
||||
// Note: this may not be true for some weird user-defined types,
|
||||
|
||||
// NOTE! This only tries the plain_return_type_2 layer and gives
|
||||
// detail::unspecified as default. If no such specialization is found, the
|
||||
// type rule in the spcecialization of the return_type_2_prot is used
|
||||
// to give the type of the right argument (which can be a reference too)
|
||||
// (The built in operator, can return a l- or rvalue).
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<comma_action>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
other_action<comma_action>, plain_A, plain_B
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// subscript action -----------------------------------------------
|
||||
|
||||
|
||||
namespace detail {
|
||||
// A and B are nonreference types
|
||||
template <class A, class B> struct subscript_type {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
template <class A, class B> struct subscript_type<A*, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A, class B> struct subscript_type<A* const, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A, class B> struct subscript_type<A* volatile, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A, class B> struct subscript_type<A* const volatile, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
|
||||
template<class A, class B, int N> struct subscript_type<A[N], B> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
// these 3 specializations are needed to make gcc <3 happy
|
||||
template<class A, class B, int N> struct subscript_type<const A[N], B> {
|
||||
typedef const A& type;
|
||||
};
|
||||
template<class A, class B, int N> struct subscript_type<volatile A[N], B> {
|
||||
typedef volatile A& type;
|
||||
};
|
||||
template<class A, class B, int N> struct subscript_type<const volatile A[N], B> {
|
||||
typedef const volatile A& type;
|
||||
};
|
||||
|
||||
} // end detail
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<subscript_action>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename boost::remove_reference<A>::type nonref_A;
|
||||
typedef typename boost::remove_reference<B>::type nonref_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
other_action<subscript_action>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::subscript_type<nonref_A, nonref_B>,
|
||||
plain_return_type_2<other_action<subscript_action>, plain_A, plain_B>
|
||||
>::type type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
|
||||
namespace std {
|
||||
template <class Key, class T, class Cmp, class Allocator> class map;
|
||||
template <class Key, class T, class Cmp, class Allocator> class multimap;
|
||||
template <class T, class Allocator> class vector;
|
||||
template <class T, class Allocator> class deque;
|
||||
template <class Char, class Traits, class Allocator> class basic_string;
|
||||
}
|
||||
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
template<class Key, class T, class Cmp, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::map<Key, T, Cmp, Allocator>, B> {
|
||||
typedef T& type;
|
||||
// T == std::map<Key, T, Cmp, Allocator>::mapped_type;
|
||||
};
|
||||
|
||||
template<class Key, class T, class Cmp, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::multimap<Key, T, Cmp, Allocator>, B> {
|
||||
typedef T& type;
|
||||
// T == std::map<Key, T, Cmp, Allocator>::mapped_type;
|
||||
};
|
||||
|
||||
// deque
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::deque<T, Allocator>, B> {
|
||||
typedef typename std::deque<T, Allocator>::reference type;
|
||||
};
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, const std::deque<T, Allocator>, B> {
|
||||
typedef typename std::deque<T, Allocator>::const_reference type;
|
||||
};
|
||||
|
||||
// vector
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::vector<T, Allocator>, B> {
|
||||
typedef typename std::vector<T, Allocator>::reference type;
|
||||
};
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, const std::vector<T, Allocator>, B> {
|
||||
typedef typename std::vector<T, Allocator>::const_reference type;
|
||||
};
|
||||
|
||||
// basic_string
|
||||
template<class Char, class Traits, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::basic_string<Char, Traits, Allocator>, B> {
|
||||
typedef typename std::basic_string<Char, Traits, Allocator>::reference type;
|
||||
};
|
||||
template<class Char, class Traits, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, const std::basic_string<Char, Traits, Allocator>, B> {
|
||||
typedef typename std::basic_string<Char, Traits, Allocator>::const_reference type;
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
365
include/boost/lambda/detail/operators.hpp
Normal file
365
include/boost/lambda/detail/operators.hpp
Normal file
@@ -0,0 +1,365 @@
|
||||
// Boost Lambda Library - operators.hpp --------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ---------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATORS_HPP
|
||||
#define BOOST_LAMBDA_OPERATORS_HPP
|
||||
|
||||
#include "boost/lambda/detail/is_instance_of.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
#if defined BOOST_LAMBDA_BE1
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE1"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE1(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
|
||||
template<class Arg, class B> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<Arg>, typename CONVERSION <CONSTB B>::type> \
|
||||
> \
|
||||
> \
|
||||
OPER_NAME (const lambda_functor<Arg>& a, CONSTB B& b) { \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<Arg>, typename CONVERSION <CONSTB B>::type> \
|
||||
> \
|
||||
(tuple<lambda_functor<Arg>, typename CONVERSION <CONSTB B>::type>(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_BE2
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE2"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE2(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
|
||||
template<class A, class Arg> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<typename CONVERSION <CONSTA A>::type, lambda_functor<Arg> > \
|
||||
> \
|
||||
> \
|
||||
OPER_NAME (CONSTA A& a, const lambda_functor<Arg>& b) { \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<typename CONVERSION <CONSTA A>::type, lambda_functor<Arg> > \
|
||||
> \
|
||||
(tuple<typename CONVERSION <CONSTA A>::type, lambda_functor<Arg> >(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_BE3
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE3"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE3(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
|
||||
template<class ArgA, class ArgB> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<ArgA>, lambda_functor<ArgB> > \
|
||||
> \
|
||||
> \
|
||||
OPER_NAME (const lambda_functor<ArgA>& a, const lambda_functor<ArgB>& b) { \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<ArgA>, lambda_functor<ArgB> > \
|
||||
> \
|
||||
(tuple<lambda_functor<ArgA>, lambda_functor<ArgB> >(a, b)); \
|
||||
}
|
||||
|
||||
#if defined BOOST_LAMBDA_BE
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
|
||||
BOOST_LAMBDA_BE1(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
|
||||
BOOST_LAMBDA_BE2(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
|
||||
BOOST_LAMBDA_BE3(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION)
|
||||
|
||||
|
||||
BOOST_LAMBDA_BE(operator+, arithmetic_action<plus_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator-, arithmetic_action<minus_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator*, arithmetic_action<multiply_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator/, arithmetic_action<divide_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator%, arithmetic_action<remainder_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator<<, bitwise_action<leftshift_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator>>, bitwise_action<rightshift_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator&, bitwise_action<and_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator|, bitwise_action<or_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator^, bitwise_action<xor_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator&&, logical_action<and_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator||, logical_action<or_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator<, relational_action<less_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator>, relational_action<greater_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator<=, relational_action<lessorequal_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator>=, relational_action<greaterorequal_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator==, relational_action<equal_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator!=, relational_action<notequal_action>, const, const, const_copy_argument)
|
||||
|
||||
BOOST_LAMBDA_BE(operator+=, arithmetic_assignment_action<plus_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator-=, arithmetic_assignment_action<minus_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator*=, arithmetic_assignment_action<multiply_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator/=, arithmetic_assignment_action<divide_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator%=, arithmetic_assignment_action<remainder_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator<<=, bitwise_assignment_action<leftshift_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator>>=, bitwise_assignment_action<rightshift_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator&=, bitwise_assignment_action<and_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator|=, bitwise_assignment_action<or_action>, , const, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator^=, bitwise_assignment_action<xor_action>, , const, reference_argument)
|
||||
|
||||
|
||||
// A special trick for comma operator for correct preprocessing
|
||||
#if defined BOOST_LAMBDA_COMMA_OPERATOR_NAME
|
||||
#error "Multiple defines of BOOST_LAMBDA_COMMA_OPERATOR_NAME"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_COMMA_OPERATOR_NAME operator,
|
||||
|
||||
BOOST_LAMBDA_BE1(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE2(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const, const, const_copy_argument)
|
||||
BOOST_LAMBDA_BE3(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const, const, const_copy_argument)
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// special cases for ostream& << Any and istream& >> Any ---------------
|
||||
// the actual stream classes may vary and thus a specialisation for,
|
||||
// say ostream& does not match (the general case above is chosen).
|
||||
// Therefore we specialise for non-const reference:
|
||||
// if the left argument is a stream, we store the stream as reference
|
||||
// if it is something else, we store a const plain by default
|
||||
|
||||
// Note that the overloading is const vs. non-const first argument
|
||||
|
||||
#ifdef BOOST_NO_TEMPLATED_STREAMS
|
||||
template<class T> struct convert_ostream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
boost::is_convertible<T*, std::ostream*>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class T> struct convert_istream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
boost::is_convertible<T*, std::istream*>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
#else
|
||||
|
||||
template<class T> struct convert_ostream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
is_instance_of_2<
|
||||
T, std::basic_ostream
|
||||
>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class T> struct convert_istream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
is_instance_of_2<
|
||||
T, std::basic_istream
|
||||
>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // detail
|
||||
|
||||
BOOST_LAMBDA_BE2(operator<<, bitwise_action< leftshift_action>, , const, detail::convert_ostream_to_ref_others_to_c_plain_by_default)
|
||||
BOOST_LAMBDA_BE2(operator>>, bitwise_action< rightshift_action>, , const, detail::convert_istream_to_ref_others_to_c_plain_by_default)
|
||||
|
||||
|
||||
// special case for io_manipulators.
|
||||
// function references cannot be given as arguments to lambda operator
|
||||
// expressions in general. With << and >> the use of manipulators is
|
||||
// so common, that specializations are provided to make them work.
|
||||
|
||||
template<class Arg, class Ret, class ManipArg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
bitwise_action<leftshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
>
|
||||
operator<<(const lambda_functor<Arg>& a, Ret(&b)(ManipArg))
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
bitwise_action<leftshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
( tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>(a, b) );
|
||||
}
|
||||
|
||||
template<class Arg, class Ret, class ManipArg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
bitwise_action<rightshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
>
|
||||
operator>>(const lambda_functor<Arg>& a, Ret(&b)(ManipArg))
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
bitwise_action<rightshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
( tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>(a, b) );
|
||||
}
|
||||
|
||||
|
||||
// (+ and -) take their arguments as const references.
|
||||
// This has consquences with pointer artihmetic
|
||||
// E.g int a[]; ... *a = 1 works but not *(a+1) = 1.
|
||||
// the result of a+1 would be const
|
||||
// To make the latter work too,
|
||||
// non-const arrays are taken as non-const and stored as non-const as well.
|
||||
#if defined BOOST_LAMBDA_PTR_ARITHMETIC_E1
|
||||
#error "Multiple defines of BOOST_LAMBDA_PTR_ARITHMETIC_E1"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_PTR_ARITHMETIC_E1(OPER_NAME, ACTION, CONST) \
|
||||
template<class Arg, int N, class B> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg>, CONST B(&)[N]> > \
|
||||
> \
|
||||
OPER_NAME (const lambda_functor<Arg>& a, CONST B(&b)[N]) \
|
||||
{ \
|
||||
return lambda_functor< \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg>, CONST B(&)[N]> > \
|
||||
>(tuple<lambda_functor<Arg>, CONST B(&)[N]>(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_PTR_ARITHMETIC_E2
|
||||
#error "Multiple defines of BOOST_LAMBDA_PTR_ARITHMETIC_E2"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_PTR_ARITHMETIC_E2(OPER_NAME, ACTION, CONST) \
|
||||
template<int N, class A, class Arg> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base<ACTION, tuple<CONST A(&)[N], lambda_functor<Arg> > > \
|
||||
> \
|
||||
OPER_NAME (CONST A(&a)[N], const lambda_functor<Arg>& b) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<CONST A(&)[N], lambda_functor<Arg> > > \
|
||||
(tuple<CONST A(&)[N], lambda_functor<Arg> >(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator+, arithmetic_action<plus_action>,)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator+, arithmetic_action<plus_action>,)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator+, arithmetic_action<plus_action>,const)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator+, arithmetic_action<plus_action>,const)
|
||||
|
||||
|
||||
//BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator-, arithmetic_action<minus_action>)
|
||||
// This is not needed, since the result of ptr-ptr is an rvalue anyway
|
||||
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator-, arithmetic_action<minus_action>, )
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator-, arithmetic_action<minus_action>, const)
|
||||
|
||||
|
||||
#undef BOOST_LAMBDA_BE1
|
||||
#undef BOOST_LAMBDA_BE2
|
||||
#undef BOOST_LAMBDA_BE3
|
||||
#undef BOOST_LAMBDA_BE
|
||||
#undef BOOST_LAMBDA_COMMA_OPERATOR_NAME
|
||||
|
||||
#undef BOOST_LAMBDA_PTR_ARITHMETIC_E1
|
||||
#undef BOOST_LAMBDA_PTR_ARITHMETIC_E2
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------
|
||||
// unary operators -----------------------------------------------------
|
||||
// ---------------------------------------------------------------------
|
||||
|
||||
#if defined BOOST_LAMBDA_UE
|
||||
#error "Multiple defines of BOOST_LAMBDA_UE"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_UE(OPER_NAME, ACTION) \
|
||||
template<class Arg> \
|
||||
inline const \
|
||||
lambda_functor<lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > > \
|
||||
OPER_NAME (const lambda_functor<Arg>& a) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > \
|
||||
( tuple<lambda_functor<Arg> >(a) ); \
|
||||
}
|
||||
|
||||
|
||||
BOOST_LAMBDA_UE(operator+, unary_arithmetic_action<plus_action>)
|
||||
BOOST_LAMBDA_UE(operator-, unary_arithmetic_action<minus_action>)
|
||||
BOOST_LAMBDA_UE(operator~, bitwise_action<not_action>)
|
||||
BOOST_LAMBDA_UE(operator!, logical_action<not_action>)
|
||||
BOOST_LAMBDA_UE(operator++, pre_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_UE(operator--, pre_increment_decrement_action<decrement_action>)
|
||||
BOOST_LAMBDA_UE(operator*, other_action<contentsof_action>)
|
||||
BOOST_LAMBDA_UE(operator&, other_action<addressof_action>)
|
||||
|
||||
#if defined BOOST_LAMBDA_POSTFIX_UE
|
||||
#error "Multiple defines of BOOST_LAMBDA_POSTFIX_UE"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_POSTFIX_UE(OPER_NAME, ACTION) \
|
||||
template<class Arg> \
|
||||
inline const \
|
||||
lambda_functor<lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > > \
|
||||
OPER_NAME (const lambda_functor<Arg>& a, int) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > \
|
||||
( tuple<lambda_functor<Arg> >(a) ); \
|
||||
}
|
||||
|
||||
|
||||
BOOST_LAMBDA_POSTFIX_UE(operator++, post_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_POSTFIX_UE(operator--, post_increment_decrement_action<decrement_action>)
|
||||
|
||||
#undef BOOST_LAMBDA_UE
|
||||
#undef BOOST_LAMBDA_POSTFIX_UE
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
330
include/boost/lambda/detail/ret.hpp
Normal file
330
include/boost/lambda/detail/ret.hpp
Normal file
@@ -0,0 +1,330 @@
|
||||
// Boost Lambda Library ret.hpp -----------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_RET_HPP
|
||||
#define BOOST_LAMBDA_RET_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// TODO:
|
||||
|
||||
// Add specializations for function references for ret, protect and unlambda
|
||||
// e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
|
||||
// for a function type.
|
||||
// on the other hand unlambda(*foo) does work
|
||||
|
||||
|
||||
// -- ret -------------------------
|
||||
// the explicit return type template
|
||||
|
||||
// TODO: It'd be nice to make ret a nop for other than lambda functors
|
||||
// but causes an ambiguiyty with gcc (not with KCC), check what is the
|
||||
// right interpretation.
|
||||
|
||||
// // ret for others than lambda functors has no effect
|
||||
// template <class U, class T>
|
||||
// inline const T& ret(const T& t) { return t; }
|
||||
|
||||
|
||||
template<class RET, class Arg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
explicit_return_type_action<RET>,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
>
|
||||
ret(const lambda_functor<Arg>& a1)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
explicit_return_type_action<RET>,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg> >(a1));
|
||||
}
|
||||
|
||||
// protect ------------------
|
||||
|
||||
// protecting others than lambda functors has no effect
|
||||
template <class T>
|
||||
inline const T& protect(const T& t) { return t; }
|
||||
|
||||
template<class Arg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
protect_action,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
>
|
||||
protect(const lambda_functor<Arg>& a1)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
protect_action,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg> >(a1));
|
||||
}
|
||||
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
// Hides the lambda functorness of a lambda functor.
|
||||
// After this, the functor is immune to argument substitution, etc.
|
||||
// This can be used, e.g. to make it safe to pass lambda functors as
|
||||
// arguments to functions, which might use them as target functions
|
||||
|
||||
// note, unlambda and protect are different things. Protect hides the lambda
|
||||
// functor for one application, unlambda for good.
|
||||
|
||||
template <class LambdaFunctor>
|
||||
class non_lambda_functor
|
||||
{
|
||||
LambdaFunctor lf;
|
||||
public:
|
||||
|
||||
// This functor defines the result_type typedef.
|
||||
// The result type must be deducible without knowing the arguments
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename
|
||||
LambdaFunctor::inherited::
|
||||
template sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
||||
|
||||
typename LambdaFunctor::nullary_return_type
|
||||
operator()() const {
|
||||
return lf.template
|
||||
call<typename LambdaFunctor::nullary_return_type>
|
||||
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A>
|
||||
typename sig<tuple<const non_lambda_functor, A&> >::type
|
||||
operator()(A& a) const {
|
||||
return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename sig<tuple<const non_lambda_functor, A&, B&> >::type
|
||||
operator()(A& a, B& b) const {
|
||||
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
|
||||
operator()(A& a, B& b, C& c) const {
|
||||
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg>
|
||||
inline const Arg& unlambda(const Arg& a) { return a; }
|
||||
|
||||
template <class Arg>
|
||||
inline const non_lambda_functor<lambda_functor<Arg> >
|
||||
unlambda(const lambda_functor<Arg>& a)
|
||||
{
|
||||
return non_lambda_functor<lambda_functor<Arg> >(a);
|
||||
}
|
||||
|
||||
// Due to a language restriction, lambda functors cannot be made to
|
||||
// accept non-const rvalue arguments. Usually iterators do not return
|
||||
// temporaries, but sometimes they do. That's why a workaround is provided.
|
||||
// Note, that this potentially breaks const correctness, so be careful!
|
||||
|
||||
// any lambda functor can be turned into a const_incorrect_lambda_functor
|
||||
// The operator() takes arguments as consts and then casts constness
|
||||
// away. So this breaks const correctness!!! but is a necessary workaround
|
||||
// in some cases due to language limitations.
|
||||
// Note, that this is not a lambda_functor anymore, so it can not be used
|
||||
// as a sub lambda expression.
|
||||
|
||||
template <class LambdaFunctor>
|
||||
struct const_incorrect_lambda_functor {
|
||||
LambdaFunctor lf;
|
||||
public:
|
||||
|
||||
explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename
|
||||
LambdaFunctor::inherited::template
|
||||
sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
// The nullary case is not needed (no arguments, no parameter type problems)
|
||||
|
||||
template<class A>
|
||||
typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
|
||||
operator()(const A& a) const {
|
||||
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
|
||||
operator()(const A& a, const B& b) const {
|
||||
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
|
||||
operator()(const A& a, const B& b, const C& c) const {
|
||||
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
|
||||
}
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// any lambda functor can be turned into a const_parameter_lambda_functor
|
||||
// The operator() takes arguments as const.
|
||||
// This is useful if lambda functors are called with non-const rvalues.
|
||||
// Note, that this is not a lambda_functor anymore, so it can not be used
|
||||
// as a sub lambda expression.
|
||||
|
||||
template <class LambdaFunctor>
|
||||
struct const_parameter_lambda_functor {
|
||||
LambdaFunctor lf;
|
||||
public:
|
||||
|
||||
explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename
|
||||
LambdaFunctor::inherited::template
|
||||
sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
// The nullary case is not needed: no arguments, no constness problems.
|
||||
|
||||
template<class A>
|
||||
typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
|
||||
operator()(const A& a) const {
|
||||
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
|
||||
operator()(const A& a, const B& b) const {
|
||||
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
|
||||
>::type
|
||||
operator()(const A& a, const B& b, const C& c) const {
|
||||
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg>
|
||||
inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
|
||||
break_const(const lambda_functor<Arg>& lf)
|
||||
{
|
||||
return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
|
||||
}
|
||||
|
||||
|
||||
template <class Arg>
|
||||
inline const const_parameter_lambda_functor<lambda_functor<Arg> >
|
||||
const_parameters(const lambda_functor<Arg>& lf)
|
||||
{
|
||||
return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
|
||||
}
|
||||
|
||||
// make void ------------------------------------------------
|
||||
// make_void( x ) turns a lambda functor x with some return type y into
|
||||
// another lambda functor, which has a void return type
|
||||
// when called, the original return type is discarded
|
||||
|
||||
// we use this action. The action class will be called, which means that
|
||||
// the wrapped lambda functor is evaluated, but we just don't do anything
|
||||
// with the result.
|
||||
struct voidifier_action {
|
||||
template<class Ret, class A> static Ret apply(A&) {}
|
||||
};
|
||||
|
||||
template<class Args> struct return_type_N<voidifier_action, Args> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
template<class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, voidifier_action>,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
make_void(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, voidifier_action>,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg1> > (a1));
|
||||
}
|
||||
|
||||
// for non-lambda functors, make_void does nothing
|
||||
// (the argument gets evaluated immediately)
|
||||
|
||||
template<class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<do_nothing_action, null_type>
|
||||
>
|
||||
make_void(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<do_nothing_action, null_type>();
|
||||
}
|
||||
|
||||
// std_functor -----------------------------------------------------
|
||||
|
||||
// The STL uses the result_type typedef as the convention to let binders know
|
||||
// the return type of a function object.
|
||||
// LL uses the sig template.
|
||||
// To let LL know that the function object has the result_type typedef
|
||||
// defined, it can be wrapped with the std_functor function.
|
||||
|
||||
|
||||
// Just inherit form the template parameter (the standard functor),
|
||||
// and provide a sig template. So we have a class which is still the
|
||||
// same functor + the sig template.
|
||||
|
||||
template<class T>
|
||||
struct result_type_to_sig : public T {
|
||||
template<class Args> struct sig { typedef typename T::result_type type; };
|
||||
result_type_to_sig(const T& t) : T(t) {}
|
||||
};
|
||||
|
||||
template<class F>
|
||||
inline result_type_to_sig<F> std_functor(const F& f) { return f; }
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
264
include/boost/lambda/detail/return_type_traits.hpp
Normal file
264
include/boost/lambda/detail/return_type_traits.hpp
Normal file
@@ -0,0 +1,264 @@
|
||||
// return_type_traits.hpp -- Boost Lambda Library ---------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
|
||||
#define BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
|
||||
|
||||
#include <cstddef> // needed for the ptrdiff_t
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
using ::boost::type_traits::ice_and;
|
||||
using ::boost::type_traits::ice_or;
|
||||
using ::boost::type_traits::ice_not;
|
||||
|
||||
// Much of the type deduction code for standard arithmetic types
|
||||
// from Gary Powell
|
||||
|
||||
// different arities:
|
||||
template <class Act, class A1> struct return_type_1; // 1-ary actions
|
||||
template <class Act, class A1, class A2> struct return_type_2; // 2-ary
|
||||
template <class Act, class Args> struct return_type_N; // >3- ary
|
||||
|
||||
template <class Act, class A1> struct return_type_1_prot;
|
||||
template <class Act, class A1, class A2> struct return_type_2_prot; // 2-ary
|
||||
template <class Act, class A1> struct return_type_N_prot; // >3-ary
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<class> class return_type_deduction_failure {};
|
||||
|
||||
// In some cases return type deduction should fail (an invalid lambda
|
||||
// expression). Sometimes the lambda expression can be ok, the return type
|
||||
// just is not deducible (user defined operators). Then return type deduction
|
||||
// should never be entered at all, and the use of ret<> does this.
|
||||
// However, for nullary lambda functors, return type deduction is always
|
||||
// entered, and there seems to be no way around this.
|
||||
|
||||
// (the return type is part of the prototype of the non-template
|
||||
// operator()(). The prototype is instantiated, even though the body
|
||||
// is not.)
|
||||
|
||||
// So, in the case the return type deduction should fail, it should not
|
||||
// fail directly, but rather result in a valid but wrong return type,
|
||||
// causing a compile time error only if the function is really called.
|
||||
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
|
||||
|
||||
// return_type_X_prot classes --------------------------------------------
|
||||
// These classes are the first layer that gets instantiated from the
|
||||
// lambda_functor_base sig templates. It will check whether
|
||||
// the action is protectable and one of arguments is "protected" or its
|
||||
// evaluation will otherwise result in another lambda functor.
|
||||
// If this is a case, the result type will be another lambda functor.
|
||||
|
||||
// The arguments are always non-reference types, except for comma action
|
||||
// where the right argument can be a reference too. This is because it
|
||||
// matters (in the builtin case) whether the argument is an lvalue or
|
||||
// rvalue: int i; i, 1 -> rvalue; 1, i -> lvalue
|
||||
|
||||
template <class Act, class A> struct return_type_1_prot {
|
||||
public:
|
||||
typedef typename
|
||||
detail::IF<
|
||||
// is_protectable<Act>::value && is_lambda_functor<A>::value,
|
||||
ice_and<is_protectable<Act>::value, is_lambda_functor<A>::value>::value,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
Act,
|
||||
tuple<typename detail::remove_reference_and_cv<A>::type>
|
||||
>
|
||||
>,
|
||||
typename return_type_1<Act, A>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act> struct return_type_1_prot<Act, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// Unary actions (result from unary operators)
|
||||
// do not have a default return type.
|
||||
template<class Act, class A> struct return_type_1 {
|
||||
typedef typename
|
||||
detail::return_type_deduction_failure<return_type_1> type;
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <class T>
|
||||
class protect_conversion {
|
||||
typedef typename boost::remove_reference<T>::type non_ref_T;
|
||||
public:
|
||||
|
||||
// add const to rvalues, so that all rvalues are stored as const in
|
||||
// the args tuple
|
||||
typedef typename detail::IF_type<
|
||||
// boost::is_reference<T>::value && !boost::is_const<non_ref_T>::value,
|
||||
ice_and<boost::is_reference<T>::value,
|
||||
ice_not<boost::is_const<non_ref_T>::value>::value>::value,
|
||||
detail::identity_mapping<T>,
|
||||
const_copy_argument<non_ref_T> // handles funtion and array
|
||||
>::type type; // types correctly
|
||||
};
|
||||
|
||||
} // end detail
|
||||
|
||||
template <class Act, class A, class B> struct return_type_2_prot {
|
||||
|
||||
// experimental feature
|
||||
// We may have a lambda functor as a result type of a subexpression
|
||||
// (if protect) has been used.
|
||||
// Thus, if one of the parameter types is a lambda functor, the result
|
||||
// is a lambda functor as well.
|
||||
// We need to make a conservative choise here.
|
||||
// The resulting lambda functor stores all const reference arguments as
|
||||
// const copies. References to non-const are stored as such.
|
||||
// So if the source of the argument is a const open argument, a bound
|
||||
// argument stored as a const reference, or a function returning a
|
||||
// const reference, that information is lost. There is no way of
|
||||
// telling apart 'real const references' from just 'LL internal
|
||||
// const references' (or it would be really hard)
|
||||
|
||||
// The return type is a subclass of lambda_functor, which has a converting
|
||||
// copy constructor. It can copy any lambda functor, that has the same
|
||||
// action type and code, and a copy compatible argument tuple.
|
||||
|
||||
|
||||
typedef typename boost::remove_reference<A>::type non_ref_A;
|
||||
typedef typename boost::remove_reference<B>::type non_ref_B;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
// is_protectable<Act>::value &&
|
||||
// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
|
||||
ice_and<is_protectable<Act>::value,
|
||||
ice_or<is_lambda_functor<A>::value,
|
||||
is_lambda_functor<B>::value>::value>::value,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
Act,
|
||||
tuple<typename detail::protect_conversion<A>::type,
|
||||
typename detail::protect_conversion<B>::type>
|
||||
>
|
||||
>,
|
||||
typename return_type_2<Act, non_ref_A, non_ref_B>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act> struct return_type_2_prot<Act, null_type, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act, class Other> struct return_type_2_prot<Act, Other, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act, class Other> struct return_type_2_prot<Act, null_type, Other> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// comma is a special case, as the user defined operator can return
|
||||
// an lvalue (reference) too, hence it must be handled at this level.
|
||||
template<class A, class B>
|
||||
struct return_type_2_comma
|
||||
{
|
||||
typedef typename boost::remove_reference<A>::type non_ref_A;
|
||||
typedef typename boost::remove_reference<B>::type non_ref_B;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
// is_protectable<other_action<comma_action> >::value && // it is protectable
|
||||
// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
|
||||
ice_and<is_protectable<other_action<comma_action> >::value, // it is protectable
|
||||
ice_or<is_lambda_functor<A>::value,
|
||||
is_lambda_functor<B>::value>::value>::value,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
other_action<comma_action>,
|
||||
tuple<typename detail::protect_conversion<A>::type,
|
||||
typename detail::protect_conversion<B>::type>
|
||||
>
|
||||
>,
|
||||
typename
|
||||
return_type_2<other_action<comma_action>, non_ref_A, non_ref_B>::type
|
||||
>::RET type1;
|
||||
|
||||
// if no user defined return_type_2 (or plain_return_type_2) specialization
|
||||
// matches, then return the righthand argument
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
B,
|
||||
type1
|
||||
>::RET type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
// currently there are no protectable actions with > 2 args
|
||||
// Note, that if there will be, lambda_functor_base will have to be
|
||||
// changed to not get rid of references in Args elements
|
||||
|
||||
template<class Act, class Args> struct return_type_N_prot {
|
||||
typedef typename return_type_N<Act, Args>::type type;
|
||||
};
|
||||
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act> struct return_type_N_prot<Act, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// handle different kind of actions ------------------------
|
||||
|
||||
// use the return type given in the bind invocation as bind<Ret>(...)
|
||||
template<int I, class Args, class Ret>
|
||||
struct return_type_N<function_action<I, Ret>, Args> {
|
||||
typedef Ret type;
|
||||
};
|
||||
|
||||
// Ret is detail::unspecified, so try to deduce return type
|
||||
template<int I, class Args>
|
||||
struct return_type_N<function_action<I, detail::unspecified>, Args > {
|
||||
|
||||
// in the case of function action, the first element in Args is
|
||||
// some type of function
|
||||
typedef typename Args::head_type Func;
|
||||
typedef typename detail::remove_reference_and_cv<Func>::type plain_Func;
|
||||
|
||||
public:
|
||||
// pass the function to function_adaptor, and get the return type from
|
||||
// that
|
||||
typedef typename function_adaptor<plain_Func>::template sig<Args>::type type;
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
79
include/boost/lambda/detail/select_functions.hpp
Normal file
79
include/boost/lambda/detail/select_functions.hpp
Normal file
@@ -0,0 +1,79 @@
|
||||
// -- select_functions.hpp -- Boost Lambda Library --------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_SELECT_FUNCTIONS_HPP
|
||||
#define BOOST_LAMBDA_SELECT_FUNCTIONS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
|
||||
// select functions -------------------------------
|
||||
template<class Any, CALL_TEMPLATE_ARGS>
|
||||
inline Any& select(Any& any, CALL_FORMAL_ARGS) { CALL_USE_ARGS; return any; }
|
||||
|
||||
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
inline typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
select ( const lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
|
||||
return op.template call<
|
||||
typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
inline typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
select ( lambda_functor<Arg>& op, CALL_FORMAL_ARGS) {
|
||||
return op.template call<
|
||||
typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// select functions where the return type is explicitly given
|
||||
// Note: on many functions, this return type is just discarded.
|
||||
// The select functions are inside a class template, and the return type
|
||||
// is a class template argument.
|
||||
// The first implementation used function templates with an explicitly
|
||||
// specified template parameter.
|
||||
// However, this resulted in ambiguous calls (at least with gcc 2.95.2
|
||||
// and edg 2.44). Not sure whether the compilers were right or wrong.
|
||||
|
||||
template<class RET> struct r_select {
|
||||
|
||||
// Any == RET
|
||||
template<class Any, CALL_TEMPLATE_ARGS>
|
||||
static
|
||||
inline RET go (Any& any, CALL_FORMAL_ARGS) { CALL_USE_ARGS; return any; }
|
||||
|
||||
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
static
|
||||
inline RET go (const lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
|
||||
return op.template call<RET>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
static
|
||||
inline RET go (lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
|
||||
return op.template call<RET>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
1745
include/boost/lambda/exceptions.hpp
Normal file
1745
include/boost/lambda/exceptions.hpp
Normal file
File diff suppressed because it is too large
Load Diff
494
include/boost/lambda/if.hpp
Normal file
494
include/boost/lambda/if.hpp
Normal file
@@ -0,0 +1,494 @@
|
||||
// Boost Lambda Library -- if.hpp ------------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
// Copyright (C) 2001-2002 Joel de Guzman
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_IF_HPP)
|
||||
#define BOOST_LAMBDA_IF_HPP
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
|
||||
// Arithmetic type promotion needed for if_then_else_return
|
||||
#include "boost/lambda/detail/operator_actions.hpp"
|
||||
#include "boost/lambda/detail/operator_return_type_traits.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- if control construct actions ----------------------
|
||||
|
||||
class ifthen_action {};
|
||||
class ifthenelse_action {};
|
||||
class ifthenelsereturn_action {};
|
||||
|
||||
// Specialization for if_then.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<ifthen_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// If Then
|
||||
template <class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
ifthen_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
ifthen_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) );
|
||||
}
|
||||
|
||||
|
||||
// Specialization for if_then_else.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<ifthenelse_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
else
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// If then else
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
ifthenelse_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
>
|
||||
>
|
||||
if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
||||
const lambda_functor<Arg3>& a3) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
ifthenelse_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
(a1, a2, a3) );
|
||||
}
|
||||
|
||||
// Our version of operator?:()
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
other_action<ifthenelsereturn_action>,
|
||||
tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type,
|
||||
typename const_copy_argument<Arg3>::type>
|
||||
>
|
||||
>
|
||||
if_then_else_return(const lambda_functor<Arg1>& a1,
|
||||
const Arg2 & a2,
|
||||
const Arg3 & a3) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
other_action<ifthenelsereturn_action>,
|
||||
tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type,
|
||||
typename const_copy_argument<Arg3>::type>
|
||||
> ( tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type,
|
||||
typename const_copy_argument<Arg3>::type> (a1, a2, a3) );
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
// return type specialization for conditional expression begins -----------
|
||||
// start reading below and move upwards
|
||||
|
||||
// PHASE 6:1
|
||||
// check if A is conbertible to B and B to A
|
||||
template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn;
|
||||
|
||||
// if A can be converted to B and vice versa -> ambiguous
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> {
|
||||
typedef
|
||||
detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
|
||||
// ambiguous type in conditional expression
|
||||
};
|
||||
// if A can be converted to B and vice versa and are of same type
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
|
||||
// A can be converted to B
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> {
|
||||
typedef B type;
|
||||
};
|
||||
|
||||
// B can be converted to A
|
||||
template<int Phase, class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
// neither can be converted. Then we drop the potential references, and
|
||||
// try again
|
||||
template<class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> {
|
||||
// it is safe to add const, since the result will be an rvalue and thus
|
||||
// const anyway. The const are needed eg. if the types
|
||||
// are 'const int*' and 'void *'. The remaining type should be 'const void*'
|
||||
typedef const typename boost::remove_reference<A>::type plainA;
|
||||
typedef const typename boost::remove_reference<B>::type plainB;
|
||||
// TODO: Add support for volatile ?
|
||||
|
||||
typedef typename
|
||||
return_type_2_ifthenelsereturn<
|
||||
2,
|
||||
boost::is_convertible<plainA,plainB>::value,
|
||||
boost::is_convertible<plainB,plainA>::value,
|
||||
boost::is_same<plainA,plainB>::value,
|
||||
plainA,
|
||||
plainB>::type type;
|
||||
};
|
||||
|
||||
// PHASE 6:2
|
||||
template<class A, class B>
|
||||
struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> {
|
||||
typedef
|
||||
detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
|
||||
// types_do_not_match_in_conditional_expression
|
||||
};
|
||||
|
||||
|
||||
|
||||
// PHASE 5: now we know that types are not arithmetic.
|
||||
template<class A, class B>
|
||||
struct non_numeric_types {
|
||||
typedef typename
|
||||
return_type_2_ifthenelsereturn<
|
||||
1, // phase 1
|
||||
is_convertible<A,B>::value,
|
||||
is_convertible<B,A>::value,
|
||||
is_same<A,B>::value,
|
||||
A,
|
||||
B>::type type;
|
||||
};
|
||||
|
||||
// PHASE 4 :
|
||||
// the base case covers arithmetic types with differing promote codes
|
||||
// use the type deduction of arithmetic_actions
|
||||
template<int CodeA, int CodeB, class A, class B>
|
||||
struct arithmetic_or_not {
|
||||
typedef typename
|
||||
return_type_2<arithmetic_action<plus_action>, A, B>::type type;
|
||||
// plus_action is just a random pick, has to be a concrete instance
|
||||
};
|
||||
|
||||
// this case covers the case of artihmetic types with the same promote codes.
|
||||
// non numeric deduction is used since e.g. integral promotion is not
|
||||
// performed with operator ?:
|
||||
template<int CodeA, class A, class B>
|
||||
struct arithmetic_or_not<CodeA, CodeA, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
|
||||
// if either A or B has promote code -1 it is not an arithmetic type
|
||||
template<class A, class B>
|
||||
struct arithmetic_or_not <-1, -1, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
template<int CodeB, class A, class B>
|
||||
struct arithmetic_or_not <-1, CodeB, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
template<int CodeA, class A, class B>
|
||||
struct arithmetic_or_not <CodeA, -1, A, B> {
|
||||
typedef typename non_numeric_types<A, B>::type type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// PHASE 3 : Are the types same?
|
||||
// No, check if they are arithmetic or not
|
||||
template <class A, class B>
|
||||
struct same_or_not {
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plainA;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
||||
|
||||
typedef typename
|
||||
arithmetic_or_not<
|
||||
detail::promote_code<plainA>::value,
|
||||
detail::promote_code<plainB>::value,
|
||||
A,
|
||||
B>::type type;
|
||||
};
|
||||
// Yes, clear.
|
||||
template <class A> struct same_or_not<A, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
// PHASE 2 : Perform first the potential array_to_pointer conversion
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<ifthenelsereturn_action>, A, B> {
|
||||
|
||||
typedef typename detail::array_to_pointer<A>::type A1;
|
||||
typedef typename detail::array_to_pointer<B>::type B1;
|
||||
|
||||
typedef typename
|
||||
boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type;
|
||||
};
|
||||
|
||||
// PHASE 1 : Deduction is based on the second and third operand
|
||||
|
||||
|
||||
// return type specialization for conditional expression ends -----------
|
||||
|
||||
|
||||
// Specialization of lambda_functor_base for if_then_else_return.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<other_action<ifthenelsereturn_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
private:
|
||||
typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1;
|
||||
typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2;
|
||||
public:
|
||||
typedef typename return_type_2<
|
||||
other_action<ifthenelsereturn_action>, ret1, ret2
|
||||
>::type type;
|
||||
};
|
||||
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ?
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)
|
||||
:
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// The code below is from Joel de Guzman, some name changes etc.
|
||||
// has been made.
|
||||
|
||||
/*=============================================================================
|
||||
|
||||
Copyright (c) 2001-2002 Joel de Guzman
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the copyright holder be held liable for
|
||||
any damages arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute
|
||||
it freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must
|
||||
not claim that you wrote the original software. If you use this
|
||||
software in a product, an acknowledgment in the product documentation
|
||||
would be appreciated but is not required.
|
||||
|
||||
2. Altered source versions must be plainly marked as such, and must
|
||||
not be misrepresented as being the original software.
|
||||
|
||||
3. This notice may not be removed or altered from any source
|
||||
distribution.
|
||||
|
||||
URL: http://spirit.sourceforge.net/
|
||||
|
||||
==============================================================================*/
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// if_then_else_composite
|
||||
//
|
||||
// This composite has two (2) forms:
|
||||
//
|
||||
// if_(condition)
|
||||
// [
|
||||
// statement
|
||||
// ]
|
||||
//
|
||||
// and
|
||||
//
|
||||
// if_(condition)
|
||||
// [
|
||||
// true_statement
|
||||
// ]
|
||||
// .else_
|
||||
// [
|
||||
// false_statement
|
||||
// ]
|
||||
//
|
||||
// where condition is an lambda_functor that evaluates to bool. If condition
|
||||
// is true, the true_statement (again an lambda_functor) is executed
|
||||
// otherwise, the false_statement (another lambda_functor) is executed. The
|
||||
// result type of this is void. Note the trailing underscore after
|
||||
// if_ and the the leading dot and the trailing underscore before
|
||||
// and after .else_.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <typename CondT, typename ThenT, typename ElseT>
|
||||
struct if_then_else_composite {
|
||||
|
||||
typedef if_then_else_composite<CondT, ThenT, ElseT> self_t;
|
||||
|
||||
template <class SigArgs>
|
||||
struct sig { typedef void type; };
|
||||
|
||||
if_then_else_composite(
|
||||
CondT const& cond_,
|
||||
ThenT const& then_,
|
||||
ElseT const& else__)
|
||||
: cond(cond_), then(then_), else_(else__) {}
|
||||
|
||||
template <class Ret, CALL_TEMPLATE_ARGS>
|
||||
Ret call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
if (cond.internal_call(CALL_ACTUAL_ARGS))
|
||||
then.internal_call(CALL_ACTUAL_ARGS);
|
||||
else
|
||||
else_.internal_call(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
CondT cond; ThenT then; ElseT else_; // lambda_functors
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename CondT, typename ThenT>
|
||||
struct else_gen {
|
||||
|
||||
else_gen(CondT const& cond_, ThenT const& then_)
|
||||
: cond(cond_), then(then_) {}
|
||||
|
||||
template <typename ElseT>
|
||||
lambda_functor<if_then_else_composite<CondT, ThenT,
|
||||
typename as_lambda_functor<ElseT>::type> >
|
||||
operator[](ElseT const& else_)
|
||||
{
|
||||
typedef if_then_else_composite<CondT, ThenT,
|
||||
typename as_lambda_functor<ElseT>::type>
|
||||
result;
|
||||
|
||||
return result(cond, then, to_lambda_functor(else_));
|
||||
}
|
||||
|
||||
CondT cond; ThenT then;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename CondT, typename ThenT>
|
||||
struct if_then_composite {
|
||||
|
||||
template <class SigArgs>
|
||||
struct sig { typedef void type; };
|
||||
|
||||
if_then_composite(CondT const& cond_, ThenT const& then_)
|
||||
: cond(cond_), then(then_), else_(cond, then) {}
|
||||
|
||||
template <class Ret, CALL_TEMPLATE_ARGS>
|
||||
Ret call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
if (cond.internal_call(CALL_ACTUAL_ARGS))
|
||||
then.internal_call(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
CondT cond; ThenT then; // lambda_functors
|
||||
else_gen<CondT, ThenT> else_;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename CondT>
|
||||
struct if_gen {
|
||||
|
||||
if_gen(CondT const& cond_)
|
||||
: cond(cond_) {}
|
||||
|
||||
template <typename ThenT>
|
||||
lambda_functor<if_then_composite<
|
||||
typename as_lambda_functor<CondT>::type,
|
||||
typename as_lambda_functor<ThenT>::type> >
|
||||
operator[](ThenT const& then) const
|
||||
{
|
||||
typedef if_then_composite<
|
||||
typename as_lambda_functor<CondT>::type,
|
||||
typename as_lambda_functor<ThenT>::type>
|
||||
result;
|
||||
|
||||
return result(
|
||||
to_lambda_functor(cond),
|
||||
to_lambda_functor(then));
|
||||
}
|
||||
|
||||
CondT cond;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename CondT>
|
||||
inline if_gen<CondT>
|
||||
if_(CondT const& cond)
|
||||
{
|
||||
return if_gen<CondT>(cond);
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif // BOOST_LAMBDA_IF_HPP
|
||||
|
||||
|
||||
39
include/boost/lambda/lambda.hpp
Normal file
39
include/boost/lambda/lambda.hpp
Normal file
@@ -0,0 +1,39 @@
|
||||
// -- lambda.hpp -- Boost Lambda Library -----------------------------------
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://lambda.cs.utu.fi
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_HPP
|
||||
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
|
||||
#ifdef BOOST_NO_FDECL_TEMPLATES_AS_TEMPLATE_TEMPLATE_PARAMS
|
||||
#include <istream>
|
||||
#include <ostream>
|
||||
#endif
|
||||
|
||||
#include "boost/lambda/detail/operator_actions.hpp"
|
||||
#include "boost/lambda/detail/operator_lambda_func_base.hpp"
|
||||
#include "boost/lambda/detail/operator_return_type_traits.hpp"
|
||||
|
||||
|
||||
#include "boost/lambda/detail/operators.hpp"
|
||||
|
||||
#ifndef BOOST_LAMBDA_FAILS_IN_TEMPLATE_KEYWORD_AFTER_SCOPE_OPER
|
||||
// sorry, member ptr does not work with gcc2.95
|
||||
#include "boost/lambda/detail/member_ptr.hpp"
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
538
include/boost/lambda/loops.hpp
Normal file
538
include/boost/lambda/loops.hpp
Normal file
@@ -0,0 +1,538 @@
|
||||
// Boost Lambda Library -- loops.hpp ----------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_LOOPS_HPP)
|
||||
#define BOOST_LAMBDA_LOOPS_HPP
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- loop control structure actions ----------------------
|
||||
|
||||
class forloop_action {};
|
||||
class forloop_no_body_action {};
|
||||
class whileloop_action {};
|
||||
class whileloop_no_body_action {};
|
||||
class dowhileloop_action {};
|
||||
class dowhileloop_no_body_action {};
|
||||
|
||||
|
||||
// For loop
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
forloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3>, lambda_functor<Arg4> >
|
||||
>
|
||||
>
|
||||
for_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
||||
const lambda_functor<Arg3>& a3, const lambda_functor<Arg4>& a4) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
forloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3>, lambda_functor<Arg4> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3>, lambda_functor<Arg4> >(a1, a2, a3, a4)
|
||||
);
|
||||
}
|
||||
|
||||
// No body case.
|
||||
template <class Arg1, class Arg2, class Arg3>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
forloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
||||
>
|
||||
>
|
||||
for_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
||||
const lambda_functor<Arg3>& a3) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
forloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2>,
|
||||
lambda_functor<Arg3> >(a1, a2, a3) );
|
||||
}
|
||||
|
||||
// While loop
|
||||
template <class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
whileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
while_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
whileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
// No body case.
|
||||
template <class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
whileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
while_loop(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
whileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1> >(a1) );
|
||||
}
|
||||
|
||||
|
||||
// Do While loop
|
||||
template <class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
dowhileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
do_while_loop(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
dowhileloop_action,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
// No body case.
|
||||
template <class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
dowhileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
do_while_loop(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
dowhileloop_no_body_action,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
( tuple<lambda_functor<Arg1> >(a1));
|
||||
}
|
||||
|
||||
|
||||
// Control loop lambda_functor_base specializations.
|
||||
|
||||
// Specialization for for_loop.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<forloop_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
for(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS))
|
||||
|
||||
detail::select(boost::tuples::get<3>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// No body case
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<forloop_no_body_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
for(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS)) {}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Specialization for while_loop.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<whileloop_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
while(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
||||
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// No body case
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<whileloop_no_body_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
while(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) {}
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for do_while_loop.
|
||||
// Note that the first argument is the condition.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<dowhileloop_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
do {
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
} while (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) );
|
||||
}
|
||||
};
|
||||
|
||||
// No body case
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<dowhileloop_no_body_action, Args> {
|
||||
public:
|
||||
Args args;
|
||||
template <class T> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
do {} while (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) );
|
||||
}
|
||||
};
|
||||
|
||||
// The code below is from Joel de Guzman, some name changes etc.
|
||||
// has been made.
|
||||
|
||||
/*=============================================================================
|
||||
Statements
|
||||
|
||||
Phoenix V0.9
|
||||
Copyright (c) 2001-2002 Joel de Guzman
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the copyright holder be held liable for
|
||||
any damages arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute
|
||||
it freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must
|
||||
not claim that you wrote the original software. If you use this
|
||||
software in a product, an acknowledgment in the product documentation
|
||||
would be appreciated but is not required.
|
||||
|
||||
2. Altered source versions must be plainly marked as such, and must
|
||||
not be misrepresented as being the original software.
|
||||
|
||||
3. This notice may not be removed or altered from any source
|
||||
distribution.
|
||||
|
||||
URL: http://spirit.sourceforge.net/
|
||||
|
||||
==============================================================================*/
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// while_composite
|
||||
//
|
||||
// This composite has the form:
|
||||
//
|
||||
// while_(condition)
|
||||
// [
|
||||
// statement
|
||||
// ]
|
||||
//
|
||||
// While the condition (an lambda_functor) evaluates to true, statement
|
||||
// (another lambda_functor) is executed. The result type of this is void.
|
||||
// Note the trailing underscore after while_.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <typename CondT, typename DoT>
|
||||
struct while_composite {
|
||||
|
||||
typedef while_composite<CondT, DoT> self_t;
|
||||
|
||||
template <class SigArgs>
|
||||
struct sig { typedef void type; };
|
||||
|
||||
while_composite(CondT const& cond_, DoT const& do__)
|
||||
: cond(cond_), do_(do__) {}
|
||||
|
||||
template <class Ret, CALL_TEMPLATE_ARGS>
|
||||
Ret call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
while (cond.internal_call(CALL_ACTUAL_ARGS))
|
||||
do_.internal_call(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
CondT cond;
|
||||
DoT do_;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename CondT>
|
||||
struct while_gen {
|
||||
|
||||
while_gen(CondT const& cond_)
|
||||
: cond(cond_) {}
|
||||
|
||||
template <typename DoT>
|
||||
lambda_functor<while_composite<
|
||||
typename as_lambda_functor<CondT>::type,
|
||||
typename as_lambda_functor<DoT>::type> >
|
||||
operator[](DoT const& do_) const
|
||||
{
|
||||
typedef while_composite<
|
||||
typename as_lambda_functor<CondT>::type,
|
||||
typename as_lambda_functor<DoT>::type>
|
||||
result;
|
||||
|
||||
return result(
|
||||
to_lambda_functor(cond),
|
||||
to_lambda_functor(do_));
|
||||
}
|
||||
|
||||
CondT cond;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename CondT>
|
||||
inline while_gen<CondT>
|
||||
while_(CondT const& cond)
|
||||
{
|
||||
return while_gen<CondT>(cond);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// do_composite
|
||||
//
|
||||
// This composite has the form:
|
||||
//
|
||||
// do_
|
||||
// [
|
||||
// statement
|
||||
// ]
|
||||
// .while_(condition)
|
||||
//
|
||||
// While the condition (an lambda_functor) evaluates to true, statement
|
||||
// (another lambda_functor) is executed. The statement is executed at least
|
||||
// once. The result type of this is void. Note the trailing
|
||||
// underscore after do_ and the the leading dot and the trailing
|
||||
// underscore before and after .while_.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <typename DoT, typename CondT>
|
||||
struct do_composite {
|
||||
|
||||
typedef do_composite<DoT, CondT> self_t;
|
||||
|
||||
template <class SigArgs>
|
||||
struct sig { typedef void type; };
|
||||
|
||||
do_composite(DoT const& do__, CondT const& cond_)
|
||||
: do_(do__), cond(cond_) {}
|
||||
|
||||
template <class Ret, CALL_TEMPLATE_ARGS>
|
||||
Ret call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
do
|
||||
do_.internal_call(CALL_ACTUAL_ARGS);
|
||||
while (cond.internal_call(CALL_ACTUAL_ARGS));
|
||||
}
|
||||
|
||||
DoT do_;
|
||||
CondT cond;
|
||||
};
|
||||
|
||||
////////////////////////////////////
|
||||
template <typename DoT>
|
||||
struct do_gen2 {
|
||||
|
||||
do_gen2(DoT const& do__)
|
||||
: do_(do__) {}
|
||||
|
||||
template <typename CondT>
|
||||
lambda_functor<do_composite<
|
||||
typename as_lambda_functor<DoT>::type,
|
||||
typename as_lambda_functor<CondT>::type> >
|
||||
while_(CondT const& cond) const
|
||||
{
|
||||
typedef do_composite<
|
||||
typename as_lambda_functor<DoT>::type,
|
||||
typename as_lambda_functor<CondT>::type>
|
||||
result;
|
||||
|
||||
return result(
|
||||
to_lambda_functor(do_),
|
||||
to_lambda_functor(cond));
|
||||
}
|
||||
|
||||
DoT do_;
|
||||
};
|
||||
|
||||
////////////////////////////////////
|
||||
struct do_gen {
|
||||
|
||||
template <typename DoT>
|
||||
do_gen2<DoT>
|
||||
operator[](DoT const& do_) const
|
||||
{
|
||||
return do_gen2<DoT>(do_);
|
||||
}
|
||||
};
|
||||
|
||||
do_gen const do_ = do_gen();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// for_composite
|
||||
//
|
||||
// This statement has the form:
|
||||
//
|
||||
// for_(init, condition, step)
|
||||
// [
|
||||
// statement
|
||||
// ]
|
||||
//
|
||||
// Where init, condition, step and statement are all lambda_functors. init
|
||||
// is executed once before entering the for-loop. The for-loop
|
||||
// exits once condition evaluates to false. At each loop iteration,
|
||||
// step and statement is called. The result of this statement is
|
||||
// void. Note the trailing underscore after for_.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <typename InitT, typename CondT, typename StepT, typename DoT>
|
||||
struct for_composite {
|
||||
|
||||
template <class SigArgs>
|
||||
struct sig { typedef void type; };
|
||||
|
||||
for_composite(
|
||||
InitT const& init_,
|
||||
CondT const& cond_,
|
||||
StepT const& step_,
|
||||
DoT const& do__)
|
||||
: init(init_), cond(cond_), step(step_), do_(do__) {}
|
||||
|
||||
template <class Ret, CALL_TEMPLATE_ARGS>
|
||||
Ret
|
||||
call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
for (init.internal_call(CALL_ACTUAL_ARGS); cond.internal_call(CALL_ACTUAL_ARGS); step.internal_call(CALL_ACTUAL_ARGS))
|
||||
do_.internal_call(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
InitT init; CondT cond; StepT step; DoT do_; // lambda_functors
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename InitT, typename CondT, typename StepT>
|
||||
struct for_gen {
|
||||
|
||||
for_gen(
|
||||
InitT const& init_,
|
||||
CondT const& cond_,
|
||||
StepT const& step_)
|
||||
: init(init_), cond(cond_), step(step_) {}
|
||||
|
||||
template <typename DoT>
|
||||
lambda_functor<for_composite<
|
||||
typename as_lambda_functor<InitT>::type,
|
||||
typename as_lambda_functor<CondT>::type,
|
||||
typename as_lambda_functor<StepT>::type,
|
||||
typename as_lambda_functor<DoT>::type> >
|
||||
operator[](DoT const& do_) const
|
||||
{
|
||||
typedef for_composite<
|
||||
typename as_lambda_functor<InitT>::type,
|
||||
typename as_lambda_functor<CondT>::type,
|
||||
typename as_lambda_functor<StepT>::type,
|
||||
typename as_lambda_functor<DoT>::type>
|
||||
result;
|
||||
|
||||
return result(
|
||||
to_lambda_functor(init),
|
||||
to_lambda_functor(cond),
|
||||
to_lambda_functor(step),
|
||||
to_lambda_functor(do_));
|
||||
}
|
||||
|
||||
InitT init; CondT cond; StepT step;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
template <typename InitT, typename CondT, typename StepT>
|
||||
inline for_gen<InitT, CondT, StepT>
|
||||
for_(InitT const& init, CondT const& cond, StepT const& step)
|
||||
{
|
||||
return for_gen<InitT, CondT, StepT>(init, cond, step);
|
||||
}
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif // BOOST_LAMBDA_LOOPS_HPP
|
||||
124
include/boost/lambda/numeric.hpp
Normal file
124
include/boost/lambda/numeric.hpp
Normal file
@@ -0,0 +1,124 @@
|
||||
// -- numeric.hpp -- Boost Lambda Library -----------------------------------
|
||||
// Copyright (C) 2002 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2002 Gary Powell (gwpowell@hotmail.com)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
#ifndef BOOST_LAMBDA_NUMERIC_HPP
|
||||
#define BOOST_LAMBDA_NUMERIC_HPP
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
|
||||
#include <numeric>
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
namespace ll {
|
||||
|
||||
// accumulate ---------------------------------
|
||||
|
||||
struct accumulate {
|
||||
|
||||
template <class Args>
|
||||
struct sig {
|
||||
typedef typename boost::remove_const<
|
||||
typename boost::tuples::element<3, Args>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template <class A, class B, class C>
|
||||
C
|
||||
operator()(A a, B b, C c) const
|
||||
{ return ::std::accumulate(a, b, c); }
|
||||
|
||||
template <class A, class B, class C, class D>
|
||||
C
|
||||
operator()(A a, B b, C c, D d) const
|
||||
{ return ::std::accumulate(a, b, c, d); }
|
||||
};
|
||||
|
||||
// inner_product ---------------------------------
|
||||
|
||||
struct inner_product {
|
||||
|
||||
template <class Args>
|
||||
struct sig {
|
||||
typedef typename boost::remove_const<
|
||||
typename boost::tuples::element<4, Args>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template <class A, class B, class C, class D>
|
||||
D
|
||||
operator()(A a, B b, C c, D d) const
|
||||
{ return ::std::inner_product(a, b, c, d); }
|
||||
|
||||
template <class A, class B, class C, class D, class E, class F>
|
||||
D
|
||||
operator()(A a, B b, C c, D d, E e, F f) const
|
||||
{ return ::std::inner_product(a, b, c, d, e, f); }
|
||||
};
|
||||
|
||||
|
||||
// partial_sum ---------------------------------
|
||||
|
||||
struct partial_sum {
|
||||
|
||||
template <class Args>
|
||||
struct sig {
|
||||
typedef typename boost::remove_const<
|
||||
typename boost::tuples::element<3, Args>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template <class A, class B, class C>
|
||||
C
|
||||
operator()(A a, B b, C c) const
|
||||
{ return ::std::partial_sum(a, b, c); }
|
||||
|
||||
template <class A, class B, class C, class D>
|
||||
C
|
||||
operator()(A a, B b, C c, D d) const
|
||||
{ return ::std::partial_sum(a, b, c, d); }
|
||||
};
|
||||
|
||||
// adjacent_difference ---------------------------------
|
||||
|
||||
struct adjacent_difference {
|
||||
|
||||
template <class Args>
|
||||
struct sig {
|
||||
typedef typename boost::remove_const<
|
||||
typename boost::tuples::element<3, Args>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template <class A, class B, class C>
|
||||
C
|
||||
operator()(A a, B b, C c) const
|
||||
{ return ::std::adjacent_difference(a, b, c); }
|
||||
|
||||
template <class A, class B, class C, class D>
|
||||
C
|
||||
operator()(A a, B b, C c, D d) const
|
||||
{ return ::std::adjacent_difference(a, b, c, d); }
|
||||
};
|
||||
|
||||
} // end of ll namespace
|
||||
|
||||
} // end of lambda namespace
|
||||
} // end of boost namespace
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
507
include/boost/lambda/switch.hpp
Normal file
507
include/boost/lambda/switch.hpp
Normal file
@@ -0,0 +1,507 @@
|
||||
// Boost Lambda Library -- switch.hpp -----------------------------------
|
||||
//
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
// Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Permission to copy, use, sell and distribute this software is granted
|
||||
// provided this copyright notice appears in all copies.
|
||||
// Permission to modify the code and to distribute modified code is granted
|
||||
// provided this copyright notice appears in all copies, and a notice
|
||||
// that the code was modified is included with the copyright notice.
|
||||
//
|
||||
// This software is provided "as is" without express or implied warranty,
|
||||
// and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_SWITCH_HPP)
|
||||
#define BOOST_LAMBDA_SWITCH_HPP
|
||||
|
||||
#include "boost/lambda/core.hpp"
|
||||
#include "boost/lambda/detail/control_constructs_common.hpp"
|
||||
|
||||
#include "boost/preprocessor/enum_shifted_params.hpp"
|
||||
#include "boost/preprocessor/repeat_2nd.hpp"
|
||||
#include "boost/preprocessor/tuple.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// Switch actions
|
||||
template <int N, class Switch1 = null_type, class Switch2 = null_type,
|
||||
class Switch3 = null_type, class Switch4 = null_type,
|
||||
class Switch5 = null_type, class Switch6 = null_type,
|
||||
class Switch7 = null_type, class Switch8 = null_type,
|
||||
class Switch9 = null_type>
|
||||
struct switch_action {};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// templates to represent special lambda functors for the cases in
|
||||
// switch statements
|
||||
|
||||
template <int Value> struct case_label {};
|
||||
struct default_label {};
|
||||
|
||||
template<class Type> struct switch_case_tag {};
|
||||
|
||||
// a normal case is represented as:
|
||||
// tagged_lambda_functor<switch_case_tag<case_label<N> > >, LambdaFunctor>
|
||||
|
||||
// the default case as:
|
||||
// tagged_lambda_functor<switch_case_tag<default_label> >, LambdaFunctor>
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
|
||||
/// create switch_case_tag tagged_lambda_functors
|
||||
template <int CaseValue, class Arg>
|
||||
inline const
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::case_label<CaseValue> >,
|
||||
lambda_functor<Arg>
|
||||
>
|
||||
case_statement(const lambda_functor<Arg>& a) {
|
||||
return
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::case_label<CaseValue> >,
|
||||
lambda_functor<Arg>
|
||||
>(a);
|
||||
}
|
||||
|
||||
// No case body case.
|
||||
template <int CaseValue>
|
||||
inline const
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::case_label<CaseValue> >,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
do_nothing_action,
|
||||
null_type
|
||||
>
|
||||
>
|
||||
>
|
||||
case_statement() {
|
||||
return
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::case_label<CaseValue> >,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
do_nothing_action,
|
||||
null_type
|
||||
>
|
||||
>
|
||||
> () ;
|
||||
}
|
||||
|
||||
// default label
|
||||
template <class Arg>
|
||||
inline const
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::default_label>,
|
||||
lambda_functor<Arg>
|
||||
>
|
||||
default_statement(const lambda_functor<Arg>& a) {
|
||||
return
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::default_label>,
|
||||
lambda_functor<Arg>
|
||||
>(a);
|
||||
}
|
||||
|
||||
// default lable, no case body case.
|
||||
inline const
|
||||
tagged_lambda_functor<
|
||||
detail::switch_case_tag<detail::default_label>,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
do_nothing_action,
|
||||
null_type
|
||||
>
|
||||
>
|
||||
>
|
||||
default_statement() {
|
||||
return
|
||||
lambda_functor_base<
|
||||
do_nothing_action,
|
||||
null_type
|
||||
> () ;
|
||||
}
|
||||
|
||||
|
||||
// Specializations for lambda_functor_base of case_statement -----------------
|
||||
|
||||
// 0 case type:
|
||||
// useless (just the condition part) but provided for completeness.
|
||||
template<class Args>
|
||||
class
|
||||
lambda_functor_base<
|
||||
switch_action<1>,
|
||||
Args
|
||||
>
|
||||
{
|
||||
public:
|
||||
Args args;
|
||||
template <class SigArgs> struct sig { typedef void type; };
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
detail::select(::boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
// 1 case type:
|
||||
// template<class Args, int Case1>
|
||||
// class
|
||||
// lambda_functor_base<
|
||||
// action<
|
||||
// 2,
|
||||
// return_void_action<switch_action<detail::case_label<Case1> > >
|
||||
// >,
|
||||
// Args
|
||||
// >
|
||||
// {
|
||||
// Args args;
|
||||
// public:
|
||||
// explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
// template<class RET, class A, class B, class C>
|
||||
// RET call(A& a, B& b, C& c) const {
|
||||
// switch( detail::select(::boost::tuples::get<0>(args), a, b, c) )
|
||||
// {
|
||||
// case Case1:
|
||||
// detail::select(::boost::tuples::get<1>(args), a, b, c);
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
|
||||
// switch with default being the sole label - doesn't make much sense but
|
||||
// it is there for completeness
|
||||
// template<class Args>
|
||||
// class
|
||||
// lambda_functor_base<
|
||||
// action<
|
||||
// 2,
|
||||
// return_void_action<switch_action<detail::default_label> >
|
||||
// >,
|
||||
// Args
|
||||
// >
|
||||
// {
|
||||
// Args args;
|
||||
// public:
|
||||
// explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
//
|
||||
// template<class RET, class A, class B, class C>
|
||||
// RET call(A& a, B& b, C& c) const {
|
||||
// switch( detail::select(::boost::tuples::get<0>(args), a, b, c) )
|
||||
// {
|
||||
// default:
|
||||
// detail::select(::boost::tuples::get<1>(args), a, b, c);
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
|
||||
|
||||
|
||||
// // 2 case type:
|
||||
// The different specializations are generated with Vesa Karvonen's
|
||||
// preprocessor library.
|
||||
|
||||
// This is just a comment to show what the generated classes look like
|
||||
|
||||
// template<class Args, int Case1, int Case2>
|
||||
// class
|
||||
// lambda_functor_base<
|
||||
// action<3,
|
||||
// return_void_action<
|
||||
// switch_action<
|
||||
// detail::case_label<Case1>,
|
||||
// detail::case_label<Case2>
|
||||
// >
|
||||
// >
|
||||
// >,
|
||||
// Args
|
||||
// >
|
||||
// {
|
||||
// Args args;
|
||||
// public:
|
||||
// explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
// template<class RET, class A, class B, class C>
|
||||
// RET call(A& a, B& b, C& c) const {
|
||||
// switch( detail::select(::boost::tuples::get<0>(args), a, b, c) )
|
||||
// {
|
||||
// case Case1:
|
||||
// detail::select(::boost::tuples::get<1>(args), a, b, c);
|
||||
// break;
|
||||
// case Case2:
|
||||
// detail::select(::boost::tuples::get<2>(args), a, b, c);
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
|
||||
// template<class Args, int Case1>
|
||||
// class
|
||||
// lambda_functor_base<
|
||||
// action<3,
|
||||
// return_void_action<
|
||||
// switch_action<
|
||||
// detail::case_label<Case1>,
|
||||
// detail::default_label
|
||||
// >
|
||||
// >
|
||||
// >,
|
||||
// Args
|
||||
// >
|
||||
// {
|
||||
// Args args;
|
||||
// public:
|
||||
// explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
// template<class RET, class A, class B, class C>
|
||||
// RET call(A& a, B& b, C& c) const {
|
||||
// switch( detail::select(::boost::tuples::get<0>(args), a, b, c) )
|
||||
// {
|
||||
// case Case1:
|
||||
// detail::select(::boost::tuples::get<1>(args), a, b, c);
|
||||
// break;
|
||||
// default:
|
||||
// detail::select(::boost::tuples::get<2>(args), a, b, c);
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
// -------------------------
|
||||
|
||||
// Some helper preprocessor macros ---------------------------------
|
||||
|
||||
// BOOST_LAMBDA_A_I_LIST(N, X) is a list of form X0, X1, ..., XN
|
||||
// BOOST_LAMBDA_A_I_B_LIST(N, X, Y) is a list of form X0 Y, X1 Y, ..., XN Y
|
||||
|
||||
#define BOOST_LAMBDA_A_I(z, i, A) \
|
||||
BOOST_PP_COMMA_IF(i) BOOST_PP_CAT(A,i)
|
||||
|
||||
#define BOOST_LAMBDA_A_I_B(z, i, T) \
|
||||
BOOST_PP_COMMA_IF(i) BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(2,0,T),i) BOOST_PP_TUPLE_ELEM(2,1,T)
|
||||
|
||||
#define BOOST_LAMBDA_A_I_LIST(i, A) \
|
||||
BOOST_PP_REPEAT(i,BOOST_LAMBDA_A_I, A)
|
||||
|
||||
#define BOOST_LAMBDA_A_I_B_LIST(i, A, B) \
|
||||
BOOST_PP_REPEAT(i,BOOST_LAMBDA_A_I_B, (A,B))
|
||||
|
||||
|
||||
// Switch related macros -------------------------------------------
|
||||
#define BOOST_LAMBDA_SWITCH_CASE_BLOCK(z, N, A) \
|
||||
case Case##N: \
|
||||
detail::select(::boost::tuples::get<BOOST_PP_INC(N)>(args), CALL_ACTUAL_ARGS); \
|
||||
break;
|
||||
|
||||
#define BOOST_LAMBDA_SWITCH_CASE_BLOCK_LIST(N) \
|
||||
BOOST_PP_REPEAT(N, BOOST_LAMBDA_SWITCH_CASE_BLOCK, FOO)
|
||||
// 2 case type:
|
||||
|
||||
#define BOOST_LAMBDA_SWITCH_NO_DEFAULT_CASE(N) \
|
||||
template<class Args, BOOST_LAMBDA_A_I_LIST(N, int Case)> \
|
||||
class \
|
||||
lambda_functor_base< \
|
||||
switch_action<BOOST_PP_INC(N), \
|
||||
BOOST_LAMBDA_A_I_B_LIST(N, detail::case_label<Case,>) \
|
||||
>, \
|
||||
Args \
|
||||
> \
|
||||
{ \
|
||||
public: \
|
||||
Args args; \
|
||||
template <class SigArgs> struct sig { typedef void type; }; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
switch( detail::select(::boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ) \
|
||||
{ \
|
||||
BOOST_LAMBDA_SWITCH_CASE_BLOCK_LIST(N) \
|
||||
} \
|
||||
} \
|
||||
};
|
||||
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_SWITCH_WITH_DEFAULT_CASE(N) \
|
||||
template< \
|
||||
class Args BOOST_PP_COMMA_IF(BOOST_PP_DEC(N)) \
|
||||
BOOST_LAMBDA_A_I_LIST(BOOST_PP_DEC(N), int Case) \
|
||||
> \
|
||||
class \
|
||||
lambda_functor_base< \
|
||||
switch_action<BOOST_PP_INC(N), \
|
||||
BOOST_LAMBDA_A_I_B_LIST(BOOST_PP_DEC(N), \
|
||||
detail::case_label<Case, >) \
|
||||
BOOST_PP_COMMA_IF(BOOST_PP_DEC(N)) \
|
||||
detail::default_label \
|
||||
>, \
|
||||
Args \
|
||||
> \
|
||||
{ \
|
||||
public: \
|
||||
Args args; \
|
||||
template <class SigArgs> struct sig { typedef void type; }; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
switch( detail::select(::boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ) \
|
||||
{ \
|
||||
BOOST_LAMBDA_SWITCH_CASE_BLOCK_LIST(BOOST_PP_DEC(N)) \
|
||||
default: \
|
||||
detail::select(::boost::tuples::get<N>(args), CALL_ACTUAL_ARGS); \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// switch_statement bind functions -------------------------------------
|
||||
|
||||
// The zero argument case, for completeness sake
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
do_nothing_action,
|
||||
null_type
|
||||
>
|
||||
>
|
||||
switch_statement() {
|
||||
return
|
||||
lambda_functor_base<
|
||||
do_nothing_action,
|
||||
null_type
|
||||
>
|
||||
();
|
||||
}
|
||||
|
||||
// 1 argument case, this is useless as well, just the condition part
|
||||
template <class TestArg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
switch_action<1>,
|
||||
tuple<lambda_functor<TestArg> >
|
||||
>
|
||||
>
|
||||
switch_statement(const lambda_functor<TestArg>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
switch_action<1>,
|
||||
tuple< lambda_functor<TestArg> >
|
||||
>
|
||||
( tuple<lambda_functor<TestArg> >(a1));
|
||||
}
|
||||
|
||||
|
||||
#define HELPER(z, N, FOO) \
|
||||
BOOST_PP_COMMA_IF(N) \
|
||||
BOOST_PP_CAT( \
|
||||
const tagged_lambda_functor<detail::switch_case_tag<TagData, \
|
||||
N>) \
|
||||
BOOST_PP_COMMA() Arg##N>& a##N
|
||||
|
||||
#define HELPER_LIST(N) BOOST_PP_REPEAT(N, HELPER, FOO)
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_SWITCH_STATEMENT(N) \
|
||||
template <class TestArg, \
|
||||
BOOST_LAMBDA_A_I_LIST(N, class TagData), \
|
||||
BOOST_LAMBDA_A_I_LIST(N, class Arg)> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
switch_action<BOOST_PP_INC(N), \
|
||||
BOOST_LAMBDA_A_I_LIST(N, TagData) \
|
||||
>, \
|
||||
tuple<lambda_functor<TestArg>, BOOST_LAMBDA_A_I_LIST(N, Arg)> \
|
||||
> \
|
||||
> \
|
||||
switch_statement( \
|
||||
const lambda_functor<TestArg>& ta, \
|
||||
HELPER_LIST(N) \
|
||||
) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
switch_action<BOOST_PP_INC(N), \
|
||||
BOOST_LAMBDA_A_I_LIST(N, TagData) \
|
||||
>, \
|
||||
tuple<lambda_functor<TestArg>, BOOST_LAMBDA_A_I_LIST(N, Arg)> \
|
||||
> \
|
||||
( tuple<lambda_functor<TestArg>, BOOST_LAMBDA_A_I_LIST(N, Arg)> \
|
||||
(ta, BOOST_LAMBDA_A_I_LIST(N, a) )); \
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// Here's the actual generation
|
||||
|
||||
#define BOOST_LAMBDA_SWITCH(N) \
|
||||
BOOST_LAMBDA_SWITCH_NO_DEFAULT_CASE(N) \
|
||||
BOOST_LAMBDA_SWITCH_WITH_DEFAULT_CASE(N)
|
||||
|
||||
// Use this to avoid case 0, these macros work only from case 1 upwards
|
||||
#define BOOST_LAMBDA_SWITCH_HELPER(z, N, A) \
|
||||
BOOST_LAMBDA_SWITCH( BOOST_PP_INC(N) )
|
||||
|
||||
// Use this to avoid cases 0 and 1, these macros work only from case 2 upwards
|
||||
#define BOOST_LAMBDA_SWITCH_STATEMENT_HELPER(z, N, A) \
|
||||
BOOST_LAMBDA_SWITCH_STATEMENT(BOOST_PP_INC(N))
|
||||
|
||||
|
||||
|
||||
// up to 9 cases supported (counting default:)
|
||||
BOOST_PP_REPEAT_2ND(9,BOOST_LAMBDA_SWITCH_HELPER,FOO)
|
||||
BOOST_PP_REPEAT_2ND(9,BOOST_LAMBDA_SWITCH_STATEMENT_HELPER,FOO)
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
|
||||
#undef HELPER
|
||||
#undef HELPER_LIST
|
||||
|
||||
#undef BOOST_LAMBDA_SWITCH_HELPER
|
||||
#undef BOOST_LAMBDA_SWITCH
|
||||
#undef BOOST_LAMBDA_SWITCH_NO_DEFAULT_CASE
|
||||
#undef BOOST_LAMBDA_SWITCH_WITH_DEFAULT_CASE
|
||||
|
||||
#undef BOOST_LAMBDA_SWITCH_CASE_BLOCK
|
||||
#undef BOOST_LAMBDA_SWITCH_CASE_BLOCK_LIST
|
||||
|
||||
#undef BOOST_LAMBDA_SWITCH_STATEMENT
|
||||
#undef BOOST_LAMBDA_SWITCH_STATEMENT_HELPER
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="refresh" content="0; URL=../../doc/html/lambda.html">
|
||||
<meta http-equiv="refresh" content="0; URL=doc/index.html">
|
||||
</head>
|
||||
<body>
|
||||
Automatic redirection failed, please go to <a href="../../doc/html/lambda.html">www.boost.org/doc/html/lambda.html</a>
|
||||
Automatic redirection failed, please go to <a href="doc/index.html">doc/index.html</a>
|
||||
</body>
|
||||
</html>
|
||||
112
test/Jamfile
112
test/Jamfile
@@ -1,59 +1,87 @@
|
||||
# Lambda library
|
||||
|
||||
# Copyright (C) 2001-2003 Jaakko Järvi
|
||||
|
||||
# Use, modification and distribution is subject to the Boost Software License,
|
||||
# Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
||||
# http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
# For more information, see http://www.boost.org/
|
||||
|
||||
|
||||
subproject libs/lambda/test ;
|
||||
|
||||
# bring in rules for testing
|
||||
SEARCH on testing.jam = $(BOOST_BUILD_PATH) ;
|
||||
include testing.jam ;
|
||||
unit-test is_instance_of_test
|
||||
: is_instance_of_test.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
# Make tests run by default.
|
||||
DEPENDS all : test ;
|
||||
unit-test operator_tests_simple
|
||||
: operator_tests_simple.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
{
|
||||
# look in BOOST_ROOT for sources first, just in this Jamfile
|
||||
local SEARCH_SOURCE = $(BOOST_ROOT) $(SEARCH_SOURCE) ;
|
||||
unit-test member_pointer_test
|
||||
: member_pointer_test.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
test-suite lambda
|
||||
:
|
||||
[ run libs/lambda/test/algorithm_test.cpp : : : : ]
|
||||
unit-test control_structures
|
||||
: control_structures.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/bind_tests_simple.cpp : : : : ]
|
||||
unit-test switch_construct
|
||||
: switch_construct.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/bind_tests_advanced.cpp : : : : ]
|
||||
unit-test bind_tests_simple
|
||||
: bind_tests_simple.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/bind_tests_simple_f_refs.cpp : : : : ]
|
||||
unit-test bind_tests_advanced
|
||||
: bind_tests_advanced.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/bll_and_function.cpp : : : : ]
|
||||
unit-test bll_and_function
|
||||
: bll_and_function.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/cast_test.cpp : : : : ]
|
||||
unit-test constructor_tests
|
||||
: constructor_tests.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/constructor_tests.cpp : : : : ]
|
||||
unit-test extending_rt_traits
|
||||
: extending_rt_traits.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/control_structures.cpp : : : : ]
|
||||
unit-test bind_tests_simple_f_refs
|
||||
: bind_tests_simple_f_refs.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/exception_test.cpp : : : : ]
|
||||
unit-test cast_test
|
||||
: cast_test.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/extending_rt_traits.cpp : : : : ]
|
||||
unit-test phoenix_control_structures
|
||||
: phoenix_control_structures.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/is_instance_of_test.cpp : : : : ]
|
||||
unit-test exception_test
|
||||
: exception_test.cpp
|
||||
<lib>../../test/build/test_exec_monitor
|
||||
: <sysinclude>$(BOOST_ROOT)
|
||||
;
|
||||
|
||||
[ run libs/lambda/test/member_pointer_test.cpp : : : : ]
|
||||
|
||||
[ run libs/lambda/test/operator_tests_simple.cpp : : : : ]
|
||||
|
||||
[ run libs/lambda/test/phoenix_control_structures.cpp : : : : ]
|
||||
|
||||
[ run libs/lambda/test/switch_construct.cpp : : : : ]
|
||||
;
|
||||
|
||||
}
|
||||
|
||||
@@ -1,60 +0,0 @@
|
||||
// bll_and_function.cpp - The Boost Lambda Library -----------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// test using BLL and boost::function
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
#include "boost/lambda/bind.hpp"
|
||||
#include "boost/lambda/algorithm.hpp"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <string>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
||||
|
||||
void test_foreach() {
|
||||
using namespace boost::lambda;
|
||||
|
||||
int a[10][20];
|
||||
int sum = 0;
|
||||
|
||||
std::for_each(a, a + 10,
|
||||
bind(ll::for_each(), _1, _1 + 20,
|
||||
protect((_1 = var(sum), ++var(sum)))));
|
||||
|
||||
sum = 0;
|
||||
std::for_each(a, a + 10,
|
||||
bind(ll::for_each(), _1, _1 + 20,
|
||||
protect((sum += _1))));
|
||||
|
||||
BOOST_TEST(sum == (199 + 1)/ 2 * 199);
|
||||
}
|
||||
|
||||
// More tests needed (for all algorithms)
|
||||
|
||||
int test_main(int, char *[]) {
|
||||
|
||||
test_foreach();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// bind_tests_advanced.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// bind_tests_advanced.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
#include "boost/lambda/bind.hpp"
|
||||
@@ -319,34 +308,17 @@ void test_const_parameters() {
|
||||
|
||||
}
|
||||
|
||||
void test_rvalue_arguments()
|
||||
{
|
||||
// Not quite working yet.
|
||||
// Problems with visual 7.1
|
||||
// BOOST_TEST((_1 + _2)(1, 2) == 3);
|
||||
}
|
||||
|
||||
void test_break_const()
|
||||
{
|
||||
|
||||
// break_const is currently unnecessary, as LL supports perfect forwarding
|
||||
// for up to there argument lambda functors, and LL does not support
|
||||
// lambda functors with more than 3 args.
|
||||
|
||||
// I'll keep the test case around anyway, if more arguments will be supported
|
||||
// in the future.
|
||||
|
||||
|
||||
|
||||
// break_const breaks constness! Be careful!
|
||||
// You need this only if you need to have side effects on some argument(s)
|
||||
// and some arguments are non-const rvalues and your lambda functors
|
||||
// take more than 3 arguments.
|
||||
|
||||
// and some arguments are non-const rvalues:
|
||||
|
||||
// E.g.
|
||||
int i = 1;
|
||||
// OLD COMMENT: (_1 += _2)(i, 2) // fails, 2 is a non-const rvalue
|
||||
// OLD COMMENT: const_parameters(_1 += _2)(i, 2) // fails, side-effect to i
|
||||
// (_1 += _2)(i, 2) // fails, 2 is a non-const rvalue
|
||||
|
||||
// const_parameters(_1 += _2)(i, 2) // fails, side-effect to i
|
||||
break_const(_1 += _2)(i, 2); // ok
|
||||
BOOST_TEST(i == 3);
|
||||
}
|
||||
@@ -358,7 +330,6 @@ int test_main(int, char *[]) {
|
||||
test_protect();
|
||||
test_lambda_functors_as_arguments_to_lambda_functors();
|
||||
test_const_parameters();
|
||||
test_rvalue_arguments();
|
||||
test_break_const();
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// bind_tests_simple.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// bind_tests_simple.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/bind.hpp"
|
||||
|
||||
@@ -42,18 +31,6 @@ class A {
|
||||
public:
|
||||
A(int n) : i(n) {};
|
||||
int add(const int& j) { return i + j; }
|
||||
int add2(int a1, int a2) { return i + a1 + a2; }
|
||||
int add3(int a1, int a2, int a3) { return i + a1 + a2 + a3; }
|
||||
int add4(int a1, int a2, int a3, int a4) { return i + a1 + a2 + a3 + a4; }
|
||||
int add5(int a1, int a2, int a3, int a4, int a5)
|
||||
{ return i + a1 + a2 + a3 + a4 + a5; }
|
||||
int add6(int a1, int a2, int a3, int a4, int a5, int a6)
|
||||
{ return i + a1 + a2 + a3 + a4 + a5 + a6; }
|
||||
int add7(int a1, int a2, int a3, int a4, int a5, int a6, int a7)
|
||||
{ return i + a1 + a2 + a3 + a4 + a5 + a6 + a7; }
|
||||
int add8(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
|
||||
{ return i + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8; }
|
||||
|
||||
};
|
||||
|
||||
void test_member_functions()
|
||||
@@ -70,14 +47,6 @@ void test_member_functions()
|
||||
BOOST_TEST(bind(&A::add, _1, 1)(a) == 11);
|
||||
BOOST_TEST(bind(&A::add, _1, 1)(make_const(&a)) == 11);
|
||||
|
||||
BOOST_TEST(bind(&A::add2, _1, 1, 1)(a) == 12);
|
||||
BOOST_TEST(bind(&A::add3, _1, 1, 1, 1)(a) == 13);
|
||||
BOOST_TEST(bind(&A::add4, _1, 1, 1, 1, 1)(a) == 14);
|
||||
BOOST_TEST(bind(&A::add5, _1, 1, 1, 1, 1, 1)(a) == 15);
|
||||
BOOST_TEST(bind(&A::add6, _1, 1, 1, 1, 1, 1, 1)(a) == 16);
|
||||
BOOST_TEST(bind(&A::add7, _1, 1, 1, 1, 1, 1, 1, 1)(a) == 17);
|
||||
BOOST_TEST(bind(&A::add8, _1, 1, 1, 1, 1, 1, 1, 1, 1)(a) == 18);
|
||||
|
||||
// This should fail, as lambda functors store arguments as const
|
||||
// bind(&A::add, a, _1);
|
||||
}
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// bind_tests_simple.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// bind_tests_simple.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/bind.hpp"
|
||||
|
||||
|
||||
@@ -1,17 +1,9 @@
|
||||
// bll_and_function.cpp - The Boost Lambda Library -----------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// bll_and_function.cpp --------------------------------
|
||||
|
||||
// test using BLL and boost::function
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
@@ -29,13 +21,13 @@ using namespace std;
|
||||
|
||||
void test_function() {
|
||||
|
||||
boost::function<int (int, int)> f;
|
||||
boost::function<int, int, int> f;
|
||||
f = _1 + _2;
|
||||
|
||||
BOOST_TEST(f(1, 2)== 3);
|
||||
|
||||
int i=1; int j=2;
|
||||
boost::function<int& (int&, int)> g = _1 += _2;
|
||||
boost::function<int&, int&, int> g = _1 += _2;
|
||||
g(i, j);
|
||||
BOOST_TEST(i==3);
|
||||
|
||||
@@ -43,7 +35,7 @@ void test_function() {
|
||||
|
||||
int* sum = new int();
|
||||
*sum = 0;
|
||||
boost::function<int& (int)> counter = *sum += _1;
|
||||
boost::function<int&, int> counter = *sum += _1;
|
||||
counter(5); // ok, sum* = 5;
|
||||
BOOST_TEST(*sum == 5);
|
||||
delete sum;
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// cast_tests.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// cast_tests.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// constructor_tests.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// constructor_tests.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
@@ -1,17 +1,5 @@
|
||||
// -- control_structures.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
#include "boost/lambda/if.hpp"
|
||||
@@ -22,18 +10,7 @@
|
||||
#include <vector>
|
||||
|
||||
using namespace boost;
|
||||
|
||||
using boost::lambda::constant;
|
||||
using boost::lambda::_1;
|
||||
using boost::lambda::_2;
|
||||
using boost::lambda::_3;
|
||||
using boost::lambda::make_const;
|
||||
using boost::lambda::for_loop;
|
||||
using boost::lambda::while_loop;
|
||||
using boost::lambda::do_while_loop;
|
||||
using boost::lambda::if_then;
|
||||
using boost::lambda::if_then_else;
|
||||
using boost::lambda::if_then_else_return;
|
||||
using namespace boost::lambda;
|
||||
|
||||
// 2 container for_each
|
||||
template <class InputIter1, class InputIter2, class Function>
|
||||
@@ -53,7 +30,7 @@ void simple_loops() {
|
||||
BOOST_TEST(arithmetic_series == 45);
|
||||
|
||||
// no body case
|
||||
for_loop(boost::lambda::var(i) = 0, boost::lambda::var(i) < 100, ++boost::lambda::var(i))();
|
||||
for_loop(var(i) = 0, var(i) < 100, ++var(i))();
|
||||
BOOST_TEST(i == 100);
|
||||
|
||||
// while loops -------------------------------------------------------
|
||||
@@ -64,12 +41,12 @@ void simple_loops() {
|
||||
|
||||
int count;
|
||||
count = 0; i = 0;
|
||||
while_loop(_1++ < 10, ++boost::lambda::var(count))(i);
|
||||
while_loop(_1++ < 10, ++var(count))(i);
|
||||
BOOST_TEST(count == 10);
|
||||
|
||||
// note that the first parameter of do_while_loop is the condition
|
||||
count = 0; i = 0;
|
||||
do_while_loop(_1++ < 10, ++boost::lambda::var(count))(i);
|
||||
do_while_loop(_1++ < 10, ++var(count))(i);
|
||||
BOOST_TEST(count == 11);
|
||||
|
||||
a = 0;
|
||||
@@ -100,18 +77,18 @@ void simple_ifs () {
|
||||
BOOST_TEST(value == 42);
|
||||
|
||||
int min;
|
||||
if_then_else(_1 < _2, boost::lambda::var(min) = _1, boost::lambda::var(min) = _2)
|
||||
if_then_else(_1 < _2, var(min) = _1, var(min) = _2)
|
||||
(make_const(1), make_const(2));
|
||||
BOOST_TEST(min == 1);
|
||||
|
||||
if_then_else(_1 < _2, boost::lambda::var(min) = _1, boost::lambda::var(min) = _2)
|
||||
if_then_else(_1 < _2, var(min) = _1, var(min) = _2)
|
||||
(make_const(5), make_const(3));
|
||||
BOOST_TEST(min == 3);
|
||||
|
||||
int x, y;
|
||||
x = -1; y = 1;
|
||||
BOOST_TEST(if_then_else_return(_1 < _2, _2, _1)(x, y) == (std::max)(x ,y));
|
||||
BOOST_TEST(if_then_else_return(_1 < _2, _2, _1)(y, x) == (std::max)(x ,y));
|
||||
BOOST_TEST(if_then_else_return(_1 < _2, _2, _1)(x, y) == std::max(x ,y));
|
||||
BOOST_TEST(if_then_else_return(_1 < _2, _2, _1)(y, x) == std::max(x ,y));
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -1,17 +1,5 @@
|
||||
// -- exception_test.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// extending_return_type_traits.cpp -- The Boost Lambda Library --------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// extending_return_type_traits.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/bind.hpp"
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// is_instance_of_test.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// is_convertible_to_template_test.cpp ----------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
|
||||
#include "boost/lambda/detail/is_instance_of.hpp"
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// member_pointer_test.cpp -- The Boost Lambda Library ------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// member_pointer_test.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
@@ -1,19 +1,7 @@
|
||||
// operator_tests_simple.cpp -- The Boost Lambda Library ---------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// operator_tests_simple.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// phoenix_style_control_structures.cpp -- The Boost Lambda Library ------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// phoenix_style_control_structures.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
#include "boost/lambda/if.hpp"
|
||||
@@ -32,9 +21,11 @@ using namespace boost::lambda;
|
||||
using namespace std;
|
||||
|
||||
|
||||
|
||||
// If-else, while, do-while, for statements
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// If-else, while, do-while, for tatements
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int test_main(int, char *[]) {
|
||||
|
||||
|
||||
@@ -1,18 +1,7 @@
|
||||
// switch_test.cpp -- The Boost Lambda Library --------------------------
|
||||
//
|
||||
// Copyright (C) 2000-2003 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// switch_test.cpp --------------------------------
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
|
||||
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
|
||||
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
|
||||
#include <boost/test/test_tools.hpp> // see "Header Implementation Option"
|
||||
|
||||
|
||||
#include "boost/lambda/lambda.hpp"
|
||||
|
||||
Reference in New Issue
Block a user