use handle instead of manual reference counting

This commit is contained in:
Hans Dembinski
2017-03-28 21:11:52 +02:00
parent 88aead3867
commit 45f461e49c

View File

@@ -26,9 +26,16 @@
#define BOOST_HISTOGRAM_AXIS_LIMIT 32
#endif
namespace boost {
namespace histogram {
#ifdef HAVE_NUMPY
auto array_cast = [](python::handle<>& h) {
return python::downcast<PyArrayObject>(h.get());
};
#endif
struct axis_visitor : public static_visitor<python::object> {
template <typename T> python::object operator()(const T &t) const {
return python::object(t);
@@ -46,15 +53,13 @@ python::object histogram_axis(const dynamic_histogram<> &self, int i) {
}
python::object histogram_init(python::tuple args, python::dict kwargs) {
using namespace python;
using python::tuple;
object self = args[0];
object pyinit = self.attr("__init__");
python::object self = args[0];
python::object pyinit = self.attr("__init__");
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
python::throw_error_already_set();
}
const unsigned dim = len(args) - 1;
@@ -62,129 +67,117 @@ python::object histogram_init(python::tuple args, python::dict kwargs) {
// normal constructor
std::vector<dynamic_histogram<>::axis_type> axes;
for (unsigned i = 0; i < dim; ++i) {
object pa = args[i + 1];
extract<regular_axis<>> er(pa);
python::object pa = args[i + 1];
python::extract<regular_axis<>> er(pa);
if (er.check()) {
axes.push_back(er());
continue;
}
extract<circular_axis<>> ep(pa);
python::extract<circular_axis<>> ep(pa);
if (ep.check()) {
axes.push_back(ep());
continue;
}
extract<variable_axis<>> ev(pa);
python::extract<variable_axis<>> ev(pa);
if (ev.check()) {
axes.push_back(ev());
continue;
}
extract<integer_axis> ei(pa);
python::extract<integer_axis> ei(pa);
if (ei.check()) {
axes.push_back(ei());
continue;
}
extract<category_axis> ec(pa);
python::extract<category_axis> ec(pa);
if (ec.check()) {
axes.push_back(ec());
continue;
}
std::string msg = "require an axis object, got ";
msg += extract<std::string>(pa.attr("__class__").attr("__name__"))();
msg += python::extract<std::string>(pa.attr("__class__").attr("__name__"))();
PyErr_SetString(PyExc_TypeError, msg.c_str());
throw_error_already_set();
python::throw_error_already_set();
}
dynamic_histogram<> h(axes.begin(), axes.end());
return pyinit(h);
}
python::object histogram_fill(python::tuple args, python::dict kwargs) {
using namespace python;
const unsigned nargs = python::len(args);
dynamic_histogram<> &self = python::extract<dynamic_histogram<> &>(args[0]);
const unsigned nargs = len(args);
dynamic_histogram<> &self = extract<dynamic_histogram<> &>(args[0]);
object ow;
python::object ow;
if (kwargs) {
if (len(kwargs) > 1 || !kwargs.has_key("w")) {
PyErr_SetString(PyExc_RuntimeError, "only keyword w allowed");
throw_error_already_set();
python::throw_error_already_set();
}
ow = kwargs.get("w");
}
#ifdef HAVE_NUMPY
if (nargs == 2) {
object o = args[1];
python::object o = args[1];
if (PySequence_Check(o.ptr())) {
PyArrayObject *a = reinterpret_cast<PyArrayObject *>(
PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (!a) {
PyErr_SetString(PyExc_ValueError,
"could not convert sequence into array");
throw_error_already_set();
}
// exception is thrown automatically if
python::handle<> a(PyArray_FROM_OTF(o.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
npy_intp *dims = PyArray_DIMS(a);
switch (PyArray_NDIM(a)) {
npy_intp *dims = PyArray_DIMS(array_cast(a));
switch (PyArray_NDIM(array_cast(a))) {
case 1:
if (self.dim() > 1) {
PyErr_SetString(PyExc_ValueError, "array has to be two-dimensional");
throw_error_already_set();
python::throw_error_already_set();
}
break;
case 2:
if (self.dim() != dims[1]) {
PyErr_SetString(PyExc_ValueError,
"size of second dimension does not match");
throw_error_already_set();
python::throw_error_already_set();
}
break;
default:
PyErr_SetString(PyExc_ValueError, "array has wrong dimension");
throw_error_already_set();
python::throw_error_already_set();
}
if (!ow.is_none()) {
if (PySequence_Check(ow.ptr())) {
PyArrayObject *aw = reinterpret_cast<PyArrayObject *>(
PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (!aw) {
PyErr_SetString(PyExc_ValueError,
"could not convert sequence into array");
throw_error_already_set();
}
if (PyArray_NDIM(aw) != 1) {
// exception is thrown automatically if handle below receives null
python::handle<> aw(
PyArray_FROM_OTF(ow.ptr(), NPY_DOUBLE, NPY_ARRAY_IN_ARRAY));
if (PyArray_NDIM(array_cast(aw)) != 1) {
PyErr_SetString(PyExc_ValueError,
"array has to be one-dimensional");
throw_error_already_set();
python::throw_error_already_set();
}
if (PyArray_DIMS(aw)[0] != dims[0]) {
if (PyArray_DIMS(array_cast(aw))[0] != dims[0]) {
PyErr_SetString(PyExc_ValueError, "sizes do not match");
throw_error_already_set();
python::throw_error_already_set();
}
for (unsigned i = 0; i < dims[0]; ++i) {
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(a, i));
double *w = reinterpret_cast<double *>(PyArray_GETPTR1(aw, i));
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(array_cast(a), i));
double *w = reinterpret_cast<double *>(PyArray_GETPTR1(array_cast(aw), i));
self.wfill(*w, v, v + self.dim());
}
Py_DECREF(aw);
} else {
PyErr_SetString(PyExc_ValueError, "w is not a sequence");
throw_error_already_set();
python::throw_error_already_set();
}
} else {
for (unsigned i = 0; i < dims[0]; ++i) {
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(a, i));
double *v = reinterpret_cast<double *>(PyArray_GETPTR1(array_cast(a), i));
self.fill(v, v + self.dim());
}
}
Py_DECREF(a);
return object();
return python::object();
}
}
#endif
@@ -192,88 +185,85 @@ python::object histogram_fill(python::tuple args, python::dict kwargs) {
const unsigned dim = nargs - 1;
if (dim != self.dim()) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
python::throw_error_already_set();
}
if (dim > BOOST_HISTOGRAM_AXIS_LIMIT) {
std::ostringstream os;
os << "too many axes, maximum is " << BOOST_HISTOGRAM_AXIS_LIMIT;
PyErr_SetString(PyExc_RuntimeError, os.str().c_str());
throw_error_already_set();
python::throw_error_already_set();
}
double v[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < dim; ++i)
v[i] = extract<double>(args[1 + i]);
v[i] = python::extract<double>(args[1 + i]);
if (ow.is_none()) {
self.fill(v, v + self.dim());
} else {
const double w = extract<double>(ow);
const double w = python::extract<double>(ow);
self.wfill(w, v, v + self.dim());
}
return object();
return python::object();
}
python::object histogram_value(python::tuple args, python::dict kwargs) {
using namespace python;
const dynamic_histogram<> &self =
extract<const dynamic_histogram<> &>(args[0]);
const dynamic_histogram<> & self = python::extract<const dynamic_histogram<> &>(args[0]);
const unsigned dim = len(args) - 1;
if (self.dim() != dim) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
python::throw_error_already_set();
}
if (dim > BOOST_HISTOGRAM_AXIS_LIMIT) {
std::ostringstream os;
os << "too many axes, maximum is " << BOOST_HISTOGRAM_AXIS_LIMIT;
PyErr_SetString(PyExc_RuntimeError, os.str().c_str());
throw_error_already_set();
python::throw_error_already_set();
}
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
python::throw_error_already_set();
}
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < self.dim(); ++i)
idx[i] = extract<int>(args[1 + i]);
idx[i] = python::extract<int>(args[1 + i]);
return object(self.value(idx + 0, idx + self.dim()));
return python::object(self.value(idx + 0, idx + self.dim()));
}
python::object histogram_variance(python::tuple args, python::dict kwargs) {
using namespace python;
const dynamic_histogram<> &self =
extract<const dynamic_histogram<> &>(args[0]);
python::extract<const dynamic_histogram<> &>(args[0]);
const unsigned dim = len(args) - 1;
if (self.dim() != dim) {
PyErr_SetString(PyExc_RuntimeError, "wrong number of arguments");
throw_error_already_set();
python::throw_error_already_set();
}
if (dim > BOOST_HISTOGRAM_AXIS_LIMIT) {
std::ostringstream os;
os << "too many axes, maximum is " << BOOST_HISTOGRAM_AXIS_LIMIT;
PyErr_SetString(PyExc_RuntimeError, os.str().c_str());
throw_error_already_set();
python::throw_error_already_set();
}
if (kwargs) {
PyErr_SetString(PyExc_RuntimeError, "no keyword arguments allowed");
throw_error_already_set();
python::throw_error_already_set();
}
int idx[BOOST_HISTOGRAM_AXIS_LIMIT];
for (unsigned i = 0; i < self.dim(); ++i)
idx[i] = extract<int>(args[1 + i]);
idx[i] = python::extract<int>(args[1 + i]);
return object(self.variance(idx + 0, idx + self.dim()));
return python::object(self.variance(idx + 0, idx + self.dim()));
}
std::string histogram_repr(const dynamic_histogram<> &h) {
@@ -282,8 +272,8 @@ std::string histogram_repr(const dynamic_histogram<> &h) {
return os.str();
}
struct storage_access {
#ifdef HAVE_NUMPY
struct storage_access {
using mp_int = adaptive_storage<>::mp_int;
using weight = adaptive_storage<>::weight;
template <typename T>
@@ -333,14 +323,14 @@ struct storage_access {
for (int i = 0; i < dim; ++i) {
shapes2[i] = python::extract<npy_intp>(shapes[i]);
}
PyObject *ptr = PyArray_SimpleNew(dim, shapes2, NPY_UINT8);
python::handle<> a(PyArray_SimpleNew(dim, shapes2, NPY_UINT8));
for (int i = 0; i < dim; ++i) {
PyArray_STRIDES((PyArrayObject *)ptr)[i] = python::extract<npy_intp>(strides[i]);
PyArray_STRIDES(array_cast(a))[i] = python::extract<npy_intp>(strides[i]);
}
auto *buf = static_cast<uint8_t *>(PyArray_DATA((PyArrayObject *)ptr));
auto *buf = static_cast<uint8_t *>(PyArray_DATA(array_cast(a)));
std::fill(buf, buf + b.size, uint8_t(0));
PyArray_CLEARFLAGS((PyArrayObject*)ptr, NPY_ARRAY_WRITEABLE);
return python::object(python::handle<>(ptr));
PyArray_CLEARFLAGS(array_cast(a), NPY_ARRAY_WRITEABLE);
return python::object(a);
}
python::object operator()(const array<mp_int>& b) const {
// cannot pass cpp_int to numpy; make new
@@ -350,16 +340,16 @@ struct storage_access {
for (int i = 0; i < dim; ++i) {
shapes2[i] = python::extract<npy_intp>(shapes[i]);
}
PyObject *ptr = PyArray_SimpleNew(dim, shapes2, NPY_DOUBLE);
python::handle<> a(PyArray_SimpleNew(dim, shapes2, NPY_DOUBLE));
for (int i = 0; i < dim; ++i) {
PyArray_STRIDES((PyArrayObject *)ptr)[i] = python::extract<npy_intp>(strides[i]);
PyArray_STRIDES(array_cast(a))[i] = python::extract<npy_intp>(strides[i]);
}
auto *buf = static_cast<double *>(PyArray_DATA((PyArrayObject *)ptr));
auto *buf = static_cast<double *>(PyArray_DATA(array_cast(a)));
for (std::size_t i = 0; i < b.size; ++i) {
buf[i] = static_cast<double>(b[i]);
}
PyArray_CLEARFLAGS((PyArrayObject*)ptr, NPY_ARRAY_WRITEABLE);
return python::object(python::handle<>(ptr));
PyArray_CLEARFLAGS(array_cast(a), NPY_ARRAY_WRITEABLE);
return python::object(a);
}
};
@@ -393,28 +383,26 @@ struct storage_access {
d["data"] = apply_visitor(data_visitor(shapes, strides), b);
return d;
}
#endif
};
#endif
void register_histogram() {
using namespace python;
using python::arg;
docstring_options dopt(true, true, false);
python::docstring_options dopt(true, true, false);
class_<dynamic_histogram<>, boost::shared_ptr<dynamic_histogram<>>>(
"histogram", "N-dimensional histogram for real-valued data.", no_init)
.def("__init__", raw_function(histogram_init),
python::class_<dynamic_histogram<>, boost::shared_ptr<dynamic_histogram<>>>(
"histogram", "N-dimensional histogram for real-valued data.", python::no_init)
.def("__init__", python::raw_function(histogram_init),
":param axis args: axis objects"
"\nPass one or more axis objects to define"
"\nthe dimensions of the dynamic_histogram<>.")
// shadowed C++ ctors
.def(init<const dynamic_histogram<> &>())
.def(python::init<const dynamic_histogram<> &>())
#ifdef HAVE_NUMPY
.add_property("__array_interface__", &storage_access::array_interface)
#endif
.def("__len__", &dynamic_histogram<>::dim)
.def("__getitem__", histogram_axis)
.def("fill", raw_function(histogram_fill),
.def("fill", python::raw_function(histogram_fill),
"Pass a sequence of values with a length n is"
"\nequal to the dimensions of the histogram,"
"\nand optionally a weight w for this fill"
@@ -425,16 +413,16 @@ void register_histogram() {
"\nthe number of tuples, and optionally"
"\nanother a second 1d-array w of shape (n,).")
.add_property("sum", &dynamic_histogram<>::sum)
.def("value", raw_function(histogram_value),
.def("value", python::raw_function(histogram_value),
":param int args: indices of the bin"
"\n:return: count for the bin")
.def("variance", raw_function(histogram_variance),
.def("variance", python::raw_function(histogram_variance),
":param int args: indices of the bin"
"\n:return: variance estimate for the bin")
.def("__repr__", histogram_repr,
":returns: string representation of the histogram")
.def(self == self)
.def(self += self)
.def(python::self == python::self)
.def(python::self += python::self)
.def_pickle(serialization_suite<dynamic_histogram<>>());
}