2
0
mirror of https://github.com/boostorg/graph.git synced 2026-01-28 07:12:14 +00:00
Files
graph/test/layout_test.cpp
Jeremiah Willcock 801a11bf4a Merged in changes from trunk for Boost.Graph and Boost.PropertyMap. Includes
r56013, r56014, r56015, r56016, r56017, r56089, r56097, r56116, r56117, r56126,
r56127, r56128, r56140, r56147, r56300, r56301, r56339, r56360, r56454, r56473,
r56563, r56651, r56654, r56658, r56682, r56732, r56796, r56855, r56856, r56868,
r55667, r56860, r55473, r55507, r55528, r55749, r56147, r55723, r56109, r56859,
and r55780.


[SVN r56881]
2009-10-15 20:40:46 +00:00

373 lines
12 KiB
C++

// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#include <boost/graph/fruchterman_reingold.hpp>
#include <boost/graph/random_layout.hpp>
#include <boost/graph/kamada_kawai_spring_layout.hpp>
#include <boost/graph/circle_layout.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/point_traits.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/test/minimal.hpp>
#include <iostream>
#include <boost/limits.hpp>
#include <fstream>
#include <string>
using namespace boost;
enum vertex_position_t { vertex_position };
namespace boost { BOOST_INSTALL_PROPERTY(vertex, position); }
typedef square_topology<>::point_type point;
template<typename Graph, typename PositionMap, typename Topology>
void print_graph_layout(const Graph& g, PositionMap position, const Topology& topology)
{
typedef typename Topology::point_type Point;
// Find min/max ranges
Point min_point = position[*vertices(g).first], max_point = min_point;
BGL_FORALL_VERTICES_T(v, g, Graph) {
min_point = topology.pointwise_min(min_point, position[v]);
max_point = topology.pointwise_max(max_point, position[v]);
}
for (int y = (int)min_point[1]; y <= (int)max_point[1]; ++y) {
for (int x = (int)min_point[0]; x <= (int)max_point[0]; ++x) {
typename graph_traits<Graph>::vertex_iterator vi, vi_end;
// Find vertex at this position
typename graph_traits<Graph>::vertices_size_type index = 0;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi, ++index) {
if ((int)position[*vi][0] == x && (int)position[*vi][1] == y)
break;
}
if (vi == vi_end) std::cout << ' ';
else std::cout << (char)(index + 'A');
}
std::cout << std::endl;
}
}
template<typename Graph, typename PositionMap>
void dump_graph_layout(std::string name, const Graph& g, PositionMap position)
{
std::ofstream out((name + ".dot").c_str());
out << "graph " << name << " {" << std::endl;
typename graph_traits<Graph>::vertex_iterator vi, vi_end;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
out << " n" << get(vertex_index, g, *vi) << "[ pos=\""
<< (int)position[*vi][0] + 25 << ", " << (int)position[*vi][1] + 25
<< "\" ];\n";
}
typename graph_traits<Graph>::edge_iterator ei, ei_end;
for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
out << " n" << get(vertex_index, g, source(*ei, g)) << " -- n"
<< get(vertex_index, g, target(*ei, g)) << ";\n";
}
out << "}\n";
}
template<typename Graph>
void
test_circle_layout(Graph*, typename graph_traits<Graph>::vertices_size_type n)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef typename graph_traits<Graph>::edges_size_type edges_size_type;
Graph g(n);
// Initialize vertex indices
vertex_iterator vi = vertices(g).first;
for (vertices_size_type i = 0; i < n; ++i, ++vi)
put(vertex_index, g, *vi, i);
circle_graph_layout(g, get(vertex_position, g), 10.0);
std::cout << "Regular polygon layout with " << n << " points.\n";
square_topology<> topology;
print_graph_layout(g, get(vertex_position, g), topology);
}
struct simple_edge
{
int first, second;
};
struct kamada_kawai_done
{
kamada_kawai_done() : last_delta() {}
template<typename Graph>
bool operator()(double delta_p,
typename boost::graph_traits<Graph>::vertex_descriptor p,
const Graph& g,
bool global)
{
if (global) {
double diff = last_delta - delta_p;
if (diff < 0) diff = -diff;
last_delta = delta_p;
return diff < 0.01;
} else {
return delta_p < 0.01;
}
}
double last_delta;
};
template<typename Graph>
void
test_triangle(Graph*)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
Graph g;
vertex_descriptor u = add_vertex(g); put(vertex_index, g, u, 0);
vertex_descriptor v = add_vertex(g); put(vertex_index, g, v, 1);
vertex_descriptor w = add_vertex(g); put(vertex_index, g, w, 2);
edge_descriptor e1 = add_edge(u, v, g).first; put(edge_weight, g, e1, 1.0);
edge_descriptor e2 = add_edge(v, w, g).first; put(edge_weight, g, e2, 1.0);
edge_descriptor e3 = add_edge(w, u, g).first; put(edge_weight, g, e3, 1.0);
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
square_topology<>(50.0),
side_length(50.0));
BOOST_CHECK(ok);
std::cout << "Triangle layout (Kamada-Kawai).\n";
print_graph_layout(g, get(vertex_position, g));
}
template<typename Graph>
void
test_cube(Graph*)
{
enum {A, B, C, D, E, F, G, H};
simple_edge cube_edges[12] = {
{A, E}, {A, B}, {A, D}, {B, F}, {B, C}, {C, D}, {C, G}, {D, H},
{E, H}, {E, F}, {F, G}, {G, H}
};
Graph g(&cube_edges[0], &cube_edges[12], 8);
typedef typename graph_traits<Graph>::edge_iterator edge_iterator;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
vertex_iterator vi, vi_end;
int i = 0;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(vertex_index, g, *vi, i++);
edge_iterator ei, ei_end;
for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
put(edge_weight, g, *ei, 1.0);
std::cerr << "(" << (char)(get(vertex_index, g, source(*ei, g)) + 'A')
<< ", " << (char)(get(vertex_index, g, target(*ei, g)) + 'A')
<< ") ";
}
std::cerr << std::endl;
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
square_topology<>(50.0),
side_length(50.0),
kamada_kawai_done());
BOOST_CHECK(ok);
std::cout << "Cube layout (Kamada-Kawai).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("cube", g, get(vertex_position, g));
minstd_rand gen;
typedef square_topology<> Topology;
Topology topology(gen, 50.0);
std::vector<Topology::point_difference_type> displacements(num_vertices(g));
rectangle_topology<> rect_top(gen, 0, 0, 50, 50);
random_graph_layout(g, get(vertex_position, g), rect_top);
fruchterman_reingold_force_directed_layout
(g,
get(vertex_position, g),
topology,
square_distance_attractive_force(),
square_distance_repulsive_force(),
all_force_pairs(),
linear_cooling<double>(100),
make_iterator_property_map(displacements.begin(),
get(vertex_index, g),
Topology::point_difference_type()));
std::cout << "Cube layout (Fruchterman-Reingold).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("cube-fr", g, get(vertex_position, g));
}
template<typename Graph>
void
test_triangular(Graph*)
{
enum {A, B, C, D, E, F, G, H, I, J};
simple_edge triangular_edges[18] = {
{A, B}, {A, C}, {B, C}, {B, D}, {B, E}, {C, E}, {C, F}, {D, E}, {D, G},
{D, H}, {E, F}, {E, H}, {E, I}, {F, I}, {F, J}, {G, H}, {H, I}, {I, J}
};
Graph g(&triangular_edges[0], &triangular_edges[18], 10);
typedef typename graph_traits<Graph>::edge_iterator edge_iterator;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
vertex_iterator vi, vi_end;
int i = 0;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(vertex_index, g, *vi, i++);
edge_iterator ei, ei_end;
for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
put(edge_weight, g, *ei, 1.0);
std::cerr << "(" << (char)(get(vertex_index, g, source(*ei, g)) + 'A')
<< ", " << (char)(get(vertex_index, g, target(*ei, g)) + 'A')
<< ") ";
}
std::cerr << std::endl;
typedef square_topology<> Topology;
minstd_rand gen;
Topology topology(gen, 50.0);
Topology::point_type origin;
origin[0] = origin[1] = 50.0;
Topology::point_difference_type extent;
extent[0] = extent[1] = 50.0;
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
topology,
side_length(50.0),
kamada_kawai_done());
BOOST_CHECK(ok);
std::cout << "Triangular layout (Kamada-Kawai).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("triangular-kk", g, get(vertex_position, g));
rectangle_topology<> rect_top(gen, -25, -25, 25, 25);
random_graph_layout(g, get(vertex_position, g), rect_top);
dump_graph_layout("random", g, get(vertex_position, g));
std::vector<Topology::point_difference_type> displacements(num_vertices(g));
fruchterman_reingold_force_directed_layout
(g,
get(vertex_position, g),
topology,
attractive_force(square_distance_attractive_force()).
cooling(linear_cooling<double>(100)));
std::cout << "Triangular layout (Fruchterman-Reingold).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("triangular-fr", g, get(vertex_position, g));
}
template<typename Graph>
void
test_disconnected(Graph*)
{
enum {A, B, C, D, E, F, G, H};
simple_edge triangular_edges[13] = {
{A, B}, {B, C}, {C, A},
{D, E}, {E, F}, {F, G}, {G, H}, {H, D},
{D, F}, {F, H}, {H, E}, {E, G}, {G, D}
};
Graph g(&triangular_edges[0], &triangular_edges[13], 8);
typedef typename graph_traits<Graph>::edge_iterator edge_iterator;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
vertex_iterator vi, vi_end;
int i = 0;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(vertex_index, g, *vi, i++);
edge_iterator ei, ei_end;
for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
put(edge_weight, g, *ei, 1.0);
std::cerr << "(" << (char)(get(vertex_index, g, source(*ei, g)) + 'A')
<< ", " << (char)(get(vertex_index, g, target(*ei, g)) + 'A')
<< ") ";
}
std::cerr << std::endl;
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
square_topology<>(50.0),
side_length(50.0),
kamada_kawai_done());
BOOST_CHECK(!ok);
minstd_rand gen;
rectangle_topology<> rect_top(gen, -25, -25, 25, 25);
random_graph_layout(g, get(vertex_position, g), rect_top);
typedef square_topology<> Topology;
Topology topology(gen, 50.0);
std::vector<Topology::point_difference_type> displacements(num_vertices(g));
fruchterman_reingold_force_directed_layout
(g,
get(vertex_position, g),
topology,
attractive_force(square_distance_attractive_force()).
cooling(linear_cooling<double>(50)));
std::cout << "Disconnected layout (Fruchterman-Reingold).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("disconnected-fr", g, get(vertex_position, g));
}
int test_main(int, char*[])
{
typedef adjacency_list<listS, listS, undirectedS,
// Vertex properties
property<vertex_index_t, int,
property<vertex_position_t, point> >,
// Edge properties
property<edge_weight_t, double> > Graph;
test_circle_layout((Graph*)0, 5);
test_cube((Graph*)0);
test_triangular((Graph*)0);
test_disconnected((Graph*)0);
return 0;
}