2
0
mirror of https://github.com/boostorg/gil.git synced 2026-01-24 18:02:17 +00:00
Files
gil/test/core/rasterization/circle.cpp
Olzhas Zhumabek a37f12b3e9 Add implementation of Hough transforms (#512)
Support construction from step_size, step_count, and a function for angles

Implement angle and radious version of Hough line transform and adds a demo
with static line that goes over secondary diagonal.

Implement incremental line raster
Implement naive line raster
Implement Bresenham line raster
Leave only Bresenham line rasterization

Naive and incremental algorithms were removed because they are supposed
to produce the same results anyway.
The reason for diverging results is inaccuracy of floating point numbers

Add circle rendering through trigonometric functions, using
arctan(1 / (radius + 1)) as minimal angle step.

Trigonometric circle rasterizer does not follow circle equation, but still
produces very round shapes.
A new testing methodology needs to be devised for this rasterizer.

The new version accepts start and points inclusively and tries to use
canonic representation during computations.

Slope decided to be is (diff_y + 1) / (diff_x + 1).
2021-01-25 23:31:39 +01:00

77 lines
2.7 KiB
C++

// Boost.GIL (Generic Image Library) - tests
//
// Copyright 2020 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
//
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/core/lightweight_test.hpp>
#include <boost/gil/rasterization/circle.hpp>
#include <cstddef>
#include <vector>
namespace gil = boost::gil;
template <typename Rasterizer>
void test_rasterizer_follows_equation(std::ptrdiff_t radius, Rasterizer rasterizer)
{
std::vector<gil::point_t> circle_points(rasterizer.point_count(radius));
std::ptrdiff_t r_squared = radius * radius;
rasterizer(radius, {0, 0}, circle_points.begin());
std::vector<gil::point_t> first_octant(rasterizer.point_count(radius) / 8);
for (std::size_t i = 0, octant_index = 0; i < circle_points.size(); i += 8, ++octant_index)
{
first_octant[octant_index] = circle_points[i];
}
for (const auto& point : first_octant)
{
double y_exact = std::sqrt(radius * radius - point.x * point.x);
std::ptrdiff_t lower_result = static_cast<std::ptrdiff_t>(std::floor(y_exact));
std::ptrdiff_t upper_result = static_cast<std::ptrdiff_t>(std::ceil(y_exact));
BOOST_TEST(point.y >= lower_result && point.y <= upper_result);
}
}
template <typename Rasterizer>
void test_connectivity(std::ptrdiff_t radius, Rasterizer rasterizer)
{
std::vector<gil::point_t> circle_points(rasterizer.point_count(radius));
rasterizer(radius, {radius, radius}, circle_points.begin());
for (std::size_t i = 0; i < 8; ++i)
{
std::vector<gil::point_t> octant(circle_points.size() / 8);
for (std::size_t octant_index = i, index = 0; octant_index < circle_points.size();
octant_index += 8, ++index)
{
octant[index] = circle_points[octant_index];
}
for (std::size_t index = 1; index < octant.size(); ++index)
{
const auto diff_x = std::abs(octant[index].x - octant[index - 1].x);
const auto diff_y = std::abs(octant[index].y - octant[index - 1].y);
BOOST_TEST_LE(diff_x, 1);
BOOST_TEST_LE(diff_y, 1);
}
}
}
int main()
{
for (std::ptrdiff_t radius = 5; radius <= 512; ++radius)
{
test_rasterizer_follows_equation(radius, gil::midpoint_circle_rasterizer{});
// TODO: find out a new testing procedure for trigonometric rasterizer
// test_equation_following(radius, gil::trigonometric_circle_rasterizer{});
test_connectivity(radius, gil::midpoint_circle_rasterizer{});
test_connectivity(radius, gil::trigonometric_circle_rasterizer{});
}
return boost::report_errors();
}