Boost GIL


Functions
ImageProcessingMath

Math operations for IP algorithms. More...

Functions

double lanczos (double x, std::ptrdiff_t a)
 Lanczos response at point xLanczos response is defined as: x == 0: 1 -a < x && x < a: 0 otherwise: normalized_sinc(x) / normalized_sinc(x / a)
 
template<typename GradientView , typename OutputView >
void compute_hessian_entries (GradientView dx, GradientView dy, OutputView ddxx, OutputView dxdy, OutputView ddyy)
 Compute xy gradient, and second order x and y gradientsHessian matrix is defined as a matrix of partial derivates for 2d case, it is [[ddxx, dxdy], [dxdy, ddyy]. d stands for derivative, and x or y stand for direction. For example, dx stands for derivative (gradient) in horizontal direction, and ddxx means second order derivative in horizon direction https://en.wikipedia.org/wiki/Hessian_matrix.
 
void generate_normalized_mean (boost::gil::gray32f_view_t dst)
 Generate mean kernelFills supplied view with normalized mean in which all entries will be equal to. More...
 
void generate_unnormalized_mean (boost::gil::gray32f_view_t dst)
 Generate kernel with all 1sFills supplied view with 1s (ones)
 
void generate_gaussian_kernel (boost::gil::gray32f_view_t dst, double sigma)
 Generate Gaussian kernelFills supplied view with values taken from Gaussian distribution. See https://en.wikipedia.org/wiki/Gaussian_blur.
 

Detailed Description

Math operations for IP algorithms.

This is mostly handful of mathemtical operations that are required by other image processing algorithms

Normalized cardinal sine

normalized_sinc(x) = sin(pi * x) / (pi * x)

Function Documentation

void boost::gil::generate_normalized_mean ( boost::gil::gray32f_view_t  dst)
inline

Generate mean kernelFills supplied view with normalized mean in which all entries will be equal to.

1 / (dst.size())