[algorithms] Add andoyer_inverse formula.

This commit is contained in:
Adam Wulkiewicz
2015-01-25 04:20:28 +01:00
parent cc90919243
commit da38bca2d2

View File

@@ -0,0 +1,174 @@
// Boost.Geometry
// Copyright (c) 2015 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_ANDOYER_INVERSE_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_ANDOYER_INVERSE_HPP
#include <boost/math/constants/constants.hpp>
#include <boost/geometry/core/radius.hpp>
#include <boost/geometry/core/srs.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/algorithms/detail/flattening.hpp>
namespace boost { namespace geometry { namespace detail
{
/*!
\brief The solution of the inverse problem of geodesics on latlong coordinates,
Forsyth-Andoyer-Lambert type approximation with first order terms.
\author See
- Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
http://www.dtic.mil/docs/citations/AD0627893
- Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
http://www.dtic.mil/docs/citations/AD703541
*/
template <typename CT>
class andoyer_inverse
{
public:
template <typename T1, typename T2, typename Spheroid>
andoyer_inverse(T1 const& lon1,
T1 const& lat1,
T2 const& lon2,
T2 const& lat2,
Spheroid const& spheroid)
: a(get_radius<0>(spheroid))
, b(get_radius<2>(spheroid))
, f(detail::flattening<CT>(spheroid))
, is_result_zero(false)
{
// coordinates in radians
if ( math::equals(lon1, lon2)
&& math::equals(lat1, lat2) )
{
is_result_zero = true;
return;
}
CT const pi_half = math::pi<CT>() / CT(2);
if ( math::equals(math::abs(lat1), pi_half)
&& math::equals(math::abs(lat2), pi_half) )
{
is_result_zero = true;
return;
}
CT const dlon = lon2 - lon1;
sin_dlon = sin(dlon);
cos_dlon = cos(dlon);
sin_lat1 = sin(lat1);
cos_lat1 = cos(lat1);
sin_lat2 = sin(lat2);
cos_lat2 = cos(lat2);
// H,G,T = infinity if cos_d = 1 or cos_d = -1
// lat1 == +-90 && lat2 == +-90
// lat1 == lat2 && lon1 == lon2
cos_d = sin_lat1*sin_lat2 + cos_lat1*cos_lat2*cos_dlon;
d = acos(cos_d);
sin_d = sin(d);
// just in case since above lat1 and lat2 is checked
// the check below is equal to cos_d == 1 || cos_d == -1 || d == 0
if ( math::equals(sin_d, CT(0)) )
{
is_result_zero = true;
return;
}
}
inline CT distance() const
{
if ( is_result_zero )
{
// TODO return some approximated value
return CT(0);
}
CT const K = math::sqr(sin_lat1-sin_lat2);
CT const L = math::sqr(sin_lat1+sin_lat2);
CT const three_sin_d = CT(3) * sin_d;
// H or G = infinity if cos_d = 1 or cos_d = -1
CT const H = (d+three_sin_d)/(CT(1)-cos_d);
CT const G = (d-three_sin_d)/(CT(1)+cos_d);
// for e.g. lat1=-90 && lat2=90 here we have G*L=INF*0
CT const dd = -(f/CT(4))*(H*K+G*L);
return a * (d + dd);
}
inline CT azimuth() const
{
// it's a situation when the endpoints are on the poles +-90 deg
// in this case the azimuth could either be 0 or +-pi
if ( is_result_zero )
{
return CT(0);
}
CT A = CT(0);
CT U = CT(0);
if ( !math::equals(cos_lat2, CT(0)) )
{
CT const tan_lat2 = sin_lat2/cos_lat2;
CT const M = cos_lat1*tan_lat2-sin_lat1*cos_dlon;
A = atan2(sin_dlon, M);
CT const sin_2A = sin(CT(2)*A);
U = (f/CT(2))*math::sqr(cos_lat1)*sin_2A;
}
CT V = CT(0);
if ( !math::equals(cos_lat1, CT(0)) )
{
CT const tan_lat1 = sin_lat1/cos_lat1;
CT const N = cos_lat2*tan_lat1-sin_lat2*cos_dlon;
CT const B = atan2(sin_dlon, N);
CT const sin_2B = sin(CT(2)*B);
V = (f/CT(2))*math::sqr(cos_lat2)*sin_2B;
}
// infinity if sin_d = 0, so cos_d = 1 or cos_d = -1
CT const T = d / sin_d;
CT const dA = V*T-U;
return A - dA;
}
private:
CT const a;
CT const b;
CT const f;
CT sin_dlon;
CT cos_dlon;
CT sin_lat1;
CT cos_lat1;
CT sin_lat2;
CT cos_lat2;
CT cos_d;
CT d;
CT sin_d;
bool is_result_zero;
};
}}} // namespace boost::geometry::detail
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_ANDOYER_INVERSE_HPP