[strategies][distance][cross track point box] update cross track point-box

strategy to work with box seen as Cartesian products of intervals
This commit is contained in:
Menelaos Karavelas
2015-06-13 01:47:44 +03:00
parent 00424e5a6d
commit 12e497f394

View File

@@ -1,13 +1,14 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2008-2014 Bruno Lalande, Paris, France.
// Copyright (c) 2008-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2009-2014 Mateusz Loskot, London, UK.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014, Oracle and/or its affiliates.
// This file was modified by Oracle on 2014, 2015.
// Modifications copyright (c) 2014-2015, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
@@ -16,14 +17,16 @@
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_POINT_BOX_HPP
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_POINT_BOX_HPP
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/strategies/distance.hpp>
#include <boost/geometry/strategies/spherical/distance_cross_track.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/calculation_type.hpp>
#include <boost/geometry/algorithms/detail/assign_box_corners.hpp>
namespace boost { namespace geometry
@@ -32,131 +35,143 @@ namespace boost { namespace geometry
namespace strategy { namespace distance
{
/*!
\brief Strategy functor for distance point to box calculation
\ingroup strategies
\details Class which calculates the distance of a point to a box, for
points and boxes on a sphere or globe
\tparam CalculationType \tparam_calculation
\tparam Strategy underlying point-segment distance strategy, defaults
to cross track
\qbk{
[heading See also]
[link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)]
}
*/
template
<
typename CalculationType = void,
typename Strategy = haversine<double, CalculationType>
typename Strategy = cross_track<CalculationType>
>
class cross_track_point_box
{
public:
template <typename Point, typename Box>
struct return_type
: promote_floating_point
<
typename select_calculation_type
<
Point,
typename point_type<Box>::type,
CalculationType
>::type
>
: services::return_type<Strategy, Point, typename point_type<Box>::type>
{};
typedef typename Strategy::radius_type radius_type;
inline cross_track_point_box()
{}
explicit inline cross_track_point_box(typename Strategy::radius_type const& r)
: m_pp_strategy(r)
: m_ps_strategy(r)
{}
inline cross_track_point_box(Strategy const& s)
: m_pp_strategy(s)
: m_ps_strategy(s)
{}
// It might be useful in the future
// to overload constructor with strategy info.
// crosstrack(...) {}
template <typename Point, typename Box>
inline typename return_type<Point, Box>::type
apply(Point const& point, Box const& box) const
{
#if !defined(BOOST_MSVC)
BOOST_CONCEPT_ASSERT
(
(concept::PointDistanceStrategy
(concept::PointSegmentDistanceStrategy
<
Strategy, Point,
typename point_type<Box>::type
Strategy, Point, typename point_type<Box>::type
>)
);
#endif
// this method assumes that the coordinates of the point and
// the box are normalized
typedef typename return_type<Point, Box>::type return_type;
typedef typename point_type<Box>::type box_point_t;
// Create (counterclockwise) array of points, the fifth one closes it
// If every point is on the LEFT side (=1) or ON the border (=0)
// the distance should be equal to 0.
typedef typename point_type<Box>::type box_point_type;
// TODO: This strategy as well as other cross-track strategies
// and therefore e.g. spherical within(Point, Box) may not work
// properly for a Box degenerated to a Segment or Point
boost::array<box_point_t, 5> bp;
geometry::detail::assign_box_corners_oriented<true>(box, bp);
bp[4] = bp[0];
box_point_type bottom_left, bottom_right, top_left, top_right;
geometry::detail::assign_box_corners(box,
bottom_left, bottom_right,
top_left, top_right);
for (int i = 1; i < 5; i++)
return_type const plon = geometry::get_as_radian<0>(point);
return_type const plat = geometry::get_as_radian<1>(point);
return_type const lon_min = geometry::get_as_radian<0>(bottom_left);
return_type const lat_min = geometry::get_as_radian<1>(bottom_left);
return_type const lon_max = geometry::get_as_radian<0>(top_right);
return_type const lat_max = geometry::get_as_radian<1>(top_right);
// First check if the point is within the band defined by the
// minimum and maximum longitude of the box; if yes, determine
// if the point is above, below or inside the box and compute
// the distance (easy in this case)
//
// Notice that the point may not be inside the longitude range
// of the box, but the shifted point may be inside the
// longitude range of the box; in this case the point is still
// considered as inside the longitude range band of the box
if ((plon >= lon_min && plon <= lon_max)
|| plon + math::two_pi<return_type>() <= lon_max)
{
box_point_t const& p1 = bp[i - 1];
box_point_t const& p2 = bp[i];
return_type const crs_AD = geometry::detail::course<return_type>(p1, point);
return_type const crs_AB = geometry::detail::course<return_type>(p1, p2);
return_type const d_crs1 = crs_AD - crs_AB;
return_type const sin_d_crs1 = sin(d_crs1);
// this constant sin() is here to be consistent with the side strategy
return_type const sigXTD = asin(sin(0.001) * sin_d_crs1);
// If the point is on the right side of the edge
if ( sigXTD > 0 )
if (plat > lat_max)
{
return_type const crs_BA = crs_AB - geometry::math::pi<return_type>();
return_type const crs_BD = geometry::detail::course<return_type>(p2, point);
return_type const d_crs2 = crs_BD - crs_BA;
return_type const projection1 = cos( d_crs1 );
return_type const projection2 = cos( d_crs2 );
if(projection1 > 0.0 && projection2 > 0.0)
{
return_type const d1 = m_pp_strategy.apply(p1, point);
return_type const
XTD = radius()
* geometry::math::abs(
asin( sin( d1 / radius() ) * sin_d_crs1 )
);
return return_type(XTD);
}
else
{
// OPTIMIZATION
// Return d1 if projection1 <= 0 and d2 if projection2 <= 0
// if both == 0 then return d1 or d2
// both shouldn't be < 0
return_type const d1 = m_pp_strategy.apply(p1, point);
return_type const d2 = m_pp_strategy.apply(p2, point);
return return_type((std::min)( d1 , d2 ));
}
return services::result_from_distance
<
Strategy, Point, box_point_type
>::apply(m_ps_strategy, radius() * (plat - lat_max));
}
else if (plat < lat_min)
{
return services::result_from_distance
<
Strategy, Point, box_point_type
>::apply(m_ps_strategy, radius() * (lat_min - plat));
}
else
{
BOOST_GEOMETRY_ASSERT(plat >= lat_min && plat <= lat_max);
return return_type(0);
}
}
// Return 0 if the point isn't on the right side of any segment
return return_type(0);
// Otherwise determine the distance of the point to the box as
// the minimum distance of the point to the western- and
// eastern-most edges of the box
return_type d1 = m_ps_strategy.apply(point, bottom_left, top_left);
return_type d2 = m_ps_strategy.apply(point, bottom_right, top_right);
return (std::min)(d1, d2);
}
inline typename Strategy::radius_type radius() const
{ return m_pp_strategy.radius(); }
{
return m_ps_strategy.radius();
}
private :
Strategy m_pp_strategy;
private:
Strategy m_ps_strategy;
};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
@@ -170,67 +185,68 @@ struct tag<cross_track_point_box<CalculationType, Strategy> >
template <typename CalculationType, typename Strategy, typename P, typename Box>
struct return_type<cross_track_point_box<CalculationType, Strategy>, P, Box>
: cross_track_point_box<CalculationType, Strategy>::template return_type<P, Box>
: cross_track_point_box
<
CalculationType, Strategy
>::template return_type<P, Box>
{};
template <typename CalculationType, typename Strategy>
struct comparable_type<cross_track_point_box<CalculationType, Strategy> >
{
// There is no shortcut, so the strategy itself is its comparable type
typedef cross_track_point_box<CalculationType, Strategy> type;
typedef cross_track_point_box
<
CalculationType, typename comparable_type<Strategy>::type
> type;
};
template
<
typename CalculationType,
typename Strategy
>
template <typename CalculationType, typename Strategy>
struct get_comparable<cross_track_point_box<CalculationType, Strategy> >
{
typedef typename comparable_type
<
cross_track_point_box<CalculationType, Strategy>
>::type comparable_type;
public :
static inline comparable_type apply(
cross_track_point_box<CalculationType, Strategy> const& strategy)
typedef cross_track_point_box<CalculationType, Strategy> this_strategy;
typedef typename comparable_type<this_strategy>::type comparable_type;
public:
static inline comparable_type apply(this_strategy const& strategy)
{
return cross_track_point_box<CalculationType, Strategy>(strategy.radius());
return comparable_type(strategy.radius());
}
};
template
<
typename CalculationType,
typename Strategy,
typename P, typename Box
>
template <typename CalculationType, typename Strategy, typename P, typename Box>
struct result_from_distance
<
cross_track_point_box<CalculationType, Strategy>,
P,
Box
cross_track_point_box<CalculationType, Strategy>, P, Box
>
{
private :
typedef typename cross_track_point_box
private:
typedef cross_track_point_box<CalculationType, Strategy> this_strategy;
typedef typename this_strategy::template return_type
<
CalculationType, Strategy
>::template return_type<P, Box> return_type;
public :
P, Box
>::type return_type;
public:
template <typename T>
static inline return_type apply(
cross_track_point_box<CalculationType, Strategy> const& ,
T const& distance)
static inline return_type apply(this_strategy const& strategy,
T const& distance)
{
return distance;
Strategy s(strategy.radius());
return result_from_distance
<
Strategy, P, typename point_type<Box>::type
>::apply(s, distance);
}
};
// define cross_track_point_box<default_point_segment_strategy> as
// default point-box strategy for the spherical equatorial coordinate system
template <typename Point, typename Box, typename Strategy>
struct default_strategy
<
@@ -247,7 +263,7 @@ struct default_strategy
boost::is_void<Strategy>,
typename default_strategy
<
point_tag, point_tag,
point_tag, segment_tag,
Point, typename point_type<Box>::type,
spherical_equatorial_tag, spherical_equatorial_tag
>::type,