2
0
mirror of https://github.com/boostorg/compute.git synced 2026-01-30 19:52:16 +00:00
Files
compute/test/test_transform.cpp
Kyle Lutz 4ab37ada07 Add system-wide default command queue
This adds a system-wide default command queue. This queue is
accessible via the new static system::default_queue() method.
The default command queue is created for the default compute
device in the default context and is analogous to the default
stream in CUDA.

This changes how algorithms operate when invoked without an
explicit command queue. Previously, each algorithm had two
overloads, the first expected a command queue to be explicitly
passed and the second would create and use a temporary command
queue. Now, all algorithms take a command queue argument which
has a default value equal to system::default_queue().

This fixes a number of race-conditions and performance issues
througout the library associated with create, using, and
destroying many separate command queues.
2013-05-15 20:59:56 -04:00

249 lines
7.9 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://kylelutz.github.com/compute for more information.
//---------------------------------------------------------------------------//
#define BOOST_TEST_MODULE TestTransform
#include <boost/test/unit_test.hpp>
#include <boost/compute/lambda.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/function.hpp>
#include <boost/compute/functional.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/iterator/counting_iterator.hpp>
#include "check_macros.hpp"
#include "context_setup.hpp"
namespace bc = boost::compute;
BOOST_AUTO_TEST_CASE(transform_int_abs)
{
int data[] = { 1, -2, -3, -4, 5 };
bc::vector<int> vector(data, data + 5);
CHECK_RANGE_EQUAL(int, 5, vector, (1, -2, -3, -4, 5));
bc::transform(vector.begin(),
vector.end(),
vector.begin(),
bc::abs<int>());
CHECK_RANGE_EQUAL(int, 5, vector, (1, 2, 3, 4, 5));
}
BOOST_AUTO_TEST_CASE(transform_float_sqrt)
{
float data[] = { 1.0f, 4.0f, 9.0f, 16.0f };
bc::vector<float> vector(data, data + 4);
CHECK_RANGE_EQUAL(float, 4, vector, (1.0f, 4.0f, 9.0f, 16.0f));
bc::transform(vector.begin(),
vector.end(),
vector.begin(),
bc::sqrt<float>());
bc::system::finish();
BOOST_CHECK_CLOSE(float(vector[0]), 1.0f, 1e-4);
BOOST_CHECK_CLOSE(float(vector[1]), 2.0f, 1e-4);
BOOST_CHECK_CLOSE(float(vector[2]), 3.0f, 1e-4);
BOOST_CHECK_CLOSE(float(vector[3]), 4.0f, 1e-4);
}
BOOST_AUTO_TEST_CASE(transform_float_clamp)
{
float data[] = { 10.f, 20.f, 30.f, 40.f, 50.f };
bc::vector<float> vector(data, data + 5);
CHECK_RANGE_EQUAL(float, 5, vector, (10.0f, 20.0f, 30.0f, 40.0f, 50.0f));
bc::transform(vector.begin(),
vector.end(),
vector.begin(),
clamp(bc::_1, 15.f, 45.f));
CHECK_RANGE_EQUAL(float, 5, vector, (15.0f, 20.0f, 30.0f, 40.0f, 45.0f));
}
BOOST_AUTO_TEST_CASE(transform_add_int)
{
int data1[] = { 1, 2, 3, 4 };
bc::vector<int> input1(data1, data1 + 4);
int data2[] = { 10, 20, 30, 40 };
bc::vector<int> input2(data2, data2 + 4);
bc::vector<int> output(4);
bc::transform(input1.begin(),
input1.end(),
input2.begin(),
output.begin(),
bc::plus<int>());
CHECK_RANGE_EQUAL(int, 4, output, (11, 22, 33, 44));
bc::transform(input1.begin(),
input1.end(),
input2.begin(),
output.begin(),
bc::multiplies<int>());
CHECK_RANGE_EQUAL(int, 4, output, (10, 40, 90, 160));
}
BOOST_AUTO_TEST_CASE(transform_pow4)
{
float data[] = { 1.0f, 2.0f, 3.0f, 4.0f };
bc::vector<float> vector(data, data + 4);
CHECK_RANGE_EQUAL(float, 4, vector, (1.0f, 2.0f, 3.0f, 4.0f));
bc::vector<float> result(4);
bc::transform(vector.begin(),
vector.end(),
result.begin(),
pown(bc::_1, 4));
bc::system::finish();
BOOST_CHECK_CLOSE(float(result[0]), 1.0f, 1e-4);
BOOST_CHECK_CLOSE(float(result[1]), 16.0f, 1e-4);
BOOST_CHECK_CLOSE(float(result[2]), 81.0f, 1e-4);
BOOST_CHECK_CLOSE(float(result[3]), 256.0f, 1e-4);
}
BOOST_AUTO_TEST_CASE(transform_custom_function)
{
float data[] = { 9.0f, 7.0f, 5.0f, 3.0f };
bc::vector<float> vector(data, data + 4);
const char source[] =
"float pow3add4(float x){ return pow(x, 3.0f) + 4.0f; }";
bc::function<float (float)> pow3add4 =
bc::make_function_from_source<float (float)>("pow3add4", source);
bc::vector<float> result(4);
bc::transform(vector.begin(),
vector.end(),
result.begin(),
pow3add4);
bc::system::finish();
BOOST_CHECK_CLOSE(float(result[0]), 733.0f, 1e-4);
BOOST_CHECK_CLOSE(float(result[1]), 347.0f, 1e-4);
BOOST_CHECK_CLOSE(float(result[2]), 129.0f, 1e-4);
BOOST_CHECK_CLOSE(float(result[3]), 31.0f, 1e-4);
}
BOOST_AUTO_TEST_CASE(extract_vector_component)
{
using bc::int2_;
int data[] = { 1, 2,
3, 4,
5, 6,
7, 8 };
bc::vector<int2_> vector(
reinterpret_cast<int2_ *>(data),
reinterpret_cast<int2_ *>(data) + 4,
context
);
CHECK_RANGE_EQUAL(
int2_, 4, vector,
(int2_(1, 2), int2_(3, 4), int2_(5, 6), int2_(7, 8))
);
bc::vector<int> x_components(4, context);
bc::transform(vector.begin(),
vector.end(),
x_components.begin(),
bc::get<0>());
CHECK_RANGE_EQUAL(int, 4, x_components, (1, 3, 5, 7));
bc::vector<int> y_components(4, context);
bc::transform(vector.begin(),
vector.end(),
y_components.begin(),
bc::get<1>());
CHECK_RANGE_EQUAL(int, 4, y_components, (2, 4, 6, 8));
}
BOOST_AUTO_TEST_CASE(transform_pinned_vector)
{
int data[] = { 2, -3, 4, -5, 6, -7 };
std::vector<int> vector(data, data + 6);
bc::buffer buffer(context,
vector.size() * sizeof(int),
bc::buffer::read_write | bc::buffer::use_host_ptr,
&vector[0]);
bc::transform(bc::make_buffer_iterator<int>(buffer, 0),
bc::make_buffer_iterator<int>(buffer, 6),
bc::make_buffer_iterator<int>(buffer, 0),
bc::abs<int>(),
queue);
void *ptr = queue.enqueue_map_buffer(buffer,
bc::command_queue::map_read,
0,
buffer.size());
BOOST_VERIFY(ptr == &vector[0]);
BOOST_CHECK_EQUAL(vector[0], 2);
BOOST_CHECK_EQUAL(vector[1], 3);
BOOST_CHECK_EQUAL(vector[2], 4);
BOOST_CHECK_EQUAL(vector[3], 5);
BOOST_CHECK_EQUAL(vector[4], 6);
BOOST_CHECK_EQUAL(vector[5], 7);
queue.enqueue_unmap_buffer(buffer, ptr);
}
BOOST_AUTO_TEST_CASE(transform_popcount)
{
using boost::compute::uint_;
uint_ data[] = { 0, 1, 2, 3, 4, 45, 127, 5000, 789, 15963 };
bc::vector<uint_> input(data, data + 10, context);
bc::vector<uint_> output(input.size(), context);
bc::transform(
input.begin(),
input.end(),
output.begin(),
bc::popcount<uint_>(),
queue
);
CHECK_RANGE_EQUAL(uint_, 10, output, (0, 1, 1, 2, 1, 4, 7, 5, 5, 10));
}
// generates the first 25 fibonacci numbers in parallel using the
// rounding-based fibonacci formula
BOOST_AUTO_TEST_CASE(generate_fibonacci_sequence)
{
using boost::compute::uint_;
boost::compute::vector<uint_> sequence(25, context);
const char nth_fibonacci_source[] =
"inline uint nth_fibonacci(const uint n)\n"
"{\n"
" const float golden_ratio = (1.f + sqrt(5.f)) / 2.f;\n"
" return floor(pown(golden_ratio, n) / sqrt(5.f) + 0.5f);\n"
"}\n";
boost::compute::function<uint_(const uint_)> nth_fibonacci =
boost::compute::make_function_from_source<uint_(const uint_)>(
"nth_fibonacci", nth_fibonacci_source);
boost::compute::transform(
boost::compute::make_counting_iterator(uint_(0)),
boost::compute::make_counting_iterator(uint_(sequence.size())),
sequence.begin(),
nth_fibonacci,
queue
);
CHECK_RANGE_EQUAL(
uint_, 25, sequence,
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,
987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368)
);
}
BOOST_AUTO_TEST_SUITE_END()