mirror of
https://github.com/boostorg/charconv.git
synced 2026-02-09 23:12:24 +00:00
Add printing functions
[ci skip]
This commit is contained in:
217
src/to_chars.cpp
217
src/to_chars.cpp
@@ -8,6 +8,7 @@
|
||||
#include <limits>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <cstdint>
|
||||
|
||||
namespace boost { namespace charconv { namespace detail {
|
||||
|
||||
@@ -61,6 +62,222 @@ static constexpr char radix_100_head_table[] = {
|
||||
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.' //
|
||||
};
|
||||
|
||||
void print_1_digit(std::uint32_t n, char* buffer) noexcept
|
||||
{
|
||||
*buffer = char('0' | n);
|
||||
}
|
||||
|
||||
void print_2_digits(std::uint32_t n, char* buffer) noexcept
|
||||
{
|
||||
std::memcpy(buffer, radix_100_table + n * 2, 2);
|
||||
}
|
||||
|
||||
// These digit generation routines are inspired by James Anhalt's itoa algorithm:
|
||||
// https://github.com/jeaiii/itoa
|
||||
// The main idea is for given n, find y such that floor(10^k * y / 2^32) = n holds,
|
||||
// where k is an appropriate integer depending on the length of n.
|
||||
// For example, if n = 1234567, we set k = 6. In this case, we have
|
||||
// floor(y / 2^32) = 1,
|
||||
// floor(10^2 * ((10^0 * y) mod 2^32) / 2^32) = 23,
|
||||
// floor(10^2 * ((10^2 * y) mod 2^32) / 2^32) = 45, and
|
||||
// floor(10^2 * ((10^4 * y) mod 2^32) / 2^32) = 67.
|
||||
// See https://jk-jeon.github.io/posts/2022/02/jeaiii-algorithm/ for more explanation.
|
||||
void print_9_digits(std::uint32_t s32, int& exponent, char* buffer) noexcept
|
||||
{
|
||||
// -- IEEE-754 binary32
|
||||
// Since we do not cut trailing zeros in advance, s32 must be of 6~9 digits
|
||||
// unless the original input was subnormal.
|
||||
// In particular, when it is of 9 digits it shouldn't have any trailing zeros.
|
||||
// -- IEEE-754 binary64
|
||||
// In this case, s32 must be of 7~9 digits unless the input is subnormal,
|
||||
// and it shouldn't have any trailing zeros if it is of 9 digits.
|
||||
if (s32 >= 100000000)
|
||||
{
|
||||
// 9 digits.
|
||||
// 1441151882 = ceil(2^57 / 1'0000'0000) + 1
|
||||
auto prod = s32 * UINT64_C(1441151882);
|
||||
prod >>= 25;
|
||||
std::memcpy(buffer, radix_100_head_table + UINT32_C(prod >> 32) * 2, 2);
|
||||
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 2);
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 4);
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 6);
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 8);
|
||||
|
||||
exponent += 8;
|
||||
buffer += 10;
|
||||
}
|
||||
else if (s32 >= 1000000)
|
||||
{
|
||||
// 7 or 8 digits.
|
||||
// 281474978 = ceil(2^48 / 100'0000) + 1
|
||||
auto prod = s32 * UINT64_C(281474978);
|
||||
prod >>= 16;
|
||||
auto const head_digits = static_cast<std::uint32_t>(prod >> 32);
|
||||
// If s32 is of 8 digits, increase the exponent by 7.
|
||||
// Otherwise, increase it by 6.
|
||||
exponent += (6 + unsigned(head_digits >= 10));
|
||||
|
||||
// Write the first digit and the decimal point.
|
||||
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
|
||||
// This third character may be overwritten later but we don't care.
|
||||
buffer[2] = radix_100_table[head_digits * 2 + 1];
|
||||
|
||||
// Remaining 6 digits are all zero?
|
||||
if (static_cast<std::uint32_t>(prod) <= static_cast<std::uint32_t>((UINT64_C(1) << 32) / 1000000))
|
||||
{
|
||||
// The number of characters actually need to be written is:
|
||||
// 1, if only the first digit is nonzero, which means that either s32 is of 7
|
||||
// digits or it is of 8 digits but the second digit is zero, or
|
||||
// 3, otherwise.
|
||||
// Note that buffer[2] is never '0' if s32 is of 7 digits, because the input is
|
||||
// never zero.
|
||||
buffer += (1 + (unsigned(head_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
// At least one of the remaining 6 digits are nonzero.
|
||||
// After this adjustment, now the first destination becomes buffer + 2.
|
||||
buffer += unsigned(head_digits >= 10);
|
||||
|
||||
// Obtain the next two digits.
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 2);
|
||||
|
||||
// Remaining 4 digits are all zero?
|
||||
if (static_cast<std::uint32_t>(prod) <= static_cast<std::uint32_t>((UINT64_C(1) << 32) / 10000))
|
||||
{
|
||||
buffer += (3 + unsigned(buffer[3] > '0'));
|
||||
}
|
||||
else
|
||||
{
|
||||
// At least one of the remaining 4 digits are nonzero.
|
||||
|
||||
// Obtain the next two digits.
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 4);
|
||||
|
||||
// Remaining 2 digits are all zero?
|
||||
if (static_cast<std::uint32_t>(prod) <= static_cast<std::uint32_t>((UINT64_C(1) << 32) / 100))
|
||||
{
|
||||
buffer += (5 + unsigned(buffer[5] > '0'));
|
||||
}
|
||||
else
|
||||
{
|
||||
// Obtain the last two digits.
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 6);
|
||||
|
||||
buffer += (7 + unsigned(buffer[7] > '0'));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (s32 >= 10000)
|
||||
{
|
||||
// 5 or 6 digits.
|
||||
// 429497 = ceil(2^32 / 1'0000)
|
||||
auto prod = s32 * UINT64_C(429497);
|
||||
auto const head_digits = static_cast<std::uint32_t>(prod >> 32);
|
||||
|
||||
// If s32 is of 6 digits, increase the exponent by 5.
|
||||
// Otherwise, increase it by 4.
|
||||
exponent += (4 + static_cast<unsigned>(head_digits >= 10));
|
||||
|
||||
// Write the first digit and the decimal point.
|
||||
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
|
||||
// This third character may be overwritten later but we don't care.
|
||||
buffer[2] = radix_100_table[head_digits * 2 + 1];
|
||||
|
||||
// Remaining 4 digits are all zero?
|
||||
if (static_cast<std::uint32_t>(prod) <= static_cast<std::uint32_t>((UINT64_C(1) << 32) / 10000))
|
||||
{
|
||||
// The number of characters actually written is 1 or 3, similarly to the case of
|
||||
// 7 or 8 digits.
|
||||
buffer += (1 + (unsigned(head_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
// At least one of the remaining 4 digits are nonzero.
|
||||
// After this adjustment, now the first destination becomes buffer + 2.
|
||||
buffer += unsigned(head_digits >= 10);
|
||||
|
||||
// Obtain the next two digits.
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 2);
|
||||
|
||||
// Remaining 2 digits are all zero?
|
||||
if (static_cast<std::uint32_t>(prod) <= static_cast<std::uint32_t>((UINT64_C(1) << 32) / 100))
|
||||
{
|
||||
buffer += (3 + unsigned(buffer[3] > '0'));
|
||||
}
|
||||
else
|
||||
{
|
||||
// Obtain the last two digits.
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 4);
|
||||
|
||||
buffer += (5 + unsigned(buffer[5] > '0'));
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (s32 >= 100)
|
||||
{
|
||||
// 3 or 4 digits.
|
||||
// 42949673 = ceil(2^32 / 100)
|
||||
auto prod = s32 * UINT64_C(42949673);
|
||||
auto const head_digits = static_cast<std::uint32_t>(prod >> 32);
|
||||
|
||||
// If s32 is of 4 digits, increase the exponent by 3.
|
||||
// Otherwise, increase it by 2.
|
||||
exponent += (2 + int(head_digits >= 10));
|
||||
|
||||
// Write the first digit and the decimal point.
|
||||
std::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
|
||||
// This third character may be overwritten later but we don't care.
|
||||
buffer[2] = radix_100_table[head_digits * 2 + 1];
|
||||
|
||||
// Remaining 2 digits are all zero?
|
||||
if (static_cast<std::uint32_t>(prod) <= static_cast<std::uint32_t>((UINT64_C(1) << 32) / 100))
|
||||
{
|
||||
// The number of characters actually written is 1 or 3, similarly to the case of
|
||||
// 7 or 8 digits.
|
||||
buffer += (1 + (unsigned(head_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
// At least one of the remaining 2 digits are nonzero.
|
||||
// After this adjustment, now the first destination becomes buffer + 2.
|
||||
buffer += unsigned(head_digits >= 10);
|
||||
|
||||
// Obtain the last two digits.
|
||||
prod = static_cast<std::uint32_t>(prod) * UINT64_C(100);
|
||||
print_2_digits(static_cast<std::uint32_t>(prod >> 32), buffer + 2);
|
||||
|
||||
buffer += (3 + unsigned(buffer[3] > '0'));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// 1 or 2 digits.
|
||||
// If s32 is of 2 digits, increase the exponent by 1.
|
||||
exponent += int(s32 >= 10);
|
||||
|
||||
// Write the first digit and the decimal point.
|
||||
std::memcpy(buffer, radix_100_head_table + s32 * 2, 2);
|
||||
// This third character may be overwritten later but we don't care.
|
||||
buffer[2] = radix_100_table[s32 * 2 + 1];
|
||||
|
||||
// The number of characters actually written is 1 or 3, similarly to the case of
|
||||
// 7 or 8 digits.
|
||||
buffer += (1 + (unsigned(s32 >= 10) & unsigned(buffer[2] > '0')) * 2);
|
||||
}
|
||||
}
|
||||
|
||||
}}} // Namespaces
|
||||
|
||||
boost::charconv::to_chars_result boost::charconv::to_chars( char* first, char* last, float value ) noexcept
|
||||
|
||||
Reference in New Issue
Block a user