2
0
mirror of https://github.com/boostorg/build.git synced 2026-02-16 13:22:11 +00:00
Files
build/CMake/BoostUtils.cmake
2009-05-21 14:05:15 +00:00

227 lines
9.0 KiB
CMake

##########################################################################
# Boost Utilities #
##########################################################################
# Copyright (C) 2007 Douglas Gregor <doug.gregor@gmail.com> #
# Copyright (C) 2007 Troy Straszheim #
# #
# Distributed under the Boost Software License, Version 1.0. #
# See accompanying file LICENSE_1_0.txt or copy at #
# http://www.boost.org/LICENSE_1_0.txt #
##########################################################################
# Macros in this module: #
# #
# list_contains: Determine whether a string value is in a list. #
# #
# car: Return the first element in a list #
# #
# cdr: Return all but the first element in a list #
# #
# parse_arguments: Parse keyword arguments for use in other macros. #
##########################################################################
# This utility macro determines whether a particular string value
# occurs within a list of strings:
#
# list_contains(result string_to_find arg1 arg2 arg3 ... argn)
#
# This macro sets the variable named by result equal to TRUE if
# string_to_find is found anywhere in the following arguments.
macro(list_contains var value)
set(${var})
foreach (value2 ${ARGN})
if (${value} STREQUAL ${value2})
set(${var} TRUE)
endif (${value} STREQUAL ${value2})
endforeach (value2)
endmacro(list_contains)
# This utility macro extracts the first argument from the list of
# arguments given, and places it into the variable named var.
#
# car(var arg1 arg2 ...)
macro(car var)
set(${var} ${ARGV1})
endmacro(car)
# This utility macro extracts all of the arguments given except the
# first, and places them into the variable named var.
#
# car(var arg1 arg2 ...)
macro(cdr var junk)
set(${var} ${ARGN})
endmacro(cdr)
# The PARSE_ARGUMENTS macro will take the arguments of another macro and
# define several variables. The first argument to PARSE_ARGUMENTS is a
# prefix to put on all variables it creates. The second argument is a
# list of names, and the third argument is a list of options. Both of
# these lists should be quoted. The rest of PARSE_ARGUMENTS are
# arguments from another macro to be parsed.
#
# PARSE_ARGUMENTS(prefix arg_names options arg1 arg2...)
#
# For each item in options, PARSE_ARGUMENTS will create a variable with
# that name, prefixed with prefix_. So, for example, if prefix is
# MY_MACRO and options is OPTION1;OPTION2, then PARSE_ARGUMENTS will
# create the variables MY_MACRO_OPTION1 and MY_MACRO_OPTION2. These
# variables will be set to true if the option exists in the command line
# or false otherwise.
#
# For each item in arg_names, PARSE_ARGUMENTS will create a variable
# with that name, prefixed with prefix_. Each variable will be filled
# with the arguments that occur after the given arg_name is encountered
# up to the next arg_name or the end of the arguments. All options are
# removed from these lists. PARSE_ARGUMENTS also creates a
# prefix_DEFAULT_ARGS variable containing the list of all arguments up
# to the first arg_name encountered.
MACRO(PARSE_ARGUMENTS prefix arg_names option_names)
SET(DEFAULT_ARGS)
FOREACH(arg_name ${arg_names})
SET(${prefix}_${arg_name})
ENDFOREACH(arg_name)
FOREACH(option ${option_names})
SET(${prefix}_${option} FALSE)
ENDFOREACH(option)
SET(current_arg_name DEFAULT_ARGS)
SET(current_arg_list)
FOREACH(arg ${ARGN})
LIST_CONTAINS(is_arg_name ${arg} ${arg_names})
IF (is_arg_name)
SET(${prefix}_${current_arg_name} ${current_arg_list})
SET(current_arg_name ${arg})
SET(current_arg_list)
ELSE (is_arg_name)
LIST_CONTAINS(is_option ${arg} ${option_names})
IF (is_option)
SET(${prefix}_${arg} TRUE)
ELSE (is_option)
SET(current_arg_list ${current_arg_list} ${arg})
ENDIF (is_option)
ENDIF (is_arg_name)
ENDFOREACH(arg)
SET(${prefix}_${current_arg_name} ${current_arg_list})
ENDMACRO(PARSE_ARGUMENTS)
# Perform a reverse topological sort on the given LIST.
#
# topological_sort(my_list "MY_" "_EDGES")
#
# LIST is the name of a variable containing a list of elements to be
# sorted in reverse topological order. Each element in the list has a
# set of outgoing edges (for example, those other list elements that
# it depends on). In the resulting reverse topological ordering
# (written back into the variable named LIST), an element will come
# later in the list than any of the elements that can be reached by
# following its outgoing edges and the outgoing edges of any vertices
# they target, recursively. Thus, if the edges represent dependencies
# on build targets, for example, the reverse topological ordering is
# the order in which one would build those targets.
#
# For each element E in this list, the edges for E are contained in
# the variable named ${PREFIX}${E}${SUFFIX}, where E is the
# upper-cased version of the element in the list. If no such variable
# exists, then it is assumed that there are no edges. For example, if
# my_list contains a, b, and c, one could provide a dependency graph
# using the following variables:
#
# MY_A_EDGES b
# MY_B_EDGES
# MY_C_EDGES a b
#
# With the involcation of topological_sort shown above and these
# variables, the resulting reverse topological ordering will be b, a,
# c.
function(topological_sort LIST PREFIX SUFFIX)
# Clear the stack and output variable
set(VERTICES "${${LIST}}")
set(STACK)
set(${LIST})
# Loop over all of the vertices, starting the topological sort from
# each one.
foreach(VERTEX ${VERTICES})
string(TOUPPER ${VERTEX} UPPER_VERTEX)
# If we haven't already processed this vertex, start a depth-first
# search from where.
if (NOT FOUND_${UPPER_VERTEX})
# Push this vertex onto the stack with all of its outgoing edges
string(REPLACE ";" " " NEW_ELEMENT
"${VERTEX};${${PREFIX}${UPPER_VERTEX}${SUFFIX}}")
list(APPEND STACK ${NEW_ELEMENT})
# We've now seen this vertex
set(FOUND_${UPPER_VERTEX} TRUE)
# While the depth-first search stack is not empty
list(LENGTH STACK STACK_LENGTH)
while(STACK_LENGTH GREATER 0)
# Remove the vertex and its remaining out-edges from the top
# of the stack
list(GET STACK -1 OUT_EDGES)
list(REMOVE_AT STACK -1)
# Get the source vertex and the list of out-edges
separate_arguments(OUT_EDGES)
list(GET OUT_EDGES 0 SOURCE)
list(REMOVE_AT OUT_EDGES 0)
# While there are still out-edges remaining
list(LENGTH OUT_EDGES OUT_DEGREE)
while (OUT_DEGREE GREATER 0)
# Pull off the first outgoing edge
list(GET OUT_EDGES 0 TARGET)
list(REMOVE_AT OUT_EDGES 0)
string(TOUPPER ${TARGET} UPPER_TARGET)
if (NOT FOUND_${UPPER_TARGET})
# We have not seen the target before, so we will traverse
# its outgoing edges before coming back to our
# source. This is the key to the depth-first traversal.
# We've now seen this vertex
set(FOUND_${UPPER_TARGET} TRUE)
# Push the remaining edges for the current vertex onto the
# stack
string(REPLACE ";" " " NEW_ELEMENT
"${SOURCE};${OUT_EDGES}")
list(APPEND STACK ${NEW_ELEMENT})
# Setup the new source and outgoing edges
set(SOURCE ${TARGET})
string(TOUPPER ${SOURCE} UPPER_SOURCE)
set(OUT_EDGES
${${PREFIX}${UPPER_SOURCE}${SUFFIX}})
endif(NOT FOUND_${UPPER_TARGET})
list(LENGTH OUT_EDGES OUT_DEGREE)
endwhile (OUT_DEGREE GREATER 0)
# We have finished all of the outgoing edges for
# SOURCE; add it to the resulting list.
list(APPEND ${LIST} ${SOURCE})
# Check the length of the stack
list(LENGTH STACK STACK_LENGTH)
endwhile(STACK_LENGTH GREATER 0)
endif (NOT FOUND_${UPPER_VERTEX})
endforeach(VERTEX)
set(${LIST} ${${LIST}} PARENT_SCOPE)
endfunction(topological_sort)
# Small little hack that tweaks a component name (as used for CPack)
# to make sure to avoid certain names that cause problems. Sets the
# variable named varname to the "sanitized" name.
#
# FIXME: This is a complete hack. We probably need to fix the CPack
# generators (NSIS in particular) to get rid of the need for this.
macro(fix_cpack_component_name varname name)
if (${name} STREQUAL "foreach")
set(${varname} "boost_foreach")
else()
set(${varname} ${name})
endif()
endmacro()